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Abstract 

Quasicrystalline aluminium alloys and aluminium based nanocomposites with the advantage 

of high strength over commercial aluminium alloys have been studied for many years. In this 

work a nanoquasicrystalline Al-Fe-Cr-Ti alloy powder and a nanocomposite consisting of a 

mixture of a nanoquasicrystalline alloy and nanosize γ-Al2O3 powders were produced 

through mechanical milling with different milling speeds. It has been observed that a higher 

milling time or milling speed can improve the homogeneity of the γ-Al2O3 distribution. The 

α-Al crystallite size decreases and the hardness increases with the milling time. The smallest 

crystallite size (14 nm) and the highest hardness value (638 HV10g) were obtained for the 

nanocomposite after 30 hours of milling at 250 rpm. As the α-Al crystallite size is the main 

change in the microstructure during the ball milling process, the change in the hardness of the 

milled powders was found to follow a Hall-Petch type relation with an exponent of 0.25. 

Key words: Mechanical milling, aluminium, quasicrystals, nanocomposites, hardness 

 

1. Introduction 

Compared with conventional alloys, composites have the advantages of high strength and 

high stiffness [1]. Decreasing the reinforcement particle size to nanoscale helps improving 

both the mechanical strength and the ductility. Kang et al. [2] illustrated that Al/1vol% Al2O3 

(50nm) nanocomposite had almost the same tensile strength with the Al/10vol% SiC (13µm) 

composite and much higher ductility. Knowles et al. [3] processed Al6061/SiC 

nanocomposites through mechanical milling and hot isostatic pressing. With 12.9 vol% of 

SiC addition, the composites they processed increased the yield strength from 131 MPa to 

229 MPa. The SiC has normally inert chemical behaviour with the matrix, but some authors 

reported that the SiC could react with Al, generating Al4C3 intermetallics and Al-Si eutectic, 
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leading to undesired behaviour [4, 5]. Compared with the SiC, Al2O3 is widely used in 

aluminium based nanocomposites because it is chemically inert with Al [6]. Alumina is one 

of the most important structural materials with several transition phases that have enormous 

technological and industrial significance [7]. The γ-phase in particular is one of the 

polymorphic phases of alumina with numerous applications [7]. The γ-phase, with a cubic 

cell and a Fd-3m symmetry is a metastable phase and intrinsically nanocrystalline in nature 

that can also be easily synthesized by a variety of methods [8, 9]. γ-Al2O3 can be transformed 

into the stable α-Al2O3 under heat treatment with a transformation sequence at high 

temperature (750˚C-1200˚C) [10]. The hardness of the γ-Al2O3 synthetized by different 

methods has been measured by several authors with values of 714 to 744 Kg/mm2 [11-13].  

Mazaheri et al. [14] fabricated an Al356/α-Al2O3 composite through mechanical milling. The 

hardness they measured through nanoindentation increases from 75 kg/mm2 to 216 kg/mm2 

with 20 vol.% of α-Al2O3 addition. This represents an increase in the hardness of 9.4% per % 

of the α-Al2O2 reinforcement, which is higher than the increase of 7.5% per % of SiC 

reinforcement obtained by Knowles et al [3]. Therefore, the use of nanosize γ-Al2O2 as 

reinforcement in Al-based composites is very promising is the nanoparticles’ clusters can be 

broken-up and the nanoparticles are homogenously distributed in the Al alloy matrix. 

Nanostructured Al-based alloys with a microstructure composed of nanoquasicrystalline 

particles embedded in an Al matrix, are well studied and known in the literature as 

“nanoquasicrystalline Al alloys” [15-22]. These alloys are normally produced by rapid 

solidification (melt-spinning or gas atomization) containing icosahedral quasicrystalline 

particles with typically size under 500 nm. Inoue et al. [18] found ~45 vol.% of icosahedral 

particles for the Al93Fe3Cr2Ti2 (at.%) alloy atomized powder, and Audebert et al. [19] found 

~42 vol.% of icosahedral particles for the melt-spun Al93Fe3Cr2Ti2 (at.%) alloy. 

