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Abstract 

Advanced in engineering technology have resulted in increased gearing performances. The use of high power density 

transmission systems such as epicyclic gear trains is the way to achieve the goal reducing the overall volume and mass 

compared with traditional configurations. Gears are the main component of the transmissions because they play the crucial 

role of transmitting the power from the input to the output with a defined ratio. In terms of gear performances, tooth 

geometry has a direct influence on load carrying capacity: increase the pressure angle modifies the tooth profile with a 

direct influence on bending and contact stress. To test the benefits of high pressure angles gears in epicyclic transmissions, 

four different epicyclic systems with same boundary design conditions have been modelled. The reference pressure angle 

have been varied from 20° to 35° and other gear parameters such as profile shift coefficient, addendum and dedendum 

length have been modified consequently to match the design requirements. The results show that increasing the pressure 

angle has a reductive effect on contact and bending stresses. Using high pressure angle gears in epicyclic transmissions has 

a beneficial effect on tensile stresses but is unfavourable for the compressive ones. Moreover, it has been seen that pressure 

angle effect might be enhanced or nullified if other modifications such as profile shift are used concurrently. 

1. Introduction and Literature Review 

The aim of this research work is to develop, evaluate and optimise a new design of gears to satisfy 

the specific requirements of high output epicyclic torque multipliers suitable for use in hand tools 

(figure 1).  

These devices are typically used for tightening and loosening fastenings on wind turbine assemblies, 

oil and gas pipeline installations, and in general for applications in which an accurate and quick 

tightening of high number of fasteners is required.  

The gear system provides the power transmission from the user to the output device achieving a 

mechanical advantage when a high amount of torque is required, especially in limited workspaces. In 

Figure 1 – Single and multiple stages hand 
torque multipliers 



those cases, epicyclic gear trains are the most viable solution thanks to their physical disposition 

with concentric axes that provide weight reduction and compactness, typical properties for 

applications in which high power density is required [1, 2]. Many dispositions and arrangements 

exist, Yu [3] has classified a vast family of epicyclic gear trains with appropriate nomenclature. In a 

simple system (with singular planets), the planets are engaged with the sun placed at the centre and 

with the ring gear. The planets are held in their relative position by a carrier connected with the 

output shaft. Considering a planetary configuration, with the internal gear prevented from rotating, 

the planets orbit around the sun, connected to the input, and provide the output torque through the 

carrier. The transmitted load is distributed between multiple gear pairs resulting in a highly 

increased torque carrying capacity [4, 5, 6].  

When the first gear standards were introduced, fixed pressure angles were specified, to enable 

standardisation of tooling, manufacture and geometry. In an attempt to improve the performance of 

epicyclic gearings, this project will investigate the use of high pressure angle gears for possible use in 

mechanical applications, particularly for low speed-high torque operating conditions.  Despite the 

large amount of literature available on epicyclic transmissions there is very little information about  

applications with low rotational speed and high levels of transmitted torque. For these specific 

conditions the standard AGMA 6123-B06 [7] confirms the gap, underlining the necessity of 

undertaking a detailed engineering study to satisfy the requirements for design of epicyclic devices. 

Kapelevich in [1] describes an optimization process of an epicyclic transmission modifying both the 

gearbox arrangement and the tooth geometry to achieve an increase of power density. A volume 

function that describes the compactness of the gearbox has been introduced and optimum 

configurations were found. A volume function, as indicator of the optimization process, is defined 

also by Hohn et al. [2]; they present three different epicyclic systems designed with optimized gear 

parameters according with ISO 6336 [8]. A Finite Element Analysis of an epicyclic transmission is 

performed in [9]; the study focuses on the ring gear stress distribution that has been simulated 

through a numerical analysis and validated by using strain gauges. The results show a good 

correlation between numerical and experimental results. Yang et al. [10] have investigated the 

dynamic behaviour of a planetary gear train and the stress propagation wave during the meshing 

process.    

The project makes the assumption that the involute profile is most suitable for gear applications, it 

has advantages both in terms of manufacturing and working conditions being relatively easy to 

produce with cutting machines and, more important, ensures a constant transmission ratio also in 

presence of errors in the centre distance. More complex tooth geometry is defined through the use 



of additional modification coefficients such as profile shift to adapt the gear performance to the 

specific application. Although it is common practice to design gears with standard proportions and 

cut them by using standard cutters and machines, considerable performance improvements can be 

obtained by designing and cutting gears with non-standard proportions, including variations in 

pressure angle.  

