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Abstract 
 
This paper presents an algorithm to model scaffold behaviour and follow the full 
moment-rotation curve including nonlinear loading and unloading behaviour and 
including looseness. Different approximations to the moment-rotation curves are 
developed and applied to simple frames. The Federation Européene de la Manutention 
(FEM) approach gave the simplest reliable results. The models are applied to frames 
including looseness effects where it is shown that for sway frames looseness reduces the 
capacity significantly but for braced frames looseness has less effect. Design 
recommendations for analyses of scaffolds with connections exhibiting looseness are 
made. 
 
Keywords: scaffold, second-order analysis, looseness, non-linear, stability function, 
semi-rigid. 
 
1  Introduction 
 
Steel scaffolds are extensively used to provide access and support to permanent works 
during different stages of their construction. These structures are generally slender and 
prone to fail by elastic instability. The elastic buckling load of a scaffold is strongly 
influenced by the stiffnesses of the connections, which exhibit semi-rigid deformation 
behaviour that can contribute substantially to the stability of the structure as well as to 
the distribution of member forces.  
 
Traditional analyses of framed structures have assumed that the connections between 
uprights and beams, or between uprights and bases, are either rigid or pinned. In the 
past, analyses of structures containing semi-rigid joints have been concerned primarily 
with hot-rolled sections [1]. Joints in hot-rolled sections are made by means of bolts or 
welding and hence the stiffnesses of the connections are relatively large and the joint 
rotations relatively low compared with those occurring in scaffold structures. Scaffold 
connections have non-linear moment-rotation curves and due to the asymmetry of some 
of the connections scaffold joints often exhibit different behaviour under clockwise and 
anti-clockwise rotations. They frequently have very low stiffnesses including the 
possibility of looseness at the connection. The looseness contributes to the overall 
deflection of the structure under loads [2]. These joints often deform plastically at low 
loads and hence elastic unloading curves are not parallel to the initial moment-rotation 
curves. The joints in scaffold structures are often subjected to frequent loading and 
unloading, for example due to wind pressure/wind suction effects.  Fig. 1 (taken from 
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reference [3]) shows moment-rotation curves for typical right-angled connectors used in 
used in tube and fitting scaffolds. Fig. 2 shows sample beam-to-upright connections. 
The K2 connections shown in Fig 2(c) are part of a proprietary system developed by 
Interserve Industrial Services Ltd, UK. Samples of these connectors were recently tested 
by two of the authors [3, 4, 5]. In addition, due to the slender nature of scaffold 
structures, geometric non-linear interactions between the axial load and lateral 
deformations increase the complexity of the analysis.  
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Fig. 1. Typical moment-rotation curves for tube and fitting right-angled connectors [3] 
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(a) right-angled coupler       (b)  putlog coupler        (c) K2 system proprietary coupler 

 
Fig. 2 Typical connectors used in scaffold systems 

 
The analyses in this paper are concerned with looseness in the beam-to-column 
connections. However, the numerical algorithm presented in the paper to model 
looseness can also be applied to any connection including connections between different 
column elements. When the columns, called standards in scaffolding, are joined splices 
are inserted. In the UK tube-and-fitting scaffolds the splices are applied externally to the 
tubes and in unpublished experiments conducted at the UK Building Research 
Establishment no looseness occurred when the standard deflects. In scaffolds where the 
splices are often inserted internally with spigots looseness does occur.  However, 
research conducted at Oxford Brookes University when analysing tests conducted on a 
proprietary scaffold and performing numerical analyses [2, 6] showed that the ultimate 
load of the scaffolds analysed was not greatly affected when splices were included in 
the analysis. 
 
The majority of the previous experimental and theoretical research [6-17] into scaffold 
structures has primarily concentrated on modelling the joints as elastic semi-rigid 
connections assuming a linear behaviour with the same clockwise and anti-clockwise 
rotational stiffnesses and unloading back down the same path as the loading path. For 
the purpose of design and analysis the moment-rotation curve is often assumed to be 
bilinear or multilinear and the same curve is used for both sagging and hogging 
moments. In some cases this assumption may be quite unrealistic. However, as can be 
seen from Fig. 1 [3] the assumption of linear behaviour is considerably in error even for 
common scaffold connections. The objective of this paper is to produce alternative 
models to conservatively estimate behaviour.  
 
