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A belief-theoretical approach to example-based pose
estimation

Wenjuan Gong and Fabio Cuzzolin

Abstract—In example-based human pose estimation, the con-
figuration of an evolving object is sought given visual evidence,
having to rely uniquely on a set of sample images. We assume
here that, at each time instant of a training session, a number
of feature measurements is extracted from the available images,
while ground truth is provided in the form of the true object pose.
In this scenario, a sensible approach consists in learning maps
from features to poses, using the information provided by the
training set. In particular, multi-valued mappings linking feature
values to set of training poses can be constructed. To this purpose
we propose a Belief Modeling Regression (BMR) approach in
which a probability measure on any individual feature space
maps to a convex set of probabilities on the set of training poses,
in a form of a belief function. Given a test image, its feature
measurements translate into a collection of belief functions on
the set of training poses which, when combined, yield there an
entire family of probability distributions. From the latter either
a single central pose estimate or a set of extremal ones can be
computed, together with a measure of how reliable the estimate is.
Contrarily to other competing models, in BMR the sparsity of the
training samples can be taken into account to model the level of
uncertainty associated with these estimates. We illustrate BMR’s
performance in an application to human pose recovery, showing
how it outperforms our implementation of both Relevant Vector
Machine and Gaussian Process Regression. Finally, we discuss
motivation and advantages of the proposed approach with respect
to its most direct competitors.

Index Terms—Example-based pose estimation, feature-pose
maps, theory of evidence, belief functions.

I. INTRODUCTION

Pose estimation is a well studied problem in computer
vision. Given an image sequence capturing the motion and
evolution of an object of interest, the problem consists in
estimating the position and orientation of the object at each
time instant, along with its internal configuration or pose. Such
estimation is typically based on two pillars: the extraction of
salient measurements or features from the available images
and, when present, a model of the structure and kinematics
of the moving body. Pose estimation is, among others, a
fundamental ingredient of motion capture, i.e., the accurate
reconstruction of a person’s motion, for instance for animation
purposes or the medical analysis of posture and gait.

a) State of the art: Current methodologies for pose esti-
mation can roughly be classified into model-based, learning-
based and example-based approaches. In model-based meth-
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ods [1], [2] human poses are represented by explicit body
model parameters. Pose recovery is typically achieved via
optimisation, whose aim is to match the pose variables of a
forward rendered model with the extracted features. Initial-
ization is often difficult, and the pose optimization process
can be subject to local minima [3]. In contrast, learning-based
approaches [14], [4], [5], [6] rest on the fact that typical
(human) motions involve a far smaller set of poses than the
kinematically possible ones, and learn a model that directly
recovers pose estimates from observable image quantities.
Such methods [7], [8], [9], [10] are generally faster, due to
the lower dimensionality of the models employed, and often
provide a better predictive performance whenever training
and testing data are captured under similar conditions. This
class of methods, however, requires heavy training to generate
good quality predictions, and the resulting model may lack
generalization power.

Example-based methods, which explicitly store a set of
training examples whose 3D poses are known, estimate pose
by searching for training image(s) similar to the given input
image and, if required, by interpolating their poses [5], [11].
They can then be used to automatically initialize model-based
methods, as in the monitoring of an automobile driver’s head
movements provided in [10]. No prior analytic structure of the
pose space is incorporated in the estimation process, although
the training data itself does amount to a rough approximation
of the configuration space.

In this class of techniques, vectors of feature measurements
(such as moments of silhouette images [12], edge direction
histograms [13], distributions of shape contexts [14] or Harr-
like features [15]) are first extracted from each individual
image. The integration of multiple cues is exploited to increase
both accuracy and robustness of the estimation [37], [38],
[39], [40]. Then, the likely pose of the object is predicted
by feeding the resulting feature vector to a learnt map from
the feature space to the pose space, for instance using an
efficient searching scheme such as random forests. Note that
this map is (in general) one-to-many: more than one object
configuration can generate the same feature observation(s),
because of occlusions, self-occlusions and the ambiguities
induced by the perspective image projection model itself.

Since only limited information is provided to the system
in the training session, only an approximation of the true
feature-pose mapping can be learned. In [12], for instance, an
inverse mapping between image silhouette moments and 2D
joint configurations is learned by fitting a Gaussian mixture to
2D joint configurations via the EM algorithm. The accuracy
of the estimation depends on the forcibly limited size and



distribution of the available examples, which are expensive and
time-consuming to collect. This has suggested the adoption
of a more activity-based setting to constrain the search space
of poses. In [17], a number of exemplar 2D views of the
human body is stored; the locations of the body joints are
manually marked and labeled. The input image is then matched
via shape context matching to each stored view, and the
locations of the body joints in the matched exemplar view
are transferred to the test image. Local Weighted Regression
[5], BoostMap [11] and Bayesian Mixture of Experts [6]
have also been applied. In example-based approaches queries
can be potentially computationally expensive, and need to
be performed quickly and accurately [S], [11]. In addition,
these methods often have problems when working in high
dimensional configuration s paces, asitis difficult to collect
enough examples to densely cover them.
b) Scenario: We consider here a situation in which:

« a set of training images of various poses of an object is
available;

« the object’s configuration in each image can be described
by a vector ¢ € Q in a pose space Q which is a subset
of RP, with D the dimensionality of the pose vector;

e a source of ground truth exists which provides for each
training image [}, the pose configuration g of the object
portrayed in the image;

« the location of the object within each training image is
known, in the form of a minimal bounding box.

In the training session, the object explores its range of possible
configurations, and a set of poses is collected to form a finite
approximation Q of the true pose space Q:

o= {qk,k: 1,...,T}, (1)

where T is the duration of the training session. At the same
time NN distinct features are extracted from the available
image(s), within the available bounding box:

yi{yi(k),kzl,...,T}, i=1,...N. )

In order to collect @ we need a source of ground truth poses
at each time instant £ of the training session. One option is
to use a motion capture system, as in [12]. After applying a
number of reflective markers in fixed positions of the moving
object, the system is able to supply the 3D locations of the
markers. Since we assume we do not know the object’s actual
pose space Q, it is reasonable to use the collection of 3D
marker locations as pose vector.

In the testing stage, a supervised localization algorithm
(trained using the annotated image evidence and bounding
box pairs, e.g. [27]) is employed to locate the object within
each test image, so that image features are only extracted from
within the resulting bounding box. Such features are exploited
to estimate the object’s configuration, with attached a measure
of how reliable this estimate is.

c) Contributions: In this paper we propose a regression
framework for the example-based pose estimation problem
formulated above, based on the theory of belief functions
[19], [20], [21]. Belief functions are non-additive measures
which admit a number of interpretations: i) as random sets,

i.e., probability distributions on the power set of all subsets;
ii) as convex sets of conventional probability distributions;
iii) as measures induced by the application of a multi-valued
map to a probability measure [20], [22]. The most relevant
interpretation for the proposed BMR model is the second one,
for a belief function on the pose space is equivalent to a set of
linear constraints on the actual conditional pose distribution
(given the features). Our Belief Modeling Regression (BMR)
framework uses the finite amount of evidence provided in
the training session to map any new feature value to a belief
function on the set of training poses Q, via a learnt refining
map. This determines a convex set of distributions on Q, which
in turn generates an interval of pose estimates.

Multiple features are necessary to obtain a decent estima-
tion accuracy. All single-feature refinings are collected in an
evidential model of the object, and the information carried by
individual features is fused in the belief theory framework [20],
[23]. This allows even limited resolutions for the individual
features to translate into relatively high estimation accuracy
(in a similar way to tree-based classifiers [18] or boosting
approaches, in which weak features are combined to form
a strong classifier). The size of the resulting convex set
of probabilities (credal set) reflects the amount of training
information available: the larger and more densely distributed
within the pose space the training set is, the narrower the
resulting set of probabilities. A separate pose estimate can
be computed for each vertex of the credal set, in a robust
statistical fashion. In alternative, a central estimate can be
extracted together with a measure of the associated uncertainty,
as a function of the size of the estimated set of probabilities.

