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Abstract 

Petri nets have been extensively used in the modelling and analysis of concurrent and 
distributed systems. The verification and validation of Petri nets are of particular 
importance in the development of concurrent and distributed systems. As a 
complement to formal analysis techniques, testing has been proven to be effective in 
detecting system errors and is easy to apply. An open problem is how to test Petri nets 
systematically, effectively and efficiently. An approach to solve this problem is to 
develop test criteria so that test adequacy can be measured objectively and test cases 
can be generated efficiently, even automatically. In this paper, we present a 
methodology of testing high-level Petri nets based on our general theory of testing 
concurrent software systems. Four types of testing strategies are investigated, which 
include state-oriented testing, transition-oriented testing, flow-oriented testing and 
specification-oriented testing. For each strategy, a set of schemes to observe and 
record testing results and a set of coverage criteria to measure test adequacy are 
defined. The subsumption relationships and extraction relationships among the 
proposed testing methods are systematically investigated and formally proved.   

Keywords: Software Testing methods, Concurrent systems, High-level Petri nets, 
Test criteria, Behaviour observation 

1. Introduction 

Since 1970s, Petri nets have been extensively used in the modelling and analysis of concurrent 
and distributed systems. Although there are several formal analysis techniques of Petri nets such 
as coverability tree (or graph) technique and invariant techniques, formal verification and 
validation are not always applicable or effective, and are often very difficult to use. On the other 
hand, testing has been proven to be effective in detecting system errors and is easy to apply. We 
believe that a testing technique for Petri nets can be a cost-effective approach complementing 
other more formal analysis techniques in revealing errors in Petri nets. An open problem is how 
to test Petri nets systematically and effectively. An approach to solve this problem is to develop 
test criteria so that test adequacy can be measured objectively, test cases can be generated 
efficiently even automatically, and testing processes can be controlled effectively. It is the 
theme of this paper. 

Generally speaking, testing methods can be classified into program-based, which select test 
cases according to the information contained in the program, and specification-based, which 
derive test cases from the requirements specification. Petri nets can play two different roles in 
the development of concurrent systems. A Petri net can be used as a formal specification of a 
concurrent system. Testing a concurrent system against a Petri net belongs to the catalogue of 
specification-based methods. In the past few decades, a great amount of research has been 
reported in the literature on specification-based testing methods. There are works on derivation 
of test cases from algebraic specifications [1, 2, 3, 4, 5, 6], Z specifications [7, 8, 9], finite state 
machines cf. [12], and other specification languages such as Estelle, LOTOS, and SDL in 
conformance testing of communication protocols [16]. On the other hand, a Petri net can be 
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considered as an executable model of a concurrent system. It can also be tested against another 
specification. In this sense, a Petri net testing method also has the features of program-based 
testing. There are extensive literatures on program-based testing. Existing program-based 
testing methods include structural testing methods such as control flow testing and dataflow 
testing, fault-based testing methods such as mutation testing, and error-based testing. Readers 
are referred to [10] for a survey of researches on software testing methods.  

However, there are very few works on testing concurrent systems, especially testing Petri nets. 
In [11], a hierarchy of test criteria of structural testing of concurrent programs was proposed. 
The criteria were defined on the basis of concurrency graphs. A concurrency graph is a directed 
graph whose nodes represent concurrency states and edges represent state transitions. An edge 
from concurrency state A to B represents that the execution of the program can progress directly 
from state A to state B. A concurrency state is a vector of the synchronisation related nodes in 
the flow graph of the concurrent tasks of the program. The strongest criterion in the hierarchy is 
the all-concurrency-path criterion, which requires that an adequate test of a concurrent program 
should cover all paths in the concurrency graph. It subsumes the all-proper-cc-histories 
criterion, which requires that an adequate test should cover all elementary paths (i.e. the paths 
on which no node occurs more than once) in the concurrency graph. The all-edges-between-cc-
states criterion is less strict than the all-proper-cc-histories criterion. It requires an adequate test 
should cover all edges in the concurrency graph. An even less strict test criterion is the all-cc-
states criterion, which requires that an adequate test should cover all states in the concurrency 
graph. These criteria resemble the path coverage, elementary path coverage, branching coverage 
and statement coverage criteria of control flow testing of sequential programs. An additional 
criterion, called the all-possible-rendezvous criterion, specific to Ada programs was also 
proposed, which requires that an adequate test should cover those particular nodes in the 
concurrency graph which involve a rendezvous. This criterion is, therefore, subsumed by the all-
cc-states criterion.  

State oriented testing methods can also be found in the research on testing finite state machines. 
The development of such testing methods has initially been driven by problems arising from 
functional testing of sequential circuits, and later re-boosted in the need of testing 
communication protocols [12]. More recently, such testing methods attracted much attention of 
researchers of object-oriented software testing, cf. [13]. Traditional testing methods based on 
finite state machines rely on the model of completely specified deterministic finite state 
machines [14]. Recently, more complex models of finite state machines have been studied such 
as communicating finite state machines [15]. Two types of testing problems have been studied 
in the theory of testing finite state machines. The first is the state identification and verification 
problem, which tests a finite state machine whose description is known to the tester. It intends 
to identify which state it is in or to verify it is in a certain state. The second is the conformance 
testing problem, which tests an implementation modelled by a finite state machine, whose 
description is unknown, against a specification which is modelled by another finite state 
machine whose description is known by the tester. It intends to verify that the implementation is 
isomorphic to the specification. For example, in the conformance testing of communication 
protocols, a finite state machine as implementation of a protocol is often tested against another 
finite state machine that serves as the specification [16]. A common feature of conformance 
testing methods is that they are fault-based, that is, they are targeted to detect or eliminate a 
specific type of faults, such as transition faults, and rely on a fault model. Test adequacy criteria 
are almost all defined (usually implicitly) as completeness with respect to certain fault models. 
For both state identification and verification testing problems and conformance testing 
problems, a common assumption is that the tester can only observe the input and output 
sequences of the finite state machine under test. Therefore, solutions of testing problems cannot 
be based on direct observations on which state the machine is in. Although these theories and 
methods are relevant to the testing of Petri nets, the characteristics of black-box testing of the 
testing problems and the simplicity of the computation model of finite state machine limited 
their applicability to solve complicated problems in testing concurrent software systems, such as 
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Petri nets. There are three fundamental differences between the models of finite state machines 
and Petri nets. First, Petri nets treat both state and state transitions equally, which thus can be 
dealt with explicitly in testing. Second, Petri nets define states distributedly while finite state 
machines define states globally. Third, the basic models of finite state machine are sequential 
while Petri nets are concurrent. Although, in recent years, research on testing communicating 
finite state machines starts to appear in the literature [15], the concurrent nature of such models 
has not been fully explored because of the state explosion problem.  

In [17], a set of coverage criteria for ER nets (a type of high-level Petri nets) was proposed and 
their subsumption relations were proved. These criteria include: (1) Firing Sequences: an 
adequate testing must include all possible firing sequences from the given initial marking. A 
firing sequence is defined by control and data flows. This amounts to the exhaustive testing and 
is thus impractical; (2) Firing: each possible firing of any transition must belong to some firing 
sequence in test executions; (3) Transition Sequences: all possible transition sequences must be 
covered. A transition sequence concerns only the control flow. It may correspond to multiple 
firing sequences. Thus, a testing only needs to contain one of the firing sequences 
corresponding to the same transition sequence. The multiple firing sequences can be viewed as 
an equivalent class of a common transition sequence; (4) N-Times: an adequate testing covers 
only those transition sequences such that none of them contains the same transition more than n 
times; (5) N-Notable: an adequate testing covers only those transition sequences such that none 
of them contains the same transition more than n times and no more than one contains a notable 
subsequence of interest. Here, a subsequence γ of a firing sequence σ is called a notable firing 
subsequence of σ , if and only if, for all firing sequence σ' containing γ  we have that that σ'  has 
the same length as σ and σ' has the same initial marking as σ imply that σ' is a permutation of 
σ. A notable subsequence identifies a class of firing sequences that can be considered equivalent 
from the testing point of view. Thus, only one representative is included in testing from a set of 
firing sequences such that their underlying transition sequences contain the same notable 
subsequence; and (6) Transition: an adequate testing contains enough firing sequences that 
contain at least one firing of all transitions. 