2  Connection Behaviour 
 
2.1 Experimental determination of connection properties 
 
The moment-rotation curves for scaffold connections are commonly found using a 
cantilever test. Fig. 3 shows the schematic of such a test together with a picture of a 
connection under test. Eurocode EN 12811-3:2002 [18] can be used to obtain a bilinear 
curve up to the maximum moment approximating the non-linear curve. Note that when 
the maximum moment is achieved the connections are often capable of large ductility 
and can sustain the maximum moment for large rotations as can clearly be seen in Fig. 1 
and Fig. 3(b). Looseness is an additional feature of the moment curvature relations. The 
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authors [4] have criticised the procedures in the Eurocode [18] as being ambiguous and 
have put forward alternatives. Eurocode EN 74-1:2005 [19] is a type test which sets 
minimum performance standards for tube and fitting connectors. The use of these 
minimum standards may give rise to conservative designs. 
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(a) Schematic of connection test                (b)  right-angled coupler under test 

 
Fig. 3. Cantilever test to determine moment-curvature curves 

 
Note that the experiments shown in Fig. 1 and Fig. 3 were only conducted to determine 
the moment-rotation characteristics of the connections about an axis at right angles to 
beam-upright plane. For tube-and-fitting scaffolds the rotational stiffness of the 
connection about the other two axes is very low and in numerical modelling can be 
assumed to be pinned; hence looseness is not considered. For proprietary scaffolds the 
authors have produced very similar curves exhibiting very large nearly zero rotational 
stiffnesses to those shown in Fig. 1 for rotations about the other two axes. In these cases 
the cantilever test was not used but instead a frame constructed to determine the 
moment-rotation stiffnesses. Full details of the frame tests can be found in reference [2] 
or EN12810 [20]. From the authors experience of analysing scaffold systems there is 
limited three-dimensional interaction and the structures tend to fail in a direction either 
parallel or perpendicular to the façade to which the scaffold is attached [16].  Hence the 
discussion that follows is based on a two-dimensional model. 
 
From test results [2-5] on different types of scaffold connections the following 
observations can be made about the moment-rotation M-θ curves of beam-to-upright 
connections: 
 

• The moment-rotation behaviour of scaffold connections is nonlinear over the 
entire range of loading. 
 
• At various points in the loading cycle rotational looseness is observed when the 
connections behave almost like a pin. At increased loads (both clockwise and anti-
clockwise), the stiffness of the joint decreases. The looseness of the connection 
increases as the amplitude of the loading cycle increases. In the tested connections, 
the rotation looseness was found to vary between 0.05 to 0.1 radians. 
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• Joints undergo plastic deformation at low loads. Therefore, when a joint is 
unloaded the M-θ curve follows a different path which is not parallel to the original 
loading curve. However the unloading curve is found to be almost linear. When a 
connection is reloaded, the M-θ curve follows a path parallel to the unloading curve. 
The unloading stiffness is found to be greater than the loading stiffness of the 
connection as this is primarily elastic unloading without plastic deformation. 
 
• The behaviour is generally not the same under positive (upward loading) and 
negative rotations (downward loading). The initial stiffness of the loading curve and 
the stiffness of the unloading curve vary significantly. This is due to the 
unsymmetrical nature of connections. 

 
• Used connections exhibit similar behaviour to new connections. 
 

2.2 Connection Modelling 
 
2.2.1   Formulation of the connection model 
 
Due to the complexity inherent in connections, the M-θ curve is mostly determined 
experimentally. For numerical analysis, since the behaviour of connections is 
represented by the instantaneous rotational stiffness of the joints, i.e. the slope of the 
moment-rotation curve, the property of the function used for the moment rotation curve 
is very important. In a scaffold structure, the nonlinear moment-rotation behaviour as 
well as rotational looseness needs to be considered when developing a connection 
model. In the following sections, three approaches to model the moment-rotation curve 
for scaffold structures are presented. 
 
2.2.2   Approximate curves obtained using regression analysis 
 
The most common method to obtain a moment-rotation curve is regression analysis. In 
this method, simple expressions are used to model the experimental data by adjusting 
the constant so as to give the best fit for the data. The moment-rotation curve thus 
obtained can be directly used in the analysis. 
 
For the current research, a regression analysis of experiments conducted by Prabhakaran 
[5] was carried out using MathCAD. A polynomial function was found to give the best 
fit. The rotational looseness of the connection was ignored in the derivation of the 
polynomial function. Thus for the tested connections, the moment-rotation curve for 
loading was expressed using the following polynomial curve: 
 

                                 
o

1.0 1.892 0.876i i i
r

u u

M M M
k M M

θ
⎡ ⎤⎛ ⎞

= + −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
                           (1) 

 
where Mi is the instantaneous moment, Mu the maximum moment, ok the initial 
connection stiffness and θr the rotation. Eq. (1) was used for the loading components in 



6 

both the positive and negative directions. Note that different ok and Mu are used for 
positive and negative rotations. 
 
Eq. (1) is plotted against experimental results for specimens US3 and US6 (proprietary 
scaffold connections) in Fig. 4(a) and 4(b) respectively. In Fig. 4 a positive rotation is 
defined to occur after an upward load is applied the joint as shown in Fig 3 (b), for 
example. A negative rotation occurs after a downward load is applied to the joint. The 
full experimental results are found in Prabhakaran [5]. The instantaneous connection 
stiffness ki at any arbitrary rotation, θr is evaluated by differentiating the above 
expression. 
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(a) Positive rotation curve (US3) 
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(b) Negative rotation curve (US6) 
 

Fig.4. Comparison of regression curve against experimental data [5] 
 
The initial loading stiffness for specimen US3 was found to be 23 kNm/rad and the 
unloading stiffness was found to be 45 kNm/rad. For specimen US6, the initial loading 
stiffness was found to be 32 kNm/rad and the unloading stiffness was found to be 65 
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kNm/rad. Note that as stated in Section 2.1 that in both tests the unloading stiffness is 
greater than the loading stiffnesses as unloading stiffnesses are primarily elastic.  
 
