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Abstract: Implementing in-house AI in the modern business is a classic example of digital 
transformation, often appearing simple and attractive, particularly given the emergence and 
availability of powerful, easy-to-use frameworks like TensorFlow or PyTorch. Such AIs are 
commonly considered for replacing cumbersome manual or physical systems, where neural 
networks may appear to be almost a panacæa automation solution to solve scalability or 
diversification concerns. However, such systems have subtle and sometimes very surprising 
behaviours that require considerable domain expertise, in order to implement a functional 
system without expending more effort than the system ultimately gains. Fundamentally, they 
need to be deployed with a clear sense of what the AI system is going to achieve. Careful 
attention must be paid at the outset to draft a clear and concrete design specification that 
indicates the intended function, and equally, draws a line under capabilities that are out of 
scope. Likewise, an effort needs to be made either to identify in-house people with the 
required skill sets to develop the system, or alternatively to enter into close working 
partnerships with external providers who can identify the needs and clearly articulate an 
appropriate solution. Most challenging of all, especially at large scale, is the emerging 'data 
