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Abstract

Background: RNA-seq based on short reads generated by next generation sequencing technologies has become
the main approach to study differential gene expression. Until now, the main applications of this technique have
been to study the variation of gene expression in a whole organism, tissue or cell type under different conditions
or at different developmental stages. However, RNA-seq also has a great potential to be used in evolutionary studies to
investigate gene expression divergence in closely related species.

Results: We show that the published genomes and annotations of the three closely related Drosophila species D.
melanogaster, D. simulans and D. mauritiana have limitations for inter-specific gene expression studies. This is due to
missing gene models in at least one of the genome annotations, unclear orthology assignments and significant gene
length differences in the different species. A comprehensive evaluation of four statistical frameworks (DESeq2, DESeq2
with length correction, RPKM-limma and RPKM-voom-limma) shows that none of these methods sufficiently accounts
for inter-specific gene length differences, which inevitably results in false positive candidate genes. We propose that
published reference genomes should be re-annotated before using them as references for RNA-seq experiments to
include as many genes as possible and to account for a potential length bias. We present a straight-forward reciprocal
re-annotation pipeline that allows to reliably compare the expression for nearly all genes annotated in D. melanogaster.

Conclusions: We conclude that our reciprocal re-annotation of previously published genomes facilitates the analysis of
significantly more genes in an inter-specific differential gene expression study. We propose that the established
pipeline can easily be applied to re-annotate other genomes of closely related animals and plants to improve
comparative expression analyses.
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Background
Comparative studies of gene expression have been used to
understand the regulation of a wide range of biological
processes. With the development of next generation se-
quencing (NGS) technologies, and in particular the use
of Illumina sequencing platforms, reliable genome wide
comparison of gene expression between different bio-
logical conditions has become possible [1–3]. Moreover, a
growing number of available genome and transcriptome
sequences [4–8] now provides the opportunity to compare
gene expression not only in well-established, but also in
emerging model systems. Especially, the comparison of
gene expression between both closely [9–16] and distantly
related species [17–20] has great potential to help under-
stand phenotypic divergence and species adaptations at a
mechanistic level [21].
Experiments to study differential gene expression using

NGS technologies (RNA-seq) are based on a sequencing
library generated from reverse transcribed messenger
RNA (mRNA) that is extracted from the tissue and condi-
tions of interest. Illumina sequencing, for example, results
in the generation of millions of short reads ranging from
36 bp to 150 bp [22, 23]. The first step of the bioinformat-
ics analysis is to align these reads to a reference that repre-
sents all transcripts that should be quantified [24–28].
This reference can be a whole genome sequence with
annotated gene models or a transcriptome. The latter
can either be generated by a de novo assembly of the
RNA-seq reads [29, 30] or it could be extracted from
an annotated genome. The next step is to determine
the number of reads that are aligned to a gene model
or transcript. Depending on the type of reference used
(genome or transcriptome) various different methods
have been established [31, 32]. Finally, the number of
reads assigned to a given gene model or transcript is com-
pared between different conditions to identify differen-
tially expressed genes.
The steps outlined above for a general RNA-seq experi-

ment are suitable to compare gene expression levels be-
tween different conditions, stages or tissues of the same
species. However, comparison of gene expression between
different species or populations of the same species needs
to account for differences in gene sequences. In this case,
reads should be mapped to species-specific references for
which the expression level of a gene in one of the species
is compared to the expression level of its ortholog in the
other species. Most importantly, this requires sets of
orthologous genes reliably identified in all references.
Since genomes or transcriptomes are usually generated
by different research groups for different applications
and using different pipelines for assembly and annotation,
annotated references for inter-specific gene expression
studies are often not comparable. For instance, ortholo-
gous genes might be missing from one or more of the

references as result of natural variation or technical
problems like incomplete assemblies or too many se-
quencing errors, which hampers unequivocal identifi-
cation of orthologous genes. Additionally, it is
common practice to filter out genes that are incom-
plete or lack synteny in relation to a model reference
from new gene model predictions [33]. Even though
there are many tools available to perform genome an-
notation, a general standard does not exist. Therefore,
the final gene set generated by each genome project
will have genes missing as a result of methodological
problems and filtering criteria, and this can directly in-
fluence the result of the differential gene expression
analysis [34].
Additionally, even if most one-to-one orthologs have

been successfully identified in different references, these
gene models may vary in length for various reasons: First,
the genes could naturally differ in length among spe-
cies. Second, as a consequence of differences in the se-
quence or assembly quality of the reference genomes
(e.g. stretches of Ns or premature stop codons due to se-
quencing errors, incorrect scaffolding or repetitive regions),
orthologous gene models might be truncated in one or
more of the references. To our knowledge, a compre-
hensive evaluation of methods that could be applied to
account for inter-specific gene length differences has
not been performed yet.
A plethora of statistical approaches have been developed

to determine whether differences in the number of reads
are due to technical variation or due to real biological
differences in gene expression. Detailed evaluation and
comparison of these methods concluded that the most
accurate statistical validation of differential gene expres-
sion is reached when statistical models are used that
directly take the number of aligned reads into account
[35–38]. These methods include standard and generalized
Poisson and negative binomial distributions to model
count-based expression data [38, 39] as implemented in
DESeq [40], DESeq2 [41], edgeR [42] or deGPS [39].
Also the differential expression analysis based on mod-
erated t-statistics as implemented in the limma package
[43, 44] using log-transformed count per million values
originating from normalization with voom [45] (referred
to as voom-limma below) has been shown to perform ex-
tremely well [37]. While all of these methods account for
most technical biases and control well false positive rates,
none of these methods is specifically designed to account
for gene length differences as they occur in inter-specific
expression studies. One potential solution could be the
application of the normalization method reads per
kilobase per million mapped reads (RPKM) as it ac-
counts for length differences in gene models [46].
However, it has been shown that even after correcting
for length differences, a longer transcript is more likely
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to appear as differentially expressed if RPKM values are
used to assess the statistical significance [35, 37, 47–49].
RPKM normalization is still widely used to compare gene
expression levels of different genes within a species, but to
our knowledge it has not been tested if this method effi-
ciently normalizes length differences when comparing
gene expression in different species.
Here we show that the published genomes of three

closely related Drosophila species, D. melanogaster, D.
simulans and D. mauritiana have qualitative limitations
as references for comparative gene expression studies.
This is mainly due to the fact that many genes cannot be
properly compared because orthologous genes are missing
in the annotation of at least one of the genomes. Even
after a direct re-annotation of the three genomes using
the same annotation pipeline many orthologous gene
models exhibit significant length differences. Taking ad-
vantage of these inter-specific gene length differences in
the published and the directly re-annotated references, we
benchmarked four statistical frameworks (DESeq2 without
length correction, DESeq2 with length correction, RPKM-
limma and RPKM-voom-limma) for their ability to reduce
the number of potentially false positives. We demonstrate
that none of these methods sufficiently accounts for the
observed differences in gene length. Therefore, we
propose that the length normalization should be per-
formed prior to read mapping during the generation of
the mapping references. We report a straightforward
re-annotation method that relies on a reciprocal re-
annotation of orthologous gene models in two or more
species. This approach allows the comparison of nearly
all genes that have been annotated in D. melanogaster
in all three species. Additionally, we find that the use of
the new gene sets as mapping references results in a
more robust estimation of transcript abundance and a
more reliable comparison of gene expression levels be-
tween species. We propose that the generation and an-
notation of new genome resources or the re-annotation
of existing genomes will be powerful tools to establish
gene expression profiling in many emerging model
systems.