Fig. 5 superimposes the loading and the unloading curves for specimen US3 and US6.  
 

 
 

Fig. 5. Analytical model of the experimental data 
 
 
Since the joint unloads approximately linearly, the unloading curve on the positive side 
can be expressed as a linear function of Mi and θr: 

 

                                                                     ( )1
r rA A i

ip

M M
k

θ θ= − −                                                                          (2) 

 
where MA is the moment at the start of unloading and θrA is the corresponding rotation. 
A similar line can be produced for unloading in the negative direction. 
 
2.2.3   The Federation Europeéne de la Manutention (FEM) approach 
 
Another approach to model the M-θ curve is that developed by the Federation 
Europeéne de la Manutention (FEM) for the design of pallet rack structures [21], which 
has been incorporated into EN 15512 [22]. Due to the similarity in the behaviour of 
scaffold and pallet rack structures, this method was considered to be an appropriate 
method to model the M-θ curve for scaffold connections. 
 
In this approach the experimental curve is represented by a bilinear moment-rotation 
curve. The approximate curve is obtained by drawing a straight line through the origin 
in such a way that it divides the experimental M-θ curve into two equal areas below the 
chosen design moment for the connection. The resulting line has the same work as the 
original curve up to the maximum design moment. The slope of the straight line, kti is 
the stiffness of the connection. A graphical representation is given in Fig. 6. The 
advantage of the Federation Europeéne de la Manutention approach is that it is easy to 
compute and can be used in standard finite element analysis programs. Abdel-Jaber et al 
[23, 24] conducted experimental results on portal frames made of pallet rack 
components and showed that this approach gave good estimates of the maximum 
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moments occurring in frames but overestimated the deflections by about 10-15%. 
Further analysis by Abdel-Jaber et al [25] showed that small changes in the assumed 
curves gave rise to significantly different calculated maximum moments and 
displacements of the frame, showing the sensitivity of these structures to small 
variations. The Federation Europeéne de la Manutention approach does not consider 
unloading and hence these were modelled using the same approach as for the regression 
analysis. 
 

rotation

Moment Design moment

Equal areas

Experimental curve

Design line

 
 

Fig.6. Schematic of the Federation Europeéne de la Manutention (FEM) approach 
 
 
To account for the looseness in the down-aisle direction the Federation Europeéne de la 
Manutention (FEM) code [21] allows an out-of-plumb φ  for the analysis. This provides 
for both the looseness ( )lφ  of beam-to-upright connector and the frame imperfections 

( )sφ  during erection and is given by the following expression: 

                                                   ( )1 1 1 1 2
2 5 s l

c sn n
φ φ φ

⎛ ⎞⎛ ⎞
= + + +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
                        (3) 

where (2 )s lφ φ φ≤ +  and  ( 0.5 )s lφ φ φ≥ + and 1 / 500φ ≥  is the maximum specified out-
of-plumb divided by the height. cn is the number if uprights in the frame in the down-
aisle direction and cn is the number of beam levels in the frame. 
 
2.2.4   The Eurocode approach 
 
The Eurocode EN12811-3 [18] method to model the M-θ curve requires the 
experimental curve to be modelled by fitting regression functions to the third cycle of a 
cyclic loading test. From these functions the characteristic strengths (called ,k posR and 

,k negR ) are determined for clockwise and anti-clockwise rotations. A tri-linear moment-
rotation characteristic is derived. The first part is from the origin to the service moment 

/k m fR γ γ , the second from there to the characteristic moment kR  and finally a 
horizontal line at the characteristic moment. mγ  and fγ  are the material  and resistance 
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partial factors respectively. Provision is made to include looseness. A fully explained 
example of the Eurocode procedure may be found in reference [4] where 
recommendations are made about resolving ambiguities in the test procedure. In 
connections exhibiting looseness, the looseness is determined by extrapolating the 
moment-rotation curves back to the rotation axis. The difference between the two lines 
represents twice the looseness. A schematic of the Eurocode procedure is shown in Fig. 
7. 
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Fig.7. Evaluation of stiffnesses 
 
2.2.5   The Initial Stiffness and SEMA code approximations 
 
Two additional bilinear approximations were also considered for simplicity of using in 
programs. As neither procedure included unloading curves the unloading line Eq. (2) 
was used for these models. 
 