In the testing of concurrent systems, observing dynamic behaviour is of particular importance, 
but is more complicated than testing sequential systems. As pointed out by Carver and Tai [18], 
the non-deterministic behaviour of concurrent programs makes the replay of a testing process 
and regression testing uncertain. Observing various possible dynamic behaviours on test cases 
and controlling the executions of non-deterministic programs to demonstrate all possible 
behaviours have been a major research topic in testing concurrent systems [18]. Despite of the 
practical difficulties in observing and controlling the dynamic behaviours of concurrent 
systems, behaviour observations were used in the theoretical studies of process algebra, such as 
in defining equivalence relations between CCS processes [19]. This idea was developed into a 
formal framework for defining an equivalence relation based on testing [20] and further 
extended in [21]. These theoretical works only use the externally observable behaviours in the 
form of event sequences, and thus correspond to the practical methods of black-box testing.  

Our work shares the same viewpoint with the above research that the semantics of a concurrent 
process can neither be simply defined nor adequately tested as a partial function from inputs to 
outputs although it is appropriate for a sequential program. Instead, it must be defined in terms 
of its dynamic behaviour and tested by observing the dynamic behaviour. Unfortunately, 
existing theories of software testing have mostly focused on test adequacy criteria [22, 23, 24, 
25, 26, 27, 28, 29, 30], but neglected the aspect of behaviour observation in software testing. 
Many important and fundamental questions still remain unanswered. For example, what should 
be observed, i.e. in what sense an observation method is appropriate? What can be observed, i.e. 
what are the varieties of observation methods? What are the implications of using different 
observation methods and how to compare them? etc. In  [31], we developed a general theory of 
testing concurrent systems to answer such questions. We argued that a well-defined testing 
method should contain at least two components, a method of observing a system's dynamic 
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behaviour during a testing process and a criterion for selecting test cases and determining when 
testing can stop. We used complete partially ordered sets to formally define what are 
appropriate methods of behaviour observation and recording, and introduced the notion of 
observation schemes. We proposed and investigated the desirable properties that a scheme 
needs to satisfy. We also identified some common constructions of observation schemes in 
existing software testing methods and studied their properties [32]. Test criteria were defined as 
predicates or measurement functions on observed behaviour during testing.  

The above work forms the basis of the work reported here. In this paper, the formal theory of 
observation scheme [31] is applied to testing high-level Petri nets. Four testing strategies are 
systematically investigated with various test adequacy criteria and behaviour observation 
schemes. The subsumption and extraction relationships among various proposed testing 
methods are proved. The paper is organised as follows. Section 2 gives the preliminaries of 
predicate transition nets, which is a kind of high-level Petri nets. Section 3 develops the work 
proposed in [17] into transition-oriented testing strategy. Section 4 abstracts and generalises the 
work of [11] into state-oriented testing strategy. Section 5 adapts and generalises data flow 
testing results from sequential software systems [33, 34, 35, 36] for testing Petri nets. Section 6 
discusses specification-oriented testing. Section 7 is the conclusion of the paper.  

2. Testing Predicate Transition Nets 

The high-level Petri net model used in this paper is predicate transition net (PrT nets in the 
sequel) [37]. However, the results presented in this paper are also directly applicable to other 
high-level Petri net models as well as low-level Petri nets. In a PrT net, tokens can have 
structures and can be individually distinguished. Labels can be expressions containing variables, 
and constraints can be logical expressions. Thus, PrT nets are powerful enough to define 
control, data, functionality, and dynamic behaviour of underlying concurrent systems. Many 
variants and extensions of PrT nets have been proposed in the past decade. In this paper, PrT 
nets are defined with an underlying algebraic specification, which is also called algebraic Petri 
nets elsewhere [38].  

2.1 The Syntax and Static Semantics 

A PrT net consists of (1) a finite net structure (P, T, F), (2) an algebraic specification SPEC, and 
(3) a net inscription (ϕ, L, R, M0). (P, T, F) is the essential net structure, where P∪T is the set of 
nodes satisfying the condition P∩T=∅. P is called the set of predicates (graphically represented 
by circles) and T is called the set of transitions (represented by boxes). F is the set of arcs and is 
called the flow relation, which satisfies the condition: F ⊆ P×T ∪ T×P. 

For example, Figure 1 shows a PrT net of the well-known problem of dining philosophers. 
There are three predicate nodes: Thinking, Eating and Chopstick. Tokens at the predicate node 
Thinking represent the philosophers in the state of thinking. Tokens at the predicate node 
Chopstick represent the chopsticks available to use. Each token at predicate note Eating consists 
of one philosopher and two chopsticks and represents the state that the philosopher is eating 
using the chopsticks. There are two transition nodes: Pickup and Putdown. The transition 
Pickup changes the state of a philosopher from Thinking to Eating and at the same time changes 
the state of two chopsticks from available to occupied. The transition Putdown represents that a 
philosopher finishes eating and puts down a pair of chopsticks. It changes the state that a 
philosopher is eating using a pair of chopsticks to the state that the philosopher is thinking and 
that the chopsticks become available. This example will be used throughout the remainder of the 
paper to illustrate the testing methods.  
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Figure 1 - A PrT Net Specification of Dining Philosophers’ Problem 

The algebraic specification SPEC is a meta-language to define the tokens, labels, and 
constraints of a PrT net. The underlying specification SPEC = (S, OP, Eq) consists of a 
signature Σ = (S, OP) and a set Eq of Σ-equations. Signature Σ = (S, OP) includes a set of sorts S 
and a family OP= (OPs1,...,sn, s ) of sorted operations for s1, ..., sn, s ∈ S. For each s ∈ S, we use 
CONs to denote OP ,s  (the 0-ary operation of sort s), i.e. the set of constant symbols of sort s. 
The Σ-equations in Eq define the meanings and properties of operations in OP. In this paper, we 
often simply use familiar operations and their properties without explicitly listing the relevant 
equations in the examples.  

For example, the specification SPEC = (S, OP, Eq) underlying the dining philosophers’ PrT net 
contains the following elements.  

(1) S includes elementary sorts PHIL to represent philosophers, CHOP to represent chopsticks 
and Boolean. PHIL and CHOP are derived from Integer. S also includes structured sorts 
such as set and tuple obtained from the Cartesian product of the elementary sorts. 

(2) OP includes standard arithmetic and relational operations on Integer, logical connectives on 
Boolean, set operations, and selection operation on tuples1. 

(3) Eq includes known properties of the above operators. 

The net inscription (ϕ, L, R, M0) associates each graphical symbol of the net structure (P, T, F) 
with an entity in the underlying SPEC, and thus defines the static semantics of a PrT net.  

Each predicate in a PrT net is a data structure and a component of the overall system state. The 
sort of each predicate is a member of S in SPEC. It defines its valid values, i.e. proper tokens, 
which are ground terms of the signature Σ, written MCONS. Therefore, we associate each 
predicate p in P with a subset of sorts in S, and give the sort assignment ϕ : P → ℘(S).2  

The flows in a PrT net are labelled with the sorts of the tokens that can pass through. The set of 
labels is denoted by LabelS (X), where X is a set of sorted variables disjoint with OP. Each label 
can be an expression of the form (k1x1+ ...+ knxn). Mapping L: F → LabelS (X) is a sort-
respecting labelling of PrT net.  

Each transition in a PrT net is associated with a constraint to define its functionality and 
processing. Constraints of a PrT net belong to a subset of first order logic formulas whose 
quantifiers range over finite domains and free variables appear in the label of some connecting 

                                                      
1 We use A[i] to denote the i’th component of tuple A.  
2 ℘(X) is the power set of X.  
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arc of the transition. Thus, constraints are essentially propositional logic formulas defined in the 
underlying algebraic specification. In particular, the subset of first order logical formulas 
contains the Σ-terms of sort bool over X, denoted as TermOP,bool(X). In general, a constraint 
contains two parts - the pre-condition part involving only label variables in incoming arcs and 
the post-condition part specifying the relationships between the variables of the incoming arcs 
and label variables of the outgoing arcs. The pre-condition specifies the required tokens and the 
post-condition defines the values of generated token in terms of the selected tokens. Therefore 
the pre-condition is essentially the guard of the functionality (processing) defined by the post-
condition. The canonical form of the constraint R(t) of a transition t can be written as Pre(t) ∧ 
Post(t). Mapping R: T → TermOP,bool(X) is a well-defined constraining mapping.  

