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Mathematical modeling of the self-pressurizing
mechanism for microstructured fiber drawing

Christopher J. Voyce, Alistair D. Fitt, John R. Hayes, and Tanya M. Monro

Abstract— A method is proposed for modeling the self-
pressurization of optical fibers that are sealed before drawing.
The model is solved numerically and the results compared
with experimental results. An explanation of the mechanismis
presented and a numerical investigation is undertaken to optimize
the choice of experimental parameters to minimize the transient
effects of sealed preform drawing.

Index Terms— Mathematical modeling, optical fiber, optical
fiber applications, optical fiber fabrication, optical fiber theory,
pressure effects.

I. I NTRODUCTION

M ICROSTRUCTURED optical fibers (MOFs) are man-
ufactured by heating a macroscopic structured preform

(typically a few centimetres in diameter), and drawing it down
to the required dimensions (typically 125µm in diameter). In
the case of silica MOFs, preforms are often manufactured by
stacking capillary tubes inside a larger capillary tubes, forming
a hexagonal pattern of holes. The presence of air holes in the
cross-section presents both challenges and opportunitiesfor
the fabrication of these fibers. Competition between viscosity
and surface tension effects can alter the size and shape of the
holes during the drawing process, and in extreme cases hole
closure can occur.

The fabrication of structured preforms is one of the most
labor intensive parts of the manufacturing process and it
is often desirable to produce a number of different fiber
profiles from a single preform by altering the conditions under
which the fiber is drawn. For this reason predictive modeling
capabilities are crucial, as is the ability to understand and
control undesirable effects such as the change of hole-shapes
and the closure of interstitial holes.

For many MOFs it is important to be able to collapse
interstitial holes, and gaps between the outer (larger) capillary
and the inner (smaller) capillaries. Since surface tensionacts
more on the inner capillaries than on the outer tube, the
inner capillaries suffer a greater degree of collapse on drawing
[1]. The collapse of interstitial holes can be achieved by
pressurizing the inner capillaries, allowing the inner capillaries
to be fitted to the outer tube, thus preserving the preform
structure. Pressurizing the capillaries can be accomplished in
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two ways. Either an overpressure can be applied to the top
of the preform, thus maintaining the holes at an elevated
pressure [2], [3], or the tubes may be “sealed”. Sealing is often
the method of choice because it is more simple to execute
experimentally and has been found to work surprisingly well.
Unfortunately, when capillary tubes are sealed, the drawn fiber
exhibits an inner-diameter that gradually changes with time. It
is observed that the inner-radius gradually increases as the fiber
is drawn before later decreasing. No significant change in the
outer diameter is observed since conservation of mass requires
that any change in outer diameter is an order of magnitude
smaller than changes in the inner diameter. The effect is clearly
due to a gradual increase and then decrease in the overpressure
within the preform, but no attempt has previously been made
to explain or model this effect.

There exist numerous studies of optical-fiber drawing, in-
cluding studies related to the drawing of capillary tubes (see,
for example, [2], [3], [4], [5], [6], [7]). In this paper we
develop a model to describe the sealing process and predict the
characteristics of the evolution in the fiber geometry during the
draw. We compare predictions of the model with experimental
results, and suggest a strategy for minimizing such pressure
and geometry fluctuations.

The remainder of the paper is organized as follows: in§II
we describe the experimental sealing process, in§II-A we
detail the model assumptions, before describing the model in
§III. We give experimental and numerical results in§IV and
discussion the effects of one of the assumptions in§IV-B. In
§V we suggest methods to improve the method of capillary
sealing before concluding in§VI.

II. T HE SEALING PROCESS

A capillary tube significantly longer than the furnace is
sealed at one end, and placed in the furnace with the sealed end
uppermost, leaving much of the preform protruding from the
furnace (see Fig. 1). As the furnace temperature is increased
to the “drop temperature” of the glass, the furnace and glass
are in thermal equilibrium. However, the portion of tube
protruding from the furnace is at a much lower temperature
than the furnace. Conduction and radiation are both significant
sources of heating and the temperature of the tube above the
furnace is not precisely known, but is significantly higher than
the ambient air as a result of radiative heating.