A study regarding high pressure angle gears has been carried out by NASA for aeronautics and space 

applications [11, 12]. Three combinations of 20°, 25° and ° and 35° pressure angle gears were tested 

and analysed with Finite Element Methods. The results show an improved performance in terms of 

contact and bending stress of high pressure angle gears over the traditional 20°. They also show 

higher efficiency and a better lubrication when lubricated with grease. Herscovici in [13] describes 

the advantages of High pressure angle gears compared with “silent gears”; he shows how the 

pressure angle variation affects the tooth geometry and the load carrying capacity. Referring to his 

study, high pressure angle gears can carry 16 times as much horsepower with the same volume and 

with the same fatigue life as the silent gears. In [14] he has designed a gear with a pressure angle of 

33.7°, finding a sizeable reduction in terms of surface compressive and bending stresses compared 

with 25° pressure angle, with a consequent improvement in fatigue life. A more general analysis for 

various combinations of design, manufacturing and performance parameters of spur and helical 

gears are illustrated and discussed by Kawalec et al. in [15]. Kapelevich et al, [16] have shown a 

methodology to define the limits of selection for gear parameters defined “area of existence of 

involute gears” that allows to define the gear pair parameters that satisfy specific performance 

requirementsWith the help of Machine Design software (KISSsoft [17]), combined with Finite 

Element Analysis (FEA), using ANSYS [18], it is possible to identify the optimal configuration to 

provide the best result for a specific application. ….. This paper is organized as follows: The first 

section of the paper aims to review the published literature on pressure angle and tooth profile 

modifications, following with the application of these concepts to epicyclic transmissions. A brief 

description of pressure angle is followed by the preliminary study on how the tooth shape is 

modified by varying the pressure angle. Then, the undertaken gear design process is described and 

the data of the four epicyclic systems generated are shown. The calculated results and discussions 

about the influence of the pressure angle, profile shift and other parameters are exhibited and 

followed by conclusions. 

 



2. Preliminary study 

To prove the stated effect of a large pressure angle compared with the standard 20°, a preliminary 

numerical study has been carried out, to investigate the resulting geometry changes.  

Two different pressure angles might be defined:  

• The reference pressure angle is the angle between the orthogonal to the tangent to the base 

circle passing through the pitch point and the pitch radius at the pitch point.  

• The working pressure angle is the angle formed by the common tangent to the pitch circles 

and the line tangent to the base circles of the mating gears, also called Pressure Line(Figure 

2).  

 

Reference and working pressure angles differ when a centre distance modification occurs or an 

unbalanced profile shift is used. Modifying the pressure angle means effecting an alteration of the 

tooth shape with a consequent modification of its properties. 

For an increased pressure angle, the involute moves away from the base circle by an amount 

(db=dcos α). This condition determines a profile modification resulting in a thicker tooth base, a 

reduced radius of curvature of the tooth flank, and also, reduces the occurrence of undercutting 

which is more evident in gears with small number of teeth. On the other hand, the top land 

thickness becomes smaller and as consequence, for two gears in mesh, the contact ratio is reduced.  

Working pressure angle αw is determined using the inverse involute function (1) in which x1, x2 and 

z1, z2 are profile shift coefficients and number of teeth of pinion and gear respectively. 

inv𝛼𝑤 = tan𝛼𝑤 − 𝛼𝑤 =  2 tan𝛼 (
𝑥1 + 𝑥2

𝑧1 + 𝑧2
) + inv𝛼 

 

(1) 

Figure 2 – Basics of gear geometry 



 

Since the involute function is an iterative function, the following calculation has to be performed 

repeatedly until the value converges: 

 𝛼1 = 1 + (
invα−tan 1+1

tan 12
) 

𝛼𝑛 = 𝛼𝑛−1 + (
invα − tan 𝛼𝑛−1 + 𝛼𝑛−1

tan 𝛼𝑛−1
2 ) 

 To better understand how the pressure angle variation affects the tooth geometry, 7 tooth profiles 

have been created as shown in Figure 3.  

 

The value of 20° has been taken as reference because it is the most commonly used and suggested 

by the standards ISO, AGMA. The pressure angle has been varied from 20° to 35° with steps of 2.5°. 

It is clearly visible in Figure 3 how the profile follows the modifications listed above while the 

pressure angle is increased.   