Nanoquasicrystalline Al alloys are attractive potential structural materials due to their high 

strength, particularly at elevated temperatures [19, 23]. These alloys can be used as metallic 

matrix of very high strength Al-based composites. In an early work Galano et al. [24] milled 

a nanoquasicrystalline Al-based alloy powder with 8.5 vol.% of γ-Al2O3 nanoparticles. 

Homogeneous alumina distribution on a nanoquasicrystalline matrix nanocomposite with 

high hardness value and minor quasicrystalline phase decomposition was obtained. In this 

work the ball milling process and the effects of processing parameters are investigated to 

produce a nanocomposite consisting of 12.9 vol.% γ-Al2O3 (20-50nm) distributed in a 

nanoquasicrystalline Al-Fe-Cr-Ti matrix. The effects of milling speed on the nano-size γ-
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Al2O3 particles distribution in a nanoquasicrystalline Al-based matrix, the microstructure 

evolution and the hardness were investigated.  

 

2.  Experimental Methods 

10 grams of gas atomized powder of the Al93Fe3Cr2Ti2 (at%) nanoquasicrystalline alloy (A) 

with 25-50 µm powder size range and 12.9 vol.% γ-Al2O3 powder with particle size range of 

20-50 nm were premixed in a Tubular mixer for 10 minutes. 100g stainless steel balls of 10 

mm in diameter and the mixed powder were loaded into a 250 ml stainless steel vessel. This 

was done in an Argon filled glovebox. A Fritsch Mono Mill Pulverisette 6 Classic was used 

to process three batches of mixed powder with various milling speed from 200 rotates per 

minute (rpm) to 250 rpm. Twenty minutes pause was applied after each hour of milling to 

release the heat. For each powder batch, 0.5 grams was taken out after every 5 hours of 

milling until 30 hours. One batch of pure nanoquasicrystalline alloy powder was also milled 

with 250 rpm under the same milling conditions that the composite powders for comparison. 

The milling speed and the corresponding batch number are shown in Table 1. As shown, the 

milled powder samples are referred to as Aa_b or Ca_b, where A represents the 

nanoquasicrystalline alloy powder, and C the nanoquasicrystalline alloy plus alumina 

composites powders. The index a stands for the milling speed (rpm) and the index b for the 

milling hours, respectively.  

Powder batch Milling speed (rpm) 
A250 250 
C200 200 

C250/200 250 for the 1st 5 hours, and 200 afterwards 
C250 250 

Table 1: Ball milled powder batches and their milling speed 

X-ray diffractograms were obtained with a Bruker D5000 θ-2θ diffractometer with 0.15418 

nm wavelength Cu-Kα radiation at 40 kV and 40 mA, with scan conditions of 2θ range of 

20–100°, a step size of 0.02° and a scan rate of 0.003°/s. Crystallite sizes and the strain of 

ball milled powder were estimated by the Williamson-Hall plot method [25]. A FEI 200 

focus ion beam (FIB) was used for milling the oxide layer away to observe the alumina 

distribution in the milled powders. The lift-out transmission electron microscope (TEM) 

samples with thickness ranging from 60-130 nm were prepared with the FIB apparatus. The 

crystallite sizes were measured on bright field TEM images taken in a Jeol 2100 TEM. 
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Vickers hardness (HV) was measured using a Wolpert hardness microindenter with 10 

grams-force load and 15s of dwelling time. Powder samples were mounted in conductive 

Bakelite and polished until a metallographic quality surface. Vickers hardness was measured 

following the recommendations in the ASTM E384-16 standard [26]. Only powder particles 

with large circular surface in the mounted samples were measured with only one 

microindentation per powder particle. This allows meeting the recommended conditions of 

minimum thickness and the minimum distance from the centre of the indentation to the 

particle surface as 1.5 and 2.5 times of the indentation’s diagonal, respectively. The Vickers 

hardness was calculated using the average value of the two diagonals of each 

microindentation and applying the corresponding formula for HV [26] , as in equation (1): 

HV = 1854.4  
P

𝑑2                                                       (1) 

Where, P is the load in gf; d is the average diagonal length value in μm. For each milled 

powder sample, 20 symmetric indentations were used to ensure the accuracy of the Vickers 

hardness values. 

 

3. Results 

3.1 Alumina distribution in the ball milled powder 

The FIB images of the milled powder produced at 200 and 250 rpm are shown in Figure 1. 