As the air in the capillary heats up and expands, an amount
of air exits the system at the bottom of the furnace, since the
bottom of the tube is still open to the atmosphere. The tube
is then pulled as normal and thins rapidly, initially closing
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Fig. 1. (Upper) Schematic of experimental set-up. A capillary tube is sealed
at the top, left open at the bottom, and passed slowly into thefurnace. As
the preform melts and is drawn, the tube initially closes under the action of
surface tension. A quasi-steady state is the reached and thefiber is drawn.
The capillary tube radius and pressure then slowly vary withtime. (Lower)
Problem geometry.

(at the bottom) under the effects of surface tension. This isa
transient effect that is normally referred to as “the drop”.A
quasi-steady fiber diameter is then obtained. The volume of
glass and gas lost from the tube by the initial part of the pull,
which serves to close the hole, is not significant and will be
assumed negligible.

The pull never reaches an exact steady-state (only a quasi-
steady state, where we may ignore the time dependence in the
governing equations and simply allow all dependent variables
to depend on time) because air is being removed from the
capillary tube at the end of the furnace, thus modifying the
ratio of glass to air. Furthermore, as the fiber is drawn the
capillary tube is lowered into the furnace, increasing the
average temperature of the air in the tube. It will be shown
that these effects combine to give a continually changing
pressure inside the capillary tube, resulting in changes infiber
geometry.

A. Model assumptions

We assume that:
(1) the mass of glass and gas lost in the initial drop are

negligible and may be ignored.

(2) the temperature of the glass is known for the large portion
outside the furnace and the draw does not commence until
thermal equilibrium is achieved.

(3) the air within the capillary tube is assumed to be in
thermal equilibrium with the glass throughout.

(4) the temperature profile of the glass is assumed (a) to vary
linearly with distance and (b) not to depend on time.

(5) whilst the temperature of the glass varies inside the fur-
nace, the viscosity of the glass will be assumed constant
in this region (including the correct variable viscosity
introduces numerical difficulties but does not significantly
alter the predictions).

(6) the effects of surface tension are negligible.

III. M ODELING

A schematic diagram of the capillary geometry is shown
in Fig. 1. To develop a mathematical model for the process
of capillary drawing that is capable of including the effects of
internal hole pressurization, surface tension, gravity and inertia
as well as the effects of preform rotation we begin with the
Navier-Stokes equations using cylindrical coordinates where
the glass viscosity is assumed a function of both axial and
radial position.

We non-dimensionalize the governing equations, and sim-
plify them by taking advantage of the slender preform ge-
ometry. This allows the equations to be solved in closed-
form in certain limiting cases (e.g. ignoring gravity, inertia
and surface tension, see [7]). We apply the same simplifying
approximations to the physical boundary conditions, before
finally deriving a closed system of “leading-order” equations
that describe the drawing of rotating preforms. The free param-
eters in the model include (i) the glass viscosity (determined
by the glass properties and the furnace temperature profile), (ii)
the surface tension, (iii) the length of the drawing furnace, iv)
the initial preform geometry (i.e. inner and outer diameters),
and v) the feeding and drawing speeds.

The final equations are given by

ρ(h2
2 − h2

1)(w0t + w0w0z − g) =
[

3µ(h2
2 − h2

1)w0z

+ γ(h1 + h2) +
ρ

4
(h4

2 − h4
1)B

2
]

z
,

(1)

(h2
1)t + (h2

1w0)z

=
h1h2

[

2p0h1h2 − 2γ(h1 + h2) + ρh1h2B
2(h2

2 − h2
1)
]

2µ(h2
2 − h2

1)
,

(2)

(h2
2)t + (h2

2w0)z

=
h1h2

[

2p0h1h2 − 2γ(h1 + h2) + ρh1h2B
2(h2

2 − h2
1)
]

2µ(h2
2 − h2

1)
,

(3)
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TABLE I

NOTATION

Symbol Definition

t time
z distance along capillary axis
r distance perpendicular to axis
p hole pressure
pa atmospheric pressure
p0 hole overpressure (pressure over atmospheric)
g acceleration due to gravity
ρ density
R ideal gas constant
µ viscosity
γ surface tension
L furnace length
T temperature
B angular frequency
B0 preform angular frequency
w0 leading-order downstream fluid velocity
Wf feeding speed for preform
Wd drawing speed for fiber
h2 outer radius
h1 inner radius
h20 initial outer preform radius
h10 initial inner preform radius
β log (Wd/Wf )
Li length of preform above furnace at timet = 0
zmin length of preform above furnace at timet
Tmin temperature at the top of the capillary (estimated)
Tmax peak furnace temperature

ρ
[

h2
2(h

2
2B)t − h2

1(h
2
1B)t

]

+ ρw0

[

h2
2(h

2
2B)z − h2

1(h
2
1B)z

]

+
ρ

µ
p0Bh

2
1h

2
2 −

ργBh1h2

µ
(h1 + h2)

+
ρ2B3h2

1h
2
2

2µ
(h2

2 − h2
1) = µ

[

(h4
2 − h4

1)Bz

]

z
.

