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H I G H L I G H T S

Temperature and SOC are the most influential factors on power availability.
Effects of stack pressure (20–60 kPa) were negligible.
Load history can potentially influence power availability.
Cell-to-cell variations were more significant than experimental errors.
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A B S T R A C T

The reliable and cost-effective operation of battery packs relies on state of power (SOP) algorithms to estimate
the available power of the system. The challenges in developing these algorithms include the nonlinear
behavior of batteries under high-power demands and the impact of temperature, state of charge (SOC), stack
pressure and previous load history at high C-rates. This study employs analysis of variance (ANOVA) and
design of experiments (DOE) to assess the impact of key factors on the power output of lithium-ion LCO pouch
cells. The findings demonstrate that the effect of cell-to-cell variation on power output is more pronounced
than degradation and random errors of the experiments. Further analysis shows that temperature and state
of charge have a significant influence on power availability (𝑝-value <0.05), while stack pressure does not
show a significant impact within the tested ranges (20–60 kPa). Notably, the load history factor approached
the significance threshold with a 𝑝-value of 0.06, highlighting its potential importance in highly dynamic load
profiles at increased C-rates. This research underscores the critical factors influencing battery performance and
emphasizes the necessity of meticulous statistical methods in the development of accurate power estimation
methods.
1. Introduction

Enabling the battery to operate at its limits is a key element for
high-performance automotive applications. For this purpose, advanced
battery management systems employ state of power (SOP) algorithms
to estimate the maximum power a battery can source or sink within
a time horizon while ensuring the operating limits are not violated.
For instance, constraints on state of charge (SOC), voltage, current,
and temperature underscore the importance of accurately estimating
the available power of a battery [1,2]. However, developing such algo-
rithms is challenging due to the predictive nature of power estimation,
and the nonlinear behavior of batteries. Hence, conducting experiments
becomes essential to comprehend the impact of various factors on the
available power and to provide guidance for validating the algorithms.

Different methods to assess SOP have been extensively reported
in [3]. The experiments were classified according to the power pulse
employed in the validation tests. Constant current (CC), constant volt-
age (CV), or constant current constant voltage (CCCV), constant voltage
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constant power (CVCP) pulses were reported in previous study, and
throughout investigated in [4]. In [5], validation methods were further
classified into static and dynamic SOP tests. Static SOP tests employ
pulses from a rest condition, such as the Hybrid Pulse Power Characteri-
zation (HPPC) test [6]. Even though HPPC tests are useful for parameter
identification of battery models [5–7], it computes the power available
based on a simple Rint battery model, neglecting changes of SOC
during the pulse and diffusion dynamics of the battery [8–10]. On the
other hand, dynamic tests attempt to reproduce real-world operating
conditions by inserting current pulses at random points of a drive
cycle [11–13].

At the system level, the battery pack consists of many cells con-
nected in series and parallel to meet voltage and capacity requirements.
However, due to manufacturing tolerances and material differences at
the microscale level, cell-to-cell variations exist, limiting the power
available of the pack by its weakest cell [14,15]. That is, the cell
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with the highest voltage during charge or the lowest voltage during
discharge.

The cell format factor also plays a role. Pouch-format cells have
a flexible aluminum casing, allowing the cell to expand and contract
during cycling due to the intercalation of lithium ions within the
electrodes. The lack of mechanical support makes pouch cells sensitive
to external pressure. Particularly, studies have demonstrated that stack
pressure increases the power output by decreasing impedance at the
cost of reduced capacity and life span [16–21].

Due to the dynamics of lithium-ion transport, the power available
is also affected by the previous load history of the cell. During cycling,
diffusion of lithium ions occurs at a slower timescale compared to
the instantaneous polarization effects. That is, the terminal voltage
deviation from the battery open-circuit voltage under load [22]. Conse-
quently, when a dynamic load is applied (i.e., a drive cycle), the voltage
response at a given time instant comprises the instantaneous polariza-
tion and previous diffusion processes that are still undergoing [23]. For
this reason, dynamic SOP tests validate SOP predictions by taking the
load history into account . Finally, temperature and SOC significantly
impact the power output of a cell. Higher temperatures increase power
capabilities but lead to accelerated degradation over time. Also, for a
given load, the power output is higher at higher SOCs [24–26].

The effects of stack pressure, load history, SOC, and temperature
on a lithium-ion cell have been reported in the literature. However, a
comparative study of these factors on power available is still missing.
Ranking factors by the order of impact supports efficient development
of SOP algorithms: if the parameters with the most impact are known,
modeling efforts are better informed. Unfortunately, extensive testing
using high current loads may introduce errors to the results because
of induced battery degradation. To address this challenge, the experi-
mental framework developed in this paper sheds light on how to test
the sensitivity of a battery to factors of interest while mitigating the
degradation effects.

Two sets of experiments were conducted using lithium cobalt ox-
ide (LCO) high-power pouch cells. The first experiment investigated
whether cell-to-cell variations or battery degradation were the domi-
nant effects in the tests. The second experiment quantified the impact
of stack pressure, load history, SOC, and temperature on the power
output.

2. Methodology

This section outlines the methods used to evaluate which factors
influence the power output of a high-power pouch cell. It begins with
the specifications of the tested cells, followed by a description of the
experimental setup. Next, a brief introduction to the statistical methods
is provided. The final part presents the Design of the Experiments (DOE)
approach.

2.1. Cell specifications

The experiments were conducted on five fresh Melasta 6.8 Ah
lithium cobalt oxide (LCO) cells. The cell specifications are given in
Table 1.

Before the tests, the cells were preconditioned at 25 ◦C by five cycles
t 1C discharge rate and C/2 charge rate.

.2. Experimental setup

The experimental setup is shown in Fig. 1(a). Two 60 A load
hannels of an Arbin LBT-21084-HC cell cycler were used in parallel
o perform the tests. The voltage measurement precision of the cycler
s rated as 0.75 mV. The ambient temperature was controlled by a
hermal chamber Binder KB115, in which the temperature fluctuation
s expected to be within ±0.1 ◦C, according to the manufacturer. Addi-
ionally, three type-T thermocouples rated to an accuracy of ±0.5 ◦C
 p

2 
able 1
ell specifications.
Parameter Specification

Cell Melasta SLPBB142124
Cathode material Lithium cobalt oxide (LiCoO2)
Form factor Pouch
Dimensions 42 × 125 × 10.7 mm (W × H × T)
Weight 124 g
Nominal capacity 6.8 Ah
Maximum continuous charge 2 C
Maximum continuous discharge 15 C
Voltage operating range 3 V–4.2 V
Operating temperature −20–60 ◦C

Fig. 1. (a) Experimental setup for the power tests. (b) Schematic of the stack pressure
device developed to pressurize the pouch cell (left), location of thermocouples and
force sensors (right).

were used to measure the cell surface temperature at the center, and
near the negative and positive terminals.

Stack pressure was applied to the cell using the device illustrated
in Fig. 1(b), developed based on previous work of [20,27,28]. It uses
prings to compress the cell against two plates made of a Tufnol, a
ynthetic resin bonded laminated composite material with high me-
hanical and electrical insulation properties. The pressure data was
omputed using measurements of two TE FX29 force sensors connected
o a Teensy microcontroller. Fig. 1(b) also illustrates the location of
hermocouples and force sensors.
To improve the repeatability of the experiments, the load cables

nd voltage sensing cables setup was not changed throughout the
ests [29]. The design of the pressure device allows swapping cells
ithout disassembling the load and voltage sensing cables.

.3. Test protocol

The goal of the experiments developed in this study was to evaluate
he effects of SOC, temperature, stack pressure, and load history on
ower output. Therefore, the power output was the response variable
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Fig. 2. Experiment to assess the power available in a cell. (a) Overview of the test schedule. (b) Zoom into the power test comprised of a drive cycle followed by a 30-seconds
constant current pulse. Charge current is positive (regenerative braking), discharge is negative.
of the experiments and defined through Eq. (1) as the arithmetic mean
power output from a constant current pulse.

𝑃𝑚𝑒𝑎𝑛 =
1
𝑛

𝑛
∑

𝑖=1
𝑣𝑖.𝐼 (1)

Specifically, 𝑃𝑚𝑒𝑎𝑛 is the arithmetic mean power, 𝑛 is the total
number of measurements, 𝑣𝑖 is the 𝑖th terminal voltage measurement
and I is the current.

To account for the load history of the battery, a constant current
pulse was inserted into a drive cycle. Because this research focuses on
high-performance automotive applications, the drive cycle selected was
representative of a four-wheel-drive (4WD) electric Formula Student
vehicle completing one lap of an endurance event.1 Hereafter, the
combination of the drive cycle and the constant current pulse will be
called the power test. Fig. 2 provides an overview of the test schedule
(a), and a closer view of the power test (b).

The battery was discharged to the cut-off voltage before a constant-
current constant-voltage (CCCV) charge to the target SOC based on a
target voltage. A rest period was included to allow the open-circuit
voltage (OCV) to stabilize, allow the cell to soak into the test temper-
ature, and to calibrate the stack pressure device to the target pressure.
Then, a direct current internal resistance (DCIR) test was performed
to quantify the power fade of the battery [30]. Even though the
internal resistance could be computed using the power pulse, a method
proposed by Arbin Instruments was used to improve the accuracy of the
measurements [31]. This method employs ten small amplitude charge
and discharge pulses, computing the internal resistance by taking the
average of the resistance measurements of each pulse. In addition, a
reference load profile was added to the reference performance test
(RPT) using the same drive cycle shown in Fig. 2(b). The purpose of
the reference load was to establish the baseline measurements of the
voltage response before the power test. The battery was then recharged
to the target SOC and allowed to rest once more before the power test.

Published literature suggests that a pulse of 30 s is long enough
for the polarization overvoltages caused by ionic mass transport, solid-
state lithium diffusion, and charge-transfer kinetics to become signif-
icant [23,30]. Therefore, the 68 A pulse (10C) was applied for 30 s,
designed to amplify the polarization overvoltages and the effect of
diffusion limitation of the cell.

1 The endurance is an autocross style racing course of the Formula Student
ompetition. The load profile was developed by the 2022 and 2023 Oxford
rookes Racing Formula Student team using the lap time simulation software
VL VSM™ and data from racetrack testing.
3 
2.4. Statistical methods

The analysis of variance (ANOVA) approach [32] was employed
to evaluate the impact of cell-to-cell variations and cell degradation
on mean power by investigating theoretically identical cells. Subse-
quently, the same approach was used to understand the significance
of specific factors affecting mean power. The advantage of ANOVA is
that it determines the statistical significance of experimental results
by comparing variances. Specifically, the variance due to experimental
errors (e.g., random errors and nuisance factors) is compared to the
variance due to parameter changes in the experiment. In the field of
statistical inference, these parameter changes are referred to as treat-
ments. Therefore, ANOVA determines whether the observed differences
in results are due to parameter changes or fall within the range of
experimental errors.

The basic idea is that each test is performed multiple times (repli-
cates) to assess the variance due to experimental errors. Then, the
variance from different tests (using different experimental parameters)
is computed and compared against the variance due to errors. ANOVA
datasets are often presented as box plots to visualize these variances.
For example, if five cells are tested to identify cell-to-cell variations,
there will be five box plots, one for each cell. The range of each box plot
illustrates the variance due to experimental errors, while the differences
in means between the box plots indicate the variance due to differences
between cells.

A formal definition of the approach is based on the decomposition
of the total sum of squares 𝑆𝑆𝑇 𝑜𝑡𝑎𝑙 (total variability) into the sum of the
squares 𝑆𝑆𝑇 𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠 due to treatments (variability between groups) and
the sum of the squares 𝑆𝑆𝐸𝑟𝑟𝑜𝑟 due to random error (variability within
groups) as follows

𝑆𝑆𝑇 𝑜𝑡𝑎𝑙 = 𝑆𝑆𝑇 𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠 + 𝑆𝑆𝐸𝑟𝑟𝑜𝑟 (2)

The sum of squares (SS) measures the deviation of the data from
the mean. That is, taking the arithmetic mean from all experiments of
all tests, the SS represents the deviation of within groups (experimental
error) or between groups (treatment) with respect to the mean. The SS
provides the foundation to compute the F-ratio, which is the core of the
ANOVA. The F-ratio is defined as the ratio between the mean squares
due to treatments and the random error:

𝐹 =
𝑀𝑆𝑇 𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠
𝑀𝑆𝐸𝑟𝑟𝑜𝑟

(3)

where the mean square due to treatments is defined as

𝑀𝑆𝑇 𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠 =
𝑆𝑆𝑇 𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠 (4)
(𝑎 − 1)
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Table 2
Design matrix of the experiments.
Parameter Type Description

Pulse arithmetic mean power Response variable The metric being observed in response to the manipulated design factors in the
experiment.

Pulse C-rate Held constant factor Factors that are intentionally kept constant throughout the experiment to eliminate
their influence.Pulse duration

State of charge

Design factor Factors deliberately manipulated in the experiment to observe their effects on the
response variable.

Temperature
Stack pressures
Load history

Cell-to-cell variations Nuisance factor Factors that are not of primary interest but might still impact the results and need
to be controlled or noted.Degradation
and the mean square due to the error as

𝑀𝑆𝐸𝑟𝑟𝑜𝑟 =
𝑆𝑆𝐸𝑟𝑟𝑜𝑟
(𝑁 − 𝑎)

(5)

where 𝑎 is the number of groups, and 𝑁 is the number of test replicates.
The degree of freedom of treatments is (𝑎 − 1), and the degree of
freedom of the error is (𝑁 − 𝑎).

Considering a null hypothesis, 𝐻0, that the means 𝜇 of different
groups are the same, and an alternative hypothesis, 𝐻1, that at least
one of the means 𝜇 is significantly different, the ANOVA tests the null
hypothesis (Eq. (6)) against the alternative hypothesis (Eq. (7)).

𝐻0 ∶ 𝜇1 = 𝜇2 = 𝜇𝑖 (6)

𝐻1 ∶ 𝜇1 ≠ 𝜇2 ≠ 𝜇𝑖 (7)

Given an alpha level2 (critical 𝑝-value) for accepting or rejecting
he null hypothesis, if the F-ratio is significant, it indicates that at least
ne group has a mean significantly different from others. The F ratio
Eq. (3)) is used to calculate the p-value based on a F-distribution [32].
The 𝑝-value indicates the degree of compatibility between the statis-

ical model and the observed data. It indicates how well the observed
ata matches the statistical model’s predictions, not the probability
f the hypothesis being true. For instance, a p-value of 0.1 shows
nsufficient evidence against the null hypothesis at a 0.05 significance
evel.
While the one-way ANOVA described so far performs well in re-

ealing the impact of a single change of levels, it fails to provide
ignificant information when multiple levels are tested because of the
amily-wise error rates. That is, the increase in the probability of
ncorrectly rejecting the null hypothesis (type I error, false positive),
ue to the compound effect of applying the alpha level in multiple
omparisons3 [33,34]. To adjust the alpha levels in multiple compar-
sons, this work uses the Tukey–Kramer method [33] which provides
balanced approach between types I and II errors (false positives
nd false negatives, respectively). It performs a pairwise test of a null
ypothesis that two tests have the same means, against the alternative
ypothesis that the means are different.
The confidence level of hypothesis testing is influenced by the

ample size (i.e., experiment repetitions), making it one of the most
rucial aspects of an experiment [32]. However, the sample size is
ot predetermined because it depends on the system’s sensitivity to a
iven input. For instance, if a design factor has a minor impact on the
esponse variable, detecting its effects is more difficult, requiring more
eplicates to achieve the same confidence level compared to a factor

2 The alpha level 𝛼 is the accepted probability of erroneously rejecting the
ull hypothesis (type I error).
3 The family-wise error is given by the equation 1− (1− 𝛼)𝑛, where 𝛼 is the

alpha level (critical value) of the accepted type I error in the experiment, and
𝑛 is the number of comparisons. If 𝛼 = 0.05 and 𝑛 = 10 comparisons are made,
the family-wise error is not 0.05, but 1 − (1 − 0.05)10 ≈ 0.4. This means the

probability of false positives increases from 5% to 40%.

4 
with a larger impact. The threshold of a small or large effect is called
the minimum detectable effect (MDE). The magnitude of the MDE is
inversely proportional to the sample size required for a given power
level of the hypothesis test. That is, the probability of detecting an effect
that actually exists [35]. If the MDE is small, more tests are required
to detect an effect.

2.5. Design of experiments

In the field of DOE, factors that might influence the performance of
the system are called potential design factors or nuisance factors [32]. In
this study, SOC, ambient temperature, load history, and stack pressure
were selected as design factors, while the magnitude and the duration of
the pulse were held constant throughout the test matrix. Additionally,
the experiments were designed to minimize degradation and the impact
of cell-to-cell variations, the nuisance factors. Table 2 summarizes the
design matrix of the experiments.

The cell degradation cannot be neglected nor controlled during the
experiments. However, if the effect of degradation is small compared to
other nuisance factors such as cell-to-cell variations, it can be treated as
an allowed-to-vary factor, in which case the variability of performance
could be balanced in the test matrix by the randomization of the test
sequence [32].

The range and levels at which factors are varied or held constant
during tests are defined by the aims of the experiment and by the
design limitations of the cell. The SOC and ambient temperature are
well defined by cell manufacturers, in contrast to stack pressure which
often lacks information. According to Melasta [36], improving the
performance of this cell by applying stack pressure is challenging due to
trade-off with degradation. This information is in agreement with pub-
lished literature, where capacity fade increased when higher levels of
mechanical pressure were applied to the cell [37]. Furthermore, studies
have been reported in experiments using a wide range of pressure, from
8 to 1200 kPa [17,20]. Therefore, the stack pressure levels tested in
this study were chosen based on the intended application for a Formula
Student vehicle. The aim was to understand the sensitivity of the cell
to a small amount of pressure, here defined as <60 kPa.

The levels of SOC were selected with a bias towards the lower region
of SOC, where the state of power estimation is more challenging due to
the proximity to the OCV ‘‘knee-point’’ and the related highly nonlinear
behavior of the polarization voltage response on that operating region
[38]. The 10C constant current pulse discharges approximately 8% of
SOC in 30 s. Considering an initial SOC of 20%, the pulse brings the
SOC down to 12%, which is close enough for the overvoltages to reach
the knee-point of the OCV curve. From this point, the voltage response
drops abruptly towards the minimum voltage. Therefore, considering
the levels of C-rate and duration of the pulse proposed, 20% SOC was
the closer the experiments could get before over-discharging the cell.

The effects of load history were tested by inserting the 30-s pulse
into three points (initial conditions) of the drive cycle, as presented in
Fig. 3. The first initial condition (40 s) occurs at a high discharge point,
the second (50 s) at a neutral point where the current is close to zero,
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Fig. 3. Current-time plot of the Formula Student drive cycle shows the initial
onditions chosen to test the influence of load history on the power available.

Fig. 4. Flowchart of the experiments.

nd the last initial condition (61 s) contrasts with the first at a high
harge point of the drive cycle.
Leveraging the sequential experimentation proposed by [32], the

orkflow was divided into two experiments iteratively employing
mall-scale experiments to test assumptions, methods, assess the influ-
nce of factors and calibrate levels at which factors are tested in the
xperiments. Fig. 4 provides an overview of the experiments that can
be described as follows:

Experiment I – The first experiment was designed based on an
ANOVA to test the hypothesis that the effects of degradation would
be more significant than cell-to-cell variations. Depending on whether
degradation or cell-to-cell variations is the dominant effect, different
treatments are needed to mitigate the nuisance factors. If the effects
of cell degradation are dominant, cell-to-cell variations are treated

by a Randomized Complete Block Design (RCBD). This approach uses r

5 
different cells (blocks) for the experiments. The reasoning is that, by
spreading the test matrix into multiple fresh cells, fewer tests are
conducted on each cell, thus, decreasing the degradation of each cell.
On the other hand, if the effects of cell-to-cell variations are dominant,
the test matrix is executed using a single cell. The degradation is then
treated as an allow-to-vary factor, balanced by the randomization of
the test matrix [32].

Five different cells were used and the tests were repeated five times
for a total of 25 tests. Different cells have slightly different capacities,
which leads to slight differences of the initial SOC before each power
test. However, the capacity variations were less significant than the
differences in internal resistance of the cells. Therefore, the errors
caused by the small variations in the initial SOC were considered as
an allow-to-vary factor alongside small differences due to temperature
fluctuations of the thermal chamber.

As discussed previously in Section 2.4, computing the sample size
(i.e., number of test repetitions) is challenging because the standard
deviation of the experiments is not known in advance. Therefore, this
experiment was used as a pilot test to compute the standard deviation
in order to adjust the sample size required for the second experiment.

Experiment II – Designed to assess the impact of individual factors
on the power available. A one-factor-at-time (OFAT) approach was
used to increase or decrease the levels of factors of each test, one
at a time. This experiment was designed based on the outcomes of
the first experiments, from which it was learned that the cell-to-cell
variations were the dominant nuisance factor. Therefore, the test matrix
was executed in a single cell using a randomized run order. Four factors
were tested at three different levels. Based on the assessment of the
sample size used in the first experiment, each test was repeated three
times. Therefore, the test matrix comprised 36 tests from which 27 were
unique, and nine had overlap levels with other tests in the matrix. The
number of unique tests is calculated as 𝑛 = [𝑘(𝐿 − 1) + 1]𝑟, where 𝑘 is
he number of factors, 𝐿 is the number of levels, and 𝑟 is the number
f repetitions.
The experiments were designed in stages, adjusting the levels of

actors and testing procedures based on earlier findings. The experi-
ental data is available in [39]. Experiments I and II are presented in
ections 3 and 4, respectively. Each section will present the levels of
actors in a table format.

. Experiment I: effects of degradation, cell-to-cell variations, and
ample size

This experiment aimed to evaluate the impact of cell degradation
nd cell-to-cell variations in the tests. Because of the high C-rates
pplied continuously during the power pulse (10 C, 30 s), it was hy-
othesized that the degradation would be the dominant nuisance factor.
herefore, the null hypothesis, 𝐻0, was that, given the variability of the
xperiments due to cell degradation, the impact of cell-to-cell variations
ould not be statistically relevant. Thus, the alternative hypothesis, 𝐻1,
as that the variance introduced by using different cells would exceed
he effects of degradation.

0 ∶ 𝜇1 = 𝜇2 = 𝜇3 = 𝜇4 = 𝜇5 (8)

1 ∶ 𝜇1 ≠ 𝜇2 ≠ 𝜇3 ≠ 𝜇4 ≠ 𝜇5 (9)

here, 𝜇1−5 are the arithmetic mean power of the pulse observed for
ach test repeated for each of the five cells.

.1. Test procedure

Five identical test replicates were conducted in five fresh cells.
reference performance test (RPT) was conducted on each cell to
easure cell capacity at 25 ◦C. The internal resistance was measured
n every test according to the test protocol (Section 2.3). To assess the

epeatability of the stack pressure setup, the device was completely
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Table 3
Baseline level of factors for the tests.
T P Load history SOC

25 ◦C 40 kPa 50 s (neutral point) 20%

released by unscrewing the lock nuts and re-calibrating to the target
pressure before each test.

Repeatability of the tests and hence the variance within groups is
affected by experiment setup errors and cell degradation. The latter
might be neglected due the limited number of current loads to which
each cell is exposed. However, because of the high C-rate during the
power pulse, the degradation was also included in this ANOVA. Regard-
ing the variance between groups, the effect is attributed to cell-to-cell
variation.

The level of factors of the experiments are presented in Table 3.
To account for the nonlinear behavior of the terminal voltage at the
low SOC region, the baseline level of SOC was set to 20%. Moreover,
temperature and stack pressure were set to the mid-range of values ex-
pected for the application. Similarly, the initial condition was set to the
neutral point to minimize its effects (please refer to Fig. 3). In doing so,
the observed response variable was focused on the effects of low SOC
instead of a convoluted effect of SOC with low and high temperatures,
stack pressures, or high charge and discharge load history.

3.2. Sample size

The sample size was computed based on the highest standard de-
viation observed in the pilot experiments (𝜎 = 0.15 W, from cell 01).
Fig. 5 illustrates the effects of the sample size and MDE on the power
level of the hypothesis test. The data annotations show the MDE used
to compute each curve, both in watts, and in terms of the standard
deviation of the experiment. The higher the MDE, the smaller is the
sample size necessary to detect the effect. For a sample size of three
replicates, and a minimum detectable effect of 0.75 W, the power level
of the hypothesis test was above 90%. For the sake of comparison, a
variation of 0.5% of the maximum power output observed in the pilot
experiments would result in ≃ 1 W. Therefore, computing the sample
size based on a minimum detectable effect of 0.75 W was considered
reasonable.

4. Experiment II: individual effects of state of charge, tempera-
ture, stack pressure and load history

This experiment quantifies the individual contribution of factors
to power output. The experiment was based on a one-factor-at-time
approach consisting of a randomized sequence of experiments, where
a single factor was varied at a time regarding a baseline set of levels.

The null hypothesis, 𝐻0, was that the mean power output of the
cell was insensitive to different levels of factors. Thus, the alternative
hypothesis, 𝐻1, was that the variance observed was due to the changes
of levels.

𝐻0 ∶ 𝜇1,1 = 𝜇1,2 = 𝜇1,3 (10)

𝐻1 ∶ 𝜇1,1 ≠ 𝜇1,2 ≠ 𝜇1,3 (11)

where, the subscript of the mean power 𝜇𝑓,𝑙 represents the factor, 𝑓 ,
and the level, 𝑙, tested.

The test procedure is presented in Section 4.1, and the results in

Section 5.2. b
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Fig. 5. Power level of the hypothesis test.

4.1. Test procedure

The pool of tests was assigned to a random run order to balance
random errors and cell degradation across the test matrix [32]. The
ool of tests consisted of three levels for each of the four factors. Each
est was replicated three times, resulting in 27 unique tests.
The experiment started with an RPT at 25 ◦C to measure cell

apacity. Additionally, the internal resistance was measured in every
est according to the test protocol presented in Section 2.3. The internal
esistance was measured at the test temperature, target SOC and stack
ressure to detect changes caused by the factors. The levels tested are
resented in Table 4.
Similarly to experiment I, the baseline levels and ranges of factors

ere designed with a bias towards the low SOC range. The range
f ambient temperature was selected based on the expected range of
emperatures of the battery pack. However, the experiments conducted
t 15 ◦C resulted in voltages close to the minimum voltage limit of the
ell. Therefore, temperatures below 15 ◦C would limit either the C-rate
r the duration of the power pulse to avoid over-discharging the cell.
he levels of stack pressure were selected to test the sensitivity of the
ell to small variations in pressure.

. Results

.1. Experiment I

Fig. 6(a) shows a time-series plot of the power output of the five
ells tested during the 25 power tests. This plot shows the drive cycle
ollowed by the 30-s power pulse and provides a zoomed view of
he power pulse, from where the cell-to-cell variations can be noted.
he discharge power is negative, thus cell 05 has the highest power
utput among the cells tested. The results suggest that the effects of
he cell-to-cell variations are not significant during the drive cycle, but
re amplified by the relatively long duration and high C-rate of the
ower pulse. The zoomed part of the plot also suggests that the power
utput is impacted by individual characteristics of different cells, even
hough the discharge behavior is similar, monotonically decaying in a
onlinear fashion throughout the pulse.
The power pulse is further explored in Fig. 6(b). The plot shows

he mean power output of the five cells tested during the 30-s power
ulse. Each pulse was repeated five times on each cell. Therefore, each

oxplot contains five data points of the mean power. The median is the
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Table 4
Levels of factors for the one-factor-at-time experiments.
Factor Levels

Low Baseline High

SOC 20% 40% 60%
T 15 ◦C 30 ◦C 45 ◦C
P (Forcea) 20 kPa (105 N) 40 kPa (210 N) 60 kPa (315 N)
Load history 40 s (high discharge point) 50 s (neutral point) 61 s (high charge point)

a Total force applied to set the stack pressure.
Fig. 6. (a) Time-series plot of the power test. The charge power is positive, discharge is negative. (b) Boxplot of the mean power of the pulse.
esponse variable of the experiment, and the upper and lower quartile
epresent the 0.75 quantile and 0.25 quantile, respectively. Based on
he criteria of values 1.5x greater than the upper or lower interquartile
ange (IQR), no outliers were detected [40].
When comparing all the cells, the power output changed as much

s 2.1%, where cell 05 produced the highest mean power output
−230 W), and cell 02 the lowest (−225.2 W). The range of the box-
lots, identified by the distance between the maximum and minimum
alues, is relatively constant for tests conducted in the same cell, even
hough the tests performed on cell 01 had a variability 2.3 times
igher than other tests, attributed to random experimental errors. The
ispersion of the data can also be described in terms of the standard
eviation. Tests on cell 01 resulted in a standard deviation of 𝜎 =
.15 W, 2.2 times higher than the mean standard deviation observed on
he other tests (𝜎 = 0.07 W). The boxplot also provides insights about
he distribution of the data. The power output of the cells is evenly
istributed around the median (i.e, the median is centered regarding
he IQRs). When comparing different cells, even the highest skewness
cell 01, 𝑠 = −0.085) is close to zero, which indicates the data is
ymmetrical around the median.
Following the previous analysis, an ANOVA was conducted us-

ng MATLAB® software (version R2023b), where the variance within
roups could be compared to the variance between groups. The results
re summarized in Table 5, known as the ANOVA table [32]. The mean
quared error (MS column) represents the error of the model fitted
o the data. Therefore, the table shows that the mean squared error
ue to cell-to-cell variations (error between groups) is four orders of
agnitude higher than the error of the model fitted to the data within
roups (cell degradation and the experimental random errors). The lack
f fitness of the model leads to the rejection of the null hypothesis
hat the power output of different cells is the same, supporting the
ssumption that cell-to-cell variations have a greater impact on power
utput than the combined effects of cell degradation and random errors
f the experiment. This is demonstrated by the low p-value (<0.05)

resented in Table 5.
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Table 5
ANOVA results of pilot tests.
Source of variation SS DOF MS F-ratio p-value

Cell-to-cell variations 70.03 4 17.50 2032.14 8.71e−26
Errora 0.17 20 0.0086
Total 70.20 24

a Combined effects of cell degradation and experimental random errors.

5.2. Experiment II

The ANOVA in the second experiment was performed using Tukey’s
pairwise comparisons to correct the increase in the family error rate of
the multiple levels tested. Table 6 summarizes the statistical analysis
of the experiment. Columns ‘‘Level A’’ and ‘‘Level B’’ show the levels
of the pairwise comparison. The column ‘‘A-B’’ provides the difference
between the mean power output of Levels A and B. The lower and upper
limits of the confidence intervals (CI) are given in the third and fifth
columns, respectively. The tables also contain the mean power value
between the levels and the resulting 𝑝-value of the one-way ANOVA.

The SOC and temperature were identified as the dominant factors
influencing the cell power output. The variation of these factors (from
level A to B, column ‘‘A-B’’) resulted in a notable change in power,
e.g., with temperature variation from 15 ◦C to 45 ◦C the power change
was up to 22.5 W. Moreover, the difference of the means between
20% and 40% SOC was higher than the difference between 40% and
60%. This is explained by the increased internal resistance and the
lower electrical potential of the cell at lower SOC values. This finding
is statistically significant, as evidenced by the rejection of the null
hypothesis (p-value < 0.05).

In contrast, pressure and load history exhibited power variations
(column ‘‘A-B’’) that were generally more than two orders of magnitude
lower compared to the dominant factors. The 𝑝-value indicated a failure
to reject the null hypothesis, suggesting that changes in these factors

did not result in significant mean power variations. Additionally, the
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Table 6
Pairwise comparison of the effect of factors on power output.
Factor Level A Level B CI lower limit [W] A-B [W] CI upper limit [W] Mean [W] p-value

SOC
20% 40% 5.7 6.4 7.1 −232.0 3.2e−07
20% 60% 10.0 10.8 11.5 −238.5 4.4e−09
40% 60% 3.6 4.3 5.1 −242.8 3.7e−06

T
15 ◦C 30 ◦C 14.7 15.8 16.8 −216.3 4.7e−09
15 ◦C 45 ◦C 21.4 22.5 23.5 −232.1 3.3e−11
30 ◦C 45 ◦C 5.6 6.7 7.7 −238.8 2.8e−06

P
20 kPa 40 kPa −0.52 0.24 1.0 −232.0 0.61
20 kPa 60 kPa −0.47 0.29 1.1 −232.3 0.51
40 kPa 60 kPa −0.72 0.05 0.81 −232.4 0.98

Load hist.
40 s 50 s −1.2 −0.02 1.2 −233.2 0.99
40 s 61 s −2.3 −1.1 0.04 −233.2 0.06
50 s 61 s −2.3 −1.1 0.06 −232.1 0.06
confidence interval (CI) ranges included both positive and negative val-
ues, implying that they encompassed a null value and hence supporting
the conclusion that there is no meaningful difference between the levels
tested.

5.2.1. Effects of state of charge
The effect of SOC on power output is further explored in Fig. 8(a).

In the zoomed-in view of the plot, it is possible to observe the higher
impact of SOC at lower SOC values. The power fade at 20% SOC is also
accentuated after 10 s of the pulse. Nevertheless, the power output at
40% and 60% SOC follows a similar shape, albeit the accelerated power
fade at the end of the pulse is not noticeable due to the higher OCV of
the cell at that SOC region.

5.2.2. Effects of temperature
Fig. 8(b) demonstrates the effect of temperature on the power out-

put. Because of the large impact on the internal resistance, temperature
was expected to contribute the most to the power output. Noting that
the axis scale of the figures is the same, it is possible to observe that the
impact ±50% of temperature changes is even higher than the changes
in SOC. Furthermore, the power output decreases significantly at the
lowest temperature. This phenomenon is also observed in Table 6,
where the difference between 15 ◦C and 30 ◦C (column A-B) is higher
han the difference between 30◦ and 45 ◦C. In addition, at the lowest
emperature, the power fade is accelerated. This is noticeable in the last
hird of the pulse duration.
As expected, the contribution of temperature has the highest impact

mong the factors tested. According to Table 6, testing the cell 15 ◦C
elow the baseline temperature of 30 ◦C has an effect more than two
imes higher than if tested 15◦ above the baseline.

.2.3. Effects of stack pressure
The results for stack pressure variation are presented in Fig. 8(c).

he stack pressure applied does not seem to have a significant impact
n the power output of the cell. The zoomed-in detail reveals a subtle
rend of power increasing with the increase in stack pressure. This is
ligned with the ANOVA (Table 6) where the highest variation in power
output was observed by changing the pressure from 20 to 60 kPa.

5.2.4. Effects of load history
The effect of load history is presented in Fig. 8(d). To enhance the

readability of the graph, the datasets are aligned by the start of the 30-
s pulse. The impact of load history on the power output is negligible.
The zoomed-in plot shows the marginal differences between applying
the pulse after the high discharge point and a neutral point. However,
the results from the second and third pairwise comparisons (Table 6)
reveal an effect close to the minimum detectable effect of 1 W. In fact,
the p-values are slightly above the 0.05 threshold suggesting further
work is needed to better understand the load history effects in highly
dynamic load profiles at higher C-rates.
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Fig. 7. Internal resistance measurements during Experiment II (matrix composed of 27
tests).

5.2.5. Internal resistance measurements
The ANOVA of Experiment II was performed based on the findings

of the first experiment, which indicated that the cell-to-cell variations
were more significant than the experimental random errors and cell
degradation. However, because the test matrix of Experiment II was
significantly larger than Experiment I, the power fade due to the
increase in the internal resistance was monitored throughout the tests.
Fig. 7 provides the measurements of the DCIR for Experiment II matrix
(27 tests). The power fade would be characterized by an increase in
the internal resistance along the tests, which was not observed. For
enhanced visualization of a potential trend, the dotted line represents
the average internal resistance of all tests at 30 ◦C. It can be noted that
the data points are not trending upward, suggesting the capacity fade
due to degradation was negligible throughout the test matrix.

6. Conclusion

This study presented a two-phase experimental framework that
integrates ANOVA and DOE methodologies to statistically analyze the
influence of SOC, temperature, stack pressure, and load history on the
power output of lithium-ion pouch cells. Initial investigations aimed
to mitigate nuisance variables such as cell-to-cell variability and the
combined effects of degradation and random errors. The effects were
evaluated using the average power output data from a 30-s pulse (10C
rate) following a drive cycle for motorsport applications.

In the first experiment, five theoretically identical cells were tested
to discern the relative impacts of nuisance factors on power output.
A series of 25 experiments demonstrated that cell-to-cell variation
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Fig. 8. (a) Effects of SOC on the power output at 30 ◦C and 40 kPa of stack pressure. (b) Effects of temperature on the power output with 40 kPa of stack pressure and 40%
initial SOC. (c) Effects of stack pressure on the power output at 30 ◦C and 40% initial SOC. (d) Effects of load history on the power output at 30 ◦C, 40 kPa of stack pressure
and 40% initial SOC.
significantly affects the power output, with statistical tests rejecting the
null hypothesis of identical mean power outputs across cells.

Subsequently, the second experiment focused on a single cell, utiliz-
ing a randomized design space to control the experimental variability.
This phase included three replicates for each test setting to achieve a
90% power level in hypothesis testing. Notably, the maximum standard
deviation observed was 0.15 W, which is minimal relative to the overall
power output range of 225 W to 230 W, suggesting a high degree of
repeatability. An OFAT approach was employed, varying one of the
four factors while holding others constant, to isolate the effects of each
factor.

Temperature and SOC emerged as the most critical factors affecting
the power output, with their variations leading to significant power
discrepancies, often two orders of magnitude greater than those caused
by less influential factors. Although the effect of load history was
less significant, its impact on scenarios involving abrupt power shifts
and high C-rates needs further exploration. Despite a 𝑝-value close to
the conventional significance threshold of 0.05, further investigation
into load history is recommended, particularly at higher C-rates. The
stack pressure, conversely, demonstrated negligible influence within
the tested ranges.

The findings underscore the importance of individual factors on the
power performance of lithium-ion cells. Future works will employ a
comprehensive factorial design to thoroughly explore the interdepen-
dencies between pressure, temperature, SOC, and load history. The
9 
versatility of the proposed methodology suggests its applicability across
various physical systems and their phenomenological models, providing
a robust framework for exploring how calibration factors can influence
model responses under diverse operational conditions.
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