For the C200 batch after 10 hours of milling (C200_10), the alumina appears in bands within 

the matrix, as shown in Figure 1 (a). Probably this is because the γ-Al2O3 particles that 

initially were stuck on the nanoquasicrystalline powder surface had been trapped inside when 

the quasicrystalline powder was cold welded together during the milling process. After 20 

hours of milling (C200_20) the alumina distributes more homogeneously, as shown in Figure 

1 (b). The progress towards to an alumina homogeneous distribution can be explained due to 

repeated cold-welding and fracturing cycles during the milling process [27]. The alumina 

distribution in the C250 batch powder follows a similar trend but more homogeneously than 

the C200 batch. In the C250_10 sample the alumina is distributed in the nanoquasicrystalline 

matrix forming thin bands with higher homogeneity than in the C200_10, (compare Figures 1 

(a) and (c)). In the C250_20 sample the alumina seems quite homogeneously distributed 

(Figure 1 (d)) when compared with the C200_20 sample (Figure 1 (b)). The higher milling 
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speed produces more collisions per unit volume of the powder leading to a more homogenous 

distribution for the same milling time. 

 

Figure 1: FIB images of C200 and C250 milled powders with 10 and 20 hours milling 

time 

 
3.2 Phases present in the ball milled powder 

The X-ray diffractograms of the A250, C250 and C200 batches of powder are shown in 

Figure 2. Peaks at 2θ angles of 22.5, 40.9, 43.1, 73.1 degrees were indexed as corresponding 

to the icosahedral quasicrystalline phase using the Cahn’s notation [28]. The peaks’ intensity 

of the icosahedral quasicrystalline phase decreases with the milling time, which indicates a 

possible decomposition and/or a high distortion of the quasicrystalline phase structure by the 

ball collisions during the milling process. Only one small peak of the γ-Al2O3 was observed, 

the γ(440) peak, identified in the composite powders. This could be due to a combination of 

low volume fraction and the nano-size particles of the γ-Al2O3 in the nanocomposites 

powder, which produces broad and low intensity diffraction peaks, as it was observed in a 
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previous work [24]. The quasicrystal and the α-Al peaks show broadenings with the milling 

time, which can be related with collisions and the fracturing process that reduce the Al 

crystallite size and distorts the Al and quasicrystal lattices. 

 

Figure 2: The X-ray diffractograms of the milled powder samples 

 

The icosahedral quasicrystalline phase and the γ-Al2O3 particles were also observed in the 

TEM analysis, as can be seen in the bright field TEM images from C200_10 and 

C250/200_10 samples in Figure 3 (a) and (b), respectively. The particle (1) is an icosahedral 

quasicrystal phase characterised by the convergent beam electron diffraction patterns from 

the mirror zone axis. The particle (3) is an icosahedral quasicrystal according to the fivefold 

diffraction pattern with quasiperiodic order. The particles (2) and (4) would correspond to γ-

Al2O3 particles according to the EDX analysis showed in the inset in Figure 3. Particle (4) 

has higher aluminium atom percentage, probably because the EDX detector received 

information from the aluminium matrix. 
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Figure 3: Bright field TEM image of the (a) C200_10 (b) C250/200_10 samples; with 

insets of electron diffraction patterns of icosahedral quasicrystalline particles (particles 

1 and 3) and EDX results from alumina particles (particles 2 and 4). 

 

3.3 The Al crystallite size, the strain and the hardness 

The average Al crystallite size and the strain values of the ball milled powders were 

estimated through the Williamson-Hall plot method and summarised in Figure 4. Only 

powder samples of the C200 batch with milling time equal or higher than 20 hours, and 

samples of the C250/200 and C250 batches with milling time equal or higher than 10 hours 

were used for this estimation since Williamson-Hall plot produces large errors for Al 

crystallite sizes larger than 100 nm [24]. The Al crystallite sizes of the C250/200_5 and 

C250_5 samples were measured instead by drawing two pairs of parallel vertical and 

horizontal lines on each crystallite in the TEM images. The average distance between the 

vertical lines and the horizontal lines measured on at least 30 Al crystallites was taken as the 

average Al crystallite size. 