 

3. Gear design process 

For those applications in which very low speed are involved the tooth size is directly dictated by the 

load carried; the dynamic load would be negligible, vibration and consequent noise are not a 

problem so stresses dominate the design process. The idea to minimize the number of teeth deals 

with the necessity to achieve the smallest diameter possible combined with the highest transmission 

ratio achievable to satisfy the requirement of mass and volume reduction. Moreover, contact stress 

reduction on the drive flank and bending stress reduction at the tooth root result in a higher torque 

density [1, 2].  

Figure 3 - Seven tooth profiles with 20°≤ α ≤  
35° with 2.5° increments of z=20, x=0 gear 

(2) 



The following design process has been undertaken to model four epicyclic transmissions with a 

combination of non-standard parameters. Once the boundary conditions were defined, the design 

procedure has been guided by the pressure angle α while the number of teeth z was fixed. For each 

gear, undercutting, minimum top land thickness and contact ratio (when in mesh) have been 

considered and consequent profile modifications such as Profile shift, addendum and dedendum 

length have been varied to match the requirements imposed by both system boundary conditions 

and design limitations. As already discussed, increasing the pressure angle has a beneficial effect on 

gear performance thanks to a thicker tooth base and a reduced profile curvature of the tooth flank. 

Another main advantage is the direct effect on the condition of preventing undercutting. The 

following equation (3) gives the number of teeth without undercut as function of pressure angle and 

profile shift coefficient  

𝑧𝑚𝑖𝑛 =
2(1−𝑥)

𝑠𝑖𝑛2𝛼
 

The trend is shown in the figure (4) below in which only the pressure angle has been varied keeping 

as zero other modification parameters. 

 

 

 

Considering a conventional industrial gear with a pressure angle (P.A.) of 20°, the minimum number 

of teeth without undercutting is 18. The use of non-standard parameters and correction coefficients 

still allow involute profiles to achieve correct meshing and overcome manufacturing limitations. For 

small, high reduction ratio gearboxes, as in this case, in which large loads need to be carried within 

the constraint of minimized diameters, it is common to have large pressure angle gears with a small 

number of teeth.  For a 35° P.A. pinion, the bottom practical limit is 7 teeth. Nevertheless, it is 

possible to achieve that number of teeth even with a 20° P.A. but other modification factors have to 

be used as well. The profile shift coefficient, also called addendum modification, is one of the 

Figure 4 - Minimum number of teeth without undercutting as function 
of pressure angle α for x=0 

(3) 



corrections mainly used in gear manufacturing to minimize undercuts when dealing with low 

pressure angles and low tooth counts.  The following equation allows the necessary profile shift 

coefficient to be determined for avoiding undercut for a given pressure angle. 

𝑥 = 1 −
𝑧

2
sin2 

 

Figure 5 shows a graph with the minimum number of teeth to avoid undercutting as function of 

profile shift for four given pressure angles. It can be seen that a 20° P.A. gear with 7 teeth requires a 

profile shift of +0.6 to avoid the condition of undercutting.  

(4) 

Figure 5 - Minimum number of teeth without undercutting as function of Profile shift 
coefficient for fixed pressure angles α 

Figure 6 - Working pressure angle [deg] as function of profile shift coefficient for -
1≤x≤1 for z1=20; z2=40 



 

As shown in figure 6, the profile shift coefficient also has an effect on the working pressure angle. As 

the profile shift varies for the pinion or the gear, if it is not balanced with an opposite correction in 

the mating gear to make the total profile shift zero, it requires a variation of the reference centre 

distance, with a consequent modification of the working pressure angle.   

Using large pressure angles and positive addendum modifications has many convenient aspects, 

however, there are two main limitations that have to be taken into consideration. The first, is that 

the reduction of the top land thickness results in pointed teeth. It is an unwanted condition 

particularly for hardened gears, because a hardened pointed tooth tends to be brittle at the tip. The 

top land thickness sa is defined as follow:  

 

and is function of pressure angle, profile shift, number of teeth and tip circle diameter. 

 

In figure 7 it is shown how the top land thickness varies as function of pressure angle for a fixed 

number of teeth and fixed profile shift. For positive values of addendum modification the top land 

thickness drops to smaller values for low pressure angles, compared with zero or negative profile 

shifts. That was an expected condition given that both pressure angle and addendum modification 

have a similar effect on the tooth shape [19]. Recommended values of top land thickness span from 

𝑠𝑎 = 𝑑𝑎  
𝜋

2𝑧
+
2𝑥

𝑧
tan𝛼 + inv𝛼 − inv  cos−1 (

𝑧𝑚

𝑑𝑎
cos𝛼)   

Figure 7 - Top Land Thickness as function of pressure angle α for fixed number of 
teeth z and three different profile shift coefficients x   
 

(5) 



0.2 to 0.6 [mm] [20]. Kapelevich [21] suggests a window of proportional values calculated as top land 

thickness divided by the base Pitch between 0.06 and 0.12. 

