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Abstract

This paper researches the importance of ultrasound methodology for swiftly detecting faults in electric motors and
rotating machines. The primary focus of this research is on the intricate signal processing of ultrasound signals from
both faulty and fault-free electro-motors. The principal goal is to conduct a comprehensive statistical investigation into
signal factors, examining the effects of defect progression on the factors associated with continuously operating faulty
electro-motors. In addition to the statistical analysis, this study explores the envelope-frequency spectrum of the signal
under both healthy and defective conditions, employing the envelope method alongside Hilbert transformation. The
objective is to thoroughly scrutinize the dynamic changes in ultrasound waveform and envelope spectrum of defective
states, considering diverse degrees of defect severity over an extended time span. Moreover, the paper meticulously
tracks the trajectory of factor changes over a 40-day operational period of a defective electro-motor. Additionally, the
study delves into the sensitivity of the ultrasound method to impulse-wise shocks, which are recurrently observed in
ultrasound signals, leading to deviations in certain signal factors from their established healthy thresholds. In response
to this challenge, this paper conducts a particular analysis of signal factor sensitivity to impulse-wise noises, identifying
robust factors that serve as reliable tools for firm condition monitoring. These identified factors are then presented as
invaluable contributors to ensuring the precision and reliability of condition monitoring, especially in the presence of
disruptive impulse-wise noises.

Article Highlights

e Ultrasound’s Crucial Role: This article delves into the pivotal role of ultrasound in monitoring the health of electric
motors and rotating machines, highlighting its significance in detecting defects.

e Signal Analysis: The study initially focused on analyzing ultrasound signals from healthy and defective motors. The
waveform differences between these states were examined, revealing distinct changes when defects were present.
Notably, the emergence of intermittent impulses altered the waveform as defect severity increased.

e Severity Impact: The research uncovered a correlation between defect intensity and the number/intensity of impulses.
As defects worsened, the waveform exhibited increased modulation and a higher occurrence of these impulses, aid-
ing in gauging defect severity.
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e Statistical Analysis: A comprehensive statistical analysis was conducted over 40 days on a continuously running defec-
tive electric motor. Over time, certain signal factors stabilized, indicating a consistent pattern as the fault persisted.

o Noise Sensitivity: Investigation into impulse-wise noises highlighted their significant impact on signal factors. How-
ever, among these factors, Signal Factor (SF) exhibited the least sensitivity to such noises. Hence, SF emerges as the
most robust parameter for effective monitoring procedures.

By detailing these findings, the manuscript emphasizes ultrasound’s effectiveness in identifying defects, the evolving
nature of signal patterns with fault progression, and the importance of robust parameters for accurate monitoring.

Keywords Condition monitoring - Fault detection - Ultrasound signal - Electro-motor - Fault factor

1 Introduction

Electrical motors and other rotary machines, including pumps, fans, and gearboxes, constitute integral components in various
industries such as oil and gas, petrochemicals, and power plants. The monitoring and maintenance of these machines hold
paramount importance [1]. Timely detection and rectification of faults in such machinery are crucial to prevent substantial
damages. Among the various methods employed for early fault detection, the ultrasound technique has gained substantial
attention from both researchers and industry experts in recent times. Scheeren et al. investigated Ultrasonic Wave Trans-
mission in Bearings for Condition Monitoring [2], while the modeling and impact of ultrasonic waves on bearing shells are
expounded in [3]. Liu et al. investigated rotational speed of bearing cage using ultrasonic method [4]. Comprehensive review
of ultrasonic technology for oil film thickness measurement in lubrication is presented in [5]. Mirmahdi et al. conducted a
study on ultrasound wave analysis for defective bearing inner and outer casings [6], and ultrasound signal processing for
detecting bearing faults is extensively covered in [7-11].

The ultrasound method operates on the principle of detecting defect frequencies present in the ultrasound signals
received from bearings. Owing to the high frequency nature of these signals, early defects such as partial cracks in bearings
and the generation of pressure due to rotorimbalance or misalignment can be readily identified [2].