As we show in the last part of the paper, an evidential model
provides a constraint on the family of admissible feature-
to-pose maps, in terms of smooth upper and lower bounds.
All mappings (even discontinuous, or 1-many) within those
smooth bounds are admissible under the model. The width of
this space of mappings reflects the uncertainty induced by the
size and distribution of the available training set.

d) Paper outline: The paper is structured as follows.
Firstly, the theory of belief functions is introduced in Section
II, with a focus on their combination operators and the
handling of evidence defined on distinct but related domains.
In Section III the different elements of our Belief Modeling
Regression approach are described in detail. Evidential model
training is described in Section III-A. In Section III-B Dirichlet
belief functions are proposed to model the uncertainty due
to the scarcity of the training data. From the belief function
resulting from their combination, either a pointwise estimate
or a set of extremal estimates of the pose can be extracted.
In Section III-C model assessment criteria are discussed,
together with an analysis of the computational complexity
of training and estimation algorithms. Section IV illustrates
the performance of Belief Modeling Regression in a human
pose recovery setting, showing how BMR outperforms our im-
plementation of both Relevant Vector Machine and Gaussian
Process Regression. Finally, Section V discusses motivation
and advantages of the proposed approach in comparison with
other competitors. Section VI concludes the paper.



II. BELIEF CALCULUS

Suppose that we have a probability measure P for a question
()1 whose possible outcomes form a set (2, and that @; is
related to another question ()2, whose outcomes are in a
different set ©, via a one-to-many map p : Q — 2° (a multi-
valued mapping) Outcomes w € ) of ()1 are mapped to sets
of outcomes B = p(w) C O of Q. The probability value
of w € € thus supports the proposition that the true answer
to @2 is in a subset A of O, whenever p(w) C A. As A.
Dempster showed [20], the result of mapping a probability
distribution via a multi-valued map is an object more general
than a probability measure: a belief measure [22].

The degree of belief b(A) with which A C © contains the
answer to () is then the total probability of all the supporting
outcomes w of Q1: b(A) = P({w € Qp(w) C A}). A multi-
valued mapping makes a probability distribution P on {2 into
a distribution m : 2° — [0,1], s.t. Y 4 m(A) = 1, on the
power set 2° = {A C O} of the codomain ©, called basic
probability assignment (b.p.a.) [19]. The belief function (b.f.)
b:29 —[0,1] induced by m has degree of belief on A

b(A) =Y m(B), 3)
BCA

i.e., the sum of the masses of all its subsets. The domain © of
a belief function is called frame of discernment (FOD), and
the non-zero mass subsets of © are said focal elements (f.e.s).
A popular (albeit criticized) interpretation of belief func-
tions sees each focal element A with b.p.a. m(A) as the
indication of the existence of a mass m(A) floating inside A,
which can be assigned to any of its elements x € A [30]. A
probability distribution consistent with b can then be obtained
by redistributing the mass m(A) of each focal element A to its
elements © € A. The resulting credal set [31] consistent with a
belief function b is P[b] = = {peP:p(A) >b(A) VA C O},
e., the set of probablllty measures whose values dominate
that of b on all events A. This is a polytope in the simplex
of all probabilities one can define on ©. The vertices of this
polytope are all the probability distributions p™ induced by an
arbitrary permutation m = {1y, ..., Z(je|)} of the elements

of ©, of the form:

>

Adz,(3)
AFzr(§) Vi<i

P [bl(zry) = m(A). 4

The latter assigns to a singleton element in position 7(4) the
mass of all the focal elements A containing it, while not
containing any elements before it in the permutation order.

The combination of information obtained from different
sources, and represented as belief functions, is a central theme
of belief calculus [23], [41].

Definition 1. The conjunctive combination of two belief func-
tions by, by : 29 — [0,1] is a new belief function b;@by on
the same FOD © whose focal elements are all the possible
intersections of focal elements of by and by respectively, and
whose b.p.a. is given by:

Mp, @b2 (A) = Z mpy, (B) mMp, (C) (5)

BNC=A

This definition can be trivially extended to the combination of
an arbitrary number of belief functions.

While it is axiomatically justifiable as the only combination
rule which meets a number of rationality requirements (such
as least commitment, specialization, associativity and com-
mutativity [42]), the conjunctive combination also amounts
to assuming that the sources of evidence to merge are both
reliable and independent. In general, the current consensus
is that different combination rules are to be employed under
different assumptions [42]. However, it is difficult to decide
in which situations the sources of information can indeed
be considered independent. An alternative point of view,
supported by Shenoy, suggests that, rather than employing a
battery of combination rules whose applicability to a given
problem is difficult to establish, we should adopt models which
do meet the assumption of independent sources, as it happens
in probability theory. We support this view here, and test the
adequacy of the assumption empirically.

In belief calculus a map between two FODs © and €2 of the
form p: 29 — 22, p(A) = Upecap({6}), which maps © to a
disjoint partition of its codomain Q (p({61}) N p({62}) = 0
for all distinct 61, 60> € O) is called a refining. The frame 2 is
called a refinement of ©, while © is said a coarsening of 2.
A FOD is called the minimal refinement [19] of a collection
of frames Oq,...,0y if it is a refinement of each of them
(their common refinement), and no coarsening of it is still a
common refinement. The minimal refinement of ©1, ..., Oy is
denoted by ©1 ® ... ® O . The frames O1, ..., O are said to
be independent [19] if p1 (A1) N---Npn(AN) # 0, (Where
Vi #£ A; € ©;,¥i = 1,...,N, and p; is the refining from
©; to @), ©;) in which case the minimal refinement is their
Cartesian product: ), ©; = ©1 x - -- x O . A belief function
b’ on (2, a refinement of O, is called the vacuous extension of
a second belief function b on © iff the focal elements of b’
are images (via p) of focal elements of b.

III. BELIEF MODELING REGRESSION

A. Model training

Consider an image feature function y, whose values lie in
a feature space ), and denote by p* : Y — 22 the unknown
mapping from the feature space to the collection 2€ = {Q C
Q} of sets @ of _object poses. We seek to learn from the
training data {Q y} (Equations (1) and (2)) an approximation
of the unknown feature-pose mapping p*.

EM clustering [29] is applied individually to each compo-
nent of the training data {y;(k),k=1,...,T},i=1,...,N to
obtain a Mixture of Gaussians (MoG)' with n; components:

{ngj —1,...

The MoG (6) induces an implicit partition of the i-th feature
space (the range )V; C R% of the unknown feature function y;

ni}v FJ NN(Hw ) (6)

'MoG models are often employed in example-based pose estimation, as
their parameters can be speedily estimated via the EM algorithm [29]. For
instance, in [6] several experts predictions are combined in a Gaussian mixture
model. In [26], conditional distributions are assumed to be Gaussian mixtures.



T — Y; on the set of all images Z, d; being the dimensionality
of the ¢-th feature space):

0= {¥ v}, )

where Y/ = {yeyi| T (y) > Tl(y) VI # j} is the region of
Y; in which the j-th Gaussian component dominates (Figure
1). We call (7) the i-th approximate feature space.

Fig. 1. A Mixture of Gaussians learned from training features defines an
implicit partition (Equation (7)) of the feature space ). In turn, each feature
region )7 is in correspondence with the set Q7 of sample poses g, whose
feature value y(qy) falls inside J)7.

As training feature vectors are labelled by the true poses
provided by the source of ground truth (cfr. the Introduction),
each element )/ of the approximate feature space is associated
with the set of training poses whose i-th feature value falls in
Y/ (see Figure 1 again):

PiinyQgi{QkEQ:yi(k)eyij}- ¥

Applying EM clustering separately to each training feature
sequence in Equation (2) thus yields both N approximate
feature spaces ©; = {Y!,---,V"}, i = 1,..,N, and N
maps as in Equation (8), from each approximate feature space
to the set of training poses Q.

Clearly, the maps (8) are multi-valued mappings linking the
question (); “to which Gaussian component of the MoG (6)
does the new feature value y belong” to the question Q2 “what
is the object pose whose observed feature value is y”.

The number of clusters n; is set here to a fixed value for each
feature space.

