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Abstract—The paper examines the profound impact on the forecasted system reliability when 

one assumes average reliabilities on demand for components of various kinds but of the same 

type. In this paper, we use reverse engineering of a novel algebraic inequality to demonstrate 

that the prevalent practice of using average reliability on demand for components of the same 

type but different varieties to calculate system reliability on demand is fundamentally flawed.  

This approach can introduce significant errors due to the innate variability of components 

within a given type. 

Additionally, the paper illustrates the optimization of engineering processes using reverse 

engineering of sub-additive algebraic inequalities based on concave power laws. Employing 

reverse engineering on these sub-additive inequalities has paved the way for strategies that 

enhance the performance of diverse industrial processes. The primary advantage of these sub-

additive inequalities lies in their simplicity, rendering them particularly suitable for reverse 

engineering. 
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1. Introduction 

Algebraic inequalities play a vital role in 

engineering, as they provide a means to 

describe and analyse constraints, 

tolerances, and optimization problems in 

various fields.  

There is extensive literature on algebraic 

inequalities (Fink, 2000; Stelle,2004; Hardi 

et al,1999), methods of proof (Sedrakian 

and Sedrakian,2010; Su and Xiong, 2016). 

The use of algebraic inequalities in 

engineering (Lewis,1996; Ebeling, 1997; 

Childs, 2014; Cloud et al. 1998; Samuel and 

Weir, 1999) has been confined to 

determining upper and lower bounds, errors 

estimates and defining design constraints.  

The usefulness of algebraic inequalities, 

however, is by no means limited to 

determining bounds and describing design 

constraints. Algebraic inequalities can also 

be physically interpreted and connected to 

real systems and processes. 

The reverse engineering of algebraic 

inequalities, grounded in their physical 

interpretation, offers an alternate method 

for probing physical reality. Key 

applications of reverse engineering in 

algebraic inequalities were recently 

explored in (Todinov, 2023). 

The steps involved in the reverse 

engineering of algebraic inequalities are 

given in Fig.1. These steps demonstrate that 

the reverse engineering of a valid algebraic 

inequality effectively projects a new 

property of the physical reality whose 

footprint is the algebraic inequality itself. 

An important class of algebraic 

inequalities, which are particularly suited 

for reverse engineering, consists of those 

based on sub-additive functions. 

This paper demonstrates that for 

numerous industrial processes, the reverse 

engineering of sub-additive algebraic 

inequalities directly paves the way for 

uncomplicated yet highly efficient 

optimization strategies. 

Despite their indisputable usefulness in 

optimization, there seems to be a significant 

lack of discussion concerning the physical 

interpretation of sub-additive inequalities. 
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Figure 1. Key steps of the reverse engineering of a 

valid algebraic inequality 

 

Concavity properties in reliability theory 

for continuous and discrete random 

variables have been discussed in 

(Alimohammadi et al, 2016). Sub-additive 

algebraic inequalities can be easily obtained 

from concave power law functions. The 

absence of physical interpretation of sub-

additive inequalities based on concave 

power laws is particularly surprising given 

the prevalence of concave power-law 

dependencies in describing various 

processes in engineering.  

This paper continues the theme related to 

reverse engineering of algebraic 

inequalities in two key directions: 

- Using reverse engineering of algebraic 

inequalities to assess system reliability 

predictions based on average component 

reliabilities on demand and average hazard 

rates. 

- Using reverse engineering of sub-

additive inequalities based on concave 

power laws for optimising processes in 

engineering. These are also the main 

contributions of this paper. 

 

2. System reliability predictions based on 

average component reliabilities  

 

2.1 A general inequality related to series-

parallel systems 

Comparisons of systems with components 

logically arranged in series with distinct 

reliability functions and with the same, 

average reliability function have been made 

in  (Navaro and Spizzichino, 2010). 

In this section, we use reverse 

engineering of a key algebraic inequality to 

demonstrate that the prevalent practice of 

using average reliability on demand for 

components of the same type but different 

varieties to calculate system reliability on 

demand is fundamentally flawed. 

Consider the next valid algebraic 

inequality: 

1 2

1 2

(1 )(1 )...(1 )

(1 [( ... ) / ] )

m m m

n

m n

n

x x x

x x x n

− − − 

− + + +
          (1) 

where 1m   is an integer exponent and 

1,..., nx x  are n real values for which 

0 1ix  . To the best of our knowledge, 

inequality (1) has never been reported 

before hence, a proof of this inequality has 

been provided in the Appendix. 

 

2.2. Series-parallel systems 

For 2m = , the general inequality (1) 

becomes 
2 2 2

1 2

2

1 2

(1 )(1 )...(1 )

(1 [( ... ) / ] )

n

n

n

x x x

x x x n

− − − 

− + + +
         (2) 

Inequality (2) can be reverse-engineered 

easily. Let ix  ( 0 1ix  ) be physically 

interpreted as the probability of failure of a 

component iC  of variety i, where 

1,2,...,i n= . Although all components are 

of the same type, they are inhomogeneous 

due to variations in properties, age and 

operating conditions. 

The variables ix  are interpreted as 

probability of failure on demand for 

components of variety i (all components are 

of the same type). Note that the time is not 

present in the probability of failure on 

demand. Also, the probabilities of failure 

on demand for components of different 

varieties but of the same type are not known 

in advance. Therefore, the use of average 

values for the probability of failure on 
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demand in reliability predictions, for these 

components, is inevitable.  

Because of differences in age, the 

number and size of material and 

manufacturing flaws, and differences in 

working conditions, no two components of 

the same type are identical in terms of 

reliability. There is no way of knowing the 

reliability of a component of type X from a 

particular variety (with a specified age, 

number, nature and size of the material 

flaws and manufacturing flaws, working 

conditions, etc.). 