 

The second issue is that a reduction of the contact ratio might occur.  Considering two or more gears 

in mesh, the contact ratio cR, defined as the average number of teeth in contact at one time, has to 

be taken under consideration. The contact ratio, as defined below, is function of both working pitch 

and base circle radiuses and working pressure angle. 

 

For conventional gearing values of cR are generally in the range of 1.4-1.6 with a bottom limit fixed at 

1. For any smaller value the transmission ratio would be unacceptable because at some times the 

teeth are not in contact with a consequent pulsating torque delivery. 

For conventional gears with a number of teeth above the limit of undercut, an increase in pressure 

angle determines a consequent reduction in contact ratio as shown by the solid line in figure 7. The 

gain of strength due to an increased pressure angle might compensate for a reduction of contact 

ratio. Nevertheless, for gears with a small number of teeth in which the undercutting condition 

occurs, increasing the pressure angle has a beneficial effect (dashed line in figure 7) on contact ratio 

that goes up to values above one and then decreases. The trend described is a balance between 

undercutting and pointed teeth. With the contact ratio only slightly greater than 1, contact is 

𝐶
𝑅=

1
𝜋𝑚 cos 𝛼𝑤

  (𝑟𝑎12)−(𝑟𝑏1
2)+ (𝑟𝑎22)−(𝑟𝑏2

2)−(𝑟𝑏1+𝑟𝑏2) tan 𝛼𝑤  
 

(6) 

Figure 7 - Contact ratio as function of pressure angle α for two different gear pairs in 
mesh   



occurring very near the pinion tip and very near to the pinion base circle.Considering all the 

parameters described above and their interactions between each other, four different gear sets 

have been generated matching the conditions of a planetary gear system with the following 

characteristics:  

•  Gearing ratio i= 5.5 ± 5% 

• 3 Planet gears 

• Centre distance c=22 [mm] 

• External overall diameter de=90 [mm] 

• Module 2 [mm]  

• Number of teeth of sun, planet and ring gear z1=8; z2=14; z3=-37 

• Contact Ratio ≅ 1 

The following tables 1, 2, 3, report the main parameters used to describe the tooth profiles of sun, 

planet and ring gears shown in figure 8. 

 

Table 1 - Sun parameters 

 

 

 

Table 2 - Planet parameters 

  

Table 3 - Ring parameters 

SUN 20 25 30 35 

Dedendum 1.1 1.25 0.9 1.1 

Addendum 0.8 0.8 0.9 0.8 

Profile shift 0.4374 0.6 0.1543 0.3 

Working pitch 
Diameter [mm] 

16.0 16.0 16.0 16.0 

 

RING 20 25 30 35 
 

Dedendum 1.25 1.25 1.1 0.95 

Addendum 0.8 0.950 1 1 

Profile shift -0.320 -0.121 0.618 0.776 

Working pitch 
Diameter [mm] 

70.816 70.783 70.783 70.783 

 

PLANET 20 25 30 35 
 

Dedendum 1.25 1.25 1.1 1.1 

Addendum 0.8 1 0.8 0.8 

Profile shift 0.24 0.412 -0.1543 -0.3 

Working pitch 
Diameter [mm] 

28/27.98 28.0/26.78 28.0/26.78 28.0/26.78 

 

Sun gear tooth profiles 

Planet gear tooth profiles 

Ring gear tooth profiles 

Figure 8 - comparison between tooth profiles 



 

The combinations of parameter reported in tables 1, 2, 3 have been “modelled” in the Machine 

Design Software KISSsoft. Moreover, 3D models of gears have been generated in KISSssoft and 

exported into SolidWorks to assemble the systems and check through a “motion study” to observe 

whether any interference was occurring during the meshing process. Once the models were ready, 

they have been exported into ANSYS 16.0 for the FE Analysis that will be described in the next 

session.  

4. Finite Element Analysis 

 

The seven models generated in the preliminary study and visible in figure 2 have been modelled in 

ANSYS FE software to better understand how the shape modification affects the tooth 

performances. The loads applied simulate the meshing forces between two mating gears when the 

contact occurs at the pitch point.   ……? On each tooth flank an area has been created across the 

pitch circle where the force is applied as visible in Figure 9.  