(4)

and the boundary conditions are given by

h1(0) = h10, h2(0) = h20, w0(0) = Wf ,

w0(L) = Wd, B(0) = B0, B(L) = 0, (5)

where all notation is defined in Table I. Subscripts denote
differentiation.

Equations (1)–(4) are a system of partial differential equa-
tions. The accompanying boundary conditions pose a two-
point boundary value problem that must be solved numerically.
We employ standard library routines by implementing the
NAG routine D02HAF [8], which uses an efficient Runge-
Kutta-Merson method. It is not our intention here to discuss
the equations above, and instead refer the reader to Voyceet
al. [7] for a full derivation and discussion. Equations (1)–(4)
give an expression forh1 in terms ofp0 that, together with the
sealing model, will be used to predict the time dependence of
p0 and henceh1.

Considering only the steady-state version of these equations
and ignoring the effects of gravity, the inertial-force term and

those of surface tension (see [3] and [7] for details of how this
affects the solutions) and preform rotation, (1)–(4) become

[

(h2
2 − h2

1)w0z

]

z
= 0, (6)

(h2
1w0)z =

h2
1h

2
2p0

µ(h2
2 − h2

1)
, (7)

(h2
2w0)z =

h2
1h

2
2p0

µ(h2
2 − h2

1)
, (8)

and may be solved by eliminating(h2
2 − h2

1) and solving to
give w0 = Wf eβz/L. We are then left with equations forh2

andh1. Since we are principally interested in the volume of
air enclosed within the capillary it is helpful to know howh1

varies withz as a function of overpressure, which is given by

h1 = h10

√

√

√

√

√

√

(h2
20 − h2

10) exp

(

−
(µβ2Wf zeβz/L+p0L2)e−βz/L

µβWf L

)

h2
20 exp

(

− p0L
µβWf

)

− h2
10 exp

(

− p0Le−βz/L

µβWf

) .

(9)

We assume a quasi-steady solution forh1 by settingp0 =
p0(t) in (9) and calculate the variation in pressure with time
as the preform is lowered into the furnace, before using (9) to
predict the time-dependence of the fiber inner-radius.

A. Pressure calculation

The temperatureT (z) is considered known within the
furnace [9] but must be estimated for the remainder of the
capillary tube (the part that protrudes from the top of the
furnace). The top of the capillary tube is located atz = −Li

for t = 0 and moves with speedWf .

We assume that the air inside the capillary tube is an ideal
gas obeying the ideal-gas law

p = ρRT, (10)

whereR is the universal gas constant.

The total mass of air inside the capillary tube is given by
∫ 0

zmin

πh2
10 ρ(z, t) dz +

∫ L

0

πh2
1(z, t)ρ(z, t) dz

+

∫ t

0

πh2
1(L, t

′) ρ(L, t′)Wd dt
′,

(11)

wherezmin = −Li+Wf t denotes the top of the capillary tube.
The first term in (11) represents the mass of gas in the part
of the preform above the furnace. The second term represents
the mass of gas in the furnace. The third term accounts for
the mass of gas that leaves the system and becomes trapped
in the fiber. This is determined by the density of gas, the draw
speed and the fiber radius atz = L.
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Since the total mass of gas is constant we find, using (10),
that

∂

∂t

(

∫ 0

zmin

πh2
10

p(t)

RT (z)
dz +

∫ L

0

πh2
1(z, t)

p(t)

RT (z)
dz

)

+ πh2
1(L, t)

p(t)

RT (L)
Wd = 0,

(12)

which, on writing p(t) = p0(t) + pa where pa denotes
atmospheric pressure, gives

∂

∂t

[

h2
10

∫ 0

zmin

(p0(t) + pa)

T (z)
dz

+

∫ L

0

h2
1(z, t)(p0(t) + pa)

T (z)
dz

]

+ h2
1(L, t)

(p0(t) + pa)

T (L)
Wd = 0.