• A bilinear curve based on the SEMA code [26] - The initial stiffness value was 

taken as the gradient of a line passing through the point of zero load and a point of 
the moment-rotation curve at half of the ultimate failure moment. At rotations in 
excess of the initial line meeting the maximum moment, the moment was kept 
constants. In the diagrams below this is called a bilinear curve. 

 
• A bilinear curve based on the initial stiffness value followed by the maximum 

moment - The stiffness value here is also linear and is based on the initial stiffness 
value of the moment-rotation curve. This model was included as it common to the 
procedures adopted in many hot-rolled connections. In Fig. 13, Fig. 14, Fig. 16 and 
Fig. 18 below this is called the initial stiffness curve. 
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2.2.6 Numerical modelling 
 
In the current research the exact moment-rotation behaviour was modelled using the 
regression polynomial Eq. (1). The procedure described here assumed that the 
connections had different moment-rotation curves for clockwise and anticlockwise 
moments and exhibited rotational looseness. To model the unloading curves Eq. (2) was 
used. In the analysis procedure, whilst updating the nonlinear terms in the tangent 
stiffness matrix, connection moments are compared with those in the previous load step 
to determine whether the connection is in a state of loading or unloading. When the sign 
of the moment reverses, the appropriate curve is considered to determine the stiffness of 
the joint. A graphical representation of the algorithm is shown in Fig. 8. 
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Fig.8. Computational moment-rotation curve 
 
In the figure, Mup is the maximum positive moment and kp is the initial connection 
stiffness for positive rotation. The curve OAB represents the corresponding virgin curve 
for monotonically increasing load and the curve AE represents the unloading curve. Mneg 
is the maximum negative moment and kn is the initial connection stiffness for negative 
rotation. Curve OCD represents the corresponding loading curve and curve CF 
represents the unloading curve. l is the rotational looseness. At the beginning of the load 
cycle, the origin is set to (θr, 0) where θr is zero if no rotational looseness is present. The 
stiffness of the connection is taken as the initial stiffness of the connection i.e., ki = kp or 
kn. See Fig.8. For subsequent load increments the stiffness is obtained from the 
moment-rotation curve as described below. In the following paragraphs it is assumed 
that the joint is initially subjected to anticlockwise moment. 
 

• When the joint is loaded, the stiffness is calculated from the curve OAB given 
by 

       ( ),r iM f Mθ=                        (4) 
 

where Mi is the instantaneous moment and θr is the rotation. The loading curve is 
represented by an approximate function such as a polynomial function given in 
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section 2.2.2. The instantaneous connection stiffness ki at any arbitrary rotation θr 
is evaluated by differentiating the above expression. 
 
For subsequent load steps, the moment from the previous load increment is used to 
calculate the stiffness value. Within a load step the stiffness is kept constant for all 
the iterations. To determine the direction of loading, the moment at the beginning 
of a load step is compared with the moment obtained from the previous step. If the 
moment shows an increasing trend, the loading curve is used to determine the 
stiffness of the connection. 
 
• When the joint unloads the stiffness is calculated from unloading curve AE. 
Thus we have from Eq. (2) 

 

                                                                       ( )1
r A A

i

M M
k

θ θ= − −                                                                  (5) 

 
In Fig.8, A refers to the point of unloading. The moment and rotation 
corresponding to point A are stored for future reference. Since the unloading 
stiffness is much greater than the loading stiffness, a transition curve is used to 
provide a smooth transition from the loading curve OA to the unloading curve AE. 
• When the joint reaches E, the joint follows the flat curve EO. The moment and 
rotation corresponding to point E are stored for future reference. A transition curve 
is used to provide a smooth transition from the unloading curve AE to the curve 
EO. 
• By the time the joint unloads, the connection has undergone a plastic rotation 
of θE. Therefore reloading takes place parallel to EA and when the moment 
reaches MA, the virgin curve AB is followed. Thus the rotation is given by 

 

                                                                   ( )1
r E A

i

M M
k

θ θ= + −                                                                         (6) 

 
• When the sign of the moment M changes, the joint starts loading in the reverse 
direction, hence the loading curve OCD is used for stiffness calculation. When the 
joint unloads, path CF is followed. In Fig.8, C refers to the point of unloading. 
The moment and rotation corresponding to point C are stored for future reference. 
The joint unloads along the CF curve followed by the FO curve. 