Results and discussion
Analysis of published genome annotations reveals a
reduced number of comparable gene models for
differential gene expression studies between species
We first assessed the completeness and comparability of
the published gene sets for the three closely related spe-
cies D. melanogaster, D. simulans and D. mauritiana. At
the time of our analysis, the annotation of the D. mela-
nogaster genome (r5.55) - one of the best curated meta-
zoan genomes available at FlyBase [50–52] - included
13,676 unique protein coding genes. The most recent
annotations for D. simulans [53] and D. mauritiana [54]
were generated using the D. melanogaster gene set as
reference (for the D. simulans project the authors used
the D. melanogaster annotation r5.33, and for the D.
mauritiana project r5.32 was used). Both gene sets con-
tain a large fraction of the 13,676 D. melanogaster genes
(86.55 % in D. simulans and 87.78 % in D. mauritiana,
Table 1). However, orthologs of almost 2000 D. melano-
gaster genes are not included in each of the final gene
sets either because the authors applied various filtering
steps to exclude incomplete orthologous sequence with
respect to the D. melanogaster gene (see the filtering cri-
teria in the Methods of [53, 54]) or because the genes are
not present in one of the species. Since these filtering
steps are influenced by the quality of each of the assem-
bled genome and the scientific question of each research
group, the missing genes in both annotations are not the
same. Only 9994 genes (73.08 %) can be identified
unequivocally as orthologs in all three annotations (see
Methods). Among the genes missing in at least one an-
notation, we found some important and well-studied
developmental genes including the Hox genes abdom-
inal B (abd-B), Ultrabithorax (Ubx) or Antennapedia
(Antp), the head and brain patterning gene orthodenti-
cle (otd) and the segment polarity gene hedgehog (hh)
(Additional file 1: Table S1).
Next we assessed the comparability of the three refer-

ence genome annotations in terms of gene length, since
length differences larger than the length of the RNA-seq
reads are likely to introduce a bias during mapping and

Table 1 Number of genes obtained by each annotation method

Method D. melanogaster D. simulans D. mauritiana Comparable

Published annotation 13,676 11,837 (86.55 %) 12,005 (87.78 %) 9,994 (73.08 %)

after filtering 8,810 (64.42 %)

Direct re-annotation 13,676 13,436 (98.24 %) 13,401 (97.99 %) 13,328 (97.45 %)

after filtering 12,334 (90.19 %)

Reciprocal re-annotation 13,457 (98.40 %) 13,373 (97.78 %) 13,346 (97.59 %) 13,311 (97.33 %)

after filtering 13,239 (96.80 %)

The last column contains the number of genes for which 1:1 orthologs were identified in the three species. “after filtering” indicates the remaining common
genes after filtering out genes with length difference larger than 49 bp. Percentages in brackets are always given in relation to the total number of gene models
in D. melanogaster (r5.55; 13,676 gene models)
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the subsequent differential expression analysis. If we con-
sider 50 bp single-end reads, which have been shown to
be long enough to produce accurate results when measur-
ing differential gene expression [55–57], genes that have a
length difference larger than 49 bp among the annotations
of the three Drosophila species are likely to bias a subse-
quent differential gene expression analysis. A pairwise
comparison of annotated gene length for the 9994 genes
present in all three Drosophila species (Fig. 1a) shows that
in the published annotations, the gene length differences
are larger than 49 bp in 7.6 % (757) of the orthologous
genes between D. mauritiana and D. simulans, 9.1 %
(912) between D. melanogaster and D. simulans and 7.1 %
(706) between D. melanogaster and D. mauritiana (Fig. 1a,
Additional file 2: Table S2). If these length differences are
not accounted for, these genes could result in false posi-
tives in a differential gene expression analysis.

Direct re-annotation of published genomes
Next we asked whether a direct re-annotation of the D.
simulans and D. mauritiana genomes individually using
the same D. melanogaster gene set as reference and the
same annotation pipeline allows the comparison of more
genes in an inter-specific differential gene expression
study.
We used the 13,676 protein sequences of D. melanoga-

ster (r.5.55) as reference to re-annotate the published ge-
nomes of D. simulans [53] and D. mauritiana [54] using
the program Exonerate [58]. Without applying any filter-
ing, we find orthologs of 13,328 D. melanogaster genes
that are comparable among the two species (Table 1).
Next, we determined the length of directly re-annotated
genes that are found in all three species. This comparison
shows an increase in number of genes with the same
length between the three species after direct re-annotation
(Fig. 1b; Additional file 2: Table S2). However, a high num-
ber of orthologous genes have a length difference of more
than 49 bp (Fig. 1b; Additional file 2: Table S2): 706
(5.3 %) between D. melanogaster and D. mauritiana, 740
(5.6 %) between D. melanogaster and D. simulans and 658
(4.9 %) between D. mauritiana and D. simulans. These
observed length differences could be due to real natural
variation in coding sequence length between species or
they could be technical artifacts, for example truncated
gene sequences arising from sequencing or genome as-
sembly errors.
In summary, although annotated genomes are avail-

able for the three closely related Drosophila species D.
melanogaster, D. simulans and D. mauritiana, their use
as mapping references for inter-species differential gene
expression analyses is limited due to missing orthologs
and a potential bias because of different annotated gene
lengths. The use of the same reference gene set, annota-
tion pipeline and the lack of filtering incomplete gene

sequences results in an increase in the number of com-
parable genes in these three closely related species.

Length difference in reference genes introduces biases in
differential expression studies
Since we find a high number of gene models with length
differences > 49 bp in the published annotations and after
the direct re-annotation (Fig. 1a and b; Additional file 2:
Table S2), the three Drosophila genomes are excellent
models to test whether length differences larger than the
read length do indeed influence the statistical analysis of
differential gene expression. We used the published D.
melanogaster annotation and the newly generated direct
re-annotations of D. simulans and D. mauritiana as
mapping references for pairwise comparisons of gene
expression between D. melanogaster and D. mauritiana
and D. simulans and D. mauritiana using 50 bp single-end
Illumina RNA-seq reads generated for these three spe-
cies (Torres-Oliva et al., in preparation; see Methods).
RNA-seq reads generated from one species were mapped
only to the gene set of that species.
Using this experimental setup, we compared four dif-

ferent statistical frameworks, namely DESeq2, DESeq2
with gene length correction [41], limma with length cor-
rection based on RPKM [43, 44, 46, 59] and voom-limma
[45] including RPKM length correction. For each method,
we first report the number of differentially expressed
genes for each of the two pairwise species comparisons.
Next we evaluate the impact of the length differences be-
tween gene models on the fold-change in gene expression
between species. And eventually, we compare the results
of each of the four methods to an independent qPCR
experiment for a subset of genes.

DESeq2 without length correction
First we performed the statistical analysis for differential
gene expression with DESeq2 [41] using directly the read
counts for each gene model. For both pairwise compari-
sons using the published and the direct re-annotation as
reference, we found that between 19.9 and 29.7 % of all
comparable genes are significantly differentially expressed
(Table 2).
Additionally, we found a very strong correlation be-

tween inter-specific length differences of the gene models
(considering only those gene models with differences >
49 bp) and the log2-fold change in gene expression
(Fig. 2a, Additional file 3: Figure S1; Table 2). The negative
correlation means that genes that are longer in one species
appear to be more up-regulated and vice versa. The cor-
relation can be explained by the mapping procedure: in
orthologous genes with different length, more reads align
to the ortholog that has the longer gene model (Fig. 3a,
upper panel). This results in an artificially higher expres-
sion for this specific gene in the species with the longer
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Fig. 1 (See legend on next page.)
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gene model. From this correlation we also see that most
of those genes with length differences and a high log2-
fold change are also significantly differentially expressed
(Fig. 2a, Additional file 3: Figure S1, p < 0.05, red dots),
showing that this method introduces a large number of
false positives.
In order to specifically test whether differences in the

length of gene models indeed influence the differential
expression analysis we chose seven genes that were

shorter in the D. mauritiana published annotation com-
pared to the published D. melanogaster annotation. When
we analysed the differential expression using DESeq2
without any length correction, the expression of all seven
genes were significantly different (Table 3). The log2-fold
change value indicated that D. melanogaster had a signifi-
cantly higher expression than D. mauritiana (Table 3). To
validate the results obtained by the RNA-seq experiment,
we measured the relative expression of the seven genes in

(See figure on previous page.)
Fig. 1 Pairwise length difference between orthologous genes. Bars indicate the number of genes with that difference in length (calculated in number
of nucleotides in the annotated transcripts) for each pair of species. Green shades indicate differences lower than 50 bp while orange to red
indicate larger differences. The comparison is showed for (a) the published annotations, b the direct re-annotation of the published genomes
and c the reciprocal re-annotation of the published genomes