The average Al crystallite size of the milled powder decreases with milling time and speed, as 

shown in Figure 4. For example, for the C200 batch the Al crystallite size decreases from 99 

nm to 30 nm from 20 to 30 hours of milling. In the C250 batch the crystallite size decreases 

from 130 nm to 14 nm from 5 to 30 hours of milling. It is observed that for the same milling 

time, samples produced with higher milling speed have smaller average Al crystallite size. 
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The strain values of all milled powder batches do not show a clear trend. Most of the values 

lay between 1.0% and 1.5%. 

The Vickers hardness of the milled powder is also shown in Figure 4. C200 batch samples 

with milling time lower than 20 hours had an inhomogeneous microstructure therefore 

Vickers hardness tests were not performed on these samples with very inhomogeneous 

microstructure. Before milling the Vickers hardness of the nanoquasicrystalline alloy powder 

was 132±10 HV10g. The hardness values of all the nanocomposite samples (C batches) 

increases with milling time and milling speed. The highest hardness values were observed for 

the C250 batch samples. These values increased from 407+59 to 638+44 HV10g from 5 to 30 

hours of milling. The C250 nanocomposite batch showed higher hardness values than the 

A250 nanoquasicrystalline alloy batch. 

 

Figure 4: The Al crystallite size, the Al crystallite strain and the Vickers hardness 

values of the ball milled powders against the milling time. 
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4. Discussion 

The hardness value (HV𝐴0) measured on the unmilled nanoquasicrystalline alloy powder 

includes the contribution of all the strengthening mechanisms related to the 

nanoquasicrystalline alloy microstructure features. Considering that the volume fraction and 

the nano-size of quasicrystal/intermetallic precipitates embedded in the Al phase matrix 

(nanoquasicrystalline Al alloy) do not change during the ball milling process, the 

strengthening contribution by the Orowan’s mechanism will remain constant with the milling 

time. In high strength alloys in which the particle and grain boundaries mechanisms are the 

main strengthening mechanisms, the solid solution represents a minor fraction contribution 

(<5%) and the change in hardness during the milling process due to solid solution changes is 

even much lower [29, 30]. The dislocation-dislocation interaction strengthening mechanism 

is related with the dislocations density and therefore with the strain [31]. Figure 4 shows 

strain is lower than 1.5% and does not follow a clear trend, which suggests this strengthening 

mechanism does not contribute further to the hardness change with the milling time. From 

Figure 4 it is also observed that the Al crystallite size strongly decreases while the Vickers 

hardness increases with the milling time. Finally, it is reasonable to consider that the 

“change” in hardness values with the milling time is related mainly to the Al crystallite size 

refining. This suggests that the “increasing” of the materials strength should be related to the 

grain boundaries strengthening mechanism [32, 33]. 

The main hardening contributions to the nanoquasicrystalline alloy are the related to the 

Orowan’s mechanism due to the ~45 vol.% of quasicrystals/intermetallic nano-size particles 

and to the grain boundaries (Hall-Petch) mechanism with an Al grain size of d0 ~ 1 μm [19, 

23]. Then, during the ball milling process, when the Al crystallites are heavily refined, the 

“change” of the hardness of the nanoquasicrystalline alloy (A250) will follow a Hall-Petch 

type relationship as a function of the Al crystallite size. A general expression of hardening as 

a consequence of the crystallite refining is normally written as: 

𝐻 = 𝐻0 +  
𝑘

𝑑
𝑝        ---------------------    Equation (2) 

Where H is the hardening due to the crystallite size (d), H0 is the lattice frictional stress, k is a 

constant known as “locking parameter”, which measures the relative hardening contribution 

of the grain boundaries [34], and p is a constant exponent. This exponent was suggested as p 

= 0.5 by the early works of Hall [32] and Petch [33]. Deviations of this value have been 

theoretically proposed and experimentally found in the literature. Very early works by 
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Mathewson in 1919 and Bragg in 1942 postulate that strength due to the crystallite size is 

proportional to d-0.25 and d-1, respectively [35, 36]. Theoretical estimations in the literature for 

the p value also suggested values as: 1.0, 0.5, 0.33, and 0.25. Each of these values for p is 

based on different mechanisms and/or models for dislocation-grain boundary interactions.  