M0: {m0: P → MCONS } is a set of sort-respecting initial markings. Each initial marking assigns 
a multi-set of tokens to each predicate p in P. We view M0 as a set of markings instead of a 
single marking for two reasons. First, we have the complete input domain explicitly. Second, we 
can easily distinguish multiple markings and study them separately. 

For example, the net inscription (ϕ, L, R, M0) for the dining philosophers problem given in 
Figure 1 is as follows.  

(1) Sorts of predicates:  
ϕ(Thinking) = ϕ(Eating) = ℘(PHIL),   
ϕ(Chopstick) = ℘(CHOP). 

(2) Arc definitions: 
L(f1) = {ph},  
L(f2) = {ch1, ch2},  
L(f3) = <ph, ch1, ch2>,  
L(f4) = <ph, ch1, ch2>,   
L(f5) = {ph},  
L(f6) = {ch1, ch2}. 

(3) Constraints of transitions: 
R(Pickup) = (ch1 = ph) ∧ (ch2 = ph ⊕ 1),  
R(Putdown) = true. 

(4) The initial marking:  
M0 = {mk | k= 2, 3, …}, where mk is defined as follows. 
mk(Thinking) = {1, 2, ..., k},  
mk(Eating) = { },  
mk(Chopstick) = {1, 2, ..., k}. 

where ⊕ is modulus k addition. 

2.2 Dynamic Semantics and Observable Behaviour 

A marking m of a PrT net is a mapping P → MCONS  from the set of predicates to multi-sets of 
tokens. A transition is enabled if its pre-set contains enough tokens and its constraint is satisfied 
with an occurrence mode. The firing of an enabled transition consumes the tokens in the pre-set 
and produces tokens in the post-set. Two transitions including the same transition with two 
different occurrence modes can fire concurrently if they are not in conflict, where two 
transitions are conflict if the firing of one transition disables another. Conflicts are resolved non-
deterministically. The firing of an enabled transition is atomic. We define the behaviour of a 
PrT net to be the set of all possible execution sequences. Each execution sequence represents 
consecutively reachable markings from the initial marking, in which a successor marking is 
obtained through firing of a subset of enabled non-conflicting transitions from the predecessor 
marking. The semantic model used in this paper is thus the interleaving-set model (also called 
step sequence model in [39], which is capable to capture the non-sequential behaviours. Other 
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well-known semantic models of Petri nets include interleaving and partial order [39].  

For example, the specification of dining philosophers’ problem in PrT net given in Figure 1 
allows concurrent executions such as multiple non-conflicting (non-neighbouring) philosophers 
picking up chopsticks simultaneously, and some philosophers picking up chopsticks while 
others putting down chopsticks. The constraints associated with transitions Pickup and Putdown 
also ensure that a philosopher can only use two designated chopsticks defined by the implicit 
adjacent relationships. Table 1 and Table 2 below give the details of two partial executions of 
the five dining philosophers’ PrT net. The partial execution given in Table 1 only involves 
firing one transition in each step. In the sequel, we call such executions flat. The execution 
given in Table 2 contains steps that two transitions are fired simultaneously.  

Table 1. A Flat Execution of the Dining Philosophers’ PrT Net 

Markings mi Transitions ni 

Thinking Eating Chopstick Fired Transition Set Token(s) consumed 

{1,2,3,4,5} { } {1,2,3,4,5} Pickup ph=1, ch1=1, ch2=2 

{2,3,4,5} {<1, 1, 2>} {3,4,5} Putdown <ph, ch1, ch2>=<1,1,2> 

{1,2,3,4,5} { } {1,2,3,4,5} Pickup ph=2, ch1=2, ch2=3 

{1,3,4,5} {<2, 2, 3>} {1,4,5} Pickup ph=4, ch1=4, ch2=5 

{1, 3, 5} {<2, 2, 3>, 
<4, 4, 5>} 

{1} Putdown <ph, ch1, ch2>=<2,2,3> 

{1, 2, 3, 5} {<4, 4, 5>} {1,2,3} Putdown <ph, ch1, ch2>=<4,4,5> 

{1,2,3,4,5} { } {1,2,3,4,5} Pickup ph=5, ch1=5, ch2=1 

{1,2,3,4} {<5, 5, 1>} {2,3,4} Pickup ph=3, ch1=3, ch2=4 

{1,2,4} {<5, 5, 1>, 
<3, 3, 4>} 

{2} Putdown <ph, ch1, ch2>=<3,3,4> 

{1,2,3,4} {<5, 5, 1>} {2,3,4} Putdown <ph, ch1, ch2>=<5,5,1> 

{1,2,3,4,5} { } {1,2,3,4,5} … … 

Table 2. A Non-flat Execution of the Dining Philosophers’ PrT Net 

Markings mi Transitions ni 

Thinking Eating Chopstick Fired Transitions Token(s) consumed 

{1,2,3,4,5} { } {1,2,3,4,5} Pickup ph=1, ch1=1, ch2=2 

{2,3,4,5} {<1, 1, 2>} {3,4,5} Putdown <ph, ch1, ch2>=<1,1,2> 

Pickup ph=2, ch1=2, ch2=3 
{1,2,3,4,5} { } {1,2,3,4,5} 

Pickup ph=4, ch1=4, ch2=5 

Putdown <ph, ch1, ch2>=<2,2,3> 
{1, 3, 5} {<2, 2, 3>, <4, 4, 5>} {1} 

Putdown <ph, ch1, ch2>=<4,4,5> 

{1,2,3,4,5} { } {1,2,3,4,5} Pickup ph=3, ch1=3, ch2=4 

Pickup ph=5, ch1=5, ch2=1 
{1,2,4,5} {<3, 3, 4>} {1,2,5} 

Putdown <ph, ch1, ch2>=<3,3,4> 

{1,2,3,4} {<5, 5, 1>} {2,3,4} Putdown <ph, ch1, ch2>=<5,5,1> 

{1,2,3,4,5} { } {1,2,3,4,5} … … 
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Definition 1 (Interleaving-Set Semantics of PrT Nets) 

Let N be a PrT net, and M0 be the set of initial markings of N, which is thus the set of test cases 
for N. An execution of N on a test case m0 is a sequence of reachable markings starting from m0 
and linked by transition firings. We denote such an execution as follows:  

0 11 2

0 1 2:
k kn nn n

ke m m m m
−

→ → → → →
n

n

n

j

, 

where ni, called steps, are non-empty subsets of transitions that are not in conflict with each 
other, m0∈M0 is an initial marking, mi, i= 1, 2,…, are markings such that mi is obtained from 
mi−1 by firing transitions in the subset ni−1. <n0, n1, ..., nk, ...> is called a step sequence. An 
execution is flat, if the subsets ni, i=0, 1, …, are singleton sets and <n0, n1, ..., nk, ...> is called a 
transition sequence. A flat execution e can be obtained from a non-flat execution e’ by 
flattening, if  
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Informally, flattening an execution into a flat execution is to execute the concurrent firings of 
transitions by interleaving. Of course, there may exist many different orders to execute 
concurrent transition firings by interleaving. The relationship between the interleaving 
semantics (transition sequences) and interleaving-set semantics (step sequences) was studied 
and given in [39].  

As an important activity in software testing practice, the observation and recording of system’s 
dynamic behaviour during testing process must be systematically and consistently performed.  

Definition 2. (Observation Scheme) [31] 

A scheme of behaviour observation and recording, or simply an observation scheme, is an 
ordered pair <Β, µ>, where B={<Bp, ≤p> | p is a concurrent system}, and µ={µp | p is a 
concurrent system}. B is called the universe of phenomena. For all concurrent systems p, <Bp, 
≤p> is a complete partially ordered set. Bp is called the universe of phenomena on p. The 
mappings in µ are called the recording functions. For all concurrent systems p, the recording 
function µp maps a test set T to a non-empty consistent subset of Bp.   