Training algorithm. In the training stage the object moves
in front of the camera(s), exploring its configuration space,
while a sequence of training poses Q= {ge, k = 1,...,T}
is provided by a source of ground truth. Training images are
annotated by a bounding box indicating the object’s location
within each image. At the same time:

1) for each time instant k£, a number of feature values are
computed from the region of interest in each training
image: {y;(k),k=1,...,T},i=1,...,N;

2) EM clustering is applied to each feature sequence
{yi(k),k = 1,...,T} (after setting the number of clus-
ters n;), yielding:

a) N approximate feature spaces ©; = {yj ] =
1,...,n;}, i.e., the implicit partitions of the feature
ranges ); associated with the EM clusters;

(o D)™
o, Nl S .
TN A | .
o J/ A Vi / \‘
\ m‘\\ S B b
P
. 2\ p
Q ‘\\ )

Fig. 2. Evidential model. The EM clustering of each feature set collected
in the training stage yields an approximate feature space ©; = {:)/f ] =
1,...,n;}. Refining maps p; between each approximate feature space and
Q ={q1,...,qr} (the training approximation of the unknown pose space Q)
are learned, allowing the fusion on Q of the evidence gathered on O1, ..., © .

b) N maps p; (described in Equation (8)) mapping
EM feature clusters to sets of sample training poses
in the approximate pose space Q.

As the learned application (Equation (8)) maps approximate
feature spaces to disjoint partitions of the approximate pose
space O, the latter is a common refinement (see Section II) of
the collection of approximate feature spaces O1,...,On. The
collection of FODs Q, 01, ...,0n along with their refinings
p1,---, PN 1s characteristic of both the object to track, the
chosen feature functions y;, and the actual training data: we
call it the evidential model (Figure 2) of the object.

B. Estimation

Once an evidential model has been learned from the avail-
able training set, it can be used to estimate the pose of the
object given new visual evidence.

1) Belief functions induced by test feature values: when one
or more new test images are acquired, new visual features
Y1, ...,yn are extracted. Given the mixture in Equation (6),
each new feature value y; is associated with the vector of soft
assignments to each mixture component:

o (D) T2, T ()] ©
When normalized, the latter yields a probability distribution
p; on the approximate feature space ©;. Since each p; is a
multi-valued mapping, it follows (Section II) that p; induces a
belief function on the (approximate) pose range Q. As a result,
the test features values y1, ..., yn are mapped to a collection
of belief functions b1, ..., by on the set of training poses Q.
2) Dirichlet belief function modeling: in fact, belief func-
tions allow us to take into account the scarcity of the training
samples by assigning a mass m(0;) to the whole approximate
feature space, prior to applying the refining p;. This encodes
the fact that training the model on a larger set of examples
would alter the shape of the MoG approximation of ); in
unpredictable ways. Namely, we map the soft assignment (9)
to a Dirichlet belief function [43], with b.p.a.:

. J ().
m; : 291 [0, 1]7mi(yij) Y (i)

Y )
k

(1—-m;(6;)). (10)



The assignment in Equation (10) discounts the probability
distribution obtained by simply normalizing the likelihoods
(9) by assigning the mass m;(©;) to the entire FOD ©;. A
reasonable choice for the mass function is: m;(0;) = %,
so that when n; — oo the discount factor tends to ZGI’(L),
and the approximate feature space converges to the Mixture
of Gaussian representation of the actual feature space. In
addition, as n; cannot be greater than the number 7" of training
samples, such a discounting factor also considers the limited
size of the training set. If we set m;(©;) = 0 the result is a
probability distribution, called a Bayesian belief function [19].
3) Belief estimate: the Dirichlet belief functions {b;
29 — [0,1],i = 1,..., N} inferred from the test feature
values y1, ..., yn via Equation (10) are then mapped to belief
functions {b} : 2¢ — [0,1],i = 1,..., N} on the approximate
pose space Q by vacuous extension: YA C Q
mi(4) = { 0 otherwise.

The resulting b.f.s on Q are combined by conjunctive com-

bination, as in Equation (5). The result is a belief function
b= @@y on Q, which we call the belief estimate
of the object’s pose. As explained in Section II, the belief
estimate is associated with an entire convex set of probabilities
on the approximate pose space.

Example. Suppose that the training set of poses contains
just three samples: Q = {q1,¢2,¢s}, and that the evidence
combination process produces a belief estimate b with b.p.a.:

m({q1,q2,q3}) = 1

m({q, ¢2}) = 5 m({as}) = 5

According to Equatlon (4), the vertices of P[b] are those
probabilities which are generated by reassigning the mass of
each focal element to any one of its singletons: there are
[1; |Ak| possible choices, where {A}} is the list of focal
elements of b. As the belief function (12) has 3 fe.s of
cardinality 2,1 and 3, respectively, the corresponding credal
set P[b] is the convex closure of 1-2-3 = 6 probability
distributions, namely:

(1)

12)

11 _ (111
236" T |32%6]|"
1 2
0= 0Z
3 3

WIN | =
Wl = W

y De =

4) Computing expected pose estimates: point-wise infor-
mation on the object’s pose can be extracted from a belief
estimate b in two different ways.

a) Extracting a set of extremal point-wise estimates:
each of the vertices (4) of the credal set associated with bisa
probability distribution on the approximate pose space Q. We
can compute the associated expected pose as:

T
G="_ plar)a
k=1

The set of such extremal estimates describes therefore an entire
polytope of expected pose values in the object’s pose space
Q. In the above example, the expected poses for the vertices
D1, P4, D5, s Of P[b] are: g[p1] = 6Q1 + 6(]3, 4lpa] = %QQ +
+as, dlps) = 32 + 243, 4lp1] = 301 + 2gs.

13)

b) Extracting a single point-wise estimate: alternatively,
we can approximate b with a probability p on Q, before
computing its mean value as above. The approach is widely
supported by the belief function literature.

In particular, Smets’ pignistic function [44]
Z my(A)
Al

ADzx

BetP[b)(z) = Vo € O, (14)

is the barycenter of the credal set P[b] associated with b.
Although other transforms have been proposed [45], [48], [46],
[47], empirically their performances in the human pose estima-
tion experiments presented here have been proven comparable.
Pose estimation. Given an evidential model of the moving
body with N feature spaces, and given at time ¢ one or more
test images, possibly coming from different cameras:

1) the object detector learned during training is applied to
the test image(s), returning for each of them a bounding
box roughly containing the object of interest;

2) the N feature values are extracted from the resulting
bounding boxes, as during training;

3) the likelihoods {I* (y;(t)),j =1, ...,n;} of each feature
value y;(t) with respect to the learned Mixture of
Gaussian distribution on Y; are computed, as in (9);

4) for each feature ¢ = 1,...,N, a separate Dirichlet
belief function b;(t) : 2© — [0, 1] on the appropriate
feature space ©; is built from the set of likelihoods
{7 (yi(t)),5 =1,...,n;} as described in Section III-B2;

5) all the resulting b.f.s {b;(t) : 2% —[0,1],i=1,..., N}
are projected onto Q by vacuous extension (11), yielding
a set of belief functions {b} : 2¢ — [0,1],i =1,..., N};

6) their conjunctive combination b(t) =
bi(t)© - - - @by (t) is computed (Equation (5));

7) the object pose estimate(s) are computed:

a) either the pignistic transform (14) is applied to
b(t), yielding a probability distribution on Q from
which an expected pose estimate ¢(t) is obtained
by Equation (13);

b) or, the vertices of the convex set of probabilities
PIb(t)] associated with the belief estimate b(t) are
computed as in (4), and a mean pose estimate is
obtained for each one of them as in (13).

C. Assessing evidential models

1) Robustness: as a consequence of computing the belief
estimate by conjunctive combination, a non-zero mass may
be assigned to the empty set. This happens when the focal
elements of the belief functions to merge {b}(t)} are disjoint.
In the worst case scenario all the mass may be assigned to
(), and no estimation is possible (conflict). Conflict may arise
due to either the incorrect localization of the object of interest
(due to limitations of the trained detector), so that background
features conflicting with the foreground information are also
extracted, or to the presence of occlusions, which generates
conflict for similar reasons.

However, when adopting Dirichlet belief functions for
inference (Section III-B2) this never materializes, for each
individual b.f. has ©; as a focal element and some mass



is always assigned to non-empty focal elements, ensuring
robustness to localization errors and occlusions.