For example, the reliability variation of 

components is significantly influenced by 

the presence of material flaws, as well as 

their size, number density, and location 

(Todinov, 2002, 2006). As a result, 

components of the same type and material, 

sourced from different suppliers, may 

exhibit considerable differences in their 

reliabilities. Since it is impossible to obtain 

the reliability on demand for components 

from different varieties, this intrinsic 

variability requires the use of average 

component reliability on demand (or 

probability of failure on demand). The 

average reliability on demand is what is 

listed in databases related to reliability on 

demand of components from a particular 

type. If, for example, 261 out of 900 valves 

of type X failed to close on command, the 

probability of failure on demand for valves 

of type X will be assessed by the average 

value of 261/ 900 0.29= . 

An example of a system whose 

reliability depends on the probability of 

failure on demand of its components is 

given in Figure 2. The system consists of n 

pipelines transporting toxic fluid with two 

valves on each pipeline. All valves are 

initially open and a signal to close is sent to 

all valves in order to stop the fluid in each 

pipeline. 

The system is deemed operational when, 

upon receiving a command for closure, the 

flow is halted in all n pipelines. To boost 

system reliability, each pipeline features a 

redundant valve. This redundancy implies 

that at least one valve on each pipeline must 

respond to the closure command to ensure 

that the flow in the pipeline is halted. 

The valves are of varieties C1,C2,...,Cn, 

characterised by probabilities of failure to 

close on demand 
1 2, ,..., nx x x , 

correspondingly.  

 
Figure 2. A system of n pipelines transporting 

toxic fluid with two valves of types C1,C2,...,Cn, on 

each pipeline. 

 

Consider the reliability network of the 

system in Fig.2 which is given in Fig.3a.  

 

 
Figure 3. a) Reliability network of a series-

parallel system with components from n varieties; 

b) Reliability network of a series-parallel system 

involving components of 3 varieties 

 

It is a series-parallel system which is 

quite common in numerous engineering 

applications. For example, an alternative to 

the system illustrated in Fig.2, could be a 

system of n pipelines carrying toxic fluid, 

each equipped with a flange sealed by two 

seals one of which is redundant. 

Alternatively, in place of pipelines with 

flanges, we could consider a system 

consisting of n zones. In each zone, two 

sensors (one of which is redundant) 

measure the temperature, pressure, or 

concentration levels.  

The number of varieties of components 

of type X will be denoted by n. The left-

hand part of inequality (2) is the actual 

reliability of the system in Fig.3a. The 

expression 1 2 ... nx x x
x

n

+ + +
=  in the right-

hand part of (2) is the average probability of 

failure x  on demand for the varieties of the 
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selected type X (e.g. valve), assessed as an 

average related to n varieties.  

Please note that the probabilities of 

failure ix  characterising the n varieties are 

not known and this is why the system 

reliability on demand cannot be estimated 

directly, by using these probabilities. 

Because the expression  for x  cannot be 

evaluated using ix , the ratio /fp p  is 

always used instead where fp  is the 

number of observed in the past failed 

components from that type and p is the total 

number of observed components from that 

type. Note that fp  and p  are obtained from 

component failure statistics and are not 

related to the number of components 

building the system. 

The numbers of fp  and p  should be 

sufficiently large to produce an accurate  

estimate of the probability of failure on 

demand /fp p . 

Thus, for a system with n components of 

the same type X and of different variety (n 

varieties in total), for the average 

probability of failure x  of components in 

the system, from that particular type X, the 

following equation holds: 

1 2 ... fn
px x x

x
n p

+ + +
=                (3) 

Equation (3) can be proved by considering 

that the left-hand side of (3) can be 

presented as 

 
1 2

1 2

...

(1/ ) (1/ ) ... (1/ )

n

n

x x x

n

n x n x n x

+ + +
=

 +  + +

        (4) 

This essentially represents the total 

probability associated with the failure of a 

component in the system. Indeed, a 

component from type X, can fail in n 

mutually exclusive ways. This includes the 

scenario where the component belongs to 

variety 1 and fails (a compound event with 

probability 1(1/ )n x  ), the scenario where 

the component belongs to variety 2 and fails 

(a compound event with probability 

2(1/ )n x ), and so on. 

The probability of failure of a component in 

the system must approach /fp p  because 

this ratio is the empirical probability of 

failure for a component of type X.  

Very similar reasoning also applies to 

the case where the number n of component 

varieties is smaller than the number cn  of 

components in the system ( cn n ). Indeed, 

let 
1 2, ,..., nn n n  (

1

n

i c

i

n n
=

= ) be the number 

of components in the system from each 

variety (these numbers are also unknown). 

The total probability of failure for a 

component in the system is then given by 

1 1 2 2 ...f n n

c

p n x n x n x

p n

+ + +
           (5) 

where fp  is the observed in the past total 

number of failed components (from failure 

statistics) and p is the total number of 

observed components in the past. The right-

hand side of (5) is the weighted average of 

the probabilities of failure characterising 

the n varieties. 

Indeed, a component in the system can 

fail in n mutually exclusive ways. This 

includes the scenario where the component 

belongs to variety 1 and fails (a compound 

event with probability 1 1( / )cn n x , the 

scenario where the component belongs to 

variety 2 and fails (a compound event with 

probability 2 2( / )cn n x ), and so on. 

The total probability of a component 

failure is then given by the expression: 

1 1( / ) ... ( / )c n c nn n x n n x+ +  

which must approach the empirical 

probability /fp p  of component failure 

and this yields equation (5). 