 
2.2.7   Validation 
 
In the absence of test results on scaffold frames, the proposed algorithm was validated 
using a theoretical cantilever model shown in Fig. 9. The properties of the members 
were: Modulus of Elasticity, E = 2.09*108 N/m2, area = 0.000280m2 and moment of 
inertia = 0.7*10-7 m4. 
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Fig.9. Cantilever model 
 
The connection behaviour between the upright and the beam was modelled using the 
polynomial curves given in Fig. 8. The accuracy of the procedure was verified using 
simple hand calculations. Geometric nonlinearity was not considered for the analysis. 
At the free end a vertical load was applied in 1kN increments. Fig. 10(a) shows the 
moment-rotation curve obtained from the analysis. The model was also analysed for an 
initial rotational looseness of +0.04 radians. Fig. 10(b) shows the moment-rotation 
curve obtained from the analysis. From Fig. 10 it can be seen that the loading and 
unloading behaviour of the joint can be accurately modelled using the proposed 
algorithm. The procedure was incorporated in the nonlinear analysis program to study 
the behaviour of scaffold frames. 
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(a) without looseness 
 

Fig. 10. Moment-rotation curves from cantilever model 
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(b) with looseness 
 

Fig. 10. Moment-rotation curves from cantilever model (continued) 
 
2.2.8   Connection Models 
 
Fig. 11 shows an experimental moment-rotation curve taken from Reference [3] 
together with the different approximation models considered. Table 1 presents the 
mathematical formulation of the various models. 
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(a)  Experimental curve 

 
Fig. 11. Moment-rotation curve for a right-angled coupler 
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(b)  Theoretical models 

 
Fig. 11. Moment-rotation curve for a right-angled coupler (continued) 

 
The horizontal line drawn in Fig. 11(b) is the characteristic strength predicted from the 
Eurocode [18]. This was the maximum rotational strength allowed in the computational 
models. The initial stiffness model assumes that the connection maintains its initial 
rotational stiffness until reaching its maximum allowed moment. The three bilinear 
stiffness models (3, 4, 5) join the origin to the point where the moment-rotation curve 
reaches its characteristic strength and then are horizontal. The Eurocode (model 2) 
being tri-linear has two straight lines before the horizontal component at the 
characteristic strength. 
 
 
Table 1: Connection Models 
 
Model Model      Equations      Rotation    Moment 
No. Name     (Radians)    (kNm) 
 

1 Polynomial
20.1175 0.0125

0.0023
r M Mθ = +

+
 0 0.124rθ≤ <  0 0.97M≤ ≤  

    M = 0.97 0.124 rθ<   M = 0.97 
 
2 Eurocode 15.383 rM θ=  0343.00 <≤ rθ   527.00 ≤≤ M  
    4.915 0.359rM θ= +  124.00343.0 ≤≤ rθ  0.527 0.97M≤ ≤  
    M = 0.97 0.124 rθ<   M = 0.97 
 
 
3 FEM  10.65 rM θ=  0 0.091rθ≤ <   0 0.97M≤ ≤  
    0.97M =  0.091 rθ≤    0.97M =  
 
4 Bilinear  7.82 rM θ=  0 0.0124rθ≤ <   0 0.97M≤ ≤  
 Curve  0.97M =    0.124 rθ<  0.97M =  
 (SEMA) 
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5 Initial  32.0 rM θ=  0 0.0303rθ≤ <   0 0.97M≤ ≤  
 stiffness  0.97M =  0.0303 rθ≤    0.97M =  
 
6 Unloading 65 rM θ=   0.01M ≥  
 curve  1.0 rM θ=     0 0.01M≤ ≤  
 
 
3  Example frames 
 

3.1 One bay sway frame 
 

0.02 kN

2.0 m

2.1 m

J1

J2 J3

J4

1kN/m

 
 

Fig.12. Simple sway frame 
 
The pin ended sway frame shown in Fig.12 was analysed using the models in Section 
2.2.8. The geometric P −∆ and corrections due to flexural shortening were included in 
the analysis. The Young’s Modulus of Elasticity for the columns and the beam was 
taken to be 2.09*108 kN/m2. The area of each column and beam was 0.557*10-6 m2. The 
moment of inertia of the columns and beams was 0.138*10-12 m4. For all cases the same 
bilinear unloading curve was used. The loads were increased proportionally until failure 
occurred. Under the loading the moment in joint J2 always increased to a maximum 
before unloading. Depending upon the moment-curvature model the moment in joint J3 
sometimes also unloaded. Fig.13 shows the moment and displacement behaviour of the 
joints.  
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(a)  Load- horizontal  displacement curve of joint J2 
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(b)  Load-moment at joint J2 
 

Fig. 13. Load against displacement and moments for frame 1 
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(c)   Load-moment at joint J3 
 

Fig. 13. Load against displacement and moments for frame 1 (continued) 
 

To investigate the influence of unloading stiffnesses on the maximum load two cases 
were considered: Case 1 - the unloading stiffness was taken to be the same as the 
loading stiffness. Case 2 - the unloading stiffness was modelled using the bilinear 
approximation (model 6) given in Table 1. The maximum moments and deflections 
predicted by the models are given in Table 2 with corresponding plots of load against 
displacement and moment given in Fig. 14. Note that the bilinear unloading model was 
not used for models 4 and 5 in Table 2. 
 