Table 2 Differentially expressed genes and correlation between calculated log2-fold changes and length difference between
orthologous genes. Results are shown for the four applied methods, the three studied annotation strategies and the two described
pairwise species comparisons

Method Annotation Species # Common
genes

# Differentially expressed genes
(% of common genes)a

Spearman’s p valueb FDR 0.05 Spearman’s
rhob

DESeq2 Published D. mau vs D. mel 11,503 2,438 (21.2) 6.52e-33 *** −0.36

D. mau vs D. sim 10,023 2,974(29.7) 2.15e-20 *** −0.33

Direct D. mau vs D. mel 13,401 2,665 (19.9) 3.35e-20 *** −0.33

D. mau vs D. sim 13,328 3,710 (27.8) 5.90e-58 *** −0.57

Reciprocal D. mau vs D. mel 13,331 2,501 (18.8) 5.12e-02 n.s. −0.23

D. mau vs D. sim 13,320 3,508 (26.3) 1.48e-01 n.s. −0.29

DESeq2 + length matrix Published D. mau vs D. mel 11,503 1,192 (10.4) 2.24e-05 *** −0.13

D. mau vs D. sim 10,023 1,545 (15.4) 3.20e-02 a −0.08

Direct D. mau vs D. mel 13,401 1,259 (9.4) 1.07e-02 a −0.09

D. mau vs D. sim 13,328 1,957 (14.7) 5.24e-04 ** −0.13

Reciprocal D. mau vs D. mel 13,331 1,215 (9.1) 7.03e-01 n.s. −4.6e-02

D. mau vs D. sim 13,320 1,910 (14.3) 7.34e-01 n.s. −0.07

RPKM + limma Published D. mau vs D. mel 11,503 1,904 (16.6) 4.42e-04 *** −0.11

D. mau vs D. sim 10,023 2,427 (24.2) 1.06e-03 ** −0.12

Direct D. mau vs D. mel 13,401 1,890 (14.1) 5.68e-03 a −0.10

D. mau vs D. sim 13,328 2,795 (21,0) 4.49e-04 *** −0.14

Reciprocal D. mau vs D. mel 13,331 1,830 (13.7) 5.92e-01 n.s. −6.4e-02

D. mau vs D. sim 13,320 2,738 (20.6) 2.83e-01 n.s. −0.22

RPKM + voom + limma Published D. mau vs D. mel 11,503 1,853(16.1) 9.39e-04 *** −0.10

D. mau vs D. sim 10,023 2,204(22.0) 4.63e-02 a −0.07

Direct D. mau vs D. mel 13,401 1,899(14.2) 1.01e-02 a −0.10

D. mau vs D. sim 13,328 2,607(19.6) 5.92e-03 a −0.11

Reciprocal D. mau vs D. mel 13,331 1,819(13.6) 5.79e-01 n.s. −0.07

D. mau vs D. sim 13,320 2,519(18.9) 4.06e-01 n.s. −0.17
aFDR 0.05
bSpearman’s rank correlation is measured between log2FC and length difference of genes showing more than 49 bp length difference
Published annotation: D. mau vs. D.mel: 1,038 genes/D.mau vs. D.sim: 764 genes; Direct annotation: D.mau vs. D.mel: 716 genes/D.mau vs. D.sim: 658 genes;
Reciprocal annotation: D.mau vs. D.mel: 71 genes/D.mau vs. D.sim: 26 genes
*p < 0.05; **p < 0.005; ***p < 0.0005
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D. melanogaster and D. mauritiana using qPCR. This
analysis showed that the seven genes that had length
differences in the species-specific annotations were not
significantly differentially expressed (Fig. 4, Table 3). As
a control we chose another three genes that showed
significant differential expression in the RNA-seq data

but had the same length in both species in the two an-
notation methods (piwi and alrm are significantly
higher in D. mauritiana and Nplp1 is higher in D. mel-
anogaster). We found that piwi and alrm showed a sig-
nificantly higher expression in D. mauritiana when
using this alternative quantification method, confirming

Fig. 2 Length differences between orthologous genes introduce gene expression biases. Relation between length differences and the log2-fold
change in the RNA-seq experiment between D. mauritiana and D. simulans using the direct re-annotation of these species as mapping references.
Dots represent genes with length difference > 49 bp in these annotations (658 genes). Genes significantly differentially expressed in the presented
analysis (padj < 0.05) are shown in red. A negative log2-fold change indicates higher expression in D. mauritiana. A positive length difference indicates
that the ortholog of D. mauritiana is longer. The p-value and rho of the Spearman’s rank correlation are indicated on the lower right side of the plots.
a Results of DESeq2 without length correction. b Results of DESeq2 applying length normalization factor matrix. c Results of applying RPKM normalization
and limma to call differentially expressed genes. d Results of applying voom normalization followed by a length normalization matrix and limma to call
differentially expressed genes
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the results obtained by RNA-seq (Fig. 4, Table 3). More-
over, Nplp1 had higher expression in D. melanogaster
again consistent with our RNA-seq data, although this dif-
ference was not significant (p = 0.072; Fig. 4, Table 3).

In summary, these results suggest a high level of
potentially false positive candidates when methods
based on direct read counts without the application
of length correction are used with mapping references

Fig. 3 Schematic representation of length bias in inter-species differential expression analysis and our reciprocal re-annotation strategy to correct
it. a Length bias in the analysis of a non-differentially expressed gene. Coloured rectangles represent the part of the transcript which is included
as reference for the RNA-seq reads to map to, while unfilled rectangles are regions of the transcript which are omitted and to which RNA-seq
reads cannot be mapped. Red “N”s represent sequencing errors that prevent the complete annotation of a transcript. Mapped reads are shown
as thin black lines and the number bellow indicates the total of reads mapped. (upper panel) If one transcript is shorter in one of the references
compared to its orthologs, for the same expression levels fewer reads will map to it. This can result in false positives in the analysis of differential
expression. (lower panel) Our strategy to correct this bias is to shorten the orthologs in the other references to match the length of the shorter
sequence. b Pipeline of reciprocal transcriptome re-annotation method. Black numbers in white circles represent genome annotation steps
using the “est2genome” command of Exonerate [58]. Grey numbers in grey circles represent conversion of the resulting GFF file into a new
transcript set. Filled horizontal bars represent the annotated set of transcripts; non-filled horizontal bars at the start/end of the transcripts represent
parts of the transcript that cannot be correctly annotated in one reference and are therefore eliminated from the transcript set. The boxes with red
frame indicate the transcript sets that will be used as reference for RNA-seq read mapping (after confirmation by reciprocal blast). Step 1: the transcript
set of the best annotated genomes (D. melanogaster in our study) is used to annotate one of the other genomes (D. simulans in our study)
and generate a new transcript set for this species. Due to sequencing errors, some transcripts will be shorter. Step 2: the new transcript set
form D. simulans is used to annotate the last genome (D. mauritiana in our study). The gene set generated contains shorter transcripts due to
sequencing errors in D. mauritiana but also in D. simulans. Step 3: the transcript set from D. mauritiana is used to re-annotate the previously
generated set from D. simulans to integrate the information from the D. mauritiana assembly. Step 4: the second transcript set from D. simulans is used
to annotate the D. melanogaster set in order to integrate the information from D. simulans and D. mauritiana
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that exhibit differences in the length of orthologous
genes.