Informally, each element in Bp is a phenomenon observable from testing a concurrent system p. 
σ1 ≤ p σ2  means that phenomenon σ1 is a part of phenomenon σ2. The least element ⊥p of Bp 
denotes that nothing is observed. Notice that, because of the non-determinism and concurrency, 
two execution of a concurrent system on the same input may demonstrate two different 
behaviours and produce two different results. Sometimes, it is necessary to execute the system 
on the same test case twice or even more times in order to test all possible behaviours and 
outputs. Therefore, we define a test set of a concurrent system p as a multi-set of input to p to 
represents multiple executions on test cases. In particular, a test set of a PrT net is a multi-set of 
its initial markings M0, which is the input domain of the PrT. Given a concurrent p and a test set 
T, the phenomenon observable by executing p on test set T may not be unique. We use µp(T) to 
denote the set of all such possible phenomena. In other words, σ ∈µp(T) means that σ is a 
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phenomenon that is observable by an execution of p on test set T. As a theory of testing PrT 
nets, we define the observable phenomena directly on the bases of dynamic semantics.  

Definition 3 (Complete Scheme of Behaviour Observation) 
In the complete observation scheme Ψ, the universe of phenomena  and recording function 
Ψ

NBΨ

N for any given PrT net N are defined as follows: 
(1)  Let = {e | e is an execution of N on m} for all m∈M,N mR 0, and . We define: 

0

,N
m M

R R
∈

= ∪ N m

)N

1

N ( )n N

 (a) B (the power set of R(N RΨ =℘ N), and 
 (b) The partial ordering ≤Ψ on  is the set inclusion relation ⊆. NBΨ

(2)  For all m∈M0, ΨN({m})={{e} | e∈RN,m}. 
(3)  For any test set M ⊆ M0 and m∈M0, ΨN(M ∪{m})={u∪{e} | u∈ΨN(M) ∧ e∈RN,m}.  

 

Intuitively, the complete scheme records every detail of the executions of a concurrent system. 

For many concurrent systems, a maximum sequence of markings can be infinite, i.e. the 
execution does not terminate. However, in software testing practice, we cannot observe and 
record an infinite execution within a finite period of time. Therefore, we often stop execution 
manually and observe and record a partial execution. This practice can be defined as an 
observation scheme. We first define a mapping Truncation as follows:  

0 11 2

0 1 2( )
kn nn n

n kTruncation e m m m m
−

= → → → → , 

where k=n, if e m  or , s≥n; and k=s, 

if  and s<n.  

0 11 2

0 1 2

k kn nn n

km m m
−

= → → → → →
0 11 2

2

sn nn n

sm m m
−

→ → →

n 0 1 2

0 1 2

sn nn n

se m m m m
−

= → → → →

0 1e m= →

Definition 4 (Partial Executions Up to n Steps) 
In the partial execution up to n steps observation scheme Πn, the universe of phenomena  
and recording functions Π

( , )n
NB Π

 N for any given PrT net N are defined as follows. 
(1) = Truncation( , )n

NB Π
n( );NBΨ 3 

(2) For any test set M ⊆ M0, Π N(M)={Truncationn(u) | u∈Ψ N (M)}.  

The universal scheme ΩN  defined below contains both complete and partial executions. 

Definition 5 (Universal Scheme) 
In the universal observation scheme Ω, the universe of phenomena  and recording 
function Ω

NBΩ

 N  for any given PrT net N are defined as follows.  

(1)  , where . The partial ordering ≤( ' )NB RΩ =℘
1

'N
n

R Truncation R
∞

=

=∪ Ω

                                                     

 is the set 

inclusion relation ⊆. 
(2)  For any m∈M0, Ω N ({m})={{e} | e∈R’N,m}. 
(3)  For any test set M ⊆ M0 and m∈M0, ΩN(M∪{m})={u∪{e} | u∈ΩN(M) ∧ e∈R’N,m}.    

In the universal scheme, an observable phenomenon is a set of complete or partial executions of 
the PrT net under test. It is worth noting that partial executions in such a phenomenon can have 

 
3 Notice that, here we extended the function to apply on a set of executions, i.e. Truncationn( )={Truncationn(x)| 

x∈ }. In general, let f be any given function defined on a domain D, for all X⊆D, we write f(X) to denote the 
set{f(x) | x∈X}.  Such extensions of functions will be used in the sequel when there is no risk of confusion.  

NBΨ

NBΨ
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different number of steps, which are determined by the tester. This forms an additional 
dimension of non-determinism of testing. Without the loss of generality, we call both complete 
executions and partial executions as test executions in the sequel. The scheme given in Definition 
5 is universal in the sense that every observation scheme can be extracted from it. The notion of 
extraction is formally defined as follows [31]. Let A=<A, µA> and B=<B, µB> be two schemes.  

Definition 6. (Extraction Relation between Schemes) [31] 

Scheme A is an extraction of scheme B, written A B, if for all p∈P, there is a homomorphism 
ϕp from <Bp, ≤B,p> to <Ap, ≤A,p>, such that (1) ϕp(σ)=⊥Α,p if and only if σ=⊥Β,p, and (2) for all 
test sets T, .   ( ) ( ( ))A B

p p pT Tµ ϕ µ=

Informally, scheme A is an extraction of scheme B means that scheme B observes and records 
more detailed information about dynamic behaviours than scheme A does. The phenomena that 
scheme A observes can be extracted from the phenomena that B observes.  

3. Transition-Oriented Testing 

As argued in [31], a test method contains two main components, an observation scheme and an 
adequacy criterion. The adequacy criterion determines how to select test cases before testing 
and how to analyse test results after test executions. The observation scheme determines how to 
observe and record a system's dynamic behaviour during the test executions. A transition-
oriented testing method observes the transitions fired during test executions and analyses test 
adequacy according to the transitions covered by the testing.  

The most basic transition-oriented testing method uses the following observation scheme and 
adequacy criterion.  

Definition 7 (Fired Transitions Scheme) 

The fired transitions’ scheme ΞN is extracted from the universal scheme by the mapping: 

, where e m . Its recording function Ξ( )
0,1,...

i
i

Firing e n
=

= ∪
0 11 2

0 1 2

k kn nn n

km m m
−

= → → → → →
n

N   is:   

ΞN (M)= ( ) ( )N
x u

Firing x u M
∈

 ∈Ω
 
∪ 

 , for any M ⊆ M0.  

The following is the transition coverage criterion for adequacy analysis.  

Definition 8 (Transition Coverage) 

Let E be a collection of test executions of a PrT net N. E satisfies transition coverage criterion if 
=T( )

e E
Firing e

∈
∪ N, where TN is the set of transitions of N. The following function is called the 

transition coverage measurement.  

( , ) ( ) N
e E

TransitionCoverage N E Firing e T
∈

= ∪ .  

For example, both executions of the dining philosophers’ PrT net given in Table 1 and Table 2 
satisfy the transition coverage criterion. All the transitions in the PrT net (i.e. Pickup and 
Putdown) are fired.  

Multiple transitions may be enabled in a marking and fired in one step of execution due to the 
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existence of non-determinism and concurrency. However, not all subsets of transitions can be 
fired. The following defines the notion of feasibility of a subset of transitions and the feasibility 
of a sequence of such subsets.   

Definition 9 (Feasibility and Concurrency Degrees of Transition Traces) 

Let n ⊆T be a subset of the transitions of a PrT net N. The subset n is feasible, if and only if 

there exists an execution e m  of the PrT net N such that for some 
i ∈ {0, 1, ..., k,...}, n⊆n

0 11 2

0 1 2

k kn nn n

km m m
−

= → → → → →
n

n

n

i. The concurrency degree of a feasible transition subset n is the size of 
the set.  

A transition trace is a sequence <n'1, n'2, ..., n'L>, L>0, of subsets of the transitions of a PrT net 
N. A transition trace <n'1, n'2, ..., n'L> is feasible, if and only if there is an execution 

 of the PrT net N such that for some i ∈ {0, 1, ..., k,...}, 
n'

0 11 2

0 1 2

k kn nn n

ke m m m m
−

= → → → → →
j=ni+j, for all j= 1,2, ..., L, and we say that the execution e covers the transition trace. The 

concurrency degree of transition trace is the maximum of the concurrency degrees of its 
elements.  

When a transition trace's concurrency degree equals to 1, that is, the subsets in a transition trace 
<n'1, n'2, ..., n'L>, L>0, are all singleton sets,  it is a transition sequence. For example, consider 
the partial execution in Table 1 of the dining philosophers’ PrT net. The set of length-2 feasible 
transition sequences includes <Pickup, Putdown>, <Pickup, Pickup>, <Putdown, Putdown>, 
and <Putdown, Pickup>. The set of feasible length-3 sequences of transitions includes <Pickup, 
Pickup, Putdown>, <Putdown, Pickup, Putdown>, <Putdown, Pickup, Pickup>, <Pickup, 
Putdown, Pickup>, <Pickup, Putdown, Putdown>, and <Putdown, Putdown, Pickup>. The 
transition trace of the partial execution of the dining philosophers’ PrT net given in Table 2 is 
<{Pickup}, {Putdown}, {Pickup, Pickup}, {Putdown, Putdown}, {Pickup}, {Pickup, 
Putdown}, {Putdown}>.  