(13)

Substituting in the expression (9) forh1(z, t) gives an
equation forp0(t). Oncep0(t) is determined, (9) may be used
to determine the manner in whichh1(L, t) varies with time.
Since (9) was obtained by solving (1)–(5) and assuming a
steady-state process, the methodology employed here assumes
that the timescales in (1)–(4) are much smaller than than
the timescale for the change ofp0(t) and h1(L, t) in (13);
equivalent to a quasi-steady analysis.

An inspection of (13) reveals that the second term will
always be much smaller than the first becauseT (z′′) > T (z′)
wherezmin < z′ < 0 and0 < z′′ < L, andh1(z)/h10 ≪ 1
when 0 < z ≤ L. Furthermore, since|zmin| is always much
smaller thanL (the capillary tube is never quite pushed fully
into the furnace in practice), we may ignore the second term
since it is always at least a factor ofL/ |zmin| ≪ 1 smaller
than the first. This leaves an equation forp0 given by

h2
10

∂

∂t

∫ 0

zmin

(p0(t) + pa)

T (z)
dz+h2

1(L, t)
(p0(t) + pa)

T (L)
Wd = 0.

(14)

The functionT (z) is assumed to be given by

T (z) = Tmax −
(Tmin − Tmax)z

Li
, (15)

whereTmin and Tmax are the temperature at the top of the
capillary tube at the start of the experiment and the peak
furnace temperature respectively. Finally, we assume thatthe
viscosity of Suprasil F300 glass [6] is given by

µ = 5.8 × 10−8 exp

(

515400

8.3145(Tmax − 273) + 2271.10567

)

,

whereTmax is now given in units ofC and the viscosity is
expressed in units of Poise.

When (15) is used in (14) and the resulting equation simpli-
fied, we arrive at a first-order non-linear ordinary differential

equation forp0(t) that must be solved numerically. Having
determinedp0(t), h1(L, t) may be calculated from (9).

IV. COMPARISON WITH EXPERIMENT

Experiments were conducted at the Optoelectronics Re-
search Centre, University of Southampton, U.K. We directly
compare the results of an experiment with numerical predic-
tions made by the model. The experiments described below
used silica glass, but the methodology and analysis is appli-
cable to all glasses.

The initial dimensions of the capillary tube were chosen
so that the effects of surface tension could be minimized
(i.e. a largeh10 and h20 were chosen). A temperature dis-
tribution for the glass was determined by assuming a linear
profile and Tmin = 1460C. The preform extended above
the furnace withLi = 0.8m. Other experimental parameters
were h10 = 0.95cm, h20 = 1.25cm, Wf = 1.5mm/minute,
Wd = 15m/minute andTmax = 1840C. The capillary was fed
into the furnace at the prescribed speed, and the pressure and
fiber geometry were continually monitored by sampling the
fiber at regular intervals of time.

Numerical simulations that calculatep0(t) from (14) were
performed using the parameter values given above. From this
data (9) was used to compute the inner radiush1(L, t).

Numerical and experimental results for bothh1(t) andp0(t)
are shown in Figs. 2 and 3. In both cases a spline fit has been
applied to the data. Given the fact that the temperature distri-
bution of the capillary tube outside of the furnace has been
crudely estimated, the temperature distribution in the furnace
was assumed linear, and that the effects of surface tension have
been ignored in this model, the qualitative agreement between
experimental and numerical results is good. The form of both
the pressure curve and the inner fiber-radius curve have the
required shape: a more detailed examination of Figs. 2 and 3
is presented in§IV-A.

A. Explanation of the success of sealing

Controlling hole size or preventing hole closure through
hole pressurization may be accomplished either by directly
applying an overpressure or by sealing the preform before
drawing. The sealing method is often chosen since experi-
mentalists observe that it “automatically” prevents hole closure
and maintains hole sizes whereas the direct application of an
overpressure is sensitive to the pressure applied [3].

The model developed in this paper provides a possible
explanation of this observation. The rate at which the pressure
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Fig. 2. Graphs to show the experimental (broken line) and numerical (solid
line) results forp0(t). (Parameter values:Wf = 2.5 × 10−5, Wd = 2.5×
10−1, h20 = 1.25× 10−2, h10 = 9.50× 10−3, Li = 8× 10−1, Tmin =
1460, Tmax = 1840. S.I. units are assumed.)