DESeq2 with length correction
Next we benchmarked the use of DESeq2 [41] including
a normalization factor matrix incorporating gene length
to account for the length differences between ortholo-
gous genes. Using this approach for pairwise gene ex-
pression analyses, we found that only 9.4 to 15.4 % of

the comparable genes were significantly differentially
expressed. Even though the gene length was accounted
for during the DESeq2 analysis of differential gene ex-
pression, we still find a correlation between inter-
specific gene length differences and log2-fold changes
(Fig. 2b, Additional file 4: Figure S2, Table 2). However,
the significance of this correlation is greatly reduced in
comparison to the DESeq2 analysis without length cor-
rection (Table 2), suggesting that the length correction

Table 3 Analysis of differential expression

Published transcriptomes Reciprocally re-annotated
transcriptomes

Gene qPCR Gene length (# nucl.) DESeq2 DESeq2 + length matrix RPKM + limma RPKM + voom+ limma Gene length (# nucl.) DESeq2

log2FC D. mel D. mau log2FC log2FC log2FC log2FC D. mel D. mau log2FC

lace −0.19 1791 903 1.40*** 0.38 0.41 0.15 902 902 0.03

CG3558 0.08 3147 1956 1.50*** 0.67 0.75 0.26* 3150 3135 0.16

dac −0.29 3243 1878 1.47*** 0.57 0.65 0.18 1887 1878 0.46

RAF2 1.0e-03 3351 1854 1.77*** 0.84 0.94 0.31 1959 1966 0.33

Cp110 −0.18 1998 1218 2.31*** 1.38* 1.4** 0.55** 2000 1998 0.11

CBP −0.21 1653 894 1.42*** 0.35 0.54 0.14 1656 1653 −0.24

CG6766 −0.41 1575 852 1.81*** 0.79 0.88 0.25* 855 855 0.31

piwi −2.60** 2529 2526 −2.48*** −2.54*** −1.99** −1.08** 2532 2529 −2.48***

alrm −2.37*** 1413 1413 −6.54*** −6.67*** −4.93*** −2.68*** 1416 1416 −6.49***

Nplp1 1.04 1461 1461 3.85*** 3.63*** 3.06*** 1.50*** 1464 1464 3.80***

Expression comparison is for D. mauritiana vs. D. melanogaster, thus a positive log2-fold change (log2FC) indicates higher expression in D. melanogaster and
vice versa. *p < 0.05; **p < 0.005; ***p < 0.0005

Fig. 4 qPCR results. Boxplot of normalized Ct values (reference gene: actin 79B) For each studied gene (one colour) boxplot is showed for Ct values in
D. melanogaster OreR (“D. mel”) and D. mauritiana TAM16 (“D. mau”). (Significance calculated by t-test (for genes with homogeneous distribution
of variances) or t-Welch-test (for genes with not homogeneous distribution of variances); *p < 0.05, **p < 0.005; ***p < 0.0005)
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incorporated in DESeq2 helps to reduce the number of
false positive candidate genes. This finding is further sup-
ported by the comparison of the RNA-seq results to the
qPCR data. After length correction only one (Cp110) of
the seven genes that are longer in D. melanogaster
show significant differential expression (Fig. 4, Table 3).

limma with RPKM length correction
RPKM values are commonly calculated for RNA-seq data-
sets to account for variation in library sizes and to correct
for length differences between different genes within the
same species [46]. The moderated t-statistics incorporated
in the limma R package [43, 44] can subsequently be
used to assess differential gene expression. It has not
been tested if this approach also corrects properly for
differences in the length of the same gene being compared
between two species. Using this method, we found be-
tween 14.1 % and to 24.1 % of the comparable genes to be
significantly differentially expressed (Table 2). Our correl-
ation analysis shows that the correction of a length bias
using RPKM values still results in a clearly significant
correlation between the gene length difference and the
observed log2-fold change (Fig. 2c, Additional file 5:
Figure S3, Table 2). However, compared to the DESeq2
analysis without length correction, the significance
values are highly reduced (Table 2), showing that the
number of false positives is lower. Accordingly, six of
the seven genes that we benchmarked with qPCR show
no significant differential gene expression although they
show clear length differences between D. melanogaster
and D. mauritiana (Table 3). Again Cp110 is the only
gene that appears as significantly differentially expressed
also after correcting for length differences.

voom-limma with RPKM length correction
It has recently been shown that differential gene expres-
sion analysis with limma [43, 44] using normalized read
counts from voom [45] perform very well for RNA-seq
datasets [37]. Although this method is designed to work
with direct read counts, in this case we tested it with an
additional transcript length correction. Between 15 and
23.5 % of the comparable genes are significantly differ-
entially expressed (Table 2). After length correction
(RPKM) and normalization with voom, we found a sig-
nificant correlation between gene length differences
and log2-fold changes when the published annotations
and the directly re-annotated reference gene sets were
used However, this was slightly reduced compared to
the RPKM-limma analysis, especially for the D. simulans
and D. mauritiana comparison. (Figure 2d, Additional
file 6: Figure S4, Table 2). For the seven qPCR bench-
marked genes that have clear length differences between
D. melanogaster and D. mauritiana the use of the voom-
limma method results in three significantly differentially

expressed genes (Table 3), suggesting a higher false posi-
tive rate.

Length correction during the statistical analysis might be
insufficient
The comprehensive comparison of four methods for
differential gene expression analysis shows that the in-
corporation of a length correction drastically reduces the
number of false positive candidate genes. Although the
correlation between gene length differences and the ob-
served log2-fold changes (Fig. 2, Additional files 3, 4, 5
and 6: Figure S1-S4, Table 2) is reduced in the three
methods that account for gene length differences
(length matrix in DESeq2, RPKM-limma and RPKM-
voom-limma), none of them sufficiently corrects the
length bias present in the two gene sets used as mapping
references. This is also supported by the qPCR validation
of seven genes that exhibit clear length differences be-
tween the published D. melanogaster and D. mauriti-
ana annotations (Fig. 4, Table 3). In all three methods
at least one gene was still artificially significantly differ-
entially expressed. This is most pronounced for the
voom-limma method where three of the seven genes
are significantly differentially expressed. Of the seven
genes we analysed using qPCR, Cp110 was in all cases
identified as a false positive candidate. In order to
further characterise this gene, we visually inspected
the distribution of mapped reads. Interestingly, the 3′-
region is missing in the D. mauritiana ortholog of Cp110
(Additional file 7: Figure S5A) and we found clearly more
D. melanogaster reads that map to this 3′-part of the tran-
script than to the 5′-region (Additional file 7: Figure S5C).
The number of D. melanogaster and D. mauritiana
reads mapped to the 5′-part of the transcript is com-
parable (compare Additional file 7: Figure S5B to C).
Hence, a very likely explanation for the inefficient
length correction of the three applied methods could
be an unequal distribution of the mapped reads along
the transcripts.
Besides an insufficient length correction, the DESeq2

method including a length matrix results in the lowest
number of significantly differentially expressed genes,
suggesting that the length correction applied here might
be extremely conservative and could lead to a high rate of
false negatives. Interestingly, in many pairwise compari-
sons we found more significantly differentially expressed
genes with a higher expression in D. mauritiana com-
pared to D. melanogaster and D. simulans (not shown),
although D. mauritiana gene models are generally shorter
than those of the other two species (Fig. 2, Additional
files 3, 4, 5 and 6: Figure S1-S4). This finding suggests
that the length correction applied here might reduce the
power to detect differential expression for the already
short D. mauritiana genes.
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In summary, all three methods that include a length cor-
rection decrease the chance of identifying false positives.
The RPKM-voom-limma and RPKM-limma methods seem
to give the best ratio of false positives and false negatives,
while DESeq2 including a length matrix is very conserva-
tive. However, none of the length correction methods
tested does efficiently account for all differences in gene
length observed in the reference annotation of the three
studied Drosophila species. The length bias is most obvious
when the distribution of reads is not uniform across the
transcript body (e.g. Cp110). Therefore, all genes that ex-
hibit length differences larger than the read length should
be excluded from any of the reference gene sets (see
Table 1; number of comparable genes after filtering).

Reciprocal re-annotation reduces the number of false
positive candidates
Overview of the reciprocal re-annotation pipeline
To overcome problems due to length differences between
orthologous genes and simultaneously maximize the
number of comparable genes, we developed a pipeline
to reciprocally re-annotate the reference genomes of the
three species (Fig. 3b, Methods). Instead of directly anno-
tating the D. simulans and D. mauritiana genomes indi-
vidually using the D. melanogaster reference gene set, we
first annotated the genome of D. simulans based on the
protein set from D. melanogaster. Subsequently, we used
these newly annotated D. simulans gene models to anno-
tate the genome of D. mauritiana. This gene set was then
used as a reference to re-annotate again the previously
generated D. simulans gene set. And finally, we used these
D. simulans gene models that already contain consensus
features of D. simulans and D. mauritiana to re-annotate
the D. melanogaster gene set (Fig. 3b). Therefore, we ob-
tained the longest sequence present in all three species
and then, if necessary, reduce its length in the other refer-
ences accordingly. Thus, we expect to equalize the length
of all the genes for the three references (Fig. 3a, lower
panel). It is important to note here that it does not matter
in which order the reciprocal re-annotation is done. As
long as the first reference is the one of D. melanogaster
(i.e. the best curated annotation), we obtained the same
results when we first annotate D. simulans or D. mauriti-
ana (not shown).