2) Computational cost: at training time EM’s computa-
tional cost is easy to assess, as the algorithm usually takes
a constant number ¢ ~ 5 — 10 of steps to converge. At each
step the whole observation sequence of length 7" is processed,
yielding a time complexity of O(¢cNnT) (where N is the
number of features, n the average number of EM clusters, T’
the number of training samples). This is acceptable for real-
world applications, since this only needs to be done once in the
training session. In the experiments of Section IV the whole
training procedure in Matlab required 17.5 seconds for each
run of EM on an outdated Athlon 2.2 GHz CPU with N =5
features, n; = n = 5 states per feature space, and T' = 1726.

At test time, although the conjunctive combination in Equa-
tion (5) is exponential in complexity if naively implemented,
fast implementations of () exist [50]. Numerous Monte-Carlo
approximation schemes have been proposed [51]. Furthermore,
Dirichlet b.f.s in Equation (10) have n; 4+ 1 non-zero focal
elements, reducing the computational complexity of their
pairwise combination from O(22") (the mass multiplication of
all the 2™ possible focal elements of the first b elief function
by those of the second b.f.) to O(n?).

3) Self-consistency: an evidential model is self-consistent
if it produces the correct ground truth pose values when
presented with the training feature data {y;(k),i =1,..., N}.
Suppose that ¥, ..., yn , the observed feature vector compo-
nents, are such that: y; € y{'l, - YN € yjj\,N. Fori=1,..,n
the object’s pose must lie within the subset p; (/") of the
training set Q. Thus, the pose estimate must fall within:

p (V)N Npn (V) C ©. (15)

Consequently, sample object poses in the same intersection of
the above form are indistinguishable under the given evidential
model. The collection of all the non-empty intersections of the
form (15) is in fact the minimal refinement 01 ® --- ® O
(Section II) of the FODs O, ..., © . It follows that:

Theorem 1. Any two poses of the training set can be dis-
tinguished under the evidential model iff Q is the minimal
refinement of ©1,...,0O .

Proof. =-: if any two sample poses can be distinguished under
the model, i.e., for all k, k" g & p1 (V") N -+ Npn(VAY) 2
gk, it follows that each intersection in Equation (15) cannot
contain more than one sample pose, otherwise there would
exist a pair violating the above hypothesis (the intersection
can, however, be empty). Furthermore, each sample pose g
falls within such an intersection, the one associated with the
feature regions V{*,--- VI s.t. yi(qr) € Vi's .. yn(ar) €
ny. Hence, all the elements of the minimal refinement of
01,...,0n are individual sample poses, Q =01 R - ROy.
«<: if Q is the minimal refinement of ©4,...,0 then for all
qr € Q we have that {gr} = p1 (V") N+~ N pn (VL) holds
for some unique selection of feature regions yfl, cee ]]VN s
distinct for each training pose. Any two different sample poses
thus belong to different intersections of the form (15), i.e., they
can be distinguished under the model. O

It is then desirable to select, at training time, a collection of
features which brings the minimal refinement O ® - - - ® O
as close as possible to Q. The self-consistency of the model
can be measured by the ratio between the cardinality of the
minimal refinement of O, ..., ©, and that of the approximate
pose space Q: % < % <1

4) Model granularity and accuracy: the granularity
{ni,i 1,...,N} and dependence of the feature spaces
forming of an evidential model obviously affect the accuracy
of the estimation process. Indeed, if the approximate feature
spaces ©; are independent, for each combination of feature
regions VJ', .-+ YV, there exists a unique sample pose gy
characterized by feature values in those regions: {qp} =
p1( ) NN pn(VRY). In this case different cues carry
complementary information about the object’s pose. When
the opposite holds, instead, fewer than N feature values may
be enough to resolve training poses, while in general each
combination of feature values will yield a whole set of them.

Assuming the model is self-consistent (|Q] = | ®; ©;]), the
independence of its (approximate) feature spaces implies that
Q] = | ®; ©;] =1L 10, ie: T = [Q] ~ ny x ... X ny.
Given a realistic sampling of the parameter space with 7' =
20000 examples, the use of N = 9 complementary features
allows to require no more than v/20000 ~ 3 MoG components
for each feature space. This shows the advantage of encoding
feature-pose maps separately: as long as the chosen features
are independent (as described above), a relatively coarse MoG
representation for each feature space permits a good accuracy
of the pose estimate?.

5) Approximate and actual pose space: finally, let us dis-
cuss the conditions under which the training set of poses Q
is a proper approximation of the unknown parameter space Q
(see Figure 2). Ideally, the set Q of training poses should be
dense in Q: Vg € Q there ought to exist a sample ¢ such
that ||¢ — gx|| < € for some e small enough. Clearly, such a
condition is hard to impose. The distribution of the training
poses within Q has nevertheless a number of consequences on
the estimation process.

Firstly, as the true pose space Q is typically non-linear,
while the pose estimate is a linear combination of sample
poses (see Section III-B3), the pointwise estimate may be non-
admissible (fall outside Q). This can be fixed by trying to make
the feature spaces independent, as in that case every sample
pose gy, is characterized by a different combination of feature
clusters: {qx} = p1(V{")N---Npn (V). Consequently, any
set of test feature values y; € VJ',...,yn € Y3 will generate
a belief estimate in which a single sample pose ¢, is dominant:
its credal set (Section III-B4a) is of limited extension around
a single sample pose, and the risk of non-admissibility due to
linear extrapolation of admissible poses is reduced.

Secondly, there may exist regions of Q characterized by
combinations of approximate feature values not in the current
evidential model — namely, object poses ¢ € Q such that:

YVP €O, Y €ON a0 N pn(VR).

2Compare this point to what proposed in [15] or [18], where trees of
classifiers are used for face pose estimation.



This would generate high levels of conflictm ()i n the
conjunctive feature combination (5), flagging t he inadequacy
of the model. In case new ground truth is provided, the model
can be updated by adding the poses causing the problem.

IV. EXPERIMENTAL RESULTS

We tested our Belief Modeling Regression approach in a
rather challenging setup, involving the pose estimation of
human arms and legs from two well separated views. While
the bottom line of BMR is doing the best we can with the
available examples, regardless the dimensionality of the pose
space, and without having at our disposal prior information
on the object at hand, we ran test on articulated objects (one
arm and a pair of legs) with a reasonably limited number
of degrees of freedom to show what can be achieved in
such a case. The results show that this technique outperforms
competitors such as Relevant Vector Machines and Gaussian
Process Regression.

A. Setup: two human pose estimation experiments

To collect the necessary ground truth we used a marker-
based motion capture system [26], [24] built by E-motion, a
Milan firm. The number of markers used was 3 for the arm
(vielding a pose space Q C R?, using as pose components
the 3D coordinates of the marker), and 6 for the pair of
legs (Q C R!®). The person was filmed by two uncalibrated
DV cameras (Figure 3). In the training stage of the first
experiment we asked the subject to make his arm follow a
trajectory (approximately) covering the pose space of the arm
itself, keeping his wrist locked and standing on a fixed spot
on the floor to limit the intrinsic dimensionality of the pose
space (resulting in 2 d.o.f.s for the shoulder and 3 for the
elbow). In the second experiment we tracked the subject’s legs,
assuming that the person was walking normally on the floor,
and collected a training set by sampling a random walk on a
small section of the floor. This is similar to what is done in
other works, where the set of examples are taken for a specific
family of motions/trajectories, normally associated with action
categories such as the walking gait. The length of the training
sequence was 1726 frames for the arm experiment and 1952
frames for the legs test.

While the number of degrees of freedom was limited by
constraining the articulated object (person) to perform motions
of a specific class (walking versus brandishing an arm), the
tests are sufficiently complex to allow us to illustrate the traits
of the BMR approach to pose estimation. In addition, in both
experiments the background was highly non-static, with people
coming in and out the scene and flickering monitors; the
object of interest would self-occlude itself a number of times
on at least one of the two views (e.g. when one leg would
occlude the other when seen from the left camera), making
the experimental setup quite realistic.

