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Generalized exact solutions for boundary layer flow and

heat transfer over permeable stretching sheets

A.D. Fitt

Oxford Brookes University, Headington Campus, Gipsy Lane, Oxford OX3 0BP, UK

Abstract

The flow of a viscoelastic fluid over a porous stretching sheet is considered in
the presence of a transverse magnetic field, volumetric heating, heat trans-
fer, and a range of other effects. By observing the essential mathematical
mechanism by which exact solutions have been generated in many previous
studies, it is shown how a framework may be developed that both unifies and
generalizes previously-reported closed-form solutions to such problems. It is
further shown how, by judicious choices of the arbitrary functions involved,
novel exact solutions that do not seem to have appeared previously may be
generated.

1. Introduction

Many recent papers have dealt with the two-dimensional boundary layer
flow of a viscous incompressible fluid over a moving (sometimes described as
“stretching”) flat plate, observing that under certain special circumstances
it is possible to give closed-form solutions to the equations of motion. Such
exact solutions normally require that the wall is porous, and that the verti-
cal component of velocity behaves in a given (non-zero) manner at the wall.
Though it may be argued that such flows are not often encountered in phys-
ically relevant problems, there is no doubt that in some industrial processes
that involve (for example) extrusion, hot rolling, the drawing of wires and
sheets of fabric (for example, in glass fibre production) and various types of
heat treatment, analysis of such flows (and the heat transfer associated with
them) may be valuable. Further, the flow fields that are predicted under
such circumstances may serve as useful tests of boundary layer codes, and
can give insights into the general nature of boundary layer flows.
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Though a great many previous studies have considered flows of this type,
this general area of investigation appears to have been begun by the studies
[1], [2] and [3]. A wide range of subsequent papers has covered many different
aspects of such flows, introducing a plethora of extra terms and effects. Many
of these previous studies have alluded to various exact solutions that exist.

The purpose of this short note is to show (i) the mathematical reasons
why the exact solutions that have been derived in the past have been possible,
(ii) how a great deal of the various different cases that have previously been
dealt with can be considered using a common framework, rather than as a
sequence of incremental special cases (iii) in what circumstances other effects
may be included, and what functional forms the extra effects must take to
enable an exact solution to exist and (iv) how, using the framework that
is developed, a range of new and apparently previously unreported exact
solutions may be derived.

2. Governing equations

We assume that steady incompressible boundary layer flow is taking place
in y > 0 with velocity q = (u, v) and a pressure gradient px. The general
equations of motion for the flow and heat transfer may be written in the form

ρ(qt + (q.∇)q) = −∇p+∇.S + ρf (1)

∇.q = 0 (2)

ρcp(Tt + (q.∇)T ) = k∇2T + Φ. (3)

Here ρ denotes density, t denotes time, S is the viscous part of the stress
tensor τij (τij = Sij − pδij), ρf is the body force per unit volume, T (x, y)
denotes temperature, cp denotes specific heat at constant pressure, k denotes
thermal conductivity and Φ denotes any extra thermal effects that might
arise from viscous dissipation, buoyancy or body heating.

The equations (1)–(3) must now be written in a suitable dimensionless
form and the usual boundary layer arguments must be applied (we omit the
details for brevity). We also introduce that a stream function ψ(x, y) defined
in the normal manner. The governing equations may then be written as

ψyψxy − ψxψyy + px −Kηψyyy = −Kmψy+

Kτ [ψyψxyyy − ψxψyyyy + ψxyψyyy − ψyyψxyy] (4)
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ψyTx − ψxTy −KhTyy = −Kv(T − T∞) +Kdψ
2
yy −KcT

n (5)

Where T∞ is a suitably non-dimensionalized reference temperature. The
exact number of boundary conditions required for these equations depends
on whether or not Kτ is zero, but in all cases the no-slip condition is applied
at the plate y = 0, we insist that ψy → 0 as y →∞, and either the heat flux
or the surface temperature is specified at y = 0.