Fig. 3. Graphs to show the experimental (broken line) and numerical (solid
line) results forh1(L, t). (Parameter values:Wf = 2.5 × 10−5, Wd =
2.5 × 10−1 , h20 = 1.25 × 10−2, h10 = 9.50 × 10−3, Li = 8 × 10−1 ,
Tmin = 1460, Tmax = 1840. S.I. units are assumed.)

increases as the fiber is drawn depends on a balance of two
effects. (i) As the preform is lowered into the furnace, the
gas within heats up, thus increasing the overpressure. (ii)As
the fiber is drawn, gas leaving the system at the bottom of
the furnace becomes trapped in the fiber, which has the effect
of counteracting the effect of the mechanism (i) and reducing
the preform overpressure. To give an illustrative example of
the feedback mechanism, suppose that surface tension were
to completely close the hole (this does not happen in practice
precisely because of this feedback mechanism). Glass (but no
air) would leave the furnace atz = L. As the preform is
gradually lowered into the furnace, the volume of air within
the furnace region would remain constant and its average
temperature would increase, whilst the volume of glass would
decrease (the length of the tube decreases). Consequently
the overpressure would increase until it was large enough to
overcome the effects of surface tension atz = L. At this point

the hole would reopen and equilibrium would eventually be
established between hole size and overpressure.

The shape of the curves in Figs. 2 and 3 may therefore be
interpreted in the following way: at the start of the drawing
process much of the preform is above the furnace and at a
lower temperature than the furnace. As the fiber is drawn and
the preform is lowered into the furnace, the dominant effect
is that of an increased average temperature for the air inside
the preform, giving rise to both an increased overpressure and
an increased fiber radius (see (9)). However as time proceeds
the increase in average temperature per unit length of preform
lowered into the furnace reduces. This allows the effect of air
removal atz = L to dominate, and the pressure thus begins
to decrease, as does the fiber radius.

If the mechanism described above is correct, then as the feed
speed is decreased to zero one would expect that the increase
in pressure obtained through sealing would be significantly
reduced (see upper graph of Fig. 4) and that as the feed speed
is increased to large values the pressure inside the preform
rises dramatically (see lower graph of Fig. 4).

Fig. 4. Graphs to show effect of extremes in feed speed on the numerical
solutions forp0(t), whereWf = 1.67 × 10−8 (upper) andWf = 1.67 ×
10−4 (lower). (Other parameter values:Wd = 2.5 × 10−1, h20 = 1.25 ×
10−2, h10 = 9.50×10−3 , Li = 8×10−1 , Tmin = 1200, Tmax = 1840.
S.I. units are assumed.)
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B. The effects of surface tension

As currently posed, the model neglects the effects of surface
tension. Including surface tension in the model and performing
a regular perturbation inγ gives (see [6])

(

h2
2(L) − h2

1(L)

h2
1(L)

)

=

{

h20e
−

β
2 + ψ

h10e−
β
2 + ψ

}2

− 1, (16)

whereψ is given by

ψ =
γLe−β

[

(3h10 − h20)
(

1 − e
β
2

)

+ h10e
β
2

(

e−
β
2 − 1

)]

3βWf (h2
20 − h2

10)
.

Thus, when surface tension is ignored we have
(

h2
2(L) − h2

1(L)

h2
1(L)

)

=
h2

20 − h2
10

h2
10

. (17)

If the difference between (16) where surface tension is
included and (17) (whereγ = 0) is greater than zero, less mass
will leave when surface tension effects are accounted for, and
vice versa. Consequently the hole overpressure is expectedto
be larger at any given time when the effects of surface tension
are included if

(

h2
2(L) − h2

1(L)

h2
1(L)

)

−
h2

20 − h2
10

h2
10

> 0, (18)

or equivalently when
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−
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«
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„
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„
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3βWf (h2

20
−h2

10
)

> 0.

(19)

SettingWf = 1.5mm/minute,Wd = 15m/minute,h20 =
1.25cm, h10 = 0.95cm and using the given viscosity law
and temperature distribution, (19) gives a value of 0.04. This
suggests that we should expect to observe a larger pressure and
smaller value ofh1(L) than our model predicts. This is not
observed experimentally and therefore the effects of surface
tension do not seem to account for the difference between
model predictions and experimental results.