For example, the more common value, p = 0.5, is normally related to dislocations pile up at 

the grain boundaries; and p = 0.25 was also found by Conrad considering a dislocation forest 

hardening concept [37, 38]. Several models considering different dislocation-grain 

boundaries interactions, crystallite size ranges, boundaries features as porosity and impurities, 

solute diffusivity, dislocation sources have been proposed leading to different p values and 

even different complex equations as a function of the crystallite size [39]. The ball milling 

process introduces several physical changes in the Al lattice and grain boundaries that make it 

extremely difficult to build up a theoretical approach to propose an equation that accurately 

describes the hardening mechanism related to the crystallite refining experimentally 

observed. Thus, the experimental results obtained from the milled alloy and composite 

powder were fitted following the simple equation (2), finding an exponent p = 0.25 for the 

best lineal correlation between measured H values and  
1

𝑑
𝑝 , as can be seen in Figure 5 for the 

alloy powder (a) and the composite powder (b). The lineal correlation following a Hall-Petch 

type relationship suggests that during the milling process of the alloy and the composite the 

hardening is mainly controlled by the crystallite refining, as was deduced above. Therefore, it 

is reasonable to suggest that the “change” of hardness respect to the initial hardness of the 

unmilled powder can be represented by 𝑘

𝑑
𝑝 . Finally, the hardness value of the milled alloy 

powder after x hours of milling, 𝐻𝐴𝑥, can be estimated using equation (3): 

𝐻𝐴𝑥 = (𝐻𝐴0 − 
𝑘𝐴

𝑑
0

1
4

) + 
𝑘𝐴

𝑑𝑥

1
4

       ---------------------    Equation (3) 

Where kA is the “locking parameter” for the alloy, and  𝐻𝐴0 is the microhardness value of the 

unmilled nanoquasicrystalline Al-Fe-Cr-Ti alloy powder (measured as 132±10 HV10g) that 

includes the Al lattice frictional stress, the effects of solutes in the Al solid solution, 

quasicrystal/intermetallic particles hardening, grain boundaries hardening and other minor 

contributions. Thus, in order to count only the constant hardening contributions of the 

microstructure of the milled powders, the grain boundaries contribution for the initial Al 



11 
 

grain size (d0) must be subtracted as: 
𝑘𝐴

𝑑0

1
4

 from 𝐻𝐴0. dx is the Al crystallite size after x hours of 

milling, which is the main observed microstructural feature that changes during the ball 

milling process in the nanoquasicrystalline alloy powder. For the unmilled alloy powder, 

when dx = d0 the equation (3) provides a hardness value equal to the measured hardness of the 

unmilled alloy powder, HA0. 

For the composite powders, because of the addition of the nano γ-Al2O3 particles, other 

strengthening contributions must be considered. Numerous theoretical models have been 

developed to correlate the mechanical behaviour of metal matrix composites with their 

microstructural characteristics [40-46]. These models might be grouped into three general 

categories: (1) load transfer models, (2) matrix strengthening models and (3) hybrid models.  

(1): the load transfer models were developed on the basis that the hard, relatively 

undeformable reinforcements, may carry more load than the relatively soft matrix [40-42]. In 

this group is included the simplest and well know rule of mixtures (ROM) [42], which is 

characterized for a mathematical expression which gives the homogeneous property of a 

heterogeneous materials in terms of the properties, quantity and arrangement of its 

constituents. This model weights the volume average of the component properties in isolation 

without considering any interaction between reinforcement and matrix. See equation (4) as 

applicable for the composite’s hardness: 

𝐻𝐶 = 𝐻𝐴(1 − 𝑓) + 𝐻𝑟𝑓       -------------        Equation (4) 

where 𝐻𝐶 , 𝐻𝐴 , 𝐻𝑟  are the hardness values for the composite, the matrix alloy and the 

reinforcement, respectively. 𝑓 is the volume fraction of reinforcements. 

(2): In the matrix strengthening models, the strengthening effect has been attributed to 

various microstructural changes experienced by the matrix as a result of the presence of 

reinforcement particulates [43]. For example, the stress increment resulting from the 

difference of the thermal expansion coefficient of matrix and reinforcement when the 

nanomaterial process involves temperature changes; an increase in strengthening by 

Orowan’s mechanism when the reinforcements are located inside of the matrix grains.  

(3): other authors proposed hybrid models that combine both approaches of load transfer and 

effects of the matrix microstructural changes due to the reinforcements addition [44-46]. 