The vibration analysis method is also an efficient method for condition monitoring of rotating machines [12-15], it lacks
the rapid fault detection capabilities inherent in ultrasound techniques. Notably, small defects or cracks in bearings do not
significantly impact the emitted vibration signal, rendering the ultrasound method an effective means for early defect detec-
tion [16-19]. However, this method is not without drawbacks, as the high sensitivity of ultrasound signals to minor shocks
unrelated to defects can complicate troubleshooting. The proximity of such defects to the sampling location intensifies the
complexity of signal analysis, necessitating consideration not only of signal parameters but also of frequency analysis.

Given the key role of ultrasound in condition monitoring and its increasing application in industrial settings, this article
undertakes a comprehensive examination of electro-motor diagnosis using ultrasound waveform analysis. The study explores
the influence of signal factors in both faulty and healthy states, incorporating frequency analysis based on envelope analysis
and Hilbert transformation. The article underscores that while ultrasound signals exhibit a similar appearance for healthy
induction motors, the presence and progression of defects significantly alter the signal waveform. The analysis focuses on
machine condition detection based on signal waveform in healthy states, initial fault presence, and advanced fault condi-
tions, drawing insights from experimental-industrial results.

The study explores the changes in waveform shape induced by the presence of defects, impacting crucial signal factors
such as peak, crest factor, impulse factor, energy, and more. By presenting results obtained from an electro-motor, the article
investigates the rate of changes in these factors with increasing fault severity and identifies the factors with the most signifi-
cantimpact on severity. Additionally, the study examines these factors in healthy conditions, identifying the most effective
factor for determining machine condition. Furthermore, the article introduces frequency analysis based on the envelope
method with Hilbert transformation for diagnosing healthy and defective modes. The comprehensive analysis also addresses
the sensitivity of ultrasound techniques to impulse-wise noise, offering insights through empirical cases. Given the frequent
occurrence of such impulses in ultrasound data from healthy machines, the study assesses the impact on signal factors and
presents robust factors resilient to these noises.

This paper is organized as follows: the next section provides an overview of utilized mathematical and statistical methods.
Section 3 describes the experimental-industrial setup. Section 4 presents the obtained results and relevant discussions. Finally,
Sect. 5 presents the concluding remarks of this paper.
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2 Mathematical and statistical analysis
2.1 Envelope method

In induction electro-motors operating at a fixed speed, the ultrasound waveform exhibits an oscillatory pattern with nearly
uniform maximum amplitudes. This phenomenon will be extensively examined in Sect. 4.1. When a fault arises in either the
bearing or electro-motor, this fault induces a distinct waveform, modulated onto the healthy waveform. The primary cause
of this modulation lies in the transformed position of the fault, a result of bearing or fault location movement. It is important
to note that the ultrasound sensor remains stationary. The modulation amplitude or envelope is a low frequency signal that
contains fault information [20, 21]. Envelope is the magnitude of analytical signal that calculated by Hilbert transformation.

Hilbert transform of an ultrasound signal x(t) is X(t) which is obtained by convolving x(t) with the signal i and can be
expressed as [22]:

R(t) = % £ X(t) (1)

X(t)and x(t) are orthogonal signals with phase difference of 90°. The function % has a singularity int = 0 and if x(t) is
areal signal, then x(t) is a real as well. For such case the signal a(t) is an analytical signal [23].

a(t) = x(t) + jx(t) ()

The envelope of a(t) at time t actually represents its size, and is expressed as A(t):
At) =\ IXOF + [x()]° (3)

2.2 Condition monitoring factors

As previously explained, the ultrasound signal exhibits a distinctive waveform under healthy conditions. However, when
a fault arises in either the electro-motor or bearing, the resultant signal from the fault may become modulated onto the
healthy signal. This modulation not only alters the overall shape of the waveform but also induces changes in various signal
indicators. The most noteworthy indicator affected by the emergence of a fault is the peak, the level of which undergoes
modifications depending upon the type and severity of the defect. Recognizing the key role of statistical analysis in assess-
ing signal factors and their examination in both healthy and defective states to ascertain relevant indicators for monitoring,
this section develops the important indicators considered for condition monitoring.