 
Table 2:  Maximum load and horizontal displacement 
 

Model Connection    Failure   Displacement Failure Displacement 
No.  Model       Load        at max load   Load  at max load 
           (case 1)        (case 1)           (case 2)     (case 2) 
                                              (kN)             (mm)     (kN)      (mm) 
 
1      Polynomial Curve 3.52      105.9             3.25       119.3 
 
2   Eurocode    3.35        53.2         3.51         56.5 
 
3   FEM      3.31       204.1         3.22       205.4 
   
4   Bilinear Curve  2.69       289.6 
 
5   Initial Stiffness  5.05         56.7    
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(a)  Load- horizontal displacement curve of joint J2 
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(b)  Load-moment at joint J2 
 

Fig. 14. Effects of unloading curves on load-displacement and load-moment curves 
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(c)   Load-moment at joint J3 
 

Fig. 14. Effects of unloading curves on load-displacement and load-moment curves 
(continued) 

 
From the resulting curves it can be seen that the maximum predicted load of the frame 
is given by the initial stiffness model. This result is likely to be highly unconservative of 
true behaviour as the assumption inherent in this approximation is that the scaffold does 
not deflect significantly before failure. If deflection and rotation of the joint occur then 
the rotational stiffness from this model is greatly in excess of that in the true structure. 
The polynomial curve and the trilinear Eurocode yield similar results for both moments 
and deflections.  However the bilinear stiffness curve predicts very large deflections 
which would exceed allowable values bearing in mind the size of the frame. The 
Federation Europeéne de la Manutention approach conservatively predicts the 
maximum moment but for this frame produces deflection calculations which possibly 
underestimate true deflections in contrast to the results from the experiments on pallet 
racks [23-24]. Applying the procedures in Section 2.2.6 to the pallet rack frame studied 
by Abdel-Jaber et al [25] showed that the results found for the sway frame matched the 
limited experimental data available [23].  From these results it was decided to remove 
the initial stiffness approximation and the bilinear stiffness approximation from the 
study when looseness was concerned.  
 
In order to further investigate the effects of looseness, instead of only including it on the 
unloading sequence the frame was reanalysed using the polynomial model and putting 
an initial rotation stiffness of +0.01 radian in the joint as seen in Fig.15. 
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Fig.15. Connection model with looseness 
 
The results of the analysis are shown in Fig. 16. 
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(a)  Load- horizontal displacement curve of joint J2 
 

Fig. 16. Effects of initial looseness on frame 
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(b)  Load-moment  at joint J2 
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(c)   Load-moment at joint J3 
 

Fig. 16. Effects of initial looseness on frame (continued) 
 
When the load was applied, the frame took an out of plumb position which was 
approximately equal to 0.01radian. At this stage both joints had a stiffness of 1kNm/rad. 
As the load increased, the right joint locked up causing the frame to deflect backwards. 
This creates an anomaly as there is apparent negative work being done on the structure 
despite the horizontal load pushing the structure in forward direction. This was because 
the work done by the vertical load in displacing the frame backward was greater than 
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the work done by the horizontal force. This explains the first kink in the load 
displacement curve. The second kink corresponds to the load at which the left joint 
locked up, resulting in the frame deflecting forward. It was observed that the presence 
of initial looseness in the connection reduced the maximum load by about 13%. The 
moments in the joints were relatively low when compared to the connections without 
initial looseness. The maximum load was reached before the joints reached their 
maximum moment capacity.  
 

3.2 One bay braced frame 
 
To determine the effects of bracing a bar element of area 0.000289m2 was inserted 
between joint J2 and J4 as seen in Fig. 17.  
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Fig.17. Braced frame 
 
Before looseness was added the resulting curves are given in Fig. 18. 
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(a)  Load- horizontal displacement curve of joint J2 
 

Fig. 18. Load against displacement and moments for frame 2 
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(b)  Load-moment at joint J2 
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(c)   Load-moment at joint J3 
 

Fig. 18. Load against displacement and moments for frame 2 (continued) 
 
As can be seen the effect of bracing is to remove the unloading paths from the frame’s 
behaviour under the given loading and hence all models, with the exception of the 
bilinear model predict similar paths. As there was little difference between the various 
models looseness was only considered for the polynomial model and the analysis 
repeated with highter loads so that unloading occurred. A comparison of the load-
moment and load-displacement curves is shown in Fig. 19. 
 
From Fig. 19 it can be seen that for a braced frame with joints which unload bracing 
reduces the effects of looseness.  
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(a)  Load- horizontal displacement curve of joint J2 
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(b)  Load-moment at joint J2 
 

 
Fig. 19. Load against displacement and moments including looseness for frame 2 
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(c)   Load-moment at joint J3 
 

Fig. 19. Load against displacement and moments including looseness for frame 2 
(continued) 

 
 
3.3 Five bay, five storey frames 
 
To see if the conclusions from the sample frames were applicable to frames more 
typical of scaffold structures two five bay frames were analysed, one without bracing 
which is typical of the structures used to model the rear frame of an access scaffold  and 
one with a common front face bracing pattern used in the UK [7,16]. All the elements 
were considered to be made from standard circular tubes with area 557 mm2 and second 
moment of area 138000mm4. Fig. 20 shows the two frames. 
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(a)  Unbraced frame                               (b) braced frame 
 

Fig. 20: Five bay scaffold frames 
 
The lowest buckling mode of each frame (under vertical loading) was found using the 
LUSAS finite element package [27] and are given in Fig. 21. The stiffness of the joints 
for this analysis was taken to be 7.82kNm/rad as this was the stiffness of the bilinear 
model which had the lowest stiffness. There was no looseness in the models. For this 
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X

Y

Z

stiffness the unbraced frame buckles in a sidesway mode whilst the braced frame has a 
local buckle of one of the braced standards. The buckling on the two frames was 
respectively 31.9 kN and 453.5 kN. 
 