To test equations (3) and (5), Monte 

Carlo simulations were performed, based 

on p=100000 observed components and 

n=1,2,...,10, component varieties. In an 

array, random values between 0 and 1 are 

initially assigned for the probabilities of 

failure characterising the n varieties. Next, 

p=100000 components were selected by 

choosing randomly their variety. Each 
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randomly selected component was also 

virtually tested for failure on demand by 

using the probability of failure on demand 

characterising its variety. At the end of the 

simulation, the ratio of the total number of 

failed components fp  and the total number 

p=100000 observed components was 

formed. The validity of equations (3) and 

(5) has been confirmed with each Monte 

Carlo simulation.  

Inequality (2) can also be rewritten as 
2 2 2 2

1 2(1 ) (1 )(1 )...(1 )n

nx x x x−  − − − ,  (6 ) 

or considering (5), it can also be rewritten 

as: 
2 2 2 2

1 2(1 ( / ) ) (1 )(1 )...(1 )n

f np p x x x−  − − −   

(7) 

The right-hand side of inequality (7) gives 

the actual reliability on demand of the 

series-parallel system in Fig.3a including 

components of n varieties. Because the 

probabilities of failure ix  characterising the 

separate varieties and the number of 

components from the separate varieties are 

never known, the system reliability on 

demand must necessarily be estimated 

through the left-hand side of inequality (7). 

 

The reverse engineering of inequality (2) 

states that the predicted reliability on 

demand of a series-parallel systems based 

on an average probability of failure on 

demand /fx p p= , is higher than the 

actual reliability of the system. This always 

holds true provided that the estimate 

/fx p p=  is sufficiently accurate. 

The significant divergence between the 

projected and actual system reliability on 

demand, caused by variability, can be 

remarkably pronounced, as evidenced by 

the following numerical examples. 

Let's consider 900 valves of the same 

type X but of three different varieties (for 

example, valves from machine centres 1, 2 

and 3). The valves work independently 

from one another. From past failure 

statistics, 261 of the monitored 900 valves 

fail to close on demand. Because only the 

total number of valves 900 and the total 

number of unreliable valves are known, the 

probability of failure on demand for the 

valves of type X will be estimated from: 

/ 261/ 900 0.29fx p p= = =  

Now, suppose that the series-parallel 

system in Fig.3b includes two valves from 

each of the three varieties.  

The estimated system reliability based on 

average probability of failure on demand x  

becomes: 
2 3 2 3(1 ( / ) ) (1 0.29 ) 0.77est fR p p= − = − = . 

For the sake of simplicity, assume that 

each of the three manufacturing centers has 

produced 300 valves of type X, resulting in 

valves of three distinct varieties. Let the 

number of unreliable valves from these 

varieties be 12, 42, and 207, respectively. 

Consequently, the probability of failure on 

demand for each variety is as follows: 

1 12 / 300 0.04x = = , 2 42 / 300 0.14x = =  

and 3 207 / 300 0.69x = = , correspondingly. 

As can be verified, the following 

expression holds true for the average 

probability of failure x : 

1 2 3( ) / 3 (0.04 0.14 0.69) / 3

0.29 / 261/ 900f

x x x x

p p

= + + = + +

= = =
 

Suppose that valves from each variety have 

been used to construct the three sections 

arranged in series in Fig.3b. The actual 

(real) reliability of the series-parallel 

system is: 
2 2 2(1 0.04 ) (1 0.14 ) (1 0.69 )

0.51

realR = −  −  −

=
 

The estimated reliability on demand 

0.77estR =  is 1.51 times greater than the 

real reliability 0.51realR = ! 

In the next example, the actual reliability 

of the system in Fig.4a is given by the left 

part of inequality (1) for m  redundant 

components in each section in series, while 

the right part provides an estimate of the 

system reliability based on the average 

probability of failure on demand 

characterising the n different component 

varieties. 
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For 3n =  sections with 3m =  redundant 

components in each section (Fig.4b), 

inequality (1) becomes 

( ) ( )

3 3 3

1 2 3

3 3
3 3

1 2 3

(1 )(1 )(1 )

1 [( ) / 3] 1 ( / )f

x x x

x x x p p

− − − 

− + + = −
 

(8) 

 

 
 

Figure 4. a) Reliability network of a series-parallel 

system with components from n varieties and m 

redundancies in each block; b) Reliability network of 

a series-parallel system with components from 3 

varieties and 3 redundancies in each block; c) 

Reliability network of a system with components in 

series, from the same type and n varieties; d) 

Reliability network of a system with components in 

parallel, from the same type and n varieties 
 

where the left part of (8) is the actual 

reliability of the system in Fig.4b while the 

right part is the reliability of the system in 

Fig.4b, estimated by using the average 

probability of failure on demand of the 

three varieties. For components of the same 

three varieties as in the previous example, 

the left-hand side of inequality (8) gives: 
3 3 3(1 0.04 ) (1 0.14 ) (1 0.69 )

0.67

realR = −  −  −

=
 

for the real reliability of the arrangement in 

Fig.4b. 

If the reliability of the section in Fig.4b 

is calculated on the basis of the average 

probability of failure on demand  

/ 261/ 900 0.29fx p p= = =

characterising the three varieties, for the 

estimated system reliability on demand, the 

right-hand side of (8) gives: 
3 3 3 3(1 ( / ) ) (1 0.29 ) 0.93est fR p p= − = − = . 