If x; represents each sample of signal in each time step, where i represents the counter from 1 to N, and N represents the
number of the last sample; peak is equal to [24]:

peak = sup |x;| (4)

Also, mean value and RMS of signal is determined as follows [25]:

Crest Factor (CF): The Crest Factor, denoted as CF, signifies the ratio of peak to RMS. Given that the presence of a defect often
leads to a pronounced increase in peak amplitude compared to RMS, CF emerges as an essential parameter for discerning
the machine’s condition. This parameter is mathematically expressed as follows [25]:
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a. DE side b. NDE side

Fig. 1 an electro-motor under ultrasound condition monitoring, sensor position, and data logger

_ peak

CF =
RMS

(7)

Impulse factor (IF): IF represents the ratio of peak to signal mean-value. The higher the impulse factor in a signal, the greater
the intensity of the impulses in a signal [24].

peak

y (8)
bl

IF=N

Clearance factor (CIF): Another parameter that exhibits sensitivity to the peak value is the Clearance Factor, denoted as
CIF. It can be mathematically expressed as follows [24]:

Fig.2 datalogger SDT 270
and software Ultranalysis
Suite 3
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Table 1 Specification of Mark SIEMENS
studied electro-motor of
Sect. 4.1 Type 1LA5 207 2AA64-Z 200L
Power 37 kW
Rotor speed 2950 RPM (49.17 Hz)
Type NDE bearing 6212-2Z-C3
Type DE bearing 6212-27-C3
CIF = —Peak

(12 Vi)

Shape factor (SF): As elucidated in subsequent sections, the Shape Factor (SF) emerges as a fundamental factor in
the domain of condition monitoring through the ultrasound method. SF denotes the ratio of IF to CF and is formally

expressed as follows [24]:

SF = N—RMS

E] i

(10)

Kurtosis: This factor is the fourth standardized moment of the signal and Its value is about 3 for Gaussian white noise
and also increases with increasing of impulses [25].

kurtosis = >
B

Kurtosis factor (KF) is also another factor of signal and is directly related to kurtosis as follows [25].

kurtosis

KF =
(RMS)*

(12)

Skewness: It is an indicator that expresses the symmetry of the signal and equals with [25]:

%;(X —x)

skewness
SkF = —(RMS)3 (14)

skewness =
% (13)

M=

-5

Also, the skewness factor or SkF is expressed as:
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Fig. 3 Ultrasound signal 10 T T T
waveform and its envelope
diagram for studied electro-
motor of Sect. 4.1. in fault-free
condition
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b. envelope diagram of waveform figure 3.a

3 Experimental-industrial setup

The present study encompasses a detailed analysis of an electro-pump and four distinct types of electro-motors, where
specifications and features of each machine will be shown in the subsequent results section. This section focuses on
explaining the sampling methodology and the employed data logger. An electro-motor considered for ultrasound data
collection is visually depicted in Fig. 1.

For the purpose of diagnosing and monitoring the motor, the ultrasound sensor must be positioned in close proxim-
ity to the bearing installation location. On the Non-Drive End (NDE) side of electro-motors, the sensor is ideally situated
at a short distance from the cooling fan cover to mitigate ultrasound noise resulting from potential contact between
the fan cover screw and the cover. Conversely, as depicted in Fig. 1, on the Drive End (DE) part, the ultrasound sensor is
precisely placed at the bearing installation site. Prior to making contact with the sensor-foot, it is necessary to ensure
that both the sensor-foot and electro-motor surface are free of any pollution or oil. Therefore, it is required to clean both
surfaces thoroughly to avoid any unwanted contamination. The type of sensor is contact RS2T (with curved magnetic
foot) with piezoelectric ceramic glued on a mechanical resonant structure that can be affixed over an iron surface.
Center frequency (at 20 °C), thermal deviation of the center frequency, measurement band with, and built-in gain are
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Fig.4 Ultrasound signal
waveform and its envelope
diagram for studied electro-
motor of Sect. 4.1. with slight
unbalance
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b. envelope diagram of waveform figure 4.a

37.0+0.5 kHz, =10 Hz/°C, [36.1 kHz, —40.4 kHz], and + 30 dB. Considering the frequency range of electro-motor faults,
the sampling frequency is set on 8 kHz sampling rate.