 

  

The area has been calculated using the Hertzian contact theory in which the width of the rectangular 

contact area as consequence of the contact between two cylinders is described by the relation:  

 

In equation 7, F is the Force that pushes the two cylinders against each other; v1, v2 and E1, E2, are 

the Poisson ratios and Young’s modulus of the two materials in contact; R1 and R2 are the curvature 

radii of the two cylinders and L is the facewidth. As the radius of curvature changes with the 

pressure angle, the rectangular contact area b depends on α as is shown in Figure 10.  

𝑏 = 4 
𝐹[
1− 𝑣1

2

𝐸1
+
1− 𝑣2

2

𝐸2
]

𝐿𝜋(
1
𝑅1

+
1
𝑅2

)
 

(7) 

Figure 9 – Meshed geometry and applied force 



 

 

The tooth profiles have been constrained with a fixed support at the inner rim circle to prevent any 

movement at their base. The Force of 50 N has been resolved into the tangential and radial 

components (Ft=Fcosα; Fr=Fsinα), and applied to the area A=L*a. The facewidth L is 5 [mm].  Results 

of the described analysis are discussed in section 5. 

 

After the preliminary study, four planetary gear systems, designed as described in the previous 

section have been the research study of the Finite Element Analysis, with the aim of understanding 

how the stresses induced within the system were distributed among the components. The outer 
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Figure 10 – Deformed distance b and curvature radius R as function of α 



face of the ring gear was defined as rigidly constrained, and the other components were defined as 

deformable. The material was the default structural steel specified in ANSYS. In a planetary 

configuration, the sun gear inputs the energy into the system which is shared among the planets and 

delivered to the output through the planet carrier; a reaction arm holds the ring gear fixed. The 

same boundary conditions were imposed for the analysis. All the displacements of the sun and 

planet gears were constrained except for their rotation around their own axis. The planet pins were 

fixed to generate resistance to the torque. A ramped moment from 0 to 50 Nm distributed in one 

second time step was applied to the sun.   

To determine how the contacting bodies can move relative to each other and eliminate penetration 

phenomenon, the correct type of contact mechanics and formulation between the teeth, and on 

other surfaces, needs to be defined. At the interface between the planets and pins a frictionless 

contact has been applied to simulate the presence of a bearing. The contact between the teeth in 

mesh has been defined as frictional but with a zero friction coefficient. This condition allows sliding 

between the surfaces in contact but no separation. For the same contact the “adjust to touch” 

treatment interface has been used to close all the initial gaps between the teeth in contact and 

avoid initial impacts. For the contact between teeth in mesh the formulation method used was the 

Augmented Lagrange to solve the contact nonlinearities due to the nonlinear frictional contact type. 

After the solution, the post processing stage involves a critical analysis of the generated data. 

5. Results and Discussion 
 

FEA stress results of the preliminary study in which seven tooth profiles with different pressure 

angles from 20° to 35° have been generated are plotted in the figure below. 

 Figure 12 - FEA Contact and Bending Stresses relative to the base line α=20° 



Both Contact and Bending stresses show a decreasing trend as the pressure angle is increasing. The 

trend proves the initial idea that a bigger p.a. has a beneficial effect on contact stress thanks to a 

reduced radius of curvature of the flank profile and a consequent increased area of contact. The 

benefit is visible also on the bending stress side due to the combination of a thicker tooth base and a 

more favourable inclination of the resultant force with a tangential component, responsible for 

bending, reduced in favour of the radial component.  

The epicyclic systems generated following the gear design process described in section 3, have 

resulted in working pressure angles as in table 4. 

P.A. [°] SUN/PLANET PLANET/RING 

20 26.784 21.047 

25 30.572 25.825 

30 30 25.124 

35 35 31.087 

Table 4 - Workig pressure angles 

The resulting working pressure angles tend to be bigger for the sun/planet mesh than for the 

planet/ring one. This result is in compliance with the AGMA 6123-B06 standard [7] in which it is 

stated that “best strength to weight ratio is achieved with high operating pressure angles at the sun 

to planet mesh and low operating pressure angles at the planet to ring mesh”.  