Reciprocal re-annotation efficiently reduces gene length
differences between species
With the reciprocal re-annotation of the published ge-
nomes we obtained 97.33 % of the 13,676 D. melanogaster
gene models in each of the three species (Table 1). In
accordance with our expectations, only a small fraction of
those genes found in all three species have a length
difference of more than 49 bp (Fig. 1c; Additional file 2:
Table S2): 71 genes (0.53 %) genes between D. melanogaster

and D. mauritiana, 41 genes (0.3 %) between D. melanoga-
ster and D. simulans and only 26 genes (0.19 %) between
D. mauritiana and D. simulans. Hence, the reciprocal
re-annotation of the published genomes allows the ana-
lysis of the highest number of comparable genes with
less than 50 bp length differences in a differential gene
expression study (Table 1; 13,239 (96.80 %) of the
13,676 D. melanogaster gene models).

Evaluation of the reciprocal re-annotation in RNA-seq
experiments
To quantitatively test whether the number of false posi-
tives due to gene length differences is indeed reduced
after reciprocal re-annotation, we applied a pairwise
analysis of differential gene expression between D. mel-
anogaster and D. mauritiana and D. simulans and D.
mauritiana (see Methods). We mapped the RNA-seq
reads to the new references and performed the statistical
analysis using the four methods evaluated above:
DESeq2, DESeq2 with length correction [41], RPKM-
limma [43, 44, 46], RPKM-voom-limma [45].
As for the published and directly re-annotated refer-

ences, the statistical analysis with DESeq2 resulted in the
highest number of significantly differentially expressed
genes (18.8 and 26.3 % of the comparable genes; Table 2).
This number clearly dropped to 9.1 and 14.3 % after in-
cluding a length correction during the DESeq2 analysis.
Similarly, the number of differentially expressed genes is
greatly reduced if RPKM-limma and RPKM-voom-limma
are being used (Table 2). However, only 71 (D. melanoga-
ster vs. D. mauritiana) and 26 (D. simulans vs. D. mauriti-
ana) pairwise comparable genes exhibit length differences
greater than 49 bp after reciprocal re-annotation. One
would expect that only those genes should be affected by
any of the three length correction methods.
Therefore, we propose that the combination of a recip-

rocal re-annotation in combination with a read-count
based DESeq2 analysis of differential gene expression is
likely to provide the most comprehensive and reliable
estimation of inter-specific gene expression differences.
This is further supported by the lack of a significant
correlation between log2-fold changes and gene length
differences if the DESeq2 is used in combination with
the reciprocal re-annotation as mapping reference
(Additional files 3, 4, 5 and 6: Figure S1-S4; Table 2).
Although the correlation is not significant, we still find
that most significantly differentially expressed genes
with length differences larger than 49 bp have higher
expression in the species with the longer transcript
(Additional files 3, 4, 5 and 6: Figure S1-S4). Therefore,
we propose that those genes should be filtered out from
further differential gene expression analysis. Additionally,
the seven genes that were validated using qPCR did not
show a significant differential expression after their length
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was equalized (Fig. 4, Table 3), suggesting that the length
correction during the annotation of genomes can facilitate
the reduction in false positive candidate genes in RNA-seq
analyses.

Assessment of power to detect differential gene expression
It is important to note that the gene models generated
by our reciprocal re-annotation pipeline do not neces-
sarily represent the complete gene and thus the most
comprehensive annotation for each species. This is due
to the fact that potential full gene models in one species
might have been adjusted to the shortest orthologous
gene model. Therefore, in each round of annotation
some gene models are truncated to fit the length of its
orthologs (see Figs. 2 and 3a). If the gene models would
be extremely shortened, this could of course lead to a
loss of statistical power for the differential gene expres-
sion analysis. In order to estimate how much sequence
information we really lose, we compared the length of
the D. melanogaster gene models before and after the re-
ciprocal re-annotation. This comparison shows that
12,642 (92.44 %) of the 13,676 gene models still contain
90 to 100 % of their original sequence length after the
reciprocal re-annotation (Additional file 8: Figure S6).
Next we assessed the potential loss of power by com-

paring the number of mapped reads between the pub-
lished annotations (13,676 genes in D. melanogaster,
12,005 genes in D. mauritiana and 11,837 genes in D.
simulans; Table 1) and the gene sets generated from our
reciprocal re-annotation of the published genomes
(13,457 genes in D. melanogaster, 13,373 genes in D.
simulans and 13,346 genes in D. mauritiana, Table 1).
Overall, the proportion of successfully mapped reads for
all reference gene sets was between 40 and 67 %
(Table 4). A large portion of this relatively low mapping
rate can be explained by the fact that we excluded UTR
sequences from all reference gene sets, what accounts
for about 27.4 % of all mapped reads (see Methods;
Additional file 9: Table S3). Additionally, we only used
the longest isoform of D. melanogaster for all annota-
tions in the other two species (see Methods). Therefore,
some differentially spliced exons might not be repre-
sented in the newly generated gene sets. However, the
use of the sum of all exons only increases the mapping
success by 0.4 % if UTRs are excluded and 1.6 % if the
UTRs are included (Methods; Additional file 9: Table
S3). If the comparison of the expression of different iso-
forms across species is of interest one could perform the
quantification on the level individual transcripts [60] or
even exons. This approach requires of course a proper
annotation of the different isoforms in all reference ge-
nomes and a dedicated mapping pipeline. For our ana-
lysis, we found for all replicates more than 17 million
mapped reads after reciprocal re-annotation (Table 4)

what has been shown to provide enough statistical
power for differential gene expression analyses [61].
We observed an increase in the mapping percentage

of up to 5 % in D. simulans and D. mauritiana when the
reciprocally re-annotated gene sets are used as references
(Table 4). This result shows that, although some gene
models were now shorter, many genes that had been fil-
tered out in the published genome annotations are actually
expressed in these species. The use of the re-annotated
gene set only slightly decreases the mapping success by 1
to 1.6 % in D. melanogaster (Table 4), which is likely to be
due to the artificial shortening of D. melanogaster gene
models.
In summary, we show that the artificial shortening of

transcripts after reciprocal re-annotation does not have
a major impact on the power to detect differential gene
expression.

Practical considerations
We demonstrate that the use of all annotated exons in-
stead of the longest isoform of each gene model does
not significantly increase the power to detect differential
gene expression. In contrast, the inclusion of UTR regions
for the reciprocal re-annotation will clearly increase the
number of mapped reads (Additional file 9: Table S3) and
hence the statistical power. However, the availability of
UTR sequence information strongly depends on the qual-
ity of the annotation of the species to compare, since UTR
and isoform predictions usually profit from the presence
of RNA-seq data to be incorporated in the annotation
pipeline. Additionally, the annotation of UTR regions
might become more complicated if more distantly related
species are studied, because UTR regions tend to evolve
faster than coding region [62].
Although we used very closely related species for our

analysis here, we think that the presented reciprocal
re-annotation is also applicable for genomes of more
distantly related species. As a consequence of a higher
sequence divergence between distantly related species,
inter-specific gene length differences are likely to be more
pronounced. If such genomes were used as mapping refer-
ences, the direct use of length correction during the statis-
tical analysis of differential gene expression might enhance
the over-correction effect that we have demonstrated for
the three presented methods. Additionally, if the gene
lengths are very different between species, the length bias
that has been reported for RPKM based normalization
approaches [35, 37, 47–49] might be more pronounced.
Therefore, we propose that the correction of the inter-
specific length bias prior to read mapping using our re-
ciprocal re-annotation pipeline should result in more
robust results. However, for more distantly related spe-
cies, the reciprocal re-annotation is likely to result in
more artificial shortening of the genes. Since this could
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reduce the power to detect differential gene expression,
we propose to assess the length differences between
species as we presented it here (Fig. 1) prior to the
sample preparation and sequencing and to adjust the
coverage accordingly by generating more reads to in-
crease sequencing depth.
In the presented case, at least one of the three Drosoph-

ila species represents a well-established model system
with a high quality genome assembly and annotation. If
this is available, the reciprocal re-annotation pipeline
should of course be started with the highest quality anno-
tation. If the annotation quality of all genomes similar the
pipeline could be started with any of the studied species,
since we showed that the direction of the reciprocal anno-
tation does not influence the final result. However, if the
quality of all annotations is comparably low, one should
consider generating longer paired-end reads with higher
coverage to first perform a de novo annotation with tools
like AUGUSTUS [63, 64] or BRAKER1 [65] using those
reads to train the respective algorithm. Subsequently, the
generated RNA-seq reads can be used to assess differential
gene expression using the reciprocally re-annotated refer-
ences with length adjusted orthologous genes.