Various authors in various previous studies have included, excluded or
modified terms in (4) and (5) corresponding to various choices of models for
Sij, f and Φ . Previous modelling assumptions have included setting px = 0
to study zero pressure gradient boundary layers (the reason for this will
soon become apparent) setting Km 6= 0 to simulate (via the simplest MHD
modelling assumptions available) the MHD effects of a uniform magnetic
field along the y-axis or to simulate the flow through a highly permeable or
saturated porous medium (see, for example, [4] or [5] respectively), setting
Kτ 6= 0 to include the effects of viscoelasticity via various classical models
(see, for example, [6], which adopts a standard model of viscoelasticity),
setting Kv 6= 0 to simulate the effects of volumetric heat absorption by
assuming that the heat gained is proportional to the temperature difference
(see, for example [7]), setting Kc 6= 0 to simulate the effects of chemical
reaction (when the temperature T in (5) is replaced by a concentration c(x, y)
- see, for example, [8]), setting Kd 6= 0 to include the effects of viscous
dissipation in the boundary layer and modifying the heat diffusivity term
Kh to include the effects of bulk radiative heat transfer to an optically thick
material using the Rosseland approximation model (see, for example, [9]).

Other terms too numerous to mention have also been added to simulate
extra flow effects (for example, a simple Boussinesq buoyancy model adds a
term proportional to T − T∞ to (4)), and in some studies (see, for example,
[10]) a concentration equation and an energy equation are solved simulta-
neously. Different kinds of non-Newtonian behaviour (e.g. pseudoplasticity)
have also previously been considered. In other studies (see, for example,
[11]) extra equations for extra quantities (for example, the micro-rotation in
a micropolar fluid) have been added: in most cases however the extra terms
enter the equations in a linear manner and so could be included in the anaysis
presented below if required.

2.1. Simplification of nonlinear terms - momentum equation

The equations (4) and (5) are nonlinear, and almost all previous relevant
studies that have presented exact solutions have relied on the fact that these
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solutions are of such a form that the nonlinear terms either exactly cancel,
or produce a result that is linear in the unknown functions and takes a
particularly simple and convenient form. To investigate this, we first note
that (4) may be rewritten as

M −Kτ (Myy − 2N) + px −Kηψyyy = −Kmψy

where

M = ψyψxy − ψxψyy = ψ2
y

(
ψx
ψy

)
y

, N = ψ2
yy

(
ψxy
ψyy

)
y

so that the “linearisation” of the equation amounts to the fact that

M −Kτ (Myy − 2N) = C(ψ) (6)

where C(ψ) is a linear function of ψ and/or its partial derivatives. Though
no doubt there are many ways in which (6) may hold, many of the previously-
studied exact solutions rely to a great extent on results closely related to the
case when M = 0. If the stream function ψ is to be chosen so that M = 0,
then either ψy = 0 (in which case there is no flow) or ψx/ψy must be a function
of x alone. The latter may be viewed as a quasilinear first order partial
differential equation for ψ, having general solution ψ(x, y) = F (y − f(x))
where both F and f are arbitrary functions of a single variable. It transpires
that for most useful exact solutions having M = 0 is slightly too restrictive,
and small modifications give more interesting solutions. We therefore note
that (6) is rendered linear (but non zero) if an arbitrary function q(x) is
added to F (y − f(x)). In this case, with

ψ(x, y) = ψ0(x, y) = q(x) + F (y − f(x)) (7)

we have
M = −q′(x)F ′′(y − f(x)), N = 0

so that

M −Kτ (Myy − 2N) = −q′(x)F ′′(y − f(x)) +Kτq
′(x)F ′′′′(y − f(x))

and

u(x, 0) = uw(x) = F ′(−f(x)), v(x, 0) = vw(x) = −q′(x) + f ′(x)F ′(−f(x)).
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In general therefore such exact solutions apply to a flat plate that is moving
with horizontal speed F ′(−f(x)) and is porous, so that there is either sucking
or blowing at the wall. When the choice ψ = ψ0 is used, the momentum
equation reduces to

−q′(x)F ′′(s) + p′(x)−KηF
′′′(s) +KmF

′(s) +Kτq
′(x)F ′′′′(s) = 0 (8)

(where s = y − f(x)) which is linear in F (s): as a result, further progress
may now be made.