 

2.3. System with components in series 

If in inequality (1), we set 1m = , the 

inequality transforms into: 

1 2(1 ) (1 )(1 )...(1 )n

nx x x x−  − − −     (9) 

where /fx p p=  is the average probability 

of failure on demand. For simplicity, for 

systems in series, we assume that the 

number of components is equal to the 

number n of varieties. Clearly, the right part 

of inequality (9) is the actual reliability on 

demand of a system with n components 

logically arranged in series, of the same 

type X and n different varieties (Fig.4c). 

The left part of inequality (9) is the 

reliability on demand of the same system, 

evaluated by taking an average probability 

of failure on demand /fx p p=  for the 

components. The quantity 1i ir x= −  in 

inequality (9) is the reliability on demand of 

the components from variety i (i=1,...,n) 

while 1r x= −  is the average reliability on 

demand characterising all components of 

the given type X. Noticing that  

1 2

1 2

...
1 1

(1 ) (1 ) ... (1 )

n

n

x x x
x

n

x x x

n

+ + +
− = − =

− + − + + −
 

inequality (9) can also be rewritten as 

1 2
1 2

...
1 ...

n n

f n
n

p r r r
r r r

p n

  + + + 
− =    

  
  

(10) 

which is the classical Arithmetic mean – 

Geometric mean (AM-GM) inequality 

(Steele,2004). Inequality (10) clearly 

highlights the overestimation of system 

reliability on demand when using the 

average reliability on demand for 

components from different varieties. 

This conclusion could have been 

reached directly, without addressing the 

special case of inequality (9), had reverse 

engineering been applied to the AM-GM 

inequality (10). 

Consider three valves of the same three 

varieties as in the previous example, with 

the valves logically arranged in series. As 
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in the previous examples, the varieties have 

reliabilities on demand of 0.96 1 0.04= − , 

0.86 1 0.14= −  and 0.31 1 0.69= − , 

respectively, and operate independently of 

each other. 

The right-part of inequality (10) gives 

the actual reliability of the series 

arrangement which is a product of the 

reliabilities on demand of the independently 

operating valves. 

Therefore, the actual reliability of the 

section with these three valves is: 

0.96 0.86 0.31 0.25realR =   =  

The left part of inequality (10) gives the 

system reliability calculated on the basis of 

the average reliability on demand r  

characterising the three varieties: 

1 / 1 261/ 900 0.71fr p p= − = − =  

Note that (0.96 0.86 0.31) / 3 0.71r = + + =  

The estimated system reliability based on 

average reliability on demand from the left 

part of inequality (10) is: 
3 30.71 0.36estR r= = = . 

The estimated value 0.36estR =  is 1.44 

times greater than the real reliability 

0.25realR =  of the section! 

 

2.3. System with components logically  

       arranged in parallel 

For simplicity, for systems in parallel, 

we also assume that the number of 

components is equal to the number n of 

varieties.  

Suppose that ir  in the AM-GM inequality 

(10) are set to be the probabilities of failure 

ix  of the different component varieties. 

Inequality (10), then transforms into 

1 2
1 2

...
( / ) ...

n

n n
f n

x x x
p p x x x

n

+ + + 
=  
 

       

(11) 

The right-hand side of inequality (11) then 

can be interpreted as the probability of 

failure of a system where all independently 

working components are logically arranged 

in parallel (Figure 4d). A system consisting 

of n independently working components 

arranged in parallel is in a failed state when 

all components are in failed state. The left-

hand side of inequality (11) is the 

probability of failure of the system in 

parallel, estimated on the basis of the 

average probability of failure of the 

components from different varieties. The 

physical interpretation of inequality (11) 

suggests that for parallel systems, when 

estimates are derived from the average 

probability of component failure on 

demand, the projected probability of system 

failure exceeds the actual value. 

Even for statistically independent 

components, this is not a reliable method 

for assessing system reliability. 

Based on the findings from the reverse 

engineering of inequality (1), we can draw 

the following conclusions. The prevailing 

methodology for predicting system 

reliability on demand, which relies on 

average component reliabilities on demand 

for components of different varieties but the 

same type, is fundamentally flawed due to 

component variability. 

If there were no variability in the 

reliabilities of components of the same 

type, inequalities (10-11) would become 

equalities, and there would be no 

discrepancy between the estimated and the 

actual system reliability. 

The larger the deviations of the 

component reliabilities from the average 

value, the stronger the inequalities (10-11).  

Deviations in reliabilities on demand 

from the average value are inevitable, 

primarily due to differences in age, working 

conditions, material, and manufacturing 

flaws. Consequently, discrepancies 

between the predicted reliability on demand 

and the actual value will always exist. 

Assuming average reliability on demand 

for components of a particular type 

however, can still provide valuable insights, 

if the scope is confined to a comparative 

analysis that ranks competing system 

designs. 

 

2.4 Evaluating system reliability 

related to a specified time interval  
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It is important to discuss also the impact 

of variability on reliability predictions 

when evaluating reliability over a specified 

time interval. 

Consider a system with components of 

the same type and n varieties, logically 

arranged in parallel. Suppose that each 

component variety is characterised by a 

constant hazard rate i , 1,...,i n= . 

Consequently, the time to failure 

distribution for a component is the negative 

exponential time to failure distribution: 

( ) 1 exp( )iF t t= − −                   (12) 

where t is the time interval and ( )F t  is the 

probability that the component will fail 

before time t. 

Consider n components logically 

arranged in parallel (Figure 4d), each of 

which is from a different variety. According 

to the system reliability theory, the actual 

probability of failure 1sF  of the system 

before time t is given by 
1 2

1 (1 ) (1 ) ... (1 )ntt t

sF e e e
  −− −

= −  −   −    

(13).  

(The system is in a failed state only if all 

components are in a failed state at time t). 