Conclusions
We have carried out a comprehensive comparison of the
annotations of published genomes for the three closely
related Drosophila species, D. melanogaster, D. simulans
and D. mauritiana. This analysis reveals that different
assembly strategies, annotation pipelines and filtering steps
result in only a small fraction of genes that are comparable
among all three species. A direct re-annotation of the D.
simulans and D. mauritiana genomes using the same D.
melanogaster reference gene set and the same annotation

pipeline significantly improves the comparability of the
gene sets. However, this direct re-annotation still results in
length differences in many gene models between species.
Based on these length differences between orthologous
genes we tested four alternative methods to statistically
assess differential gene expression using RNA-seq, namely
DESeq2, DESeq2 with length correction, RPKM-limma
and RPKM-voom-limma. We show that none of these
methods sufficiently accounts for the inter-specific gene
length differences what is evident by a high number of
false positive differentially expressed genes. This finding is
further supported by qPCR as an alternative transcript
quantification method.
In order to further reduce the observed false positive

rate, we argue that the length bias should be accounted
for prior to the RNA-seq analysis during the generation
of the mapping references. Therefore, we implemented a
robust reciprocal re-annotation pipeline that allows the
generation of highly comparable gene sets to serve as
mapping references for inter-specific RNA-seq experiments.
Applying RNA-seq and qPCR we confirm the successful re-
duction of false positive candidate genes if the reciprocally
re-annotated genomes are used as mapping references. The
reciprocal re-annotation pipeline can easily be adopted to
re-annotate genomes of other closely related species or pop-
ulations of animals and plants. Although we introduced our
novel approach here to re-annotate three genomes at a time,
it can of course be applied to two or more genomes.

Methods
Comparison of published annotations
We obtained the complete coding sequence (CDS) set
of D. melanogaster r5.55 from FlyBase and considered

Table 4 | List of RNA-seq samples and the percentage and number of mapped reads to different reference transcriptomes

Sample Original read
typea

Published transcriptomes Reciprocally re-annotated transcriptomes

Percentage Total number of
mapped reads

Percentage Total number of
mapped reads

D. melanogaster replicate A SE 50 bp 58.86 % 28,486,024 57.33 % 27,744,730

D. melanogaster replicate B SE 50 bp 44.23 % 17,675,472 43.19 % 17,260,775

D. melanogaster replicate C SE 50 bp 65.51 % 25,316,846 63.91 % 24,699,746

D. mauritiana replicate A SE 50 bp 40.70 % 16,575,011 43.31 % 17,639,874

D. mauritiana replicate B SE 50 bp 56.17 % 31,884,442 60.07 % 34,100,435

D. mauritiana replicate C SE 50 bp 53.01 % 23,653,723 56.98 % 25,425,486

D. mauritiana replicate D PE 100 bp 56.06 % 111,643,922 61.07 % 121,610,905

D. mauritiana replicate E PE 100 bp 54.28 % 130,638,956 59.51 % 143,226,939

D. mauritiana replicate F PE 100 bp 60.90 % 144,541,354 66.21 % 157,165,639

D. simulans replicate A PE 100 bp 62.26 % 118,272,529 66.71 % 126,741,807

D. simulans replicate B PE 100 bp 57.90 % 138,364,665 62.56 % 149,508,494

D. simulans replicate C PE 100 bp 56.32 % 150,692,651 60.98 % 163,168,587
a Reads originally 100 bp paired-end (PE) were split in half to be 50 bp each and treated as single-end (SE) reads
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only the longest isoform of each gene. Because identi-
cal sequences cannot be distinguished when RNA-seq
reads are mapped (e.g. 23 different Histone 3 loci), we
only retained one copy of genes with exactly the same
nucleotide sequence (49 sequences, 195 transcripts
discarded).
The genome and annotation of D. mauritiana was

downloaded from http://www.popoolation.at/mauritiana_
genome/index.html [54], combining the five gene set files.
The transcript set was obtained from a GFF file and the D.
mauritiana genome. IDs were converted with the FlyBase
conversion tool.
The genome and annotation of D. simulans was down-

loaded from http://genomics.princeton.edu/AndolfattoLab/
w501_genome.html [53], combining “clean” and “unclean”
data sets. The transcript set was obtained from a GFF file
and the D. simulans genome.
Common genes were identified by gene ID (FBgn no-

menclature) correspondence in all species. Genes absent
from these species-specific annotations were identified by
comparing the annotated genes to the genes present in
the D. melanogaster gene set (Additional file 1: Table S1).
The absence of these genes was confirmed by tblastn [66]
search.

Direct re-annotation of genomes
The D. mauritiana and D. simulans genomes were ob-
tained as described above and annotated with the D.
melanogaster CDS set using Exonerate v2.2 [58] with the
command –-model est2genome –softmasktarget
yes –bestn 1 –minintron 20 –maxintron 20000.
The resulting GFF files were converted into transcript sets
for each species from the corresponding genome files.
For some genes these three species have a different

number of paralogs. For differential expression analysis
it is essential to only consider orthologs of each gene, i.e.
the number of reads that map to one transcript in one
species cannot be reliably compared to the number of
counts in two or more transcripts in another species. To
count the total number of recovered transcripts in each
annotation round, we kept only one copy of transcript
sequences that gave more than one best hit in the target
set. We selected the copy to keep based on conserved
synteny (the putative paralog that is in the same chromo-
some and relative strand in the target genome and that
has the same neighbouring genes as in D. melanogaster)
and conserved gene structure (the putative paralog that
has the same number of exons as D. melanogaster). Genes
for which none of the multiple copies found satisfied these
conditions were discarded. In the D. mauritiana direct re-
annotation only one gene gave more than one predicted
copy (FBgn0264343); since none of the copies was in the
same chromosome as D. melanogaster (2 L) they were dis-
carded. In the D. simulans direct re-annotation five genes

gave more than one copy (FBgn0002933, FBgn0010294,
FBgn0036177, FBgn0053874 and FBgn0062565); for
the first three genes, the copy that was in the same
relative strand as D. melanogaster was kept, FBgn0053874
was discarded because none of the copies was in the
same chromosome as D. melanogaster (2 L) and for
FBgn0062565 only the copy predicted in the same
chromosome as D. melanogaster (X) and with the same
number of exons (3) was kept and the other was
discarded.
BLAST 2.2.26+ [66] was used to back-blast the resulting

gene sets to the D. melanogaster gene set (blastn -max_
target_seqs 1). Only the genes that had as best hit the
D. melanogaster gene that had been used to annotate them
(reciprocal best hit) were kept and reported in Table 1.