As seen in Fig. 2, the SDT 270 data logger is employed for the recording of ultrasound data. Utilizing the licensed
Ultraanalysis Suite 3 software (licensed to WAPGM Company), the ultrasound data is extracted in the form of an Excel
file. Subsequently, the data is transferred to MATLAB software for in-depth analysis.

4 Results and discussion

4.1 Examining the signal waveform for different intensities of the fault

The studied electro-motor in this part is a lube oil electro-motor with the specifications illustrated in Table 1.
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Fig.5 Ultrasound signal 300 T T T T
waveform and its envelope
diagram for studied electro-
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b. envelope diagram of waveform figure 5.a

This section devoted to detailed examination of the ultrasound signal waveform, distinguishing between normal and
defective states at various stages. It is crucial to underscore the significance of the electro-pump in question, responsible
for lubricating Unit 5 turbo-generator at UCCPP, and operating continuously. Furthermore, it is important to note that
the tests conducted are under stationary conditions with a consistent speed.

Additionally, various parameters such as the power consumption of the pump connected to the electric motor remain
constant. This includes the viscosity, flow, and discharge of the transmission oil, which exhibit minimal variation. Any
substantial change in these parameters during the sampling period could indicate abnormal conditions or a defect in
the lubricating system. Importantly, this article focuses exclusively on defects related to the electro-motor, excluding
discussions on issues such as transmission fluid specifications.

It is pertinent to highlight that the electric motor has undergone a comprehensive repair process, including the
rectification of its unbalance through weighting. The repair process has been effective, resulting in negligible residual
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Fig. 6 Ultrasound signal 1500 T T T T T T T T T
waveform and its enve-
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Mark SIEMENS

Type 1LG4207-2AA64-Z
Power 37 kW

Rotor speed 2950 RPM (49.17 Hz)
Type NDE bearing 6212-27-C3

Type DE bearing 6212-27-C3

unbalance. Figure 3 depicts the waveform of the ultrasonic signal recorded on November 18,2021, a few days subsequent

to the repair and installation of the electro-motor.

As evident in this figure, the amplitude of the ultrasound signal remains relatively stable throughout the sampling
period, devoid of distinct impulses or characteristic waveforms. The corresponding envelope diagram for this mode
defines a peak with an approximate amplitude of 0.048 (uV)? at a frequency of 50 Hz, attributable to a slight imbalance

in the rotor shaft.
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Fig.7 Statistical-average
results for peak and mean-
value of ultrasound signal
of studied electro-motor
Sect. 4.2

Fig. 8 Statistical-std results
for peak and mean-value of
ultrasound signal of studied
electro-motor Sect. 4.2
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Notably, the signal waveform recorded on January 8, 2022, is also presented in Fig. 4. Upon meticulous inspection of
this figure, subtle alterations in signal amplitude and the emergence of low-level impulses become apparent compared
to Fig. 3. Furthermore, the envelope diagram depicts a peak at 50 Hz with an amplitude of 1.17 (uV)? indicating changes
in the ultrasound signal characteristics.

The signal waveform recorded on February 1,2022, is presented in Fig. 5. As evident in this figure, noteworthy impulses
are discernible in the sampling spectrum, accompanied by substantial changes in signal amplitude. The presence of such
significant impulses serves as an indicative warning of the severity of the fault, suggesting abnormal conditions in this
particular case. The corresponding envelope diagram for this signal is also depicted in Fig. 5b, revealing a distinctive peak
with an amplitude of 2.21 (uV)? at a frequency of 50 Hz. Furthermore, noticeable harmonics are evident at frequencies
of 100, 150, and 200 Hz.