Let Trace be the mapping defined as follows.  

( ) 0 1, , , ,kTrace e n n n=< > , where . 
0 11 2

0 1 2

k kn nn n

ke m m m m
−

= → → → → →

The following scheme records the sequences of transition firings in the executions of a 
concurrent system.  

Definition 10 (Transition Trace Scheme) 

The transition trace scheme ΓN  is extracted from the universal scheme by the mapping Trace 
defined above. Its recording function has the property that for any test set M ⊆ M0, Γ N (M)={e | 
e={Trace(x) | x∈u} ∧ u∈Ω N (M)}.  

The transition trace testing method requires the sequence of transition subsets fired during test 
executions be recorded. That is, it requires the transition trace scheme to be used. A hierarchy of 
adequacy criteria can be defined for transition trace testing. 

Definition 11 (K-Concurrency Length-L Trace Coverage) 

Let E be a collection of executions of PrT net N. Let K, L>0 be any natural numbers. E is said to 
satisfy the K-concurrency length-L transition trace coverage criterion, if and only if for any 
feasible transition trace q with length less than or equal to L and concurrency degree less than or 
equal to K, there is at least one e∈E, such that q is covered by e. In particular, K-concurrency 
length-1 trace coverage is called K-concurrency transition coverage. The K-concurrency length-
L trace coverage measurement is defined by the formula:  
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, , ,( , ) ( ) ( )K L N K L K LConTraceC N E CV E Trc N= ,

, 

, 

where TrcK,L(N) is the set of all feasible transition traces with length less than or equal to L and 
concurrency degree less than or equal to K, and CVN K ,L(E) is the set of transition traces in 
TrcK,L(E) that is covered by at least one element in E.   

For example, the partial execution in Table 1 satisfies the 1-concurrency length-2 transition 
trace coverage criterion. However, it does not satisfy the 1-concurrency length-3 transition trace 
coverage criterion because the sequence of transitions <Putdown, Pickup, Putdown> is not 
covered by the partial execution. The 1-concurrency length-2 adequacy measurement of the 
partial execution is 5

6 . The partial execution given in Table 2 satisfies the 2-concurrency 
transition coverage criterion (i.e. 2-concurrency length-1 coverage).  

The following lemmas prove the subsumption relationships between k-concurrency length-l 
adequacy criteria. An adequacy criterion A subsumes criterion B if for all test executions E, E 
satisfies criterion A implies that E also satisfies criterion B. The subsumption relationships 
between test adequacy criteria are closely related to testing methods’ fault detecting ability and 
test cost [40]. 

Lemma 1. 

For all natural numbers k, l1 and l2, l1≥l2 implies that k-concurrency length-l1 transition trace 
coverage subsumes k-concurrency length-l2 transition trace coverage. 

Proof. Let k>0 be any given natural number. By Definition 9, for any natural numbers l1≥l2, the 
set S1 of feasible k-concurrency length-l1 transition traces is a subset of the set S2 of feasible k-
concurrency length-l2 transition traces. By Definition 9, for all sets E of executions, E covers S2 
implies E also covers S1. By Definition 11, E is adequate according to k-concurrency length-l2 
coverage implies that E is also adequate according to k-concurrency length-l1. Therefore, the 
statement is true.  

Lemma 2. 

For all natural numbers l, k1 and k2, k1≥k2 implies that k1-concurrency length-l transition trace 
coverage subsumes k2-concurrency length-l transition trace coverage. 

Proof. It is similar to the proof of Lemma 1.  

Note: (1) k-concurrency transition coverage is k-concurrency length-1 trace coverage. 
Therefore, by Lemma 2, for all k, l>0, k-concurrency length-l transition trace coverage criterion 
subsumes k-concurrency transition coverage. (2) Transition coverage is 1-concurrency length-1 
trace coverage. Therefore, by Lemma 1 and Lemma 2, all k, l>0, k-concurrency length-l 
transition trace coverage criterion subsumes transition coverage.  

Moreover, the following all transition trace coverage criterion subsumes all these criteria.  

Definition 12 (All Transition Trace Coverage) 

Let E be a collection of executions of a PrT net N. The test execution E is said to satisfy the all 
transition traces coverage criterion, if and only if for any feasible transition trace q of N, there 
is at least one e∈E such that q is covered by e. The transition trace coverage measurement is 
defined by formula: ( , ) ( ) ( )NN E CV E Trc N=TTC , where Trc(N) is the set of all feasible 
transition traces of N, and CVN(E) is the set of feasible transition traces of N that is covered by at 
least one element in E.  
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Lemma 3. 

For all k, l >0, the all transition traces coverage criterion subsumes the k-concurrency length-l 
transition trace coverage criterion. 

Proof. It is similar to the proof of lemma 1.  

It is worth noting that most concurrent systems in practical use contain an infinite number of 
feasible transition traces. To satisfy such an adequacy criterion, we may need an infinite amount 
of computational resources.  

In software testing, one may consider one concurrent execution of a PrT net as several 
interleaved executions of the same PrT net. Let q = <t0, t1, …, tL>, L>0, be a sequence of 
transitions. We say that an execution e logically covers sequence q, if a flattening of e contains 
q as a consecutive subsequence of transition firings. For example, the transition trace of the 
partial execution given in Table 2 logically covers the following two transition sequences. 

<Pickup, Putdown, Pickup, Pickup, Putdown, Putdown, Pickup, Pickup, Putdown, Putdown> 

<Pickup, Putdown, Pickup, Pickup, Putdown, Putdown, Pickup, Putdown, Pickup, Putdown> 

Definition 13 (Interleaving Length-L Transition Sequence Coverage) 

Let E be a collection of executions of PrT net N. Let L>0 be any natural number. E is said to 
satisfy the Interleaving length-L transition sequence coverage criterion, if and only if for any 
feasible transition sequence q with length less than or equal to L, there is at least one e∈E that 
logically covers q.  

The Interleaving length-L transition sequence coverage measurement is defined by the formula:  

,( , ) ( ) ( )L N LInterleaveC N E InterleaveCV E Seq N= L , 

where SeqL(N) is the set of all feasible transition sequences with length less than or equal to L, 
and InterleaveCVN,L(E) is the set of transition sequences in SeqL(E) that is logically covered by 
at least one element in E.    

For example, the partial execution given in Table 2 satisfies the interleaving length-3 transition 
coverage criterion. The two transition sequences that are logically covered by the execution 
contain all transition subsequences of length less than or equal to 3. The partial execution given 
in Table 1 does not satisfy the interleaving length-3 transition coverage criterion.  

Notice that, in interleaving semantics, the interleaving length-L transition sequence coverage 
criterion is equivalent to the length-L trace coverage criterion proposed and investigated in [41]. 
Also, interleaving length-1 transition sequence coverage is transition coverage.  

Lemma 4. 

For all natural numbers l1 and l2, l1≥l2 implies that interleaving length-l1 transition sequence 
coverage subsumes interleaving length-l2 transition sequence coverage. 

Proof. It is similar to the proof of lemma 1.  

Lemma 5.  

For all natural numbers l>0, that 1-concurrency length-l transition trace coverage subsumes 
interleaving length-l transition sequence coverage.  
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Proof. Let q=<n1, n2, …, nL> be any 1-concurrency transition trace of length less than or equal 
to L. By Definition 9, every element ni of q is a singleton set. Let ni={ti}, i =1, 2, …, L. let 
q’=<t1, t2, …, tL>. An execution e covers q implies that there is a consecutive subsequence of 
transition firings n’k+1, n’k+2, …, n’k+L such that ni=n’k+i, i =1, 2, …, L. Therefore, a flattening of 
e contains a consecutive subsequence of transitions t1, t2, …, tL. The statement follows due to the 
fact that a sequence q’ of transitions is feasible if and only if the corresponding concurrency 
degree 1 transition trace is feasible.  