In the present work, we adopt a hybrid model to evaluate the hardness change with the ball 

milling time of a composite powder using the equation (5): 
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𝐻𝐶𝑥 = [(𝐻𝐴0 − 
𝑘𝑐

𝑑
0

1
4

) +
𝑘𝑐

𝑑𝑥

1
4

](1 − 𝑓) + 𝐻𝑟𝑓     --------      Equation (5) 

where 𝐻𝐶𝑥 is the hardness of the nanocomposite after x hours of milling, kC is the “locking 

parameter” for the composite,  𝑓 is the volume fraction of the γ-Al2O3 reinforcement (12.9%), 

and Hr is the hardness value of the reinforcement (γ-Al2O3 with an average value taken from 

literature as 730 Kg/mm2) [11-13]. When no reinforcement is added to the powder alloy (f = 

0) equation (5) becomes equation (3) giving the hardness values for the milled alloy powders. 

The equation (5) predict a theoretical hardness value of the unmilled composite of 𝐻𝐶0 = 209 

Kg/mm2 by the application of the simple rule of mixtures. 

It is worth mentioning that in composite systems where the reinforcement particle is much 

harder than the matrix or the volume fraction of the reinforcement is low, the ROM as in 

equation (4) may not predict the actual hardness of the composite due high plastic 

deformation around the hard particles that produce a zone of high dislocations density [42]. 

For example, for the Ag-Al2O3 composites, with a very soft Ag matrix, the experimental 

values of the hardness are almost the same up to 50 vol.% Al2O3 [47]. However, in the 

literature, for mechanical milled aluminium composites with about 10-20% volume fraction 

of ceramic reinforcement particles, the experimental results match the value estimated with 

the rule of mixtures [14, 48]. The equation (5) combines the equation (3) and the rule of 

mixtures (equation (4)). The mechanical milling and alumina affects the microstructure of the 

nanoquasicrystalline Al alloy matrix of the composite. As discussed above, the main 

observed microstructural features that change with the milling time in the composite are the 

refining of the Al crystallites in the matrix and a continue homogenisation of alumina 

distribution. The effect on the alloy matrix introduced by the γ-Al2O3 reinforcement is 

represented in the equation (5) by the term:  
𝑘𝑐

𝑑𝑥
𝑝 (1 − 𝑓) were f considers the quantity of 

reinforcement in the composite, dx the size of the crystallite size in the matrix alloy, and the 

exponent p = 0.25, which in this work was obtained by fitting the hardness and Al crystallite 

size measured on the milled powders. This p value matches with the early model proposed by 

Conrad and Hirth [37, 38] that consider a dislocation forest hardening concept. Moreover, 

the parameter kC that was fitted for the composite powder is different than the one for the 

alloy powder (kA). The “blocking parameter”, 𝑘, is associated with the stress required to 

extend dislocations activity into nearby grains and is very sensitive to the composition of the 

alloy and composites [34, 50-53]. For example, when adding 4 wt.% of Cu to the pure Al, the 
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𝑘 value resulted more than 2 times of the one corresponding to the nanocrystalline pure Al 

[50, 51]. In the present work, considering that some γ-Al2O3 nanoparticles would be 

distributed at the Al grain boundaries in the alloy matrix, the hardening behaviour in the alloy 

and in the composite powders would be different, which lead to different k values that 

measures the properties of the grain boundaries as a sink and source of dislocations [49]. 

In Figure 5 (a) the slope of the linear fitting for the milled alloy powder resulted as kA = 

1463±183 𝑘𝑔/𝑚𝑚2 ∙ 𝑛𝑚1/4  (2551± 319 𝑀𝑃𝑎 ∙ 𝜇𝑚1/4 ). The kC value for the milled 

composite powders was also fitted linearly as can be observed in Figure 5 (b) taken the data 

for all the composite powder batches, finding a value of the slope as: 𝑘𝐶(1 − 𝑓) = 938±122 

𝑘𝑔/𝑚𝑚2 ∙ 𝑛𝑚1/4. Thus, 𝑘𝐶 = 1077±140 𝑘𝑔/𝑚𝑚2 ∙ 𝑛𝑚1/4  (1878±244 𝑀𝑃𝑎 ∙ 𝜇𝑚1/4), which 

is lower than the obtained for the milled alloy powders showing the effect of the γ-Al2O3 

nanoparticles on the Al grain boundaries of the alloy matrix. 