Generation of comparable transcriptomes – reciprocal
re-annotation pipeline
To generate reference transcriptomes for the three species
with a minimum length difference between orthologous
sequences and including the maximum number of tran-
scripts present in all species for analysis of inter-specific
differential expression, we annotated the transcript sets
of the different species via multiple rounds of pairwise
alignment with Exonerate v2.2 [58] following the scheme
shown in Fig. 3b. Since FlyBase [50] maintains an up to
date curation and annotation the of D. melanogaster
genome, we used this gene set as the first reference.
We used the D. melanogaster CDS set (r5.55) to annotate

the D. simulans reference genome (Fig. 3b, step 1) with
exonerate –-model est2genome –softmasktarget
yes –bestn 1 –minintron 20 –maxintron 20000.
The resulting gene set was used to annotate the D. maur-
itiana reference genome using –-model est2genome
(Fig. 3b, step 2). At this point, the transcript set contains
the maximized number of comparable genes and mini-
mized transcript length difference between the three
species’ references. Consequently, step 3 consisted of
reciprocally annotating the D. simulans transcript set
with the D. mauritiana transcript set (Fig. 3b, step 3)
and finally using the resulting D. simulans transcript
set to annotate D. melanogaster transcript set (Fig. 3b,
step 4). The criteria used to deal with multiple paralogs
was the same as described above when the annotation
reference was a genome (steps 1 and 2). Step 1 was the
same as previously described and only one copy of
FBgn0002933, FBgn0010294, FBgn0036177 and FBgn0062565
were kept. In step 2, only one gene (FBgn0263247) gave two
hits in D. mauritiana; these two were clear tandem dupli-
cates and the one predicted at 3 L:11061688-11061810
was kept. In steps 3 and 4 only the genes where the gene
ID of the target and the query matched were kept.
A back-blast to the original D. melanogaster gene set

was also performed with the resulting gene sets of the
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three species. Only the reciprocal best hits were kept
and reported in Table 1.
A list of gene names (FBgn nomenclature) and the re-

spective transcript lengths for all annotations used in this
study (published annotations, direct re-annotation and the
reciprocal re-annotation) of all three species are available
as part of the processed files uploaded to the Gene
Expression Omnibus (GEO) database (Accession number:
GSE76252). Additionally, gff and fasta files of the final
datasets and of intermediate steps of the reciprocal re-
annotation pipeline are available from GSE76252 as well.

RNA isolation and sequencing
RNA–seq reads for analysis of differential expression were
generated for D. melanogaster (OregonR), D. mauritiana
(TAM16, collected in Mauritius in 2007 [54]) and D.
simulans (yellow vermillion forked, YVF; DSSC, University
of California, San Diego, Stock no.14021-0251.146)
(Torres-Oliva et al., in preparation). In summary, flies
were raised at 25 °C and 12 h:12 h dark/light cycle in
density‐controlled conditions (30 freshly hatched LI larvae
per vial). Female LIII larvae were dissected and eye-antennal
imaginal discs were stored in RNALater (Qiagen, Venlo,
Netherlands) at 120 h after egg laying. We dissected 40–50
discs per sample and generated three biological replicates
for D. melanogaster and for D. simulans and 6 biological
replicates for D. mauritiana (total of 12 samples).
Total RNA was isolated using the Trizol (Invitrogen,

Thermo Fisher Scientific, Waltham, Massachusetts, USA)
method according to the manufacturer’s recommenda-
tions and the samples were DNAse I (Sigma, St. Louis,
Missouri, USA) treated in order to remove DNA contam-
ination. RNA quality was determined using the Agilent
2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA,
USA) microfluidic electrophoresis. Only samples with
comparable RNA integrity numbers were selected for
sequencing.
Library preparation for RNA-Seq was performed using

the TruSeq RNA Sample Preparation Kit (Illumina, cata-
log ID RS-122-2002) starting from 500 ng of total RNA.
Accurate quantitation of cDNA libraries was performed
by using the QuantiFluor™dsDNA System (Promega,
Madison, Wisconsin, USA). The size range of final cDNA
libraries was determined applying the DNA 1000 chip on
the Bioanalyzer 2100 from Agilent (280 bp). cDNA librar-
ies were amplified and sequenced by using cBot and HiSeq
2000 (Illumina): single-end reads were generated for D.
mauritiana (replicates A, B and C) and for D. melanoga-
ster samples (1×50 bp) and paired-end reads were gener-
ated for D. mauritiana (replicates D, E and F) and for D.
simulans samples (2×100 bp).
Sequence images were transformed to bcl files using

the software BaseCaller (Illumina). The bcl files were
demultiplexed to fastq files with CASAVA (version 1.8.2).

Quality control was carried out using FastQC (version
0.10.1, Babraham Bioinformatics). Only replicates A, D
and E from D. mauritiana and replicate C from D. simu-
lans had bases with Phred quality score < Q20. Following
recently published guidelines [67] we did not trim these
bases but instead relied on the aligner software to make
the quality call. Due to this procedure the overall mapping
success (% mapped reads) for all datasets was slightly
reduced. Of D. melanogaster (replicate A) for example,
about 4.8 % of the reads do not map against the entire
genome, suggesting that they might be filtered out due
to low quality during the mapping procedure (Additional
file 9: Table S3).
Raw fastq files of all samples have been deposited in

NCBI’s Gene Expression Omnibus [68] and are access-
ible through GEO Series accession number GSE76252
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE76252).

Analysis of differential expression
Since we generated two different types of RNA-seq reads
(namely 100 bp paired-end and 50 bp single-end), we
only compared the datasets that were produced with the
same technique, i.e. D. melanogaster reads were compared
only to D. mauritiana 50 bp reads and D. simulans reads
to D. mauritiana 100 bp paired-end reads. Since 50 bp
single-end reads are informative enough for differential
expression analysis [55–57] and this is the cuttoff we set
in our analysis as the maximum gene length difference,
prior to mapping, 100 bp paired-end reads from D. simu-
lans and D. mauritiana were split into two 50 bp reads
each. Left and right reads were merged into a single file to
be equivalent to single-end reads. 50 bp single-end reads
from D. mauritiana and D. melanogaster were not proc-
essed prior to mapping.
Bowtie2 [69] with parameters –very-sensitive-

local –N 1 was used in all cases to map the reads to
the respective references: D. melanogaster reads were
mapped to the published gene set (Flybase, r5.55) and to
our novel reciprocally re-annotated gene set. D. mauriti-
ana and D. simulans reads were mapped to the respective
published gene sets [53, 54], to the directly re-annotated
gene sets and to the reciprocally re-annotated gene sets.
The number of reads mapping to each transcript were
summarized using samtools v0.1.19 [32].
To calculate the percentage of reads mapped to UTRs

we aligned D. melanogaster replicate A reads to the lon-
gest full transcripts of D. melanogaster r5.55 and com-
pared the mapping percentage to that of the mapped
reads to the longest CDS set. To calculate the percentage
of reads mapped to transcript regions not included in the
longest CDS set we aligned D. melanogaster replicate A
reads to the complete CDS set (including all isoforms)
and compared the mapping percentage to that of the
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longest CDS set. To calculate the percentage of reads
generated from unannotated regions we aligned D. mela-
nogaster replicate A reads to the complete D. melanoga-
ster genome r5.55 and compared the mapping percentage
to that of the mapped reads to all annotated transcripts.
Differential expression was determined for each ortho-

logous gene between D. melanogaster and D. mauritiana
(from the originally 50 bp single-end reads) and between
D. simulans and D. mauritiana (from the originally
100 bp paired-end reads). Four different methods were
used to call differentially expressed genes for each anno-
tation strategy:

1. DESeq2 [41] (v1.6.3) with direct counts per
transcript and default parameters.

2. DESeq2 with a transcript length normalization
factor matrix with row-wise geometric means of 1.
This matrix was applied with the command
normalizationFactors(). The rest of
parameters were left as default.

3. Limma [43, 44] (v3.22.7) on reads per kilobase per
million (RPKM). RPKM values were calculated for
each transcript with the corresponding library size
and transcript length. 1 was added to the resulting
value to prevent negative values when applying log
transformation. Limma was applied to log2
transformed RPKM values to call differentially
expressed genes using ebayes(trend = T).

4. RPKM-voom-limma [45]. RPKM values were
calculated as described above and voom() was used
with default parameters to log-transform the data
and obtain the associated precision weights matrix.
Limma with default parameters was applied to the
resulting EList object to perform the differential
expression analysis.