Under the assumptions listed in the Introduction, in the
training stage the images need to be annotated by a bounding
box, to provide a rough localization of the unknown object. To
simulate this annotation process, and isolate the performance
of the proposed example-based estimation approach from that

Fig. 3. Two human body-part pose estimation experiments. Left: training
images of a person standing still and brandishing his right arm. Right: training
images of the person walking inside a rectangle on the floor.

of the object detector employed, in these tests we used color-
based segmentation to separate the object of interest from
the non-static background, implemented via a colorimetric
analysis of the body of interest (Figure 4-middle). Pixels were
clustered in the RGB space; the cluster associated with the
yellow sweater (in the arm experiment) or the black pants
(legs one) was detected, and pixels in that cluster assigned
to the foreground; the minimal bounding box containing the
silhouette of the segmented foreground pixels was finally
detected. Note that this is just a way to automatically generate,
rather than manually construct, the bounding box annotation
required in the assumptions of the initial scenario.

B. Feature extraction and modeling

For these tests we decided to build an extremely simple
feature vector for each image directly from the bounding box,
as the collection max(row), min(row), max(col), min(col)
of the row and column indexes delimiting it (Figure 4). As
two views were available at all times, at each time instant two
feature vectors of dimension 4 were computed.

max(row)

min(row)

max(col)

min(col)

Yk

Fig. 4. Feature extraction process. Left: a training image [j in the arm
experiment. Middle: the object of interest is color-segmented and the bounding
box containing the foreground is detected to simulate localization annotation.
Right: the row and column indices of the vertices of the bounding box are
collected in a feature vector ¥.

In the arm experiment we built three different evidential
models from these vectors. A left model was build using
N = 2 features (max(row) and min(col)) from the left view,
and a Mixture of Gaussians with n; = n = 5 components for
both feature spaces. These feature components were selected
as most discriminative for the motion observed (as max(col)
and min(row) would remain almost constant during the arm’s
motion, we decided to neglect them). A second model was
built for the right view only, with N = 3 feature spaces
(associated with the components max(row), min(col) and
max(col)) and n; = n = 5 MoG components for each feature
space. This time we added max(col) to the selection to test the
influence of an additional component. Finally, an overall model
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Fig. 5. Comparative performance on the arm experiment. (a) Performance of BMR. Top: pose estimates of component 9 of the pose vector (Y coordinate of
the hand marker) produced by the left (in red) and right (in magenta) model compared to the ground truth (in blue), plotted against time. Bottom: the sequence
of pose estimates yielded by the overall model which uses features computed in both left and right images is plotted (in solid red) against the ground truth
(in dashed blue). (b). Performance of RVM. Top: pose estimates of component 9 of the pose vector produced by a RVM using only the left (in red) and right
(in magenta) features, compared to the ground truth (in blue), plotted against test time. Bottom: pose estimates yielded by RVM regression using features
computed from both views, plotted in solid green against the ground truth (in dashed blue). (¢). Performance of GPR. Top: pose estimates of component 9 of
the pose vector produced by a GPR model using only the left (in red) and right (in magenta) features, compared to the same ground truth (in blue). Bottom:
pose estimates generated by a GPR regression model which using features from both views, plotted in solid green against the ground truth (in dashed blue).

was constructed from both features from the left view and
features from the right one, with the same MoG representation.

For the legs experiment we built a model with N =
features (max(row), min(col) and max(col) for both views)
and n = 5 Gaussian components per feature space.

C. Performance

To measure the accuracy of the estimates produced by
different evidential models, we acquired a testing sequence
for each of the two experiments and compared the results with
the ground truth provided by the motion capture equipment. In
both experiments we compared BMR’s performance with that
of Relevant Vector Machine and Gaussian Process Regression
(see the Appendix for the relevant implementation details).

1) Arm experiment: in the arm experiment the test se-
quence was 1000 frames long. Pointwise pose estimates were
extracted from belief estimates via pignistic transform as in
Equation (14). As the anecdotal evidence of Figure 5-(a)-
top indicates, the estimates of the single-view models were
of rather poor quality. Indeed, recalling the discussion of
Section III-C3, the minimal refinements ) ©; for the left-
view and the right-view models were of size 22 and 80
respectively, signalling a poor model resolution. In opposition,
the estimates obtained by exploiting image evidence from both
views (Figure 5-(a)-bottom) were clearly better than a simple
selection of the best partial estimate at each instant. This
was confirmed by a minimal refinement ) ©, for the overall
model with cardinality equal to 372 (the N = 5 features
encoded by a MoG with n = 5 components were enough
to resolve 372 of the 1700+ sample poses), with 139 sample

poses individually resolved by some particular combination of
the N =5 feature values.

We also measured the Euclidean distance between real and
expected 3D locations of each marker over the whole testing
sequence. For the arm experiment, the average estimation
errors were 17.3, 7.95, 13.03, and 2.7 centimeters for the mark-
ers “hand”, “wrist”, “elbow” and “shoulder”, respectively (see
Table IV-C6). As during testing the features were extracted
from the estimated foreground, and no significant occlusions
were present, the conflict between the different feature com-
ponents was negligible throughout the test sequence.

2) Lower and upper estimates: as the belief estimate b(t)
at time ¢ amounts to a convex set P[b(t)] of probability
distributions on Q, an expected pose estimate can be computed
for each of its vertices (Equation (4)). The BMR approach can
therefore provide a robust pose estimate, by computing for
each instant ¢ the minimal and maximal expected value (over
PIb(t)]) of each component ¢© of the pose vector:

T

~C
Qmin (t) = Inll’l p Qk qk qmax( = max qk
A00) ; ’ pePlb(1)] £ Z

(16)

Figure 6 plots these lower and upper bounds to the ex-
pected pose values in the arm experiment, for three different
components of the pose vector, over three subsequences of the
test sequence. As it can be observed, even for the rather poor
(feature-wise) evidential model built here, most of the time
the true pose falls within the provided interval of expected
pose estimates. Quantitatively, the percentage of test frames in
which this happens for the twelve pose components is 49.25%,
44.92%, 49.33%, 50.50%, 48.50%, 48.33%, 49.17%, 54.42%,



49.67%, 51.50%, 39.33% and 43.50%, respectively. We can
also measure the average Euclidean distance between the true
pose estimate and the boundary of the interval of expected
poses, for the four markers and along the entire test sequence:
we obtain average 3D distances of 7.84cm, 3.85cm, 5.78cm
and 2.07cm for the four markers, respectively. These figures
give a better indication of the robustness of BMR than the
errors associated with the central expected pose estimate given
by the pignistic function (which we collected in Table IV-C6).

Note that in these tests the pose estimate interval was
computed using just a subset of the true vertices of the belief
estimate for computational reasons: the true interval is indeed
wider, and amounting to even lower average estimation errors.
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Fig. 6. Plots of lower and upper expected pose estimates (Equation (16), in
dashed red) generated by the credal sets associated with the sequence of belief
estimates b(t), versus the pignistic estimate (in solid red) and the ground truth
(in blue). Top: component 1 of the pose vector, test frames from ¢ = 300
to t = 399. Middle: component 6, test frames from ¢ = 400 to ¢t = 499.
Bottom: component 9, test frames from ¢t = 1 to ¢t = 100.

3) Legs experiment: Figure 7-(a) shows instead BMR’s
performance in the legs experiment, for a 200-frame-long test
sequence. As in Section IV-CI, the pignistic transform was
adopted to extract a pointwise pose estimate at each time
instant. The results were a bit less impressive but still good,
mainly due to the difficulty of automatically segmenting a
pair of black pants against a dark background (see Figure 3-
right). Again, this cannot be considered an issue with BMR,
as annotation is supposed to be given in the training stage.
A quantitative assessment returned average estimation errors
(for the pignistic expected pose estimate and n = 5) of 25.41,
19.29, 21.84, 19.88, 23.00, and 22.71 centimeters, respectively,
for the six markers (located on thigh, knee and toe of each leg).
These are collected again in Table IV-C6. The cameras were

located at a distance of about three meters. As in the arm
experiment, no significant conflict was reported.

4) Comparison with Relevance Vector Machine: Figure 5-
(b) shows the estimates produced by a RVM on the same
test sequences and components as in column (a). From the
top diagram, we see that the left model performs better than
the right model for RVM, while Figure 5-(a) shows that
for BMR the right model seems closer to the ground truth
than the left one. In both cases, however, combining left and
right features boosts the estimation’s accuracy. From a visual
comparison of columns (a) and (b), it is easy to observe
that our evidential model significantly outperforms a standard
RVM implementation. BMR predictions also appear less noisy
than RVM outputs.