 

 
 
 
 
 
 
 
 
 

Fig. 21: Lowest buckling mode of unbraced and braced frames 
 
To determine the maximum capacity of the unbraced frame a dead load of 30% of the 
buckling load was applied to simulate a combination of dead weight and superimposed 
vertical live load. In order to simulate the action of wind the horizontal side load was 
proportionally increased until failure of the structure occurred (when all the members of 
the first level reached the failure moment and hence formed a mechanism). The 
maximum moment of the connections for all models was taken to be 0.97 kNm. Table 3 
shows the maximum horizontal loads and horizontal deflection of the top lift achieved 
for the different connection models. 
 
Table 3: Maximum horizontal load for the sway frame 
 

Connection Model        Horizontal Load (kN) Displacement (m) 
  
Polynomial curve     0.72       0.782 
Eurocode                   0.72       0.782 
FEM         0.68       0.698 
Bilinear curve      0.67       0.894 
Initial Stiffness     0.67       0.363 
 

The Eurocode and the Polynomial curve gave the same results throughout the range. 
The Federation Europeéne de la Manutention approach gave results closer to the 
polynomial curve than either of the other two bilinear models. When an initial 
connection looseness of 0.01 radians was applied to all connections the polynomial 
model predicted an initial sidesway of 200 mm at the top when all the connections 
locked up. The maximum capacity of the frame was unaltered but the horizontal 
deflection at failure was approximately 14% higher for the ‘loose’ frame. If horizontal 
deflections were limited to 5% of the frame height there was a reduction in load 
capacity of approximately 20%.  
 
An alternative analysis for the frame was taken where the horizontal and vertical loads 
were increased proportionally. The load displacement curve for the top lift is given in 

X

Y

Z
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Fig. 22 for the stiffness modelled by the polynomial curve. The ultimate load capacity 
of the frame was reduced by approximately 8% when looseness was considered. 
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Fig. 22: Load-displacement curve for top left element under proportional loading 
 
Table 4 shows the results of applying the analysis to the braced five storey frame. In this 
case the vertical load applied was 50% of the buckling load of the frame and horizontal 
loads were then increased until failure. The axial force is given for the member which 
buckled at the lowest buckling mode and the horizontal displacement at the top left joint 
at the maximum horizontal load. In the absence of test data the results corresponding to 
the polynomial curve model were considered as a benchmark for the comparison of 
other connection models. The variation in the maximum horizontal load predicted by 
other connection models was found to be within ±8% of polynomial curve model. As 
expected, the initial stiffness model gave the maximum horizontal load whilst the 
bilinear connection model gave the lowest value. The Eurocode and Federation 
Europeéne de la Manutention based connection models gave results very close to the 
more accurate polynomial curve model.  However, the variation in the maximum axial 
load in the member predicted by the various models was within ±3% indicating that for 
large braced frames the different approximations of the M-θ curve did not make 
significant difference. It was also observed that the maximum load carried by the frame 
was influenced by the bracing arrangement. If the direction of the horizontal load is 
reversed, then the other upright in the braced bay is subjected to maximum compressive 
force and hence will fail first. 
 
Table 4: Maximum horizontal load for the braced frame 
 

Connection Model     Maximum Axial   Horizontal Load Displacement  
               Load (kN)         (kN)     (mm) 
        
Polynomial curve 95.8 5.01 25.8 
Eurocode 94.9 4.95 24.1 
FEM 95.3 5.00 23.9 
Bilinear curve 93.1 4.75 22.8 
Initial Stiffness 98.9 5.45 22.6  
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In order to study the effects of initial rotational looseness in the joints, the analysis was 
repeated by including a looseness of ± 0.01 radian in the connections. For this study the 
polynomial curve model was used. Looseness was included by adding a linear curve of 
stiffness 1kNm/rad to the polynomial curve model below a moment of 0.01kNm. The 
analysis was carried out for three values of vertical load – 5 kN/m, 3kN/m and 1 kN/m. 
Table 5 shows a comparison of results corresponding to no rotational looseness and an 
initial rotational looseness of ± 0.01radian.  
 
 
 
Table 5: Maximum loads and displacement  for the braced frame with/without 
looseness 
 
Description   Vertical Load   Vertical Load Vertical Load 
   (5 kN/m)   (3 kN/m) (1 kN/m) 
 
Rotational joint         0  +0.01       0  +0.01       0  +0.01 
Looseness/ 
Max 
Axial Load (kN)   95.8     88.4    96.8      88.9   99.5       91.5  
Horizontal Load (kN)   5.01     4.20    7.45      6.55 10.15      9.12 
Displacement (mm)   25.8     27.8    30.1      27.6   36.0      48.5 
 
The looseness in the joints resulted in the frame taking up an out of plumb position 
before the connections locked up. There was a reduction in the maximum horizontal 
load.  This was because of the initial rotational looseness in the joints and the P-∆ effect 
resulting from the constant vertical load. The effect reduced with decreased in the 
vertical loads. However, irrespective of the vertical load, the maximum load in the 
braced upright decreased by approximately 8%.  
 
A second analysis was undertaken when both vertical loads and horizontal loads were 
increased proportionally. In this case the initial connection looseness had no effect on 
the maximum load or on the horizontal displacements.  
 
From these two sets of analyses it can be seen that connection looseness can 
significantly reduce the maximum load carrying capacity of braced frames when  lateral 
loads  such as wind loads  are predominant. 
 
4.0 Design considerations with looseness 
 
From the analyses undertaken in Section 3.3 on the five bay, five storey frames in 
Sections 3.2 and 3.3 it can be seen that the maximum load capacity under proportionally 
increasing horizontal and vertical loads for braced frames with connections exhibiting 
looseness does not change significantly and hence looseness need not be included in the 
analysis for this case of loading. However for frames subjected to varying side loads 
there is a reduction in maximum load capacity. To get a design procedure the following 
analyses were undertaken: 
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(i) The looseness was included in the M-θ curve as discussed in Section 2.2.8 and 

models constructed using the Polynomial approach and the Federation Europeéne 
de la Manutention (FEM) method (in this case the curve was replaced by a bilinear 
model with a stiffness 1 kNm/rad for a moment below 0.01 kNm and a stiffness 
10.65 kNm/rad above 0.01 kNm). 

 
(ii) The studies conducted in Section 3 indicated that when looseness is present in the 

connection, frame takes up an out of plumb position. Therefore, the looseness was 
included by adding an out of plumb angle of 0.02 radians to the frame and the 
original models without looseness used. The angle 0.02 radians was chosen as this 
is twice the maximum looseness observed in the tested connections. It could be 
different for other scaffolds. 

 
Table 6 gives the results of the two analyses where the axial load is given on the 
buckled element in Fig.21 and displacement on the element in the top left position. 
 
 
Table 6: Design results for braced frame 
 
Connection    Design model Max axial    Max Disp    Max Horizontal 
Model  load (kN) (mm) (kN) 
 
Polynomial Polynomial curve    88.4    27.8    4.20  
curve 
Polynomial  Geometric    95.5    25.4    4.00 
curve Imperfection 
FEM FEM approximation    89.0    47.7    3.96  
 
FEM  Geometric    94.5    23.2    3.90 
 Imperfection  
 
It can be seen that all three approximate models (both Federation Europeéne de la 
Manutention (FEM) approach and the use of the Geometric imperfection in the 
Polynomial curve) gave conservative estimates of the maximum horizontal or side load 
that the frames could take, assuming that the full Polynomial curve is considered to be 
the ‘exact’ solution. The maximum axial loads for the approximate models were also 
conservative. However, the maximum displacements obtained using geometric 
imperfections was slightly on the low side  (maximum error 16%). The authors 
therefore recommend that the Federation Europeéne de la Manutention approach with 
the geometric imperfection be used  as this is the simplest safe model as displacements 
are not usually critical in scaffold analyses. 
 
5.0 Conclusions 
 
This paper has presented an algorithm to completely model the behaviour of scaffold 
connections which is able to correctly follow not only a nonlinear loading path but also 
the unloading path. Because of the geometry of the connections plasticity takes place at 
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low loads and hence the unloading path is different to the loading path. The algorithm is 
also able to model regions of the curve where looseness is predominant. 
 
The algorithm is applied to several alternative procedures commonly used to model load 
paths and shows that the initial stiffness approach leads to results which will lead to 
unconservative predictions of maximum load. A bilinear model using the SEMA 
approach would appear to be conservative as using a low rotational stiffness produces 
large deflections and low predictions of maximum capacity. The Federation Europeéne 
de la Manutention approach (a simple bilinear model), a polynomial curve fit and the 
Eurocode approach (a trilinear model) yield results of similar magnitudes. 
 
The various models are used to analyse simple frames where it is shown that for sway 
frames looseness makes the frame unstable but for the braced frame analysed looseness 
had little effect on the result.    
 
Finally the authors recommend a simple bilinear model based on the Federation 
Europeéne de la Manutention approach together with a geometric imperfection of twice 
the looseness observed in the connection but further research is required to test this 
assumption for different types of scaffold. 
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