The signal corresponding to an advanced fault on February 23, 2022, is illustrated in Fig. 6. A noticeable feature in this
figure is the significant alteration in the maximum amplitude of the signal. In contrast to Fig. 5, where a few discernible
impulses were present in the sampling spectrum, Fig. 6 depicts an increased number of impulses to such an extent that
distinguishing two adjacent impulses becomes challenging. In essence, these impulses collectively induce a comprehen-
sive change in the overall waveform shape. The envelope diagram for this state is also explained in Fig. 6b. Significantly,

the peaks with substantial amplitude at the frequency of 50 Hz and its harmonics remain clearly distinguishable, despite
the heightened complexity of the waveform.

4.2 Statistical investigation of signal factors for defective electro-motor

In this section, a detailed analysis of alterations in the important factors of the ultrasound signal for a faulty electro-motor
is accomplished. The specifications of the studied electro-motor are outlined in Table 2. The mentioned electro-motor
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Fig. 11 Statistical-average results for SF of ultrasound signal of studied electro-motor Sect. 4.2

underwent previous repairs attributable to rotor shaft unbalance, addressed through weighting. Due to the heightened
risk of defect occurrence, continuous monitoring has been in place, revealing a dramatic increase in Shape Factor (SF) and
Crest Factor (CF) on 01/08/2022. The last diagnostic test conducted before determining the critical state of the electro-
motor was on 01/03/2022, yielding CF and SF values of 4.98 and 1.26, respectively.

Subsequent to 01/08/2022, the electro-motor underwent continuous operation and was monitored for a span of
40 working days. Given the abnormal condition of the electro-motor, multiple consecutive samplings were conducted
during each test. The signal factors for each sampling were meticulously determined and are provided in Appendix A,
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Fig. 13 Sample No. 1 of Ultrasound signal waveform and its envelope diagram for first case study of Sect. 4.3
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Fig. 15 Sample No. 3 of Ultrasound signal waveform and its envelope diagram for first case study of Sect. 4.3

detailed in Tables 6, 7, 8, and 9. The primary objective of this analysis is to undertake a statistical examination of these
factors over the course of 40 days of uninterrupted monitoring.

It is important to note that this electro-motor, assigned to supply of lubricating oil to the turbine and generator of
the gas turbine unit 4, remained in operation without interruption throughout the 40-day monitoring period. In all sam-
plings, the gas turbo-generator, generating 110 MW of power, was active. Recognizing that any fluctuations in power
generation could affect the operational state of the electro-pump, all samplings were conducted at a consistent power
level of 110 MW. Consequently, if there were any changes in the power output of the turbine-generator, ultrasound
sampling was omitted.

Given the substantial volume of data, efforts were made to derive the average and standard deviation of the samples
for each testing day, facilitating a comprehensive analysis of the continuous monitoring period.

Examining the average of samplings is suitable for checking the trend of factor changes during 40 days, and checking
standard deviation (std) may be useful for checking the difference between signal factors on each sampling day. The
average and std of signals mean value for NDE and DE bearings are revealed in Figs. 7 and 8.

In this comprehensive analysis spanning 40 days, the examination of key factors within the ultrasound signal for a
faulty electro-motor reveals noteworthy patterns. The average peak for both bearings remains relatively consistent,
with the NDE bearing exhibiting a higher initial average peak. Conversely, the DE bearing experiences marginal vari-
ations in the average peak within the specified timeframe. An exploration of the average signal mean-value unveils a
nearly constant rate of change for the NDE bearing, while the DE bearing’s average demonstrates significant increases
on specific test days. Assessing peak std and mean-value std, a consistent trend emerges. The std value for the NDE
bearing’s peak, initially significant, diminishes over time, while the DE bearing’s peak std maintains relative stability.
However, the std of mean-value for the DE bearing exhibits noteworthy values on specific test days. Figures 7b and
8b highlight the challenge in establishing a specific trend for the mean-value of the DE signal. In terms of the peak,
discernible decreases in both the average and std are evident over time. Yet, Figs. 7a and 8a underscore significant
changes in the average and std of the peak for the NDE bearing in the initial days.