The results obtained from the FEA analysis of the four planetary configurations have been compared 

on the basis of Maximum and Minimum Principal Stresses induced by the shared load between the 

gears in mesh. Three specific points for the meshing gears have been chosen (Figure 13):  

 Ring/Planet: stresses on the ring have been analysed 

 Sun/Planet: tip loaded condition for the sun; stresses on the 

sun have been analysed 

 Planet/sun: tip loaded condition for the planet;  stresses on 

the planet have been analysed  
Figure 13 – Meshing areas 



 

 Initially the full spectrum of the principal stresses along the meshing area has been recorded taking 

the values for each node of the mesh.Figure 14 shows the principal stress plots of the stresses 

induced on the ring gear at the ring/planet interface for two configurations of pressure angles. Those 

data give a clear indication of the positive and negative stress distribution within the members in 

contact. To define the nature of principal stresses is necessary to know their orientation because of 

their dependency on the coordinate system. In the analysis of components, these quantities allow it 

to be determined where the tensile and compressive stresses are induced and how they are 

distributed in the components. By using the plot of the vector directions it is possible to determine 

the nature of the stresses resulting, as in this case, positive for tensile and negative for compressive 

stresses. After all the data were collected, peak values of Maximum and Minimum principal stresses 

were compared. The peak values always occur at the tooth base both for Maximum and Minimum 

principal stress.  

 

Figure 14 - FEA Maximum and Minimum Principal Stress Vectors; tooth stress distribution chart of the 
ring meshing with the planet for two different pressure angles α. 



Figure 15 shows trends of the peak values of Maximum principal stresses, for the three meshing 

areas. For the Ring/Planet mesh, the stress values go down going from 20° to 25° reference pressure 

angle corresponding to a decrease of 4.7° working pressure angle. The further decrease for the 30° 

reference which has a working p.a. almost equal to the previous case might be explained with the 

considerable increase of profile shift up to 0.6. 

 

Regarding the Sun/Planet mesh, the stress peak values “mirror” the working pressure angle trend: 

the stress decreases, stays almost constant between 25° and 30°and decreases again for reference 

p.a. of 35°. In the end, considering the stresses generated on the planet gear meshing with the sun, 

the expected reduction of the maximum principal stress for the second and third point in which the 

working pressure angle has almost a constant value, αw≅30° might have been compensated, for 

α=25° by an increase of the addendum length, which increases the arm of the applied force, and, for 

α=30° the reduction of profile shift with a consequent reduction of the tooth base thickness.  

  

Figure 15 - Maximum principal stress (tensile) at the tooth root relative to the 
base line α=20° 



Similar considerations have been made for the Minimum principal stress peaks in figure 16. 

 

Minimum Principal Stresses are expected to rise with the working pressure angle due to the 

increased radial component of the transmitted force end so an extra compressive stress induced on 

the gear body. More in detail, for the Ring/Planet in mesh, the compressive stress on the Ring gear 

increases following the working pressure angle trend.  The stress on the Planet/Sun follows the 

linear trend as already happened for the Maximum stress but with the reverse slope up to the third 

point which is higher than the 25° point because of the reduction of profile shift up to negative 

values with a consequent reduction of the base thickness as visible in Figure 8. Minimum stress 

drops at 35° is attributed to the beneficial effect of a thicker tooth base due to an higher pressure 

angle even if the profile shift is slightly smaller than the previous case analysed. . At the end, the 

compressive stress generated on the sun gear in mesh with the Planet follow a trend which remains 

constant with a small fluctuation that follows exactly the profile shift variation.  

6. Conclusions 
 

In this study, the effect of high pressure angles compared with the standard 20° has been evaluated 

in terms geometry modifications and generated stresses. The following observations are made from 

the results achieved from an initial simplified study on a single tooth model, followed by an analysis 

of a more complex system. The preliminary study has demonstrated how both bending and contact 

stresses decrease using higher pressure angles compared to the standard 20°. To prove that benefits 

Figure 16 - Minimum principal stress (compressive) at the tooth root 
relative to the base line α=20° 



even in a more complex environment, following a design process based on design limits, four 

different gear sets with non-standard parameters have been designed and assembled in epicyclic 

systems. It has been seen that Maximum fillet principal stress follows a decreasing trend as the 

pressure angle increases due to a lower Force tangential component. Minimum fillet principal stress 

rises as the pressure angle increases due to a bigger radial component. The combination of pressure 

angle with other parameters alters the stress distribution; Profile shift has a strong effect on stresses 

and its variation may enhance or nullify the beneficial effect of higher pressure angles. The mesh 

sun/planet is more stressed with tensile stresses compared with the planet/ring which is more 

subject to compressive stresses. In terms of contact stress, because of the different nature of 

contact, convex-convex for sun and planet and convex-concave for planet and ring, the are 

considerably higher  for sun and planet in mesh.  
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