Figure 7-(b) shows the estimates produced by RVM in the
legs experiment. Here, the use of individual (left or right)
images gives noisy and imprecise estimates, while combin-
ing left and right images causes the prediction task to fail
completely. From the top diagram we can observe that the
left model tracks the trend of variation of the joint location
to some extent, while the right model gives random and noisy
estimates. When combining left and right images (bottom),
RVM considers all data as noise and is not able to correctly
model the feature-pose mapping.

5) Comparison with Gaussian Process Regression: Figure
5-(c) shows the estimates produced by GPR for the same
experimental setting as in columns (a) (for BMR) and (b) (for
RVM). With only left or right images as inputs, the model
is already able to learn the data’s pattern of variation. When
merging features from both views, the model performs much
better. GPR estimates appear more accurate than RVM’s, but
are noisier and exhibit severe oscillations compared to BMR’s.
A visual inspection of Figure 5 shows a rather comparable
performance with that of the BMR approach.

Figure 8 plots the confidence intervals of the estimates

produced by GPR for the same test sequences as in Figure
6. A confidence level of 95% (corresponding to an interval of
two standard deviations) is used. It should be clear, however,
the difference between the confidence band (shown in Figure
8) associated with a single Gaussian distribution on the outputs
(poses) (such as the prediction function p(g|y, Q, §) of a GPR)
which is characterized by a single mean estimate and a (co)-
variance, and the interval of expected (mean) poses associated
with a belief estimate (which amounts to entire family of
probability distributions) shown in Figure 6.
This is the consequence of the second-order uncertainty en-
coded by belief functions, as opposed to single classical
probability distributions. Indeed, for each vertex of the credal
estimate produced by BMR we could also compute (besides
an expectation) a covariance and a confidence band: the
cumulated confidence bands for all Probability Distribution
Functions (PDFs) in the credal estimate would be a fairer
comparison for the single confidence band depicted in Figure
8, and would better illustrate the approach’s robustness.

Finally, Figure 7-(c) shows our GRP estimates for the legs
experiment. The model is able to track the ground truth when
combining left and right images as inputs. However, due to
the higher dimensionality (D = 18) of the targets compared
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Fig. 7. Comparative performance on the legs experiment. (a) Performance of BMR. Performance of two versions of the two-view evidential model with
N = 6 feature spaces, in the legs experiment, on a test sequence of length 200. The pignistic expected pose is computed for two models with n; =n =5
(in red) and n; = n = 4 (in magenta) MoG components for each feature space, respectively, and plotted versus the ground truth (in blue). The estimates
for components 9 (top) and 12 (bottom) of the 18-dimensional pose vector (the 3D coordinates of each of the 6 markers) are shown. (b). Performance of
RVM. Top: pose estimates of component 9 of the pose vector (Z coordinate of the third marker) produced by a RVM using only the left (in red) and right (in
magenta) features, compared to the ground truth (in blue), plotted against time. Bottom: pose estimates yielded by a RVM regression model using features
from both views, plotted (in green) against the ground truth (in blue). (c¢). Performance of GPR. Top: pose estimates of component 9 generated by GPR
using only the left (in red) and right (in magenta) features, compared to the usual ground truth (in blue). Bottom: estimates yielded by GPR regression when
computing features from both views, plotted (in green) against the ground truth (in blue).
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associated with the GPR estimates (in solid deep green), plotted against the
ground truth (in blue). Top: component 1 of the pose vector, test frames from
t = 300 to t = 399. Middle: component 6, test frames from ¢ = 400 to
t = 499. Bottom: component 9, frames t = 1 to ¢t = 100.

to the arm experiment (D = 12), neither the GPR model nor
the RVM one are capable of providing accurate estimates.

6) Summary and quantitative comparison: Quantitatively,
the performance of RVM, GPR and BMR are compared and
shown in Table IV-C6. Pose estimation errors are calculated
as average Euclidean distances (in centimeters) between real
and estimated 3D location over the whole testing sequence.
Estimation errors are calculated separately for each marker.

From the table, we can see that the proposed BMR method
gives the best result for all body joints. For all three methods,
we can see that estimation errors related to joints connected
to the torso, such as ‘Shoulder’, are much lower than those
further out. This can be explained by observing that, under this
experimental setting, the degree of freedom of the ‘Shoulder’
joint is lower than that of other joints, resulting in a less
complex mapping between image features and joint locations.
As an additional remark, in the tests conducted the left thigh is
sometimes occluded by the right thigh, affecting the accuracy
of its location’s estimates.

V. DISCUSSION

We wish to conclude by discussing the methodological jus-
tification of the proposed regression framework, in the light of
the problem to solve and in comparison with similar Bayesian
approaches, in particular Gaussian Process regression and
Relevance Vector Machine.

A. BMR’s smooth lower and upper pose estimates

Given the training data {Q, 37}, Belief Modeling Regression
addresses the problem of estimating an unknown feature-to-
pose mapping y — q by providing smooth lower and upper
bounds to the latter, in order to capture the inherent ambigui-
ties associated with occlusions and perspective projection.

These bounds can be easily computed for an evidential
model with a single scalar feature y. Given a probability
distribution p = {py,k = 1,...,T}, >, pr = 1 on the set
of training poses Q = {qi,k = 1,...,T}, the expectation



Models Arm experiment Legs experiment
7 Hand | Wrist [ Elbow [ Shoulder Left Thigh [ Left Knee [ Left Toe | Right Thigh [ Right Knee [ Right Toe
RVM 31.2 13.6 23.0 4.5 50.5 41.7 47.2 42.7 45.0 46.4
GPR 25.0 10.6 18.6 7.0 443 35.0 37.2 36.5 35.3 37.3
BMR 17.3 7.95 13.03 2.7 25.41 19.29 21.84 19.88 23.00 22.71
TABLE 1

ESTIMATION ERRORS (IN CENTIMETERS) OF RVM, GPR AND BMR IN BOTH ARM AND LEG EXPERIMENTS.

function (13) maps any arbitrary feature value y to a pose
vector §(y). A belief estimate b(y) induced by a test feature
value y on Q, however, amounts to an entire convex set of
probability distributions P[b(y)] on Q (Section III-B3). For
each scalar component ¢¢ of the pose vector ¢, the pose
estimate associated with y admits then the bounds (16). These
are smooth functions of y € ), due to the smoothness of the
Gaussian likelihoods I" we employ to learn the approximate
feature space (Section III-A).

Theorem 2. 3 When using Bayesian belief functions for
inference, the lower and upper bounds (16) to the pose
estimates under a single-feature evidential model are both
smooth functions of y € Y.

Interval BMR estimates
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Fig. 9. The lower and upper bounds generated by Bayesian belief functions
in the toy situation concerning a single-feature evidential model described in
the text are depicted as solid blue curves. Using Dirichlet belief functions
delivers wider, more cautious bounds (dashed blue).

The bounds are depicted as solid blue lines in the example
of Figure 9, where we picked component ¢ = 2 of the sample
poses qi, g2 and ¢4 of the training sequence of the arm
experiment (Section IV), and built a single-feature evidential
model using y; = 23, yo = 38 and y4, = 86 as training
feature values and n = 2 as EM clusters (mapped to {q1, g2}
and {q4}, respectively, by the learnt refining). Within those
smooth bounds, any feature-to-pose mapping is admissible,
even discontinuous ones — a quite realistic situation, for
the actual pose space Q can have holes composed by non-
reachable poses, causing discontinuities in the feature-pose
map. When Dirichlet b.f.s are used (Section III-B2) and a mass

3Please refer to Appendix for the proof of this theorem.

m(0) is assigned to the whole approximate feature space O,
lower and upper bounds to pose estimates remain smooth (see
Figure 9, dashed blue lines) but are more widely separated. It
can be shown that the conjunctive combination of more than
one feature produces rather complex (but still smooth) upper
and lower boundaries to the admissible feature-pose map.