Since it has already been shown that fiber geometry is
particularly sensitive to the temperature profile of the glass [9],
the most likely cause of the discrepancy between experimental
and numerical results in an inadequate knowledge of the glass
temperature profile, both within and outside of the furnace.
We further note that the temperature profile of the preform
outside the furnace may change as the preform is lowered
into the furnace and heat transfer processes are modified. Itis
possible that a steady-state draw process was not achieved for
the early part of the experiment. Additionally, it is possible that
as the glass in the drawn fiber cools and the overpressure in
the fiber decreases, the induced pressure gradient is sufficient

to increase the rate at which air is removed from the preform-
furnace system, thus decreasing the steady-state pressurein
the preform and the fiber radius atz = L.

V. OPTIMIZATION

We now investigate how best to prescribe experimental
parameters in order to maximize the “flat” portion of the
curves in Fig. 2, thus minimizing the time-fluctuations in fiber
geometry.

Numerical simulations confirm that there is more than one
way to flatten the (e.g. pressure) curve, such that a more stable
fiber geometry results for a longer time. Increasing the length
of the capillary protruding from the furnace (increasingLi)
flattens the pressure curve and vica versa. This can be seen
by comparing the graphs of Fig. 5. A similar effect may
also be accomplished by increasing the temperature of the
top of the capillary, as can be seen by comparing the solid
lines of Figs. 5 and 6. The explanation of these effects is
that increasing the length of the capillary tube allows any
increase or decrease in volume fraction of air in the capillary
to be averaged over a greater volume, thus reducing the effect
on the pressure. Similarly, by decreasing the difference in
temperature between the top of the capillary and the furnace,
the expansion of gas that occurs as the preform is lowered into
the furnace is reduced and the transient effect on the pressure
is therefore minimized. We therefore suggest that reducing
the temperature gradient in the capillary and/or increasing
the length of capillary used will produce a more stable fiber
geometry in MOF manufacture. We note that increasing the
temperature is likely to be the most practical solution since
preform material is expensive, and increasing the length of
the preform has the disadvantage of increasing the rise-time
to reach maximal pressure, as seen in Fig. 5. Finally, we note
that in the extreme case where the temperature atz = −Li is
lowered significantly, the pressure may increase dramatically
(Fig. 7, solid line) and when the temperature is increased toa
temperature higher than the furnace temperature, the pressure
(above atmospheric) in the preform actually becomes negative
(Fig. 7, broken line).

VI. CONCLUSION

A model was developed to describe the time-fluctuating
pressure and fiber geometry observed when sealed capillary
tubes are drawn to fiber form. Numerical solutions to the
equations compared favorably with experimental data, es-
pecially given the large uncertainties in quantities such as
the temperature profile of the preform above the furnace.
It is anticipated that once the uncertainties in experimental
quantities are reduced, this model will provide an accurate
tool for developing a method to control the size of extremely
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Fig. 5. Graph to show numerical solutions designed to minimize p0t(t)
and h1t(L, t) where Li = 8 × 10−1 (solid line), Li = 1 (broken line)
and Li = 1.2 (dotted line). (Other parameter values:Wf = 2.5 × 10−5 ,
Wd = 2.5×10−1, h20 = 1.25×10−2 , h10 = 9.50×10−3 , Tmin = 1200,
Tmax = 1840. S.I. units are assumed.)

Fig. 6. Graph to show numerical solutions designed to minimize p0t(t) and
h1t(L, t) whereTmin = 1700. (Other parameter values:Wf = 2.5×10−5 ,
Wd = 2.5×10−1, h20 = 1.25×10−2, h10 = 9.50×10−3, Li = 8×10−1,
Tmax = 1840. S.I. units are assumed.)

Fig. 7. Graph to show the effect of extremes in minimum temperature
on the numerical solutions forp0(t), whereTmin = 200 (solid line) and
Tmin = 2200 (broken line). (Other parameter values:Wf = 2.5 × 10−5 ,
Wd = 2.5×10−1, h20 = 1.25×10−2, h10 = 9.50×10−3, Li = 8×10−1,
Tmax = 1840. S.I. units are assumed.)

small holes (as a result of the feedback mechanism between
hole size and hole overpressure).

A numerical study of the model suggestions that increasing
the length of the capillary and/or increasing the temperature
of the top of the capillary will assist in minimizing the time-
fluctuations of fiber geometry.

The model may be extended to include the possibility
of multiple holes (i.e. for MOFs). However, the effects of
overpressure on holes in an MOF will surely depend on the
position of the hole in the preform as well as its size. The
model presented in this paper should be applicable to the holes
towards the outer edge of an MOF preform, where the holes
are expected to behave more independently than those closer
to the center.
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