2.2. Vanishing of nonlinear terms - energy equation

We now turn to the energy equation (5). Using ψ = ψ0 from (7) this
becomes

F ′(s)Tx+(F ′(s)f ′(x)−q′(x))Ty = KhTyy−Kv(T−T∞)+Kd(F
′′(s))2+KcT

n.

This is linear in T (x, y) (apart from the possible inclusion of the chemical
reaction term cnT

n) but in general requires the solution of an advection-
diffusion equation. Closed-form solutions are therefore hard to derive. so
many previous studies have now made progress by treating this equation
in a similar fashion to the momentum equation, and seeking solutions in
which the terms ψyTx−ψxTy either identically vanish or become a great deal
simpler. This happens most easily when we note that

ψyTx − ψxTy = ψxTx

(
ψy
ψx
− Ty
Tx

)
, (9)

an expression that vanishes when we use (7) and solve (9) for T to yield
T (x, y) = G(F (s) + q(x)) where G is another arbitrary function. Again, we
find that the most interesting exact solutions tend to occur when (9) is not
quite zero, but has a slightly more general form. For example, the energy
equation remains linear if an arbitrary function b(x) is added to this solution.
Writing F (s) + q(x) = t for simplicity, we note that if

T (x, y) = T0(x, y) = G(F (s) + q(x)) + b(x) = G(t) + b(x)

then
uT0x + vT0y = b′(x)F ′(s).
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The governing equation also remains linear if, for arbitrary functions H(s)
and c(x), we take

T (x, y) = T1(x, y) = H(s) + c(x), (10)

since then
uT1x + vT1y = c′(x)F ′(s)− q′(x)H ′(s).

3. Framework for previous studies

Thus far, we have expounded and clarified the general method that has
previously been used in a large number of special cases to derive exact solu-
tions to a wide range of problems involving boundary layers over a permeable
stretching sheet. We now examine various choices for the arbitrary functions
F , G, H, q, b, c and f that are at our disposal.

3.1. Flows where F is an exponential

When there is no pressure gradient so that p(x) = 0, the simplest choice
for the arbitrary function F is an exponential. Though this choice has of-
ten been made before, many previous studies chose to treat particular spe-
cial cases of f(x) (such as linearly, quadratically or exponentially stretching
sheets) rather than to explore the general case. Choosing F (s) = −e−ks, and
f(x) = (1/k) log(uw(x)/k) in (7) we find that, for arbitrary uw(x),

ψ(x, y) = q(x)− uw(x)

k
e−ky

where, from (8), q(x) must satisfy

q′(x)(−Kτk
3 + k)−Kηk

2 +Km = 0.

Thus (surpressing the arbitrary constant in ψ(x, y))

ψ(x, y) = Qx− uw(x)

k
e−ky, u(x, y) = uw(x)e−ky,

v(x, y) = −Q+
u′w(x)

k
e−ky

where

Q =
Kηk

2 −Km

k(1−Kτk2)
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and u→ 0 as y →∞ for Re(k) > 0. The plate y = 0 is impermeable only in
the case when uw(x) = kQx+ constant . This solution seems to have been
reported first (in the special case Kτ = Km = 0, px = 0) in [12], and provides
a generalization of previous studies such as [2], [3], [13], [14], [15], and a great
many others that deal with a huge variety of special cases.