If the probability of failure or the system 

reliability is calculated based on the 

average hazard rate: 

1 2 ... n

n

  


+ + +
=                 (14) 

the probability of system failure before time 

t is given by 

2 (1 )t n

sF e −= −                    (15) 

It can be shown that the inequality: 

1 2

(1 )

(1 ) (1 ) ... (1 )n

t n

tt t

e

e e e



 

−

−− −

− 

−  −   −
   (16) 

always holds. Inequality (16) can be proved 

by taking logarithms from both sides, 

showing that the right-hand side is a 

concave function and applying the Jensen's 

inequality. The proof of inequality (16) is 

similar to the proof of inequality (1) given 

in the Appendix and because of space 

constraints, the details will be omitted. 

As a result, using average hazard rate to 

estimate the reliability of systems in 

parallel always leads to overestimating the 

probability of failure of the system. 

Despite their popularity, system 

reliability predictions based on average 

failure rates (e.g., MIL-STD-1629A, 1977) 

have very serious shortcomings. The failure 

of this approach to generate accurate 

system reliability predictions led to 

growing disillusionment among researchers 

and practitioners. As a result, many 

abandoned the use of failure rate-based 

reliability predictions.  

For systems with components logically 

arranged in series however, the system 

reliability estimated on the basis of an 

averaged hazard rate is exactly equal to the 

actual reliability of the system. 

Indeed, let 1 2, ,..., n    be the constant 

hazard rates characterising the n component 

varieties. Since the reliability of a single 

component of variety i is given by 

exp( )i iR t= − , the reliability of the system 

based on n components, each of which is of 

different variety, is given by the expression 

1 1 2

1 2

exp( ) exp( ) ... exp( )

exp( [ ... ] )

s n

n

R t t t

t

  

  

= −  −   − =

− + + +
    

(17) 

If the reliability of the system in series is 

calculated on the basis of the average 

hazard rate of the n varieties (given by 

equation (14)), the system reliability is 

given by 

2

1 2

exp( ) exp( ) ... exp( )

exp( [ ... ] )

s

n

R t t t

t

  

  

= −  −   − =

− + + +
  

                        (18) 

Since 1 2s sR R= , working with an average 

hazard rate for components of a particular 

type neither overestimates nor 

underestimates the predicted system 

reliability. 

 

3. Reverse engineering of sub-additive 

inequalities  

3.1 Link between sub-additive 

algebraic inequalities and concave 

functions 

A function f(x) is said to be sub-additive 

if it satisfies the following inequality for 
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any set of non-negative values 1 2, ,..., nx x x

: 

1 2

1 2

( ... )

( ) ( ) ... ( )

n

n

f x x x

f x f x f x

+ + + 

+ + +
           (19) 

A key property associated with sub-additive 

inequalities can now be presented (Alsina 

and Nelsen, 2010). If a function f(x), with a 

domain [0, )  and range [0, ) , is concave, 

then the function exhibits sub-additive 

behaviour and satisfies inequality (19).  

Let an additive controlling factor x  be 

divided into a number of non-negative parts 

(segments) 1 2, ,..., nx x x ;  

1 2 ... nx x x x= + + + ; 2n             (20) 

Additive quantities vary with the size of 

a system, increasing or decreasing as the 

system's size changes (e.g., mass, volume, 

energy, heat, power, distance, area, etc.). 

On the other hand, non-additive quantities 

remain constant regardless of changes to 

the size of the system (e.g. pressure, 

concentration, temperature, etc.).  

The outputs corresponding to the 

additive factor x and the individual 

segments ix  are also assumed to be additive 

quantities, denoted by ( )f x  and ( )if x  

correspondingly. The sub-additive 

inequality (19) has a large range of potential 

applications. Let the function f(x) quantify 

the output associated with a specific 

additive factor of magnitude x, and ix  be 

the sizes of the segments into which this 

factor has been divided. For a concave 

function f(x) with domain [0, )  and range 

[0, ) , splitting the factor with magnitude x 

leads to a higher total output. 

 

3.2 Reverse engineering of sub-additive 

inequalities based on concave power 

laws 

Reverse engineering of sub-additive 

inequalities used for process optimisation 

will be illustrated on concave power-law 

dependences of the type: 
py ax=                         (21) 

where 0p   is an exponent and 0a  is a 

constant, x is the magnitude of an additive 

controlling factor and the output 'y' is also 

an additive quantity. If the power p in 

dependence (21) is a number from the 

interval (0,1), the power-law dependence 

(21) is concave. 

A concave power law is one in which the 

rate of change of the output decreases as the 

controlling factor increases. A graph of a 

concave power law function is shown in 

Fig.5. 

In the subsequent sections, we 

demonstrate that the reverse engineering of 

sub-additive inequalities, which are based 

on concave power laws of the type 

presented with dependence (21), can be 

used to optimise process performance. 

 

 
Figure 5. A concave power law. 

 

The quantity y is a concave function of x 

( 0x  ) because the second derivative of y 

is negative for 0 1p  . Consequently, for 

0 1p  , the following sub-additive 

inequality holds: 

1 2

1 2

( ... )

...

p
n

p p p
n

a x x x

ax ax ax

+ + + 

+ + +
                  (22) 

Note that the additivity of the controlling 

factor x and the outputs p

iax  are necessary 

conditions for the reverse engineering of 

inequality (22). Otherwise, the expression 

1 2 ... nx x x x= + + +  and the sum 

1 2 ...
p p p

nax ax ax+ + +  would not possess a 

valid physical interpretation. 