For all methods, Benjamini & Hochberg correction
was used to adjust p-values for multiple testing (default
in DESeq2 and Limma). Genes were called significantly
differentially expressed when the program reported an
adjusted p-value lower than 0.05.
R (v3.1.2) [70] was used to generate the correlation

plots. The Venn diagrams were generated using jvenn
[71]. IGV (v2.3) [72, 73] was used to visualize read cover-
age of the Cp110 transcript and Mafft (v7.017) [74] (as
integrated in Geneious v6.0.6 (Biomatters, Auckland,
New Zealand)) was used to align the annotated Cp110
transcripts of D. melanogaster and D. mauritiana.

Real-time qPCR
RNA from eye-antennal imaginal discs from female LIII
larvae was extracted using ZR Tissue & Insect RNA
MicroPrep™ (Zymo Research, Irvine, CA, USA). RNA con-
centration was measured using Qubit (Invitrogen, Thermo

Scientific, Waltham, Massachusetts, USA). Samples were
diluted to contain exactly the same amount of starting
RNA. RNA was converted to cDNA using MAXIMA®
First Strand cDNA synthesis for RTqPCR (Thermo
Scientific, Waltham, Massachusetts, USA). For the “no
RT” control parallel reactions were carried out with-
out enzyme. For the efficiency test, a series of five 1:4
dilutions were made. Real-Time qPCR was performed
with HOT FIREpol ® EvaGreen® qPCR Mix Plus (ROX)
(Solis BioDyne, Tartu, Estland) in a CFX96™ Real-Time
PCR System (Bio-Rad Laboratories, Hercules, CA, USA).
Primers were designed to exclude polymorphisms between
D. melanogaster (FlyBase) and D. mauritiana TAM16 and
to amplify a sequence that span introns to avoid genomic
contamination (except for Cp110, alrm and actin 79B) and
did not show isoform variation. Primer sequences are given
in Additional file 10: Table S4. A melting curve was
performed at the end of each reaction. Only genes that
produced a single peak are shown. Expression differences
were calculated by log2(2-ΔΔCt), using actin 79B as refer-
ence gene. Differences in expression were assessed using
t-test/t-Welch-test with FDR = 0.05.

Ethics statement
The research performed in this study on the fruit flies
Drosophila melanogaster, Drosophila mauritiana and
Drosophila simulans did not require approval by an
ethics committee.

Availability of data and materials
Raw fastq files of all samples have been deposited in
NCBI’s Gene Expression Omnibus and are accessible
through GEO Series accession number GSE76252 (http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE76252).
A list of gene names (FBgn nomenclature) and the re-
spective transcript lengths for all annotations used in this
study (published annotations, direct re-annotation and the
reciprocal re-annotation) of all three species are available
as part of the processed files uploaded to the Gene Ex-
pression Omnibus (GEO) database (Accession number:
GSE76252). Additional gff and fasta files of the final
datasets and of intermediate steps of the reciprocal re-
annotation pipeline are available from GSE76252 as
well. All other additional files and figures are part of
the “Additional files” of this publication.

Additional files

Additional file 1: Table S1. Genes missing from the published
annotations of D. simulans [53] and D. mauritiana [54] and from both
species. (XLSX 123 kb)

Additional file 2: Table S2. Raw values for the length differences of gene
models between species. This table is the basis for Fig. 2. (DOCX 15 kb)
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Additional file 3: Figure S1. Correlation plots for DESeq2 using direct
counts. Relation between length differences and the log2-fold change.
Comparisons between D. mauritiana and D. melanogaster are shown on
the left side, comparisons between D. mauritiana and D. simulans are
shown on the right side. On the first row, the published annotations are
used as mapping references; on the second row, the directly re-annotated
references are used as mapping references and on the third row, the
reciprocally re-annotated references are used. Dots represent genes
with length difference > 49 bp in these annotations. Genes significantly
differentially expressed in the presented analysis (padj < 0.05) are shown
in red. A negative log2-fold change indicates higher expression in D.
mauritiana. A positive length difference indicates that the ortholog of
D. mauritiana is longer. The p-value and rho of the Spearman’s rank
correlation are indicated on the upper right side of the plots. (PDF 3164 kb)

Additional file 4: Figure S2. Correlation plots for DESeq2 including
length correction. Relation between length differences and the log2-fold
change. Comparisons between D. mauritiana and D. melanogaster are
shown on the left side, comparisons between D. mauritiana and D.
simulans are shown on the right side. On the first row, the published
annotations are used as mapping references; on the second row, the
directly re-annotated references are used as mapping references and
on the third row, the reciprocally re-annotated references are used.
Dots represent genes with length difference > 49 bp in these annotations.
Genes significantly differentially expressed in the presented analysis
(padj < 0.05) are shown in red. A negative log2-fold change indicates
higher expression in D. mauritiana. A positive length difference
indicates that the ortholog of D. mauritiana is longer. The p-value
and rho of the Spearman’s rank correlation are indicated on the upper
right side of the plots. (PDF 3389 kb)

Additional file 5: Figure S3. Correlation plots for RPKM-limma. Relation
between length differences and the log2-fold change. Comparisons
between D. mauritiana and D. melanogaster are shown on the left
side, comparisons between D. mauritiana and D. simulans are shown
on the right side. On the first row, the published annotations are used
as mapping references; on the second row, the directly re-annotated
references are used as mapping references and on the third row, the
reciprocally re-annotated references are used. Dots represent genes
with length difference > 49 bp in these annotations. Genes significantly
differentially expressed in the presented analysis (padj < 0.05) are shown in
red. A negative log2-fold change indicates higher expression in D.
mauritiana. A positive length difference indicates that the ortholog of
D. mauritiana is longer. The p-value and rho of the Spearman’s rank
correlation are indicated on the upper right side of the plots. (PDF 3811 kb)

Additional file 6: Figure S4. Correlation plots for RPKM-voom-limma.
Relation between length differences and the log2-fold change. Comparisons
between D. mauritiana and D. melanogaster are shown on the left side,
comparisons between D. mauritiana and D. simulans are shown on the right
side. On the first row, the published annotations are used as mapping
references; on the second row, the directly re-annotated references are
used as mapping references and on the third row, the reciprocally
re-annotated references are used. Dots represent genes with length
difference > 49 bp in these annotations. Genes significantly differentially
expressed in the presented analysis (padj < 0.05) are shown in red. A
negative log2-fold change indicates higher expression in D. mauritiana.
A positive length difference indicates that the ortholog of D. mauritiana
is longer. The p-value and rho of the Spearman’s rank correlation are
indicated on the upper right side of the plots. (PDF 3777 kb)

Additional file 7: Figure S5. Cp110 coverage. (A) Alignment of the
published annotated transcripts of the gene Cp110 in D. mauritiana
(upper, shorter black bar), of the reciprocally re-annotated transcript in D.
mauritiana (middle, long black bar) and of the transcript in D. melanogaster
(lower, longer black bar; the published and the reciprocally re-annotated
sequences are the same). Shades of grey indicate mismatches, the top ruler
indicates the length of the alignment in bp, the green bar shows the base
similarity. (B) D. mauritiana RNA-seq reads mapped to the body of the
published D. mauritiana Cp110 transcript. (C) D. mauritiana RNA-seq reads
mapped to the body of the reciprocally re-annotated D. mauritiana Cp110
transcript. (D) D. melanogaster RNA-seq reads mapped to the body of the D.
melanogaster Cp110 transcript. Very few reads map to the 5′ region, more

reads map from the central portion of the gene, and many more to the 3′
end. (PDF 409 kb)

Additional file 8: Figure S6. Length difference of D. melanogaster gene
models after reciprocal re-annotation. The annotation of the D.
melanogaster genome is considered to be the most complete and
comprehensive one. After the reciprocal re-annotation of the D.
melanogaster, D. simulans and D. mauritiana genomes the D. melanogaster
gene models could be artificially truncated. This plot depicts the number of
gene models that have X% of the original length after the reciprocal
re-annotation. (PDF 271 kb)

Additional file 9: Table S3. Mapping percentage of D. melanogaster
replicate A to different references. (DOCX 12 kb)

Additional file 10: Table S4. Sequences of the primers used for the
qPCR experiment. (XLSX 11 kb)
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