Notice that, 1-concurrency length-L transition trace coverage is not equivalent to interleaving 
length-L transition sequence coverage criterion, because the former forces test executions to fire 
one transition at a time to cover an 1-concurrency transition trace while the later does not. For 
example, the partial execution given in Table 2 does not satisfy 1-concurrency length-3 
transition trace coverage criterion, but it satisfies interleaving length-3 transition sequence 
coverage criterion.  

The following diagram summarises the subsumption relationships between the transition 
oriented testing methods.  

 All Transition 
Trace Coverage 

… … … … 

Transition 
Coverage 

Interleaving  
Length-L  

Transition Sequence 

Interleaving  
Length-L +1 

Transition Sequence 

1-concurrency 
Transition  

1-concurrency 
Length-L 

Transition Trace 

1-concurrency 
Length-L +1 

Transition Trace 

K-concurrency 
Transition  

K+1-concurrency 
Transition  

K-concurrency 
Length-L 

Transition Trace 

K-concurrency 
Length-L +1 

Transition Trace 

K+1-concurrency 
Length-L 

Transition Trace 

K+1-concurrency 
Length-L+1 

Transition Trace 

 

 

 

 

 

 

 

 

Figure 2 - The hierarchy of transition oriented testing methods 

4. State-Oriented Testing 

In contrast to transition-oriented testing, a state-oriented testing method records the states (i.e. 
the markings of a PrT net) of the concurrent system under test and analyses test adequacy 
according to such recorded information.  

Definition 14 (State Scheme) 

The state scheme ΣN is extracted from the universal scheme by the mapping: 

( ) { }0 1, , , ,kMarkings e m m m= , where . 
0 11 2

0 1 2

k kn nn n

ke m m m m
−

= → → → → →
n

Its recording function has the property:  

ΣN(M)={ | u∈Ω( )
x u

Marking x
∈
∪ N(M)}  for any test set M ⊆ M0.    

Let N be a given PrT net. Mark(N) is defined to be the set of reachable markings on N, i.e. 

14 



Zhu, H and He, X., A Methodology of Testing High-Level Petri Nets (Revised Version)  03/17/02 

m∈Mark(N) if and only if there is an initial marking m0∈M0 and an execution e of N on m0 such 
that m∈Markings(e). The concept of abstract states of a concurrent system consists of: (1) a 
finite set ASN of abstract states of N, and (2) a mapping StateN: Mark(N)→ASN  that defines how 
markings are associated to states.  

For example, we can define ASDP={0, 1, 2, …, 2k  } to be the set of abstract states in the 
dining philosophers PrT net (k is a given natural number), where n∈ASDP means that “n 
philosophers are eating”. The mapping StateDP is defined as follows: StateDP(m)=n, if the 
predicate Eating contains n tokens in the marking m. It is worth noting that for a given PrT net, 
we can define more than one abstract state space. For example, the following is another abstract 
state space for the dining philosophers PrT net. Let AS’DP={think, eat}, and the mapping  

,  if the token "1" is included in the predicate ;         
' ( )

,     if the token "<1,1,2>" is included in the predicate . DP

think Thinking
State m

eat Eating


= 


 

where, informally, the state “think” represents the situation that philosopher 1 is thinking, and 
the state “eat” represents that philosopher 1 is eating.  

The state testing method uses the state scheme and the following state coverage criterion. 

Definition 15 (State Coverage) 

A collection E of executions of N satisfies the state coverage criterion with respect to the 
concept of state (ASN, StateN), if for all feasible state s∈ASN, there is at least one execution e in E 
such that there is at least one m∈Markings(e) such that StateN(m)=s. The state coverage 
measurement is defined by the formula:  

( , ) ( ( ))N N
e E

StateCoverage N E State Markings e AS
∈

= ∪ .     

For example, the partial execution given in Table 1 satisfies the state coverage criterion with 
respect to StateDP. It also satisfies the state coverage criterion with respect to State’DP.  

A pair <s1,s2> of states, s1, s2∈ASN, is a feasible state transition, if there is an execution 

 such that for some j, State(m
0 11 2

0 1 2

k kn nn n

km m m m
−

→ → → → →
n

j)=s1 and State(mj+1)=s2. For 
example, the feasible state transitions for the five dining philosophers’ PrT net (k=5) is given in 
the following diagrams.  

 

{Putdown} {Pickup} 

{Putdown, Putdown} {Pickup, Pickup} 

{Pickup, putdown} 
{Putdown} {Pickup} 

2 

1 

0 

Putdown(<1,1,2>) 

Pickup(1,1,2) 

Eat 

Think 
 

 

 

 

 

(a)     (b) 

Figure 3 - State transition diagrams for the dining philosophers PrT net 

Definition 16 (State Trace Scheme) 
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The state trace scheme ΦN is extracted from the universal scheme by the mapping:  

( ) 0 1, , , ,kMarkingTrace e m m m=< > , where . 
0 11 2

0 1 2

k kn nn n

ke m m m m
−

= → → → → →
n

Its recording mapping has the property:  

ΦN(M)={MarkingTrace(u) | u∈ΩN(M)} for any test set M ⊆ M0.    

The state transition testing method uses the state trace scheme. The adequacy criterion is 
defined as follows.  

Definition 17 (State Transition Coverage) 

Let E be a collection of test executions. E is said to satisfy the state transition coverage 
criterion, if for all feasible state transitions <s1,s2>, there is at least one execution e in E such 
that e covers the state transition, i.e. there is j such that State(mj)=s1 and State(mj+1)=s2. The state 
coverage measurement is defined by the following formula: 

( , ) ( )N NSTC N E CT E ST= , 

where CTN(E) is the set of state transitions that are covered by the collection e of test 
executions, STN is the set of feasible state transitions.   

For example, the partial execution given in Table 1 satisfies the state transition coverage 
criterion with respect to the state space State’DP. It does not satisfy the state transition coverage 
criterion with respect to the state space StateDP because it does not cover the state transition 
from 0 to 2 and transition from state 2 to 0.  

Compared with state testing, state transition testing requires to record not only more detailed 
information during the testing process, but also more test executions because state transition 
coverage subsumes state coverage.  

Lemma 6.  

Provided that for all states s1 in ASN, there is s2∈ASN such that either <s1,s2> or <s2,s1> is a 
feasible state transition, we have that a collection E of test executions satisfies the state 
transition coverage criterion implies that E also satisfies the state coverage criterion.  

Proof. It is straightforward from the definition.  

A sequence q of states <s1,s2,…,sk> is a state transition path of length k, if for all i=1,2,…,k−1, 

<si,si+1> is a state transition. An execution  covers the path, if and only 
if for some u, State(m

0 11

0 1

k kn n nn

km m m
−

→ → → →
u+i)=si, i=1,2,…,k. If there is an execution e such that e covers q, we say 

that the path q is feasible.  For example, the set of length 3 ASDP state transition paths of include 
<0,1,2>, <0,1,0>, <1,0,1>, <1,2,1>, <2,1,0>, and <2,1,2>. 

State transition path testing also uses the state trace scheme. There is a hierarchy of adequacy 
criteria that can be used for its adequacy analysis.  

Definition 18 (State Transition Path Coverage) 

Let k>1 be a given natural number. Let E be a collection of test executions, we say that E 
satisfies the length-k state transition path coverage criterion, if and only if for any feasible state 
transition path q of length less than or equal to k, there is an execution e in E such that e covers 
the path q. The length-k state transition path coverage measurement is defined by the following 
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formula. 

,( , ) ( ) ( )k N kLSTP N E CU E STPath N= k

n

, 

where STPathk(N) is the set of feasible state transition paths of length less than or equal to k, 
CUN,k(E) is the subset of STPathk(N) that is covered by test executions in E.   

For example, the partial execution given in Table 2 does not cover the state transition path 
<2,1,2>.  

Lemma 7. 

For all natural numbers k1 and k2, k1≥k2 implies that length-k1 state transition path coverage 
subsumes length-k2 state transition path coverage.  

Proof. It is similar to the proof of lemma 1.  

5. Flow-Oriented Testing 

In transition oriented and state oriented testing, information about the flows of tokens in the 
system is ignored, which are reflected in the definitions of the relevant observation schemes. To 
consider token flows in testing, we develop a new type of testing method based on the similar 
ideas of data flow testing of sequential programs [33~36].  

A flow-oriented testing method requires the recording of tokens passing through the arcs in a 
PrT net.  