Let us now turn to the solution to the energy equation when F is an
exponential. With F (s) = −e−ks and f(x) = (1/k) log(uw(x)/k), we find
that picking H(s) = C exp(µ(log k− sk)) (where C is an arbitrary constant)
and c(x) = T∞ in (10), the energy equation (5) with Kd = Kc = 0 reduces
to

Khµ
2k2 −Qkµ−Kν = 0.

Thus an exact solution is generated if

µ =
Q±

√
Q2 + 4KhKν

2kKh

,

in which case
T (x, y) = T∞ + Cuw(x)µe−µky (11)

This solution provides a generalization of the heat transfer solution first
reported in [12] and does not appear to have been previously discussed in
the literature. Since k > 0 so that u → 0 as y → ∞, the solution is only
valid if µ > 0 so that T → T∞ as y → ∞. We note that Kh > 0 (or (4) is
unstable), so if Kν < 0 then there may be circumstances under which the
solution (11) ceases to be valid, either because µ is not real, or (when Q < 0)
there are no positive values of µ.

3.2. Flows where F is not an exponential

A range of exact solutions is also possible when the function F is chosen
to take a more complicated form than a simple exponential. Many examples
may be examined, but a simple illustration of such a flow is given by the
choice F (s) = −kse−ks, q(x) = Ax where A is constant. Using this in (7)
with arbitrary f(x), the momentum equation (4) with no pressure gradient
becomes

k(−y + f(x))(KτAk
3 +Kηk

2 −Ak −Km) + 4KτAk
3 + 3Kηk

2 − 2Ak −Km.

Setting A = Q, we find that an exact solution is generated so long as k
satisfies

−KτKηk
4 + 3KτKmk

2 − k2Kη −Km = 0.
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This quadratic equation for k2 yields a variety of roots for k that may take
different real and imaginary values depending on the signs and values of the
various parameters involved. In many cases however interesting and practical
exact solutions exist. For example, in the special case Kη = 1, Km = 10,
Kτ = 1/9, we find that a solution of (4) is given, for arbitrary f(x), by

ψ(x, y) =
9(10− k2)x
k(k2 − 9)

+ k(−y + f(x))e−k(y−f(x))

where k can take either of the values
√

6 or
√

15. For either of these values
of k the velocity components are given by

u = k(k(y − f(x))− 1)e−k(y−f(x)),

v =
9(k2 − 10)

k(k2 − 9)
+ kf ′(x)(k(y − f(x))− 1)e−k(y−f(x)),

so that the y-dependence is not simply exponential, and these solutions are
of an essentially different form to those derived in Section 3.1.

It is also possible to generate solutions of the energy equation (5) for this
choice of functions. For example, when Kη = 1, Kτ = 5/3 and Km = 2/3 so
that Q = −1/2 and k = 1, the stream function is given, for arbitrary f(x),
by

ψ(x, y) = −x
2

+ (y − f(x))e−(y−f(x))

and, it may easily be confirmed that an exact solution in the case Kd = Kc =
0 is given by

T (x, y) = T∞ +G(y − f(x))

where

G(s) ∝ exp

(
−s(−1 +

√
1 + 16KνKh)

4Kh

)
.

Many other new exact solutions may be generated using other choices of F (s)
and the functions at our disposal: we do not pursue these further, however,
for our purpose here has not been to try to give large numbers of examples,
but rather to suggest a methodology for generating such solutions.
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3.3. Unsteady flows

It has already been observed that stream functions of the form (7) es-
sentially linearise (4). For this reason, it is possible to use the methodology
developed above to generate closed-form solutions to the unsteady versions
of (4) and (5), namely

ψyt + ψyψxy − ψxψyy + px −Kηψyyy = −Kmψy+

Kτ [ψyψxyyy − ψxψyyyy + ψxyψyyy − ψyyψxyy] (12)

Tt + ψyTx − ψxTy −KhTyy = −Kv(T − T∞) +Kdψ
2
yy −KcT

n. (13)

Under normal circumstances the essential nonlinearity of the boundary-layer
equations means that it is particularly challenging to derive closed-form solu-
tions to the unsteady equations, but because of the observations in Sect. 2.1,
stream functions of the form