The advantage of the sub-additive 

inequality (22), based on a concave power 

law, is that its reverse engineering is simple 

and can be made in diverse application 

areas. 

Inequality (22) can also be generalised 

for two sets including different number of 
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equal-sized segments. Suppose that 

1 2 ...u u mux x x x= + + +  where /iux x m=  

and 1 2 ...v v nvx x x x= + + +  where /ivx x n=  

and also m n . It can then be shown that  

1 2

1 2

...

...

p p p
muu u

p p p
nvv v

ax ax ax

ax ax ax

+ + + 

+ + +
         (23) 

The proof of inequality (23) has been 

provided in the Appendix.  

 

3.3 Generalisation of inequality (23) for 

unequal-sized segments  

Inequality (23) can also be generalised 

for two sets including the same number of 

unequal-sized segments. Suppose that  

1 2 ...u u nux x x                    (24) 

1 2 ...v v nvx x x                    (25) 

and also  

1 2 1 2... ...u u nu v v nvx x x x x x+ + + = + + + . 

Definition: It is said that segments iux  

majorise the segments ivx  if the following 

conditions are met (Marshall et al., 2011): 

1 1 1 2 1 2

1 2 1 1 2 1

1 2 1 2

; ;...;

... ... ;

... ... ;

u v u u v v

u u n u v v n v

u u nu v v nv

x x x x x x

x x x x x x

x x x x x x

− −

 +  +

+ + +  + + +

+ + + = + + +

   

(26) 

If the segments iux  majorise the segments 

ivx  where 1,...,i n= , then the inequality  

1 2

1 2

...

...

p p p
nuu u

p p p
nvv v

ax ax ax

ax ax ax

+ + + 

+ + +
       (27) 

holds. A proof of inequality (27) has also 

been provided in the Appendix. 

Inequality (27) creates the possibility of 

increasing the effect from an additive 

resource factor by reallocation of the 

resource segments only, without resorting 

to any extra segmentation. 

 

4. Reverse engineering of sub-additive 

inequalities for optimising engineering 

processes 

 

4.1 Enhancing the yield from processes 

described by a concave power law 

The application of reverse engineering 

of sub-additive inequalities based on 

concave power laws will be illustrated by 

using an additive controlling factor. Here is 

a list of applications involving concave 

power laws: 

(i) The rate of natural resource extraction, 

such as oil or minerals, often follows a 

concave power law, as the remaining 

reserves become increasingly difficult and 

expensive to access.  

(ii) Economic growth in mature economies 

often exhibits concave power law, as 

diminishing returns on investment and 

resource constraints limit the rate of 

expansion. 

(iii) The growth of organisms, including 

plants and animals, often follows a concave 

power law with respect to the mass of the 

organism. The rate of growth decreases as 

the organism reaches maturity. 

(iv) The growth of a material's strength or 

other properties as a function of the amount 

of reinforcing substance added can often be 

described well by a concave power law, due 

to saturation. 

(v) Due to limited solubility, the growth of 

gas solubility in a liquid as a function of the 

partial pressure of the gas, can be 

approximated well by a concave power law.  

(vii) The growth of skill or knowledge 

acquisition as a function of time or practice, 

often exhibits concave power law as 

individuals approach the limits of their 

potential. 

Suppose that the controlling factor x is 

interpreted as an investment in a particular 

enterprise. The yield from the investment 

increases according to the concave power 

law (21), where x is the magnitude of the 

investment (an additive quantity) and y is 

the yield from the investment (also an 

additive quantity). 

A reverse engineering of the sub-

additive inequality (22) based on the 

concave power law (21) shows that the 

yield from the investment can be increased 

if the total investment 1 2 ... nx x x x= + + +  

is split into n segments 1x , 2x ,..., nx  and the 
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separate segments ix  are invested in n 

parallel enterprises of the same type, 

bringing yields p

iax .  

Here is a simple numerical illustration. 

Suppose that the profit y from an 

investment of size x is given by the concave 

power law:  
0.3210.2y x=                        (28) 

Investing $2 million in a single enterprise 

generates the profit:  
0.3210.2 2000000 16328y =  =  

Now suppose that two parallel 

investments are allocated in two enterprises 

of the same type as follows: $1.8 million in 

the first enterprise and $0.2 million in the 

second enterprise. According to the sub-

additive inequality (22), this allocation 

yields a larger profit. Indeed, the profit 

generated from the two parallel investments 

is:  
0.3 0.3210.2 1800000 210.2 200000

24004

y =  + 

=
 

Now suppose that the investment in each 

enterprise has been reallocated in such a 

way that according to inequalities (26), it is 

majorised by the previous investment: for 

example, $1 million in the first enterprise 

and $1 million in the second enterprise: 

$1.8 $1 ; $1.8 $0.2 $1 $1+ = +  

According to inequality (27), this 

reallocation of the investment should yield 

even larger profits. Indeed, the combined 

profit from the reallocated investment is: 
0.3 0.3210.2 1000000 210.2 1000000

26525

y =  + 

=
 

The obtained combined profit from the 

segmented investment with distribution 

(($1 million, $1 million) is approximately 

1.62 times greater than the profit from the 

single enterprise investment and 1.1 times 

greater than the segmented investment with 

distribution ($1.8 million, $0.2 million). 

This significant increase of profit 

demonstrates the considerable impact of 

segmenting the additive controlling factor 

following the approach based on inequality 

(27). 

 

4.2 Improving the absorption 

effectiveness 

Absorption capacity is the ability of a 

material to assimilate another substance 

within its structure. It is often quantified as 

the maximum amount of substance that can 

be absorbed per unit mass or volume of the 

absorbent material. 