Examining RMS, CF, IF, CIF, and kurtosis, Figs. 9 and 10 illustrate a notable observation. Starting from the 15th day,
both the average and std changes for these factors decrease, signifying a transition to a more stable state. However,
substantial variations are evident in the early days. Higher std values in these factors imply challenges in precise
decision-making due to greater differences among measured samples in tests with multiple samples. This rigorous
analysis underscores the evolving nature of the signal over the monitoring period, offering valuable insights into
the behavior of the electro-motor under scrutiny. Also, by comparing the CF, IF, CIF, and kurtosis, it is clear that all
these factors have almost similar trend. That is, they increase and decrease together. But among these factors, CF
has a smaller range of changes compared to other factors.

Another significant parameter to discuss is the SF, which will be shown in the next part, and is considered the
chief parameter. Due to the significance of this factor and its lower level compared to other factors, this factor is
studied separately. The average and std diagrams for SF during 40 days are displayed in Figs. 11 and 12.

As depicted in these figures, substantial variations are apparent in the early stages following the creation of a
defect. However, beyond the 15th day, these changes diminish significantly, attaining a state of stability for this
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Fig. 16 Sample No. 1 of Ultrasound signal waveform and its envelope diagram for second case study of Sect. 4.3
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Fig. 17 Sample No. 2 of Ultrasound signal waveform and its envelope diagram for second case study of Sect. 4.3
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Fig. 18 Sample No. 3 of Ultrasound signal waveform and its envelope diagram for second case study of Sect. 4.3
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Fig. 19 Sample No. 1 of Ultrasound signal waveform and its envelope diagram for third case study of Sect. 4.3
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Fig.20 Sample No. 2 of Ultrasound signal waveform and its envelope diagram for third case study of Sect. 4.3

specific factor. Notably, the values for this factor consistently surpass 1.3 during the defective state, whereas in
normal conditions, as previously highlighted, they typically fluctuate between 1.25 and 1.30. Furthermore, the
minimal std associated with this factor underscores its efficacy as a robust indicator for discerning the condition
of the bearing or electro-motor.

4.3 Sensitivity of signal factors to the presence of impulse-wise noises

In the context of ultrasound sampling, a notable challenge arises with the occasional presence of impulse-wise noises
that are unrelated to underlying defects. These sporadic impulses exert a considerable impact on specific signal fac-
tors, complicating the condition monitoring process. Importantly, these impulses do not manifest uniformly across all
samples; instead, their occurrence is intermittent in various consecutive samplings. This part of the paper investigates
signal factors in the presence of such impulses, utilizing industrial-experimental examples to assess the sensitivity
of these factors. The existence of these non-defect-related impulses poses potential challenges to the fault detec-
tion process. Furthermore, with the integration of artificial intelligence into condition monitoring and an increasing
emphasis on selecting robust factors, this investigation assumes significance. It contributes valuable insights to the
robust analysis of fault detection in ultrasound-based condition monitoring.

The first case is related to the NDE bearing of electro-motor SIEMENS (type-1LG42534AA60) with power of 55 kW,
rotating speed of 1480 rpm, and 6215-C3 NDE/DE bearing, which has a minor misalignment that does not require repair
or replacement of the bearing. Visual representations of the waveform and envelope diagrams for captured signals,
derived from three consecutive samples obtained without interruption, are presented in Figs. 13, 14, and 15.

@ Discover



| https://doi.org/10.1007/s42452-024-06017-7 Research

(2024) 6:364

Discover Applied Sciences

9/°Cs¢e 6v'S 66€'9¢ 0ceo 66'¢ s/Lcel S8C°L 8Col 66, 878l L6'6L L'0s1L CON

0geLe 44t vcol ¥To vee LEL LTL 919 78y (4N T4 {4 9'€6 L ON
»-(A)

(A1) 10308y 10108y (-) 101084 (—) 10128y (-) 9| dwies

Z(AT) ABiau3 SSOU MIYS  (—) SSDUMDYS sisouny (=) sisouny  duesesd  (—)Joldeyadeys asindw|  (-)101oeyisa)  (AM)SINY (Aruesiy (Ar)qesd  jousquinN