ψ(x, y, t) = ψu(x, y, t) = q(x) + F (y − f(x))r(t) (14)

transform (12) (with p(x) = 0) to

r′(t)F ′(s) + r(t)(−q′(x)F ′′(s)−KηF
′′′(s) +KmF

′(s) +Kτq
′(x)F ′′′′(s)) = 0

(15)
and closed-form solutions may now easily be generated. For example, choos-
ing r(t) = e−ζt, and once again using the choices F (s) = −e−ks and f(x) =
(1/k) log(uw(x)/k), we find that an unsteady solution of the form

ψ(x, y, t) = Qx− 1

k
uw(x)e−ky−ζt (16)

exists if

Q =
−ζ −Kηk

2 +Km

k(−1 +Kτk2)
.

A range of related exact solutions to the unsteady energy equation (13) may
now be generated in an obvious fashion.

Again, though there are many relatively simple ways in which (14) may be
generalised, we have not sought to include every type of possible unsteady
closed-form solution in the discussion above, but have rather preferred to
simply indicate the general type of methodology that may be used to generate
closed-form solutions of various types. Note also that the relative rarity of
unsteady exact boundary layer solutions means that solutions like (16) may
prove extremely useful as test cases for code development and verification.
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3.4. Flows with a pressure gradient

No previous studies of exact solutions for boundary layer flow over stretch-
ing sheets appear to have considered cases where the pressure gradient is non-
zero. Let us recall that with ψ(x, y) given by (7), the momentum equation
becomes

−q′(x)F ′′(s) + p′(x)−KηF
′′′(s) +KmF

′(s) +Kτq
′(x)F ′′′′(s) = 0.

The only instance where it is possible to choose functions F , f and q so that
the quantity

ξ = −q′(x)F ′′(s)−KηF
′′′(s) +KmF

′(s) +Kτq
′(x)F ′′′′(s)

is independent of y appears to occur when F (s) is proportional to s. Since
this does not lead to a flow where u → 0 as y → ∞ such examples must
be discounted. Thus no exact solutions of this form with non-zero pressure
gradient seem possible. Exact solutions of a different form may exist, but they
cannot arise from solutions of the form (7) and require a more complicated
linearisation of (6). One example of such solutions is given by Falkner-Skan
type flows where the pressure is proportional to xk and the stream function
is of the form

ψ(x, y) = xmF (yxn)

where m = 1 + n, k = 2 + 4n. Here though a closed-form solution seems to
be available only if n = −1 and Km = Kτ = 0.

4. Summary and conclusions

A general framework has been given that not only encompasses, unifies
and generalizes a wide range of exact solutions that have appeared in a
very large number of previous publications, but also leads to a variety of
new exact solutions that do not seem to have been reported before. The
framework identifies the key reason why exact solutions are possible in these
cases, and shows how a range of choices may be made that lead to different
and novel exact solutions.

Using this framework, a large variety of exact solutions may be generated
to use as test cases, paradigm problems for various flows involving stretching
porous plates in MHD and heat transfer-influenced non-Newtonian flows, and
these may easily be extended to cases where other effects (such as buoyancy)
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are included. Though space does not allow a full consideration of all of these
effects, there is little doubt that a wide range of physically-relevant cases
may be examined using this methodology.

Many other closed-form solutions may be investigated. To give one final
example, it is easily verified that useful simplifications of (6) also take place if
ψ(x, y) = F (y− f(x)) + ζ(y) and the choices F (s) = e−ks and f(x) = log(x)
are made. In this case generalisations of the exact solution reported in [16]
may be generated. Flows with a non-zero pressure gradient appear to be
harder to treat, and though it does not appear that any simple exact solutions
are currently available, there is no reason why other simplifications of (6)
might not eventually yield novel exact solutions for flows with a pressure
gradient and many other kinds of more complicated flow.
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