Let (P, T, F) be the net structure of a given PrT net N and t ∈T be a transition node of N, a flow 
f∈F is called an inward flow of t, if f=<t', t> for some predicate node t'∈P.  A flow f∈F is called 
an outward flow of t, if f=<t, t'> for some predicate node t'∈P.  An inward flow f of t is said to 
be covered by an execution if the execution contains a firing of t such that at least one token on 
flow f is consumed by the firing. An outward flow f of t is said to be covered by an execution if 
the execution contains a firing of transition t such that at least one token is produced on the flow 
f as the result of the firing.  

Definition 19 (Inward Flow, Outward Flow and Flow Schemes) 

Let  be any given execution, F
0 11 2

0 1 2

k kn nn n

ke m m m m
−

= → → → → → i and Gi be the sets of inward 
flows and outward flows participated in the transition firing of ni, i=1,2,…,k,…, respectively. 
We define the following mappings: 

( ) 0 1, , , ,kInwardFlow e F F F=< > , 

( ) 0 1, , , ,kOutwardFlow e G G G=< > ,  

( ) 0 0 1 1, , , ,k kFlow e F G F G F G=< ∪ ∪ ∪ > . 
(1) The inward flow scheme IN is extracted from the universal scheme by the mapping 

InwardFlow, and the recording function is  
INN(M)={e | e={InwardFlow(x) | x∈u}∧ u∈ΩN(M)}, for any test set M ⊆ M0. 

(2) The outward flow scheme OUT is extracted from the universal scheme by the mapping 
OutwardFlow, and the recording function is: 

OUTN(M)={e | e={OutwardFlow(x) | x∈u}∧u∈ΩN(M)}, for any test set M ⊆ M0. 
(3) The flow scheme FL is extracted from the universal scheme by the mapping Flow, and the 

recording function is: 
FLN(M)={e | e={Flow(x) | x∈u}∧ u∈ΩN(M)}, for any test set M ⊆ M0. 
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Definition 20 (Inward Flow, Outward Flow, and Flow Coverage) 

Let E be a set of executions of PrT net N.  

(1)  E is said to satisfy the inward flow coverage criterion if for all inward flow f in N, f is 
covered by at least one execution in E.  

(2)  E is said to satisfy the outward flow coverage criterion if for all outward flow f in N, f is 
covered by at least one execution in E.  

(3)  E is said to satisfy the flow coverage criterion, if it satisfies both inward flow coverage 
criterion and outward flow coverage criterion.  

From the definition, it is easy to see the following lemma.  

Lemma 8. 

The flow coverage criterion subsumes both inward flow coverage and outward flow coverage 
criteria.  

In hierarchical predicate transition nets (HPrT nets [42]), a flow can be labeled with an 
expression in the form of X + Y + … + Z, hence allow different types of tokens to flow through. 
The label constructor + indicates non-deterministic flow relation. The expression X + Y means 
that either a token X, or a token Y, or both tokens of X and Y may pass through the flow. Each 
term X in the expression is called a possible choice of tokens on the flow.  

Definition 21.  

Let expression X1+X2+…+Xk be the label of an inward flow f of a transition t in a PrT net N.  If an 
execution of N contains at least one firing of transition t that consumes at least one token of Xi type 
on the flow f, we say that the execution covers the Xi choice of tokens on the inward flow f.  

Let expression X1+X2+…+Xk be the label of an outward flow f of a transition t in a PrT net N. If 
an execution of N contains at least one firing of transition t that produces at least one token of Xi 
type on the flow f, we say that the execution covers the Xi choice of tokens on the outward flow 
f.  

Let expression X1+X2+…+Xk be the label of a flow f of a transition t in a PrT net N. Let 
{Xi1,Xi2,…,Xis}, 0<s≤k, be a subset of {X1,X2,…,Xk}. The set {Xi1,Xi2,…,Xis}, 0<s≤k, is called a 
combination of tokens on the flow f. An execution of N covers the combination {Xi1,Xi2,…,Xis}, 
0<s≤k, of tokens on inward flow f of transition t, if there is at least one firing of transition t that 
consumes tokens Xi1,Xi2,…, and Xis. Similarly, we define the notion of covering a combination of 
tokens on an outward flow.  

 

Definition 22 (Input Token, Output Token and Token Schemes) 

Let  be any given execution, U
0 11 2

0 1 2

k kn nn n

ke m m m m
−

= → → → → →
n

i and Vi be the set of input 
tokens and output tokens of the transition firing of ni, i=1,2,…,k,…, respectively. We define 
mappings InputToken, OutputToken and Token as follows. 

( ) 0 1, , , ,kInputToken e U U U=< > , 

( ) 0 1, , , ,kOutputToken e V V V=< > , 

( ) 0 0 1 1, , , ,k kToken e U V U V U V=< ∪ ∪ ∪ > . 
(1) The Input Token scheme TIN is extracted from the universal scheme by the mapping 
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InputToken and the recording function is: 
TINN(M)={e | e={InputToken(x) | x∈u}∧ u∈ΩN(M)}, for any test set M ⊆ M0. 

(2) The Output Token scheme TOUT is extracted from the universal scheme by the mapping 
OutputToken, and the recording function is:  

TOUTN(M)={e | e={OutputToken(x) | x∈u}∧ u∈ΩN(M)},for any test set M ⊆ M0. 
(3) The Token scheme TK is extracted from the universal scheme by the mapping Token, and 

the recording function is:  
TKN(M)={e | e={Token(x) | x∈u}∧ u∈ΩN(M)}, for any test set M ⊆ M0.    

Definition 23 (Flow Choice Coverage, and Flow Combination Coverage) 
Let E be a set of executions.  
(1)  E satisfies the input choice coverage criterion, if and only if for all inward flow f and all 

possible choices X of tokens on f , there is at least one execution in E that covers the choice 
of tokens on f.  

(2)  E satisfies the output choice coverage criterion, if and only if for all outward flow f and all 
possible choices X of tokens on f, there is at least one execution in E that covers the choice 
of tokens on f. 

(3)  E satisfies the flow choice coverage criterion, if it satisfies both the inward choice coverage 
criteria and the outward choice coverage criterion.  

(4)  E satisfies the input combination coverage criterion, if for all inward flow f and all 
combinations of tokens on f there is at least one execution in E that covers the combination 
of tokens on f. 

(5)  E satisfies the output combination coverage criterion, if for all outward flow f and all 
combinations of tokens on f there is at least one execution in E that covers the combination 
of tokens on f. 

(6)  E satisfies the flow combination coverage criterion, if it satisfies both input combination 
coverage criterion and the output combination coverage criterion.  

  
Lemma 9. 
(1)  The input choice coverage subsumes the inward flow coverage; 
(2)  The output choice coverage subsumes the outward flow coverage; 
(3)  The input combination coverage subsumes the input choice coverage; 
(4)  The output combination coverage subsumes the output choice coverage; 
(5)  The flow choice coverage subsumes both the input choice coverage and the output choice 

coverage; 
(6)  The flow combination coverage subsumes both the input combination coverage and the 

output combination coverage; 
(7)  The flow choice coverage subsumes the flow coverage; 
(8)  The flow combination coverage subsumes the flow choice coverage. 

Proof. It is straightforward from the definitions.  

Lemma 10.  

The flow coverage subsumes the transition coverage. 

Proof. In a well-formed PrT net, each transition must have at least one inward flow or one 
outward flow. Therefore, by definition, covering all flows implies covering all transitions.  
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Figure 4 - The hierarchy of data flow test adequacy criteria 

Let  be an execution. We say that a token ξ is defined by 
transition firing n

0 11 2

0 1 2

k kn nn n

ke m m m m
−

= → → → → →

0 1
, , ,

ki i in n n

0 1
, , ,

ki i in
jin

n

k and used by transition firing nj, if (a) ξ is an output of transition firing nk, (b) 
ξ is also an input of transition firing of nj, and (c) ξ does not participate in any transition ni, 
k<i<j, where j>k. Let  be a sub-sequence of the firings of execution e. It is called a 

data flow chain, if there are tokens ξ0, ξ1, …, ξk−1 such that ξj is defined by  and used by , 

j=0,1,…, k−1. A path <Tr
jin

1jin
+

0, Pr0, Tr1, Pr1, …, Trk> in a PrT net N is covered by a data flow chain 
, if is a firing of transition node Trn n j, j=1, 2, …, k.  For example, the first two 

transition firings in Table 1 cover the paths <Pickup, Eating, Putdown> in the dining 
philosophers’ PrT net.  