B. Critical comparison with GPR and RVM

Summarising, RVM, GPR and BMR all model a family of
feature-to-pose mappings, albeit of a different nature. RVM
is actually a special case of GPR under sparsity constrains.
In GPR and RVM, mappings are one-to-one, and probability
distributions are defined over the set of mappings. The form
of the family of mappings actually modeled is determined by
the choice of a covariance function, which also determines a
number of their features such as periodicity, continuity, etc..
After conditioning a Gaussian Process by the training data,
we obtain a prediction function (17) on Q which follows a
Gaussian distribution, given a test observation and the trained
model parameters. The predicted mean and variance vary
according to the test observations. In particular, the training
samples are assumed correct and trustworthy — as a result, the
posterior GP has zero uncertainty there.

In opposition, Belief Modeling Regression produces a ran-
dom set, an entire convex set of discrete but arbitrary PDFs
on the set of sample poses Q, rather than on Q. This random
set (Section V-A) corresponds to a constrained family of
mappings, rather than a distribution over the possible maps as
in GPR. The resulting mappings are arbitrary and one-to-many,
as long as they generate the learned refinings under the training
data. A trait of BMR is that uncertainty is modelled even in
correspondence of sample feature values: compare Figure 9,
where the lower and upper mappings are separated even in
correspondence of y1,y2 and yq4.

Different is the treatment of the uncertainty induced by the
scarcity of samples (i.e., far from the samples). In GPR the
standard deviation of the prediction function is influenced by
both the type of prior GP selected and the distance from the
samples. In BMR the width of the interval of pose estimates
is influenced by both the number n; of EM feature clusters,
and the mass m(©;) Dirichlet belief functions assign to the
whole (approximate) feature space.

VI. CONCLUSIONS

In this paper we presented a novel approach to example-
based pose estimation, in which the available evidence comes
in the form of a training set of images containing sample poses
of an unspecified object, whose location within those images
is provided. Ground truth is available in the training stage
in the form of the configurations of these sample poses. An



evidential model of the object is learned from the training
data, under weak likelihood models built separately for each
feature, and is exploited to estimate the pose of the object in
any test image. Framing the problem within belief calculus is
natural as feature-pose maps induce belief functions in the
pose space, and it allows to exploit the available, limited
evidence without additional assumptions, with the goal of
producing the most sensible possible estimate with an attached
degree of reliability. The approach was tested in a fairly
challenging human pose recovery setup where it was shown
to outperform popular competitors, demonstrating its potential
even in the presence of poor feature representations. These
results open a number of interesting directions: a proper em-
pirical testing of object localization algorithms in conjunction
with the proposed Belief Modeling Regression approach; an
efficient conflict resolution mechanism able to discriminate as
much as possible foreground from background features; the
testing of the framework in higher-dimensional settings; the
development of a fully-fledged ‘evidential tracking’ approach
to exploit temporal information.

APPENDIX
A. Relevance Vector Machines

A Relevance Vector Machine (RVM) [52] is a sparse
Bayesian model, learning a probabilistic mapping between
inputs and targets (such as feature-pose maps in human
pose estimation [14], [16]). In RVMs, given a set of exam-
ple vectors {x,})_, and the corresponding (scalar) targets
{t,}N_,, the latter are modeled as linearly-weighted sums
of M basis functions ®(x) = [¢1(x), p2(x), ..., dar(x)]T:
t(x;w) = 27]\5:1 Wmom(x) = wT®(x), with weights

w = [wy,wa,...,wp| . Sparsity can be obtained by impos-

ing a prior on the weights as follows: p(w|aq,...,an) =
M M 3 M

(2m) B Do 1a%exp{f%2m=1 w2, t, where a =

[@1,...,ap] are hyperparameters, each «,, independently
controlling the variance of each weight w,,. Hyperpriors
over « are defined via Gamma distributions: p(a) =
Hm 1 Gamma(ay,|a,b), p(8) = Gamma(f|c,d), where
B = o072, Gamma(ala,b) = TI'(a)~'b*a®le b, and
I'(a) = [;°t* 'e~'dt is the gamma function. The relevance
of each basis function is represented by one hyperparameter.

Assuming the outputs are observed with a Gaussian
noise of zero mean and standard deviation equal to o, the
vectors t = [tq,...,tn]" of target values are also normally
distributed around the sample mean t: p(t|c,0?) ~ N(%,0).
Given data and hyperparameters, the Bayesmn posterior

of the Weights is: p(wlt,a,0?) = %
(2m)~ |Z\ Zexp 2T((.u N)TZ Yw—m)},

where ¥ = (072070 + A)7L, pu = o7220Tt
and A = diag(ai,as9,...,apy). The corresponding

marginal likelihood can be computed by integrating out
the weights: p(tle,0?) = [p(tlw,o?)p(wla)dw =

-1 - 1
|J2I+<I>A 7<I>T\ 2exp{ tT o2 + A~ 1(I)T 1t}
2
In this work, we use Mike Tipping’s standard RVM im-
plementation*. In the training stage, the marginal likelihood

“http://www.relevancevector.com

is maximized to find the optimal hyperparameters oaop

and o%p via the followmg update equations: ol =

Zgz, (02)New = N”tz+}“‘llm, until a certain number of
iterations is reached, or changes are below a threshold. Here
Ym = 1 — amZmm, Ym € [0,1] is a measure of ‘well-

determinedness’ of the parameter w,,, and ,,,, denotes the
diagonal values of the posterior weight covariance matrix.

B. Gaussian Process Regression

Gaussian Process Regression (GPR) [28], [33], [34] as-
sumes that any finite set of observations X = [x1,...,Xn]
is drawn from a multivariate Gaussian distribution. A Gaus-
sian process can be seen as a distribution over func-
tions, and the distribution of the vector of target val-
ues t = [ty,...,tn]" is completely specified by the mean
m(X) and the covariance matrix K (X, X) of the input
matrix X: t ~ GP(m(X),K(X,X)). The covariance
matrix K(X,X) = [k(xp,%q),p,¢ = 1,..,N] is fre-
quently deﬁned as a Gaussian function, with: k(x,,x,) =
o} 2exp {—1(xp — x¢)TM(x, — Xq) } +026,4, where 6, = 1
iff p=g¢q and 0 otherwise. Its hyperparameters are the standard
deviation o of the noise-free observations, that of the Gaus-
sian noise (0,), and the parameters {M} of the symmetric
matrix M, all collected in a vector § = [{M}, 0%, 07].

Given a training set of noisy observations
{(xk,tx)}k=1,..n (where N denotes the number of
training samples, and t; is a scalar target value Vk), we
can find the optimal hyperparameters of the Gaussian
Process GP which best fits the data by maximizing
the log marginal likelihood (see [28] for more details):
log p(t|X,0) = —3tTK; 't — llog|K,| — Llog(27), where
K; = K(X,X) + o21. Given the optimal hyperparameters,
GPR predicts the distribution of a test output vector t* from
the matrix of the test inputs X* as follows:
~ N(E, K (X", X)),

p(t* X, t, X™) 17)

with predicted mean: t* = K(X* X)K(X,X) +
o21)7't, and predicted covariance matrix: K*(X*, X*) =
K(X*, X*) - K(X*, X)[K(X,X)+02I] 'K (X, X*)+02.
This amounts to having an entire family of regression models,
all of which agree with the sample observations.

Our implementation is based on the standard GPR im-
plementation by Carl Edward Rasmussen and Hannes Nick-
isch (http://www.gaussianprocess.org/gpml/code/matlab/doc/).
For training multiple hyperparameters, a line search strategy
is utilized for iterative optimization.