In some cases, the relationship between 

absorption capacity and volume of 

absorbent is non-linear. This can be due to 

factors such as porosity, surface area, 

affinity for the substance being absorbed, as 

well as specific interactions between the 

absorbent and the absorbed substance. A 

non-linear dependence expressing the 

absorption capacity as a function of the 

volume of absorbent can be described by 

the power law function: 

( ) bC x ax=  

Here, C(x) represents the quantity of 

absorbed substance (absorption capacity) 

corresponding to volume x of absorbent, 

and a and b are constants that depend on the 

specific absorbent material and the 

substance being absorbed. 

If the absorption capacity saturates or 

levels off at higher volumes, the exponent b 

would be less than 1. The volume x of 

absorbent is an additive quantity as well as 

the quantity C(x) of absorbed substance. 

Segmenting the volume x of the absorbent 

into smaller volumes 1 2, ,..., nx x x   

(
1

n

i

i

x x
=

= ) through which the substance is 

filtered, results in quantities:  

1 1

bC ax= , 2 2

bC ax= ,..., b

n nC ax=  

of absorbed substance. 

Consider the following specific numerical 

values for the coefficient a and the power b: 

0.12a =  (grams of absorbed substance per 

one gram of absorbent) and 0.4p = . 

For a single filter containing 90000g of 

absorbent, the absorbed substance is 
0.40.12 90000 11.5C g=  = . 

Suppose that the 90000g absorbent is 

segmented into three parallel filters 
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containing 50000g, 20000g and 20000g of 

absorbent, respectively. 

The total amount C of absorbed harmful 

substance is obtained by adding the 

quantities absorbed by each filter: 
0.4 0.4

0.4

0.12 50000 0.12 20000

0.12 20000 21.7

C

g

=  +  +

 =
 

The total amount of absorbed harmful 

substance is 1.89 times larger than the initial 

amount of absorbed substance! 

 

4.3 Increasing the flow rates of systems of 

pumps 

The flow rate (y) of a pump often follows a 

concave power law relationship with respect 

to the pump's power consumption (P).  
ky aP=                           (29) 

In equation (29), a and k are constants that 

depend on the specific pump while P is the 

power consumed by the pump. The constant 

k is a fractional exponent between 0 and 1. 

Relationship (29) indicates that the speed of 

increasing the flow decreases as the pump 

operates at higher power levels. 

The sub-additive inequality (23) based 

on the concave power law (29) can be used 

to increase the flow rate of a system of m 

identical pumps working in parallel, with 

power consumptions:  

1P , 2P ,..., mP  ( /iP P m= ) 

According to the sub-additive inequality 

(23), the flow rate of the system of pumps at 

the same consumed power 
1

m

i

i

P P
=

=  can be 

increased by increasing the number of 

pumps while simultaneously reducing the 

power of a single pump such that we have n 

pumps ( n m ) with smaller power 

consumptions: 

1Q , 2Q ,..., nQ  ( /iQ P n= ). 

The total power consumption of the pumps 

from the new design option is the same: 

1 1

m n

i i

i i

P P Q
= =

= =  . 

According to the properties of sub-

additive functions 

1 2

1 2

...

...

k k k
m

k k k
n

aP aP aP

aQ aQ aQ

+ + + 

+ + +
           (30) 

which creates the possibility of increasing 

the flow rate of the system of m pumps by 

including a larger number n>m of pumps 

with smaller power, whose combined 

consumed power is equal to the power P of 

the initial m pumps.  

According to the sub-additive inequality 

(27) however, the flow rate of the system of 

m pumps at the same consumed power 

1

m

i

i

P P
=

=  can be increased without 

increasing the number of pumps. This can 

be done if the powers 1Q , 2Q ,..., mQ  of the 

new pumps are selected such as they are 

majorised by the powers 1P , 2P ,..., mP  of the 

original pumps. 

Suppose that 1 2 ... mP P P   . The 

powers of the new set of pumps are then 

selected such that 1 2 ... mQ Q Q    and  

1 1 1 2 1 2

1 2 1 1 2 1

1 2 1 2

; ;...;

... ... ;

... ... ;

m m

m m

P Q P P Q Q

P P P Q Q Q

P P P Q Q Q

− −

 +  +

+ + +  + + +

+ + + = + + +

(31) 

If conditions (31) are present, according 

to inequality (27), the following inequality 

holds: 

1 2

1 2

...

...

k k k
m

k k k
m

aP aP aP

aQ aQ aQ

+ + + 

+ + +
         (32) 

which creates the possibility of increasing 

the flow rate of a system of n pumps by 

selecting the same number of pumps with 

the same total consumed power. 

 

5. Conclusions 

1. A key inequality related to reliability of 

common systems has been stated and 

proved. 

2. The reverse engineering of the stated 

inequality revealed a fundamental flaw 

in the current approach related to 

predicting system reliability. Because of 

the variability of components from a 

particular type, using average 
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component reliabilities on demand to 

evaluate reliability of series-parallel 

systems, systems in series and systems 

in parallel is a fundamentally flawed 

approach, even for systems with 

components working independently 

from one another. 

3. Because of the variability of components 

from a particular type, using average 

hazard rates to evaluate the reliability of 

systems with components logically 

arranged in parallel, is also a 

fundamentally flawed approach, even 

for systems with components working 

independently from one another. 

4. The reverse engineering of sub-additive 

inequalities for processes described by a 

concave power law has led to strategies 

for enhancing the performance of 

various industrial processes.  

5. Several properties of sub-additive 

inequalities based on a concave power 

law have been discussed and proven. 