Definition 24 (Flow Path Coverage) 

Let k>1 be a given natural number. Let E be a collection of test executions, E satisfies the 
length-k data flow path coverage criterion, if and only if for any path q in the PrT net N of 
length less than or equal to k, there is an execution e in E such that e contains at least one data 
flow chain that covers the path q. The length-k flow path coverage measurement is defined by 
the following formula. 

,( , ) ( ) ( )k N kDFP N E CDF E Path N= k , 

where Pathk(N) is the set of paths in PrT net N of length less than or equal to k, CDFN,k(E) is the 
subset of Pathk(N) that is covered by data flow chains of test executions in E.  

Lemma 11.  

For all natural numbers k1, k2>0, k1>k2 implies that length-k1 flow path coverage subsumes 
length-k2 flow path coverage.  

Proof. It is similar to the proof of Lemma 1.  

6. Specification-Oriented Testing 

The testing methods discussed above only concern with the structure of PrT nets. In this section, 
we discuss specification-oriented testing methods. By specification-oriented testing, we mean 
both specification-based testing and testing the specification itself. The discussion below will be 
applicable to both types of testing.  

The formal algebraic specification of a PrT net defines a meta-language for the net. Each 
transition is associated with a constraint in the language to define its function. It can be 
considered as a function that takes tokens on the inward flows as input and produces tokens on 
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the outward flows as output. The operators used in the specification of the transitions are 
defined by an algebraic specification. Therefore, testing a PrT net or a concurrent system that 
implements a PrT net can be carried out at two levels.  

At the lower level, the correctness of the algebraic specification or the implementation of the 
operations used in the PrT nets is tested. Software testing methods based on algebraic 
specifications have been proposed by Gaudel et al. [1, 2] and further developed for testing 
object-oriented software by Doong and Frankl [3, 4] and Chen and Tse, et al. [5, 6]. These 
methods assumed that each operator in the signature of an algebraic specification is 
implemented by a corresponding function/procedure of an abstract data type or a method of a 
class in object-oriented systems. The basic idea of the methods is to use each equation of an 
algebraic specification to generate two sequences of method (or procedure/function) calls and 
then to check the equivalence between the two results. This method can achieve a high degree 
of test automation in the validation of object-oriented software systems against the final algebra 
semantics of algebraic specifications [6, 43]. Therefore, the method can be applied if the 
implementation of the algebraic specification uses abstract data types or object-oriented 
techniques. However, it is not always valid for testing against initial algebra semantics [6, 43]. 
Other methods for testing algebraic specifications have also been proposed in the literature, such 
as mutation testing of algebraic specifications proposed and investigated in [44, 45].  

At a higher level, once the correctness of the operations is verified, the correctness of the 
functions associated to the transitions is tested. Since the function of a transition is specified by 
an expression constructed from the operators of the algebraic specification, i.e. a term of the 
signature, functional testing methods and adequacy criteria can be applied. Let n be a transition 
node in a PrT net N. Each time the transition n is fired, it consumes a number of tokens a1, a2, 
..., ak from its inward flows and produces tokens b1, b2, bm on its outward flows. The tuple of 
tokens <a1, a2, ..., ak> then constitutes an input to the function Fn associated to the transition 
node n, and tuple <b1, b2, ..., bm> forms the corresponding output. The set Xn of the inputs that a 
transition node n consumed during the test executions of PrT net N is then the test set of the 
function Fn.  Let C be an adequacy criterion that is applicable to the testing of the functions 
associated to transitions in a PrT net.  

Definition 25 (Criterion of Transition Constraint Adequacy) 

Let E be a collection of executions of PrT net N, E is transition constraint adequate with respect 
to C, if and only if for any feasible transition node n in N, C(Fn, Xn) is adequate, where Fn is the 
function associated with transition node n, Xn is the set of inputs consumed by the firings of the 
node n in the executions E.  

An important property of test adequacy criteria is the axiom of inadequacy of empty testing [23, 
27], which requires that it is inadequate according to the criterion if the software is not tested.  

Lemma 12. 

The criterion of transitional adequacy with respect to C subsumes transition coverage, if C 
satisfies the axioms of inadequacy of empty testing.  

Proof. Assume that E is transition constraint adequate with respect to C. By the definition of 
inadequacy of empty testing, each feasible transition node is fired at least once in E. Therefore, 
by Definition 8, E is adequate according to transition coverage.  

The application of this adequacy criterion requires a tester to observe and record the 
computation of the output tokens inside each transition firing. For example, to analyse if the 
underlying algebraic formal specification has been adequately tested, we can record the 
equations used in the computation of output tokens and/or in the proof of the correctness of the 
transitions fired during test executions. The following adequacy criterion can then be defined 

21 



Zhu, H and He, X., A Methodology of Testing High-Level Petri Nets (Revised Version)  03/17/02 

based on such observations.  

Definition 26 (Equation Coverage)  

Let Eq be the set of equations of the formal specification SPEC underlying a PrT net N. A set E 
of executions of N is said to satisfy the equation coverage criterion, if and only if for all 
equations w in Eq, there is at least one execution e in E such that e contains at least one 
transition firing that the equation w is used in the proof of the correctness of the output tokens of 
the transition firing (or used in the evaluation of the output tokens in the transition firing).  

Notice that, it is possible that the proof of the correctness of a transition firing can be done using 
different equations in the algebraic specification. There is non-determinism in the select and use 
of the equations in such cases. The test adequacy criterion defined in Definition 26 requires that 
each equation is actually used at least once in one proof as observed during a testing process.  

In general, let C be any given adequacy criterion for testing algebraic specification.  

Definition 27 (Specification Coverage with respect to C)  

Let SPEC be the algebraic formal specification underlying a PrT net N.  A set E of executions of 
N is said to be Specification adequate with respect to C, if and only if the specification SPEC is 
adequately tested according to C in the executions of the transition firings in e∈E.  

This family of adequacy criteria links the testing of PrT nets at two different levels. It also 
enables the application of existing works on testing algebraic specifications to testing PrT nets. 
An obvious shortcoming of the method is that it neglected the network structure of PrT nets. 
Therefore, it should be used together with the methods discussed in sections 3~5. 

7. Conclusion 

In this paper, we proposed a methodology of testing high-level Petri nets based on our general 
theory of testing concurrent systems. We presented four groups of testing methods for high-
level Petri nets: transition-oriented testing, state-oriented testing, data flow oriented testing and 
specification-oriented testing. Each method is formally defined by an observation scheme and 
an adequacy criterion. In addition to the subsuming relationships among the criteria, there are 
extraction relations between the observation schemes, which are summarized in Figure 5. 
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Figure 5 - Extraction relationships between of behaviour observation schemes 
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Our work shares the same viewpoint with the researchers on testing finite state machines and 
testing theories of process algebra that equivalence relations between two computation systems, 
i.e. finite state machines in the former and concurrent processes in the later, cannot be simply 
defined as a partial function from inputs to outputs (although this is appropriate for testing 
sequential programs), rather it must be defined in terms of its dynamic behaviour. However, 
there are several significant differences, including the goals, methods, and results, between our 
work and the above works. First, as discussed in section 1, the above works focused on a 
specific goal - behaviour equivalences defined in a formal specification technique such as CCS, 
LOTUS, or finite state machine using black-box testing approach. Our work is based on a 
general formal framework for testing concurrent systems, which covers black-box testing and 
white-box testing approaches, as well as the testing of different software artefacts including 
formal specifications with an underlying operational semantics and programs. In this paper, we 
have applied our framework to high-level predicate transition nets and developed a hierarchy of 
white-box testing methods. Second, the above works used a very simple observation scheme 
with the assumption that a program will provide a simple yet intelligent response such as a 
stable state being reached from each external stimulus. Our work provides extensive results on 
observation schemes and explores relationships (strengths and weaknesses) among the 
observation schemes. The observable behaviours are determined by the chosen observation 
scheme. By designing an appropriate observation scheme, we can cover known behaviour or 
semantic models such as the ones used in the above works and others such as failure semantics 
[46].  

Although the testing methods are defined in terms of algebraic predicate transition nets with 
interleaving-set semantics, we believe that the testing methods should also be applicable to 
other models of Petri nets and other semantic models including the partial order semantics [39].  
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