C. Proof of Theorem 2

Proof. We prove the statement for the upper bound — a dual
proof holds for the lower bound. Let n be the number of EM
clusters in the feature space ). As we encode feature values
y as Bayesian belief functions on the approximate feature
space O, the belief estimate l;(y) has n disjoint focal elements
Ql,..., O™ (each the image of an EM cluster in )) with
mass m(Q7) = TY(y)/Z, Z a normalization factor. There-
fore, we can decompose the upper bound as: max§°(y) =



max Yoy, e Pr(y)ay = max(3j, Y, eoiPe(¥)ap) =
21 max(}, 55 Pr(y)qy). By definition, every distribu-

tion p € P[b(y)] is such that que@ pe(y) = m(Qj) —

_ M
mank e Qj q}f;?
i (

EW Hence: max(Y,, <o) pr(y)ag) = =%
for the max is obtained by assigning all mass Ty) to the
sample with the largest pose component value. The quantity
max, .5; g, does not depend on the test feature value ,
but is a function of the samples in the considered focal
element (set of training poses) Q7. Thus, max§®(y) =
+ > I (y) max, ca; gy is a smooth function, as a linear
combination of the smooth functions IV (y). O

ACKNOWLEDGMENTS

This work was supported in part by grants from Natu-
ral Science Foundation of Shandong (ZR2015FL015), Qing-
dao Technology Plan (15-9-1-69-jch), National 973 Program
(2015CB352502), Ministry of Science and Technology of
China (2015IM010300) and Fundamental Research Funds for
the Central Universities. The work was also partly supported
by the UK Engineering and Physical Sciences Research Coun-
cil (EPSRC), under Grant EP/1018719/1.

REFERENCES

[1] J. Deutscher, A. Blake and I. Reid, “Articulated body motion capture by
annealed particle filtering,” CVPR’00, pp. 126-133.

[2] H. Sidenbladh et al, “Stochastic tracking of 3D human figures using 2d
image motion,” ECCV’00, pp. 702-718.

[3] C. Sminchisescu and B. Triggs, “Kinematic jump processes for monocular
3d human tracking,” CVPR’03, pp. 69—76.

[4] A. Elgammal and C. Lee, “Inferring 3d body pose from silhouettes using
activity manifold learning,” CVPR’04, vol. 2, pp. 681-688.

[5] G. Shakhnarovich, P. Viola, and T. Darrell, “Fast pose estimation with
parameter-sensitive hashing,” ICCV’03, pp. 750-757.

[6] C. Sminchisescu et al, “Discriminative density propagation for 3d human
motion estimation,” CVPR’05, vol. 1, pp. 390-397.

[7] T.-P. Tian, R. Li and S. Sclaroff, “Articulated pose estimation in a learned
smooth space of feasible solutions,” CVPR’05.

[8] R. Poppe and M. Poel, “Comparison of silhouette shape descriptors for
example-based human pose recovery,” AFGR’06, pp. 541-546.

[9] Y. Zheng et al, “Example based non-rigid shape detection,” ECCV’06,
vol. 4, pp. 423-436.

[10] S. Niyogi and W. T. Freeman, “Example-based head tracking,”
AFGR’96, pp. 374-378.

[11] V. Athitsos et al, “Boostmap: A method for efficient approximate
similarity rankings,” CVPR’04, vol. 2, pp. 268-275.

[12] R. Rosales and S. Sclaroff, “Specialized mappings and the estimation
of human body pose from a single image,” IEEE Workshop on Human
Motion, 2000, pp. 19-24.

[13] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” CVPR’05, pp. 886-893.

[14] A. Agarwal and B. Triggs, “Recovering 3D human pose from monocular
images,” PAMI 28(1) (2006), pp. 44-58.

[15] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” CVPR’01, vol. 1, pp. 511-518.

[16] A. Thayananthan et al, “Multivariate relevance vector machines for
tracking,” ECCV’06, vol. 3, pp. 124-138.

[17] G. Mori and J. Malik, “Recovering 3D human body configurations using
shape contexts,” PAMI 28(7), pp. 1052-1062.

[18] J. Meynet, T. Arsan, J. C. Mota and J.-P. Thiran, “Fast multi-view face
tracking with pose estimation,” EUSIPCO’08.

[19] G. Shafer, A Mathematical Theory of Evidence. Princeton University
Press, 1976.

[20] A. Dempster, “Upper and lower probabilities induced by a multivariate
mapping,” Ann. Math. Statist. 38 (1967), pp. 325-339.

[21] F. Cuzzolin, Visions of a generalized probability theory. Lambert Aca-
demic Publishing, September 24, 2014.

[22] G. Shafer, “Perspectives on the theory and practice of belief functions,”
1JAR 4 (1990), pp. 323-362.

[23] P. Smets and R. Kennes, “The transferable belief model,” Artificial
Intelligence 66 (1994), pp. 191-234.

[24] N. Howe et al, “Bayesian reconstruction of 3D human motion from
single-camera video,” NIPS’99.

[25] H. Sidenbladh et al, “A framework for modeling the appearance of 3D
articulated figures,” AFGR’00.

[26] R. Rosales and S. Sclaroff, “Learning and synthesizing human body
motion and posture,” AFGR’00.

[27] P. Felzenszwalb, R. Girshick, D. McAllester and D. Ramanan, “Object
detection with discriminatively trained part based models,” PAMI 32(9)
(2010), pp. 1627-1645.

[28] C. Rasmussen and C. Williams, Gaussian Processes for Machine Learn-
ing. MIT Press, 2006.

[29] A. Moore, “Very fast EM-based mixture model clustering using mul-
tiresolution KD-trees,” NIPS’99, pp. 543-549.

[30] F. Cuzzolin, The geometry of uncertainty. Springer-Verlag, 2017.

[31] L Levi, The enterprise of knowledge. MIT Press, 1980.

[32] W. Gong, J. Brauer, M. Arens and J. Gonzalez, “Modeling vs. learn-
ing approaches for monocular 3D human pose estimation,” ICCV’I] -
PERHAPS Workshop.

[33] L. Bo and C. Sminchisescu, “Structured output-associative regression,”
CVPR’09, pp. 2403-2410.

[34] O. Rudovic and M. Pantic, “Shape-constrained Gaussian process re-
gression for facial-point-based head-pose normalization,” ICCV’11, pp.
1495-1502.

[35] G. Shafer, “Allocations of probability,” Annals of Probability 7(5)
(1979), pp. 827-839.

[36] H. Nguyen, “On random sets and belief functions,” J. Mathematical
Analysis and Applications 65 (1978), pp. 531-542.

[37] T. Darrell, G. Gordon, M. Harville and J. Woodfill, “Integrated person
tracking using stereo, color, and pattern detection,” CVPR’98, pp. 601—
608.

[38] T. B. Moeslund and E. Granum, “3D human pose estimation using 2D-
data and an alternative phase space representation,” CVPR’00 - Workshop
on Human Modeling, Analysis and Synthesis.

[39] C. Sminchisescu and B. Triggs, “Covariance scaled sampling for monoc-
ular 3D body tracking,” CVPR’0].

[40] H. Sidenbladh and M. Black, “Learning the statistics of people in images
and video,” IJCV 54 (2003), pp. 189-209.

[41] F. Cuzzolin, “Geometry of Dempster’s rule of combination,” /IEEE Tr.
SMC-B 34(2) (2004), pp. 961-977.

[42] P. Smets, “Analyzing the combination of coflicting belief functions,”
Information Fusion 8(4) (2007), pp. 387-412.

[43] A. Jsang and S. Pope, “Normalising the consensus operator for belief
fusion,” AJCAI’06.

[44] P. Smets, “Decision making in the TBM: the necessity of the pignistic
transformation,” IJAR 38(2) (2005), pp. 133-147.

[45] F. Voorbraak, “A computationally efficient approximation of Dempster-
Shafer theory,” Int. J. Man-Machine Studies 30 (1989), pp. 525-536.
[46] F. Cuzzolin, “Geometry of relative plausibility and relative belief of

singletons,” AMAI 59(1) (2010), pp. 47-79.

[47] ——, “On the relative belief transform,” IJAR 53(5) (2012), pp. 786—
804.

[48] ——, “Two new Bayesian approximations of belief functions based on
convex geometry,” I[EEE Tr. SMC-B 37(4) (2007), pp. 993-1008.

[49] J. Schubert, “Fast Dempster-Shafer clustering using a neural network
structure,” IPMU’98, pp. 1438-1445.

[50] T. Denoeux and A. B. Yaghlane, “Approximating the combination of
belief functions using the fast Moebius transform in a coarsened frame,”
1JAR 31(1-2) (2002), pp. 77-101.

[51] S. Moral and A. Salmeron, “A Monte-Carlo algorithm for combining
Dempster-Shafer belief based on approximate pre-computation,” EC-
SQARU’99, pp. 305-315.

[52] M. E. Tipping, “Sparse Bayesian learning and the Relevance Vector
Machine,” JMLR 1 (2001), pp. 211-244.





