Thesis (Ph.D)


Deposition and characterisation of nickel oxide based coatings for advanced glazing applications

Abstract

This thesis is a comparative study of nickel oxide based thin films for use as a counter electrode in a variable transmittance electrochromic device. Coatings have been prepared using anodic electrodeposition, colloidal precipitation and radio frequency (r.f.) sputtering. Systematic studies of the effect of deposition process parameters on optical and electrochromic properties of such films have been undertaken. Optimum conditions for the deposition of coatings deposited by colloidal and anodic deposition have been determined. A novel process for the colloidal deposition of electrochromic a-Ni(OH)2 coatings using a simple one dip process is reported. Also the electrochromic properties of coatings anodically deposited from aqueous solutions containing NiS04 and NH40H were improved by the addition of the non-ionic surfactant polyoxyethylene sorbitan monolaurate. Spectroscopic and electrochemical analytical techniques were used to identify the chemical composition of the coloured and bleached states. It was found using Fourier transform infra-red spectrophotometry (FTIR) that coatings deposited by anodic and colloidal deposition contained f3-Ni(OH)2 and a-Ni(OH)2 respectively in the as-deposited and transparent states. For coatings deposited by both techniques 13 or y-NiOOH was detected in the coloured state using FTIR. Using Raman spectroscopy, y-NiOOH was detected in the coloured state for coatings deposited by anodic deposition from solutions containing the additive polyoxyethylene sorbitan monolaurate. I3-Ni(OH)2 was also detected in the transparent state of r.f. sputtered coatings that were electrochemically cycled in 1M KOH(aq). Using cyclic voltammetry the oxidation of nickel hydroxide to the oxyhydroxide was detected during colouration for coatings produced using anodic electrodeposition, colloidal precipitation and r.f. sputtering (after cycling sputtered films for 1 hour in 1M KOH(aq). This information has been compared for films prepared using the different deposition techniques to enable the respective colouration mechanisms to be elucidated. Prototype electrochromic devices have been constructed and their performances assessed. It can be concluded that nickel oxide based coatings can be used as suitable counter electrodes for hydrated electrochromic devices.

Attached files

Authors

McMeeking, G

Oxford Brookes departments

Department of Mechanical Engineering and Mathematical Sciences
Faculty of Technology, Design and Environment

Dates

Year: 1997


© McMeeking, G
Published by Oxford Brookes University
All rights reserved. Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.

Details

  • Owner: Unknown user
  • Collection: eTheses
  • Version: 1 (show all)
  • Status: Live
  • Views (since Sept 2022): 145