The values estimated from the linear fitting for the alloy data have larger errors, probably due 

to the limited number of samples in comparison with the data obtained for the composite 

powders. The data for the alloy and the composite were statistically evaluated by means of 

the Chauvenet’s criterion [54]  and only one data for the alloy has not been taken into account 

in the fitting; the one corresponded to the A250_15 sample (crossed in  Figure 5 (a)). 
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Figure 5: The linear fit model for the (a) milled alloy and (b) nanocomposite powders. 

The measured Vickers hardness against d-0.25 (d: Al crystallite size) 

 

The application of the equations (3) and (5) to predict the hardness value of the milled 

nanoquasicrystalline Al-Fe-Cr-Ti alloy and for it composites containing 12.9 vol.% γ-Al2O3 

(20-50 nm) powders provided hardness values slightly lower but inside the error of the 

measured hardness values. The estimated hardness powders milled for 30 hs present higher 

deviation (~15%), which can be explained because after 30 hs of milling some icosahedral 

quasicrystalline particles appear to be transformed which change the alloy matrix and as 

consequence the microstructural parameters in the equations should change too. 

The hardness value obtained for the nanoquasicrystalline Al-Fe-Cr-Ti alloy matrix/γ-Al2O3 

particles nanocomposite powders are very high in comparison with the ones found in the 
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literature, which are summarised in Table 2. This can be explained because of the large 

volume fraction (~42-45%) of the quasicrystal nanoparticles embedded in fcc-Al phase, 

obtained by rapid solidification, produces a high strength alloy which can transfer load to the 

hard γ-Al2O3 reinforcements more efficiently than softer Al-based commercial alloys. 

 

Composite Al Crystallite size Hardness Reference 

NQX(25-50µm) + 12.9vol.% γ-Al2O3 

(20-50nm) 

14nm 638±44 HV10g This work 

NQX(25-50µm) + 8.5vol.%  γ-Al2O3 

(20-50nm) 

33nm 542±9 HV10g [24] 

EN AW-2017 Al alloy (100µm) + 

15vol.% Al2O3 (22µm) 

49nm 329±26 HV100g [55] 

Al(325mesh) + 10vol.% Al2O3(4nm) 90nm 166±4 HV50g [43] 

Table 2: The Al crystallite size and hardness values of ball milled composite powders in 

literature. NQX is the abbreviation of the nanoquasicrystalline Al alloy 

 

5. Conclusion 

The nanoquasicrystalline Al93Fe3Cr2Ti2 alloy based nanocomposites powder containing 12.9 

vol.% γ-Al2O3 (20-50nm) has been produced by mechanical milling process. Homogeneous 

γ-Al2O3 distribution and very high Vickers hardness is obtained after 20 hours of milling at 

200 rpm or for 10 hours of milling at 250 rpm. The metastable quasicrystalline phase has 

remained after 30 hours of milling even at 250 rpm.  

As the milling speed increases, collisions per unit volume of the powder increase; thus 

distributes the alumina particles, refines the Al crystallite size and increases the hardness of 

the composites more efficiently. 

The hardness of the nanoquasicrystalline Al alloy powder is mainly controlled by the refining 

of the Al crystallite size during the milling process. Thus the hardness change of the milled 

nanoquasicrystalline Al alloy powder can be estimated by a simple Hall-Petch type 

relationship with an exponent of 0.25 in accordance of early models based on dislocation 

forest hardening concept. 
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The hardness change of the ball milled nanocomposite powder can be estimated by a hybrid 

model that combines a Hall-Petch type relationship with an exponent of 0.25 and the rule of 

mixtures. 

The addition of 12.9 vol.% γ-Al2O3 (20-50nm) particles to the nanoquasicrystalline 

Al93Fe3Cr2Ti2 alloy powder processed by ball milling with a ball to powder ratio of 10, at 250 

rpm during 30 hs allows to obtain an homogeneous nanocomposite powder with 4.8 times 

higher hardness (HV10g = 638) than that of the nanoquasicrystalline Al alloy matrix (HV10g = 

132). 
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