 

 

 

APPENDIX 

Proof of inequality (1) 

From the basic properties of the concave functions ( )f x  and ( )g x : 

[ (1 ) ] ( ) (1 ) ( )f x y f x f y   + −  + − , and [ (1 ) ] ( ) (1 ) ( )g x y g x g y   + −  + −  where 

0 1  , it can be shown easily that the sum ( ) ( ) ( )h x f x g x= +  of two concave functions 

( )f x  and ( )g x  is a concave function. By induction, it can be deduced that the sum of n concave 

functions is also a concave function. 

Inequality (1) can be proved by observing that the sum of the logarithms: 

1 2ln(1 ) ln(1 ) ... ln(1 )m m m

nz x x x= − + − + + −  is a concave function because it is a sum of the n 

concave functions 1 1 2 2ln(1 ); ln(1 );...; ln(1 )m m m

n nz x z x z x= − = − = − . The functions 

ln(1 )m

i iz x= −  are concave because their second derivatives are all negative:  

2 1 2 2( 1)

2 2

( 1) (1 )
0

(1 )

m m m

i i i i

m

i i

z m m x x m x

x x

− − − − +
= − 

 −
. 

considering that 1 0m−   and 1 0m

ix−  . 

Let iw  be weights defined such that 1 2 ... 1/nw w w n= = = = . According to the Jensen's 

inequality (Steele, 2004), if 1 1 2 2 ... n nx w x w x w x= + + + , the following inequality holds for a 

concave function: 

1 1 2 2 1 1 2 2ln(1 ) ln(1 ) ... ln(1 ) ln(1 ( ... ) )m m m m

n n n nw x w x w x w x w x w x − +  − + +  −  − + + +     (A1) 

Inequality (A1) can be rewritten as: 

1 2 1 2ln[(1 )(1 )...(1 )] ln[1 (( ... ) / ) ]m m m m n

n nx x x x x x n− − −  − + + +                        (A2) 

Since the exponential function xe  is strictly increasing, according to the properties of 

inequalities, the direction of inequality (A2) will not change if both sides of (A2) are 

exponentiated: 

1 2 1 2exp(ln[(1 )(1 )...(1 )]) exp(ln[1 (( ... ) / ) ] )m m m m n

n nx x x x x x n− − −  − + + +           (A3) 

which yields inequality (1).  

 

Proof of inequality (23). 

Proving inequality (23) is equivalent to proving the inequality 

( / ) ( / )p pm a x m na x n                                                  (A4) 

which is equivalent to proving the inequality 
1 11/ 1/p pm n− −                                                              (A5) 
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which is equivalent to the inequality 
1 1p pm n− −                                                                    (A6) 

Since 1 0p−   and m n , inequality (A6) is always true and this completes the proof of 

inequality (23). 

 

Proof of inequality (27). 

First, if for any i, iu ivx x= , then the inequality (27) will not be affected if iux  and ivx  are 

removed. As a result, without loss of generality, it can be assumed that 
iu ivx x , for all i. 

Consider the slope of the secant 
p p

u v

u v

ax ax

x x

−

−
 through the points ( , )p

u ux ax  and ( , )p

v vx ax . The 

power law function 
py ax=  is concave and monotonically increasing function in x and 

considering also conditions (24) and (25), this implies that the following property holds: (see 

Fig.A1): 

1 1
1

1 1

tan( ) tan( )
p p p p

iu iv i u i v
i i

iu iv i u i v

ax ax ax ax
k k

x x x x
 + +

+

+ +

− −
= =  = =

− −
                               (A7) 

 
Figure A1. The key property (A7) for the concave power law function 

py ax= . 

 

Let 0 0 0u vX X= =  and 1 2 ...iu u u iuX x x x= + + + ,  1 2 ...iv v v ivX x x x= + + + ,  1,...,i n=  

From the majorisation property (26), it follows that iu ivX X  for 1,..., 1i n= −  and nu nvX X=

Proving inequality (27) is equivalent to proving the inequality 
1

[ ] 0
n

p p

iu iv

i

ax ax
=

−  . 

From (A7), it follows that 

1 1

[ ] ( )
n n

p p

iu iv i iu iv

i i

ax ax k x x
= =

− = −                                                    (A8) 

Since 1iu iu i ux X X −= −  and 1iv iv i vx X X −= − , the sum in the right-hand side of (A8) can be 

presented as 

1 1 1 1

1 1 1 1

( ) ( ( )) ( ) ( )
n n n n

i iu iv i iu i u iv i v i iu i u i iv i v

i i i i

k x x k X X X X k X X k X X− − − −

= = = =

− = − − − = − − −        (A9) 

In turn, the sum in the right hand side of equation (A9) can be presented as: 
1

1 1 1 0 0 1

1 1 1

( ) ( ) ( ) ( ) ( )( )
n n n

i iu i u i iv i v n nu nv u v i i iu iv

i i i

k X X k X X k X X k X X k k X X
−

− − +

= = =

− − − = − − − + − −    

Considering that 1 0 0( ) 0, ( ) 0n nu nv u vk X X k X X− = − = , the sum becomes: 

1

1 1 1

1 1 1

( ) ( ) 0 0 ( )( )
n n n

i iu i u i iv i v i i iu iv

i i i

k X X k X X k k X X
−

− − +

= = =

− − − = − + − −    
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As a result, the relationship: 
1

1

1 1

( ) ( )( )
n n

i iu iv i i iu iv

i i

k x x k k X X
−

+

= =

− = − −   

has been established. Since 0iu ivX X−   and 
1 0i ik k +−  , it follows that 

1

( ) 0
n

i iu iv

i

k x x
=

−  , 

which proves inequality (27). 
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