€' "1996 Jo Apnis ased piiy} Joy si03oey jeubis g ajqel

@ Discover



Research Discover Applied Sciences (2024) 6:364 | https://doi.org/10.1007/s42452-024-06017-7

As it is evident from Figs. 14 and 15, impulses with significant amplitude is easily detectable in the waveforms. Such
impulses significantly changes the peak levels. Such alteration of peak level changes some factors, which makes mis-
perception in monitoring procedure. For example, IF, CF, and, CIF are directly dependent on peak and its change directly
affect these items. The characteristics of the signal factors for these three waveforms are presented in the Table 3.

As it is clear from this table, RMS, SF, and, energy are 4 factors that show very slight sensitivity to the presence of
impulse-wise noises. According to the formulas related to the above-mentioned factors, it is clear that a significant
change of one or a limited number of x; cannot cause a significant change in the magnitude of these factors. For RMS
and energy, their values in electro-motors or pumps depend on variables such as the electro-motor type, rotation speed,
power consumption, etc. Consequently, establishing a specific threshold for the alarm limit of these factors as a universal
condition monitoring criterion for all pumps or induction motors proves challenging. However, SF emerges as a valu-
able tool for assessing the condition of these machines, with a value surpassing 1.3 indicating a critical situation, while
a completely healthy electro-motor registers SF between 1.25 and 1.27.

Turning to the second case study, it involves the NDE bearing of a fault-free electro-motor of ABB (type: M2CA-
315LA2V1), featuring a power rating of 200 kW, a rotating speed of 2978 rpm, and a NDE/DE bearing of type 6316-
C4. Figures 16, 17 and 18 visually represent the outcomes of three consecutive samplings, where Fig. 18 discloses a
notable peak or impulse in the signal waveform. The corresponding signal factors are presented in Table 4, revealing
that, with the exception of SF, all factors undergo substantial changes in response to the impulse. Unlike Table 3,
variations are also observed in RMS and energy.

The last case study is a centrifugal pump with double angular bearing type 7313 B-MP-UA of in coupling side of
electro-pump. In this part, it will be shown that SF is also suitable for monitoring of pumps. The results of two con-
secutive samplings for the corresponding bearing are shown in Figs. 19 and 20, where, calculated factors are listed
inTable 5. As it is clear from this table, SF also has a small sensitivity to the existence of impulses. Also, for these two
samples, the RMS and energy values do not show significant changes.

5 Conclusion

Considering the significant role of the ultrasound methodology in the condition monitoring of electro-motors and
rotating machines, this paper was devoted to comprehensive examination of ultrasound signal characteristics in both
healthy and defective electric motors. The initial phase involves a thorough analysis of the ultrasound signal’s waveform,
inspecting its behavior under varying degrees of defect severity for both healthy and defective states. Subsequently, the
frequency spectrum of these states is meticulously extracted using a combination of the envelope method and Hilbert
transform.

For the healthy state, it has been shown that the signal waveform has a Gaussian-like behavior, which changes the
waveform when a defect is formed and intermittent impulses appear on the waveform. It was also shown that with the
intensity of the defect, the intensity of these impulses also growths, and with the continuation of severity, the number
of these impulses and their power increases, ultimately resulting in modulations within the waveform.

The subsequent phase involves an extensive statistical analysis of signal factors over a 40-day period on a continu-
ously operational defective electric motor. The finding revealed that with the continuation of the fault and with passing
of time, level of some factors reach a steady level. Furthermore, the study explores the ultrasound signal’s sensitivity to
impulse-wise noises and their consequential impact on signal factors. This exploration underscores that the presence
of such impulses significantly influences the magnitude of some signal factors. Excluding, the Shape Factor (SF) demon-
strates remarkable robustness, exhibiting the least sensitivity to such noises. Consequently, SF emerges as a robust and
reliable parameter, positioning itself as a prime candidate for effective condition monitoring procedures.
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