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Abstract Current state-of-the-art human action recognition is focused on the classification of 
temporally trimmed videos in which only one action occurs per frame. In this work we address the 
problem of action localisation and instance segmentation in which multiple concurrent actions of the 
same class may be segmented out of an image sequence. We cast the action tube extraction as an 
energy maximisation problem in which configurations of region proposals in each frame are assigned 
a cost and the best action tubes are selected via two passes of dynamic programming. One pass 
associates region proposals in space and time for each action category, and another pass is used to 
solve for the tube’s temporal extent and to enforce a smooth label sequence through the video. In 
addition, by taking advantage of recent work on action foreground-background segmentation, we 
are able to associate each tube with class-specific segmentations. We demonstrate the performance 
of our algorithm on the challenging LIRIS-HARL dataset and achieve a new state-of-the-art result 
which is 14.3 times better than previous methods. 

 

8.1 Introduction  

The existing competing approaches [8, 18, 21, 25] address the problem of action detection 
in a setting where videos contain single action category and most of them are temporally 
trimmed. In contrast, this chapter addresses the problems of both spatio-temporal action 
instance segmentation and action detection. Here, we consider real-world scenarios where 
videos often contain co-occurring action instances belong to different action categories. 
Consider the example shown in Fig. 8.1, where our proposed model performs action 
instance segmentation and detection of two cooccurring actions “leaving bag unattended” 
and “handshaking” which have different spatial and temporal extents within the given video 
sequence. The video is taken from the LIRIS-HARL dataset [13]. In this chapter, we propose a 
deep learning based framework for both action instance segmentation and detection, and 
evaluate the proposed model on the LIRIS-HARL dataset which is more challenging than the 
standard benchmarks: UCF-101-24 [23] and J-HMDB-21 [13] due to its multilabel and highly 
temporally untrimmed videos. To demonstrate the generality of the segmentation results 
on other standard benchmarks, we present some additional qualitative action instance 
segmentation results on the standard UCF-101-24 dataset (Sect. 8.4.4).  

Outline. This chapter is organized as follows. First we present an overview of the approach 
in Sect. 8.2. We then introduce the detailed methodology in Sect. 8.3. Finally, Sects. 8.4 and 
8.5 present the experimental validation and discussion respectively.  

Related publication. The work presented in this chapter has appeared in arXiv [20]. 



 

 

 

Fig. 8.1 A video sequence taken from the LIRIS-HARL dataset plotted in space-and time. a A top 
down view of the video plotted with the detected action tubes of class “handshaking” in green, and 
“person leaves baggage unattended” in red. Each action is located to be within a space-time tube. b 
A side view of the same space-time detections. Note that no action is detected at the beginning of 
the video when there is human motion present in the video. c Action instance segmentation results 
for two actions occurring simultaneously in a single frame 

 

8.2 Overview of the Approach  

An overview of the algorithm is depicted in Fig. 8.2. At test time, we start by performing 
binary human motion segmentation (a) for each input video frame by leveraging the human 
action segmentation [17], followed by a frame-level region proposal generation (b) (Sect. 
8.3.1.1). Proposal bounding boxes are then used to crop patches from both RGB and optical 
flow frames (c). We refer readers to Section A.1 of [19] for details on optical flow frame 
computation. Crop image patches are resized to a fixed dimension and fed as inputs to an 
appearance- and a motion-based detection net work (d) (Sect. 8.3.2) to compute CNN fc7 
features. Subsequently, these appearanceand motion-based fc7 features are fused, and 
later, these fused features are classified by a set of one-versus-all SVMs. Each fused feature 
vector is a high-level image representation of its corresponding warped region and encodes 
both static appearance (e.g. boundaries, corners, object shapes) and motion pattern of 
human actions (if there is any). Finally, the top k frame-level detections (regions with high 
classification scores) are temporally linked in time to build class-specific action tubes (e) and 
then, these tubes are trimmed (as in [21]) to solve for temporal action locali sation. Pixels 
belonging to each action tube are assigned class- and instance-aware action labels by taking 
advantage of both tube’s class score and the binary action segmentation maps computed in 
(a). At train time, first action region hypotheses are generated for RGB video frames using 
Selective Search [24] (Sect. 8.3.1.2), then, pretrained appearance and motion CNNs (d) are 
fine-tuned on the warped regions extracted from both RGB and flow frames. Subsequently, 
fine-tuned appearance and motion CNNs are used to compute fc7 features from both RGB 
and flow training frames, features are then fused and pass as inputs to a set of one-versus-
all SVMs for training. A detailed descriptions of these above steps are presented in Sect. 8.3. 



 

 

Fig. 8.2 Overview of the proposed spatio-temporal action instance segmentation and detection 
pipeline. At test time, a RGB video frames are fed as inputs to a human motion segmentation 
algorithm to generate binary segmentation of human actions; at this point these human silhouettes 
do not carry any class- and instance-aware labels, and they only have binary labels for foreground 
(and the pixels don’t belonging to human silhouettes are labelled as background class). b Our region 
proposal generation algorithm accepts the binary segmented video frames as inputs and computes 
region proposal bounding boxes using all possible combinations of 2D connected components (2N − 
1) present in the binary map. c Once the region proposals are computed, warped regions are 
extracted from both RGB and optical flow frames and fed as inputs to the respective appearance- 
and motion-based detection networks. d The detection networks compute fc7 appearance and 
motion features for each warped region, features are then fused and subsequently used by a set of 
one-vsall SVMs to generate action classification scores for each region. e Finally, frame-level 
detection windows are temporally linked as per their class-specific scores and spatial overlaps to 
build classspecific action tubes. Further, each pixel within the detection windows is assigned to an 
class- and instance-aware label by by utilising both the bounding-box detections associated with 
each classspecific action tubes and the binary segmentation maps (or human silhouettes) generated 
in (a) 

 

 

 



8.3 Methodology  

8.3.1 Region Proposal Generation  

We denote each 2D region proposal ‘r’ as a subset of the image pixels, associated with a 
minimum bounding box ‘b’ around it. In the following sub sections we present our two 
different region proposal generation schemes: (1) the first one is based on human motion 
segmentation algorithm [17], and (2) the second one uses Selective Search algorithm [24] to 
generate 2D action proposals.  

8.3.1.1 Proposals Based on Motion Segmentation 

The human motion segmentation [17] algorithm generates binary segmentation of human 
actions (Fig. 8.2a). It extracts human motion from video using long term trajectories [3]. In 
order to detect static human body parts which don’t carry any motion but are still significant 
in the context of the whole action, it attaches scores to these regions using a human shape 
prior from a deformable part-based (DPM) model [6]. By striking balance between the 
human motion and static human-body appearance information, it generates binary 
silhouettes of human actions in space and time. At test time our region proposal algorithm 
accepts the binary segmented images produced by [17], and generates region proposal 
hypotheses using all possible combinations of 2D connected components (2N − 1) present in 
the binary map (Fig. 8.2b), where N is the number of 2D connected components present in 
each video frame (Sect. A.3 of [19]). In the following subsection, we briefly introduce the 
human motion segmentation pipeline. 

Human Motion Segmentation. The human motion segmentation algorithm takes as input a 
sequence of RGB video frames (which contain human action) and outputs binary-labelled 
space-time video segments where pixels belong to an human action are labelled as 
foreground and remaining are as background. Firstly, in order to localise and rank 
“actionness” [4], a human motion saliency feature is computed by exploiting the foreground 
motion and human appearance information. Foreground motion is estimated by forming a 
camera model using long term trajectories [3] (Fig. 8.3) and human appearance based 
saliency map is generated using a DPM person detector [6] (Fig. 8.4a–c) trained on PASCAL 
VOC 2007 [5]. Secondly, to segment human actions, a hierarchical graph-based video 
segmentation algorithm [28] is used to extract supervoxels at different level of pixel 
granularity (i.e. different levels of segmentation hierarchy) (Fig. 8.5). The foreground motion 
and human appearance based saliency features are then encoded in the hierarchy of 
supervoxels using a hierarchical Markov Random Field (MRF) model. This encoding gives the 
unary potential components. To avoid a brittle graph due to a large number of supervoxels 
[12], the MRF graph is built with a smaller subset of supervoxels which are highly likely to 
contain human actions. Thus, a candidate edge is built between two neighbouring 
supervoxels based on their optical flow directions and overlaps with a person detection. In 
the MRF graph structure, supervoxels are nodes and an edge between two supervoxels are 
built if: (a) they are temporal neighbours i.e. neighbours in the direction of optical flow, or 
(b) spatial neighbours, i.e. both the supervoxels have high overlaps with a DPM person 
detection where the person detection has a confidence greater than a threshold. The 



temporal supervoxel neighbours and the appearanceaware spatial neighbours (Fig. 8.4d, e) 
give the pairwise potential components. To avoid leaks and encourage better semantic 
information, supervoxels (constrained by appearance and motion cues) from higher levels in 
the hierarchy (Fig. 8.5) are supported by the higher-order potential. Finally, the energy of 
the MRF is minimised using the α-expansion algorithm [1, 15] and GMM estimation is used 
to automatically learn the model parameters. The final outputs of the human motion 
segmentation are the human foreground background binary maps as depicted in Fig. 8.6. 

 

Fig. 8.3 a Three sample input video frames showing a “handshaking” action from a test video clip of 
LIRIS HARL dataset [26]. b The corresponding motion saliency response generated using long term 
trajectories [3] are shown for these three frames. Notice, the motion saliency is relatively higher for 
the person at the left, who first enters into the room and then approaches towards the person in the 
right for “handshaking”. Also note that, motion saliency is computed on the entire video clip, for the 
sake of visualization, we pick three sample frames 



 

Fig. 8.4 a DPM based person detection. b Corresponding DPM part mask. c Supervoxel response for 
the DPM mask. d and e Pairwise connections of motion saliency map and segmentation respectively. 
This figure is taken from [17] with author’s permission 



 

Fig. 8.5 a Three sample input video frames showing a “handshaking” action from a test video clip of 
LIRIS HARL dataset [26]. b The hierarchical graph based video segmentation results (at three 
different levels of hierarchy) are shown for these three frames. The three rows show segmentation 
results for hierarchy level 1, 5 and 10 respectively where 1 is the lowest level with supervoxels 
having smaller spatial extents and 10 is the highest level with supervoxels having relatively larger 



spatial extents. Notice, the supervoxels belong to higher levels of segmentation hierarchy tend to 
preserve the semantic information and are less prone to leaks. Also note that, video segmentation is 
computed on the entire video clip, for the sake of visualization, we pick three sample frames 

 

Fig. 8.6 a Three sample input video frames showing a “handshaking” action from a test video clip of 
LIRIS HARL dataset [26]. b The human action foreground-background segmentation results are 
shown for these three frames 

 

8.3.1.2 Proposal Based on Selective Search  

We use two competing approaches to generate region proposals for action detection. The 
first is based upon Selective Search [24], and the second approach is presented in Sect. 
8.3.1.1. Whilst using the Selective Search based method for both training and testing, we 
only use the motion segmentation based method for testing since it does not provide good 
negative proposals to use during training. Having a sufficient number of negative examples 
is crucial to train an effective classifier. At test time, the human motion segmentation (Sect. 
8.3.1.1) allows us to extract pixel-level action instance segmentation which is superior to 
what we may obtain by using Selective Search. We validate our action detection pipeline 
using both algorithms - the results are discussed in Sect. 8.4.  

Measuring “Actionness” of Selective Search Proposals. The selective-search region-merging 
similarity score is based on a combination of colour (histogram intersection), and size 
properties, encouraging smaller regions to merge early, and avoid holes in the hierarchical 
grouping. Selective Search (SS) generates on average 2,000 region proposals per frame, 
most of which do not contain human activities. In order to rank the proposals with an 



“actionness” score and prune irrelevant regions, we compute dense optical flow between 
each pair of consecutive frames using the state-of-the-art algorithm in [2]. Unlike Gkioxari 
and Malik [8], we use a relatively smaller motion threshold value to prune SS boxes, (Sect. 
A.4 of [19]) to avoid neglecting human activities which exhibit minor body movements 
exhibited in the LIRIS HARL [26] such as “typing on keyboard”, “telephone conversation” and 
“discussion” activities. In addition to pruning region proposals, the 3-channel optical flow 
values (i.e., flow-x, flow-y and the flow magnitude) are used to construct ‘motion images’ 
from which CNN motion features are extracted [8]. 

8.3.2 Appearance- and Motion-Based Detection Networks  

In the second stage of the pipeline, we use the “actionness” ranked region proposals (Sect. 
8.3.1) to select image patches from both the RGB (original video frames) and flow images. 
The image patches are then fed to a pair of fine-tuned Convolutional Neural Networks (Fig. 
8.2d) (which encode appearance and local image motion, respectively) from which 
appearance and motion feature vectors were extracted. As a result the first network learns 
static appearance information (both lower-level features such as boundary lines, corners, 
edges and high level features such as object shapes), while the other encodes action 
dynamics at frame level. The output of the Convolutional Neural Network may be seen as a 
highly nonlinear transformation(.) from local image patches to a high-dimensional vector 
space in which discrimination may be performed accurately even by a linear classifier. We 
follow the AlexNet [16] and [29]’s network architectures. 

8.3.2.1 Pretraining  

We adopt a CNN training strategy similar to [7]. Indeed, for domain-specific tasks on 
relatively small scale datasets, such as LIRIS HARL [26], it is important to initialise the CNN 
weights using a model pre-trained on a larger-scale dataset, in order to avoid over-fitting 
[8]. Therefore, to encode object “context” we initialise the appearance-based CNN’s weights 
using a model pre-trained on the PASCAL VOC 2012s object detection dataset. To encode 
typical motion patterns over a temporal window, the optical motion-based CNN is initialised 
using a model pre-trained on the UCF101 dataset (split 1) [23]. Both appearance- and 
motion-based pre-trained models are publicly available online at 
https://github.com/gkioxari/ActionTubes. 

8.3.2.2 Fine Tuning  

We use deep learning software tool Caffe [14] to fine-tune pretrained domain-specific 
appearance- and motion-based CNNs on LIRIS HARL training set. For training CNNs, the 
Selective Search region proposals (Sect. 8.3.1.2) with an IoU overlap score greater than 0.5 
with respect to the ground truth bounding box were considered as positive examples, the 
rest as negative examples. The image patches specified by the pruned region proposals 
were randomly cropped and horizontally flipped by the Caffe’s WindowDataLayer [14] with 
a crop dimension of 227 × 227 and a flip probability of 0.5 (Fig. 8.2c). Random cropping and 
flipping were done for both RGB and flow images. The pre-processed image patches along 
with the associated ground truth action class labels are then passed as inputs to the 
appearance and motion CNNs to fine-tune (i.e. updating only the weights of the fully 

https://github.com/gkioxari/ActionTubes


connected layers, in this case, fc6 and fc7 layers, and keeping the weights of the other layers 
untouched during training) for action classification (Fig. 8.2d). A mini batch of 128 image 
patches (32 positive and 96 negative examples) are processed by the CNNs at each training 
forward-pass. Note that the number of batches varies frame-to-fame as per the number of 
ranked proposals per frame. It makes sense to include fewer positive examples (action 
regions) as these are relatively rare when compared to background patches (negative 
examples). 

8.3.2.3 Feature Extraction from CNN Layers  

We extract the appearance- and motion-based features from the fc7 layer of the the two 
networks. Thus, we get two feature vectors (each of dimension 4096): appearance feature 
‘xa = a(r)’ and motion feature ‘x f = f (r)’. We perform L2 normalisation on the obtained 
feature vectors, to then, scale and merge appearance and motion features (Fig. 8.2d) in an 
approach similar to that proposed by [8]. This yields a single feature vector x for each image 
patch r. Such frame-level region feature vectors are used to train an SVM classifier (Sect. 
8.3.3). 

8.3.3.1 Class Specific Positive and Negative  

Examples In the original RCNN-based one-versus-rest SVM training approach [7], only the 
ground truth bounding boxes are considered as positive training examples. In contrast, due 
to extremely high inter- and intra-class variations in LIRIS HARL dataset [26], we use those 
bounding boxes as positive training examples which have an IoU overlap with the ground 
truth greater than 75%. In addition, we also consider the ground truth bounding boxes as 
positives. We believe, our this training data sampling scheme is more intuitive for complex 
datasets to train SVMs with more positive examples rather than only ground truths. We 
have achieved almost 5% gain over SVMs classification accuracy with this training strategy. 
In a similar way, we consider as negative examples only those features vectors whose 
associated region proposal have an overlap smaller than 30% with respect to the ground 
truth bounding boxes (possibly several) present in the frame.  

8.3.3.2 Training with Hard Negative Mining  

We train the set of class specific linear SVMs using hard negative mining [6] to speed up the 
training process. Namely, in each iteration of the SVM training step we consider only those 
negative features which fall within the margin of the decision boundary. We use the publicly 
available toolbox Liblinear [http://www.csie.ntu.edu.tw/~cjlin/liblinear/] or SVM training 
and use L2 regularizer and L1 hinge-loss with the following parameter values to train the 
SVMs: positive loss weight WLP = 2; SVM regularisation constant C = 10−3; bias multiplier B 
= 10.  

8.3.4 Testing Region Proposal Classifiers  

With our actionness-ranked region proposals ri (Sect. 8.3.1) we can extract a cropped image 
patch and pass it to the CNNs for feature extraction in a similar fashion as described in Sect. 
8.3.2.3. A prediction takes the form:  

http://www.csie.ntu.edu.tw/%7Ecjlin/liblinear/


Sc (b) = wcT  ф (r) + bcsvm, 

where, ф (r) = { фa (r); фf (r)} is combination of appearance and motion features of r , wcT and 
bcsvm  are the hyperplane parameter and the bias term of the learned SVM model of class c. 
The confidence measure sc(b) that the action ‘c’ has happened within the bounding-box 
region ‘b’ is based on the appearance and motion features. Here b denotes the associated 
bounding box for a region proposal r.  

After SVM prediction,each region proposal ‘r’ has been assigned a set of classspecific scores 
sc, where c denotes the action category label, c ∈ {1,...,C}. Once a region proposal has been 
assigned classification scores sc, we call it as a detection bounding-box and denote it as b. 
Due to the typically large number of region proposals generated by the Selective Search 
algorithms (Sect. 8.3.1.2), we further apply non-maximum suppression to prune the regions. 

8.3.5 Action Tube Generation and Classification  

Once we extract the frame-level detection boxes bt (Sect. 8.3.4) for an entire video, we 
would like to identify sequences of detections most likely to form action tubes. Thus, to 
extract final detection tubes, linking of these detection boxes in time is essential to generate 
tubes. We use our two-pass dynamic programming approach as in [21] to formulate the 
action tube generation problem as a labelling problem where: (i) we link detections bt into 
temporally connected action paths for each action, and (ii) we perform a piece-wise 
constant temporal labelling on the action paths. A detailed formulation of the tube 
generation problem can be found in the Appendix A.5 [19]. 

8.4 Experimental Results  

We evaluate two region proposal methods with our pipeline, one based on human motion 
segmentation (HMS) (Sect. 8.3.1.1) and another one based on selective search (SS) (Sect. 
8.3.1.2). We will use “HMS” and “SS” abbreviations in tables and plot to show the 
performance of our pipeline based on each region proposal technique. Our results are also 
compared to the current state-of-the-art: VPULABUAM-13 [22] and IACAS-51 [11].  

8.4.1 Instance Classification Performance—No Localisation (NL)  

This evaluation strategy ignores the localisation information (i.e. the bounding boxes) and 
only focuses on whether an action is present in a video or not. If a video con tains multiple 
actions then system should return the labels of all the actions present correctly. Even 
though our action detection framework is not specifically designed for this task, we still 
outperform the competition, as shown in Table 8.1. 



 

8.4.2 Detection and Localisation Performance  

This evaluation strategy takes localisation (space and time) information into account [27]. 
We use a 10% threshold quality level for the four thresholds (Sect. 4.2.5 of [19]), which is 
the same as that used in the LIRIS-HARL competition. In Table 8.1, we denote these results 
as “method-name-NL” (NL for no localisation) and “methodname-10%”. In both cases 
(without localisation and with 10% overlap), our method outperforms existing approaches, 
achieving an improvement from 46% [22] to 56%, in terms of F1 score without localisation 
measures, and a improvement from 5% [22] to 56% (11.2 times better) gain in the F1-score 
when 10% localisation information is taken into account. In Table 8.2 we list the results we 
obtained using the overall integrated performance scores (Sect. 4.2.5 of [19])—our method 
yields significantly better quantitative and qualitative results with an improvement from 3% 
[22] to 43% (14.3% times better) in terms of F1 score, a relative gain across the spectrum of 
measures. Samples of qualitative instance segmentation results are shown in Fig. 8.7. 

 

The pure classification accuracy of the HMS- and SS-based approaches are reflected in the 
Confusion Matrices shown in Fig. 8.9. Confusion matrices show the the complexity of the 
dataset. Some of the actions are wrongly classified, e.g., “telephone-conversation” is 
classified as “put/take object to/from box/desk”, same can be observed for action “unlock 
enter/leave room” in SS approach. 

 



 

Fig. 8.7 Correct (a–c) and incorrect (d–f) instance segmentation results on the LIRIS-HARL dataset 
[26], the correct category is shown in brackets. a ‘Try enter room unsuccessfully’. b ‘Discussion’. c 
‘Unlock enter/leave room’. d ‘Handshaking’ (Give take object from person). e ‘Discussion’ (Leave bag 
unattended). f ‘Put take object into/from desk’ (Telephone conversation) 

 

8.4.3 Performance Versus Detection Quality Curves  

The plots in Fig. 8.8 attest the robustness of our method, as they depict the curves 
corresponding to precision, recall and F1-score over varying quality thresholds. When the 
threshold ttr for temporal recall is considered (see Fig. 8.8 plot a) we achieved a highest 
recall of 50% for both HMS- and SS-based approaches and a highest precision of 65% for 
HMS-based approach at threshold value of      ttr = 0. As the threshold increases towards ttr = 
1, SS-based method shows a robust performance, with highest recall = 50% and precision = 
52%, HMS-based method shows promising results with an acceptable drop in precision and 
recall. Note that when ttr = 1, we assume that all frames of an activity instance need to be 
detected in order for the instance itself to be considered as detected. As for the competing 
methods, IACAS-51 [11] yields the next competing recall of 2.4% and a precision of 3.7% 
with a threshold value of ttr = 1. 



 

Fig. 8.8 Performance versus detection quality curves 

When acting on the value of the temporal frame-wise precision threshold tt p (see Fig. 8.8 plot b) we 
can observe that at tt p = 1, when we assume that not a single spurious frame outside the ground 
truth temporal window is allowed, our HMS-based region proposal approach gives highest recall of 
8% and precision 10.7%, where, as SSbased approach has significantly lower recall = 2% and 
precision = 2.4%, which is still significantly higher than the performance of the existing methods. 
Indeed, at tt p = 1, VPULABUAM-13 has recall = 0.8% and precision = 1% where IACAS-51 yields both 
zero precision and zero recall. This results tell us that HMS-based approach performs superior in 
detecting temporal extent of an action and thus is suitable for action localisation in temporally 
untrimmed videos. The remaining two plots c, d of Fig. 8.8 illustrate the overall performance when 
spatial overlap is taken into account. Both plots show metrics approaching zero when the 
corresponding spatial thresholds (pixel-wise recall tsr and pixel-wise precision tsp) approach 1. Note 
that it is highly unlikely for a ground truth activity to be consistently (spatially) included in the 



corresponding detected activity over all the consecutive frames (spatial recall), as indicated in the 
plot c. It is also rare for a detected activity to be (spatially) included in the corresponding ground 
truth activity over all the frames (spatial precision) as indicated in plot d. For the pixel-wise recall 
(plot c), our HMS based method shows consistent recall between 45 and 50% and precision between 
59 and 65.5% up to a threshold value of tsr = 0.7, where as, SS-based region proposal approach gives 
comparable recall between 48.3 and 50.8%, but relative lower precision between 43.5 and 53.2% up 
to tsr = 0.7. For the pixel-wise precision (plot d), HMS and SS-based approaches give similar recall 
between 39 and 50%, where as HMS-method again outperforms in precision with 48–63% up to a 
threshold value of tsp = 0.7, where as SS has precision 41–53% up to a threshold value tsp = 0.7. 
Finally, we draw conclusion that our HMSbased region proposal approach shows superior qualitative 
and quantitative detection performance on the challenging LIRIS HARL dataset. 

 

 



 

Fig. 8.9 Confusion matrix obtained by human motion segmentation (HMS) and selective search (SS) 
region proposal approach. They show the classification accuracy of HMS- and SS-based methods on 
LIRIS HARL human activity dataset. HMS region proposal based method provides better classification 
accuracy on the the complex LIRIS dataset [26] 

 

8.4.4 Qualitative Action Instance Segmentation and Localisation Results  

8.4.4.1 LIRIS HARL Dataset 

Figure 8.10 shows additional qualitative action instance segmentation and localisation 
results on LIRIS HARL dataset [26]. In particular, Fig. 8.10a, d show that the proposed 
approach can successfully detect action instances belonging to a same class or different 
classes at finer pixel-level. In (a), two action instances of a single action class (i.e. “typing on 
keyboard”) are present, whereas in (d) two action instances belonging to two different 
action classes (i.e. “handshaking” and “leave baggage unattended”) are present. 

8.4.4.2 UCF-101-24 Dataset  

To demonstrate that the proposed instance segmentation method generalises well on other 
datasets, we present here some sample instance segmentation results on UCF101-24. We 
compute the binary segmentation masks for some selected UCF-101-24 test video clips, and 
apply the bounding-boxes predicted by our proposed action detection model [21] on the 
top of the binary masks to generate the final instance segmentation results which are 



shown in Figs. 8.11 and 8.12. Note that, the proposed approach can successfully localise 
multiple instances of the “biking” (Fig. 8.11b), “fencing” (Fig. 8.12a), and “ice dancing” (Fig. 
8.12c) actions at finer pixel level in space and time. 

 

Fig. 8.10 Qualitative action instance segmentation and localisation results on LIRIS HARL dataset. 
Ground-truth action labels: TK—typing on keyboard, HS—handshaking, DC—discussion, LBU— leave 
baggage unattended, GOP—give object to person, POD—put object into desk, TERU—try enter 
room unsuccessfully, UER—unlock enter room, TC—telephone conversation. Correct results: a, b, c, 
d, e, f, g, h, j; incorrect results: h, i, k, l. In h, out of two instances of TK action class, only one 
instance has been successfully detected. In i, the ground truth action class GOP has been 
misclassified as HS class. In k, the ground truth action classes TK and HS have been misclassified as 
DC class. In l, the ground truth action class TC has been misclassified as POD class 

 



 

 

Fig. 8.11 Qualitative action instance segmentation and localisation results on UCF-101-24 test 
videos. The green boxes represent ground truth annotations, whereas the blue boxes denote the 
frame-level detections. Each row represents an UCF-101-24 test video clip where the 1st and 2nd 
rows in each set (i.e. set a–c) are the input video frames and their corresponding outputs 
respectively. From each clip 4 selected frames are shown. Predicted action labels: a “basketball”; b 
“biking”; c “cliffdiving” 



 

Fig. 8.12 Qualitative action instance segmentation and localisation results on UCF-101-24 test 
videos. The green boxes represent ground truth annotations, whereas the blue boxes denote the 
frame-level detections. Each row represents an UCF-101-24 test video clip where the 1st and 2nd 
rows in each set (i.e. set a–c) are the input video frames and their corresponding outputs 
respectively. From each clip 4 selected frames are shown. Predicted action labels: a “fencing”; b 
“golfswing”; c “icedancing” 

 



8.5 Discussion  

Unlike state-of-the-art supervised instance segmentation approaches (for objects) [9, 10] 
which require expensive ground-truth segmentation (i.e. per pixel class- and instance-aware 
labelling) to train their networks, the proposed framework does not require such expensive 
ground-truth annotations. Thanks to the human action segmentation [17] algorithm which 
computes human action binary masks using unsupervised learning, thus, does not require 
expensive ground-truth labels. However, the major drawback of [17] is that it is 
computationally expensive. For example, it takes several days to compute the binary masks 
for all frames in LIRIS HARL dataset. Another limitation is that the HMS (human motion 
segmentation) based region proposals fail to generate accurate bounding box proposals in 
cases where the action segmentations of two or multiple actors get merged into one 2D 
connected component, e.g., see Fig. 8.10 (8) in which out of two instances of “typing on 
keyboard” action class, only one instance has been successfully detected. We empirically 
found that in such instances Selective Search based region proposals work more effectively. 
Lastly, as there are no ground truth instance segmentation annotations available for LIRIS 
HARL and UCF-101-24 datasets, we could not perform an quantitative evaluation of the 
instance segmentation results. Also note, the J-HMDB-21 dataset has a single action 
instance per video, and thus, not suitable for evaluating instance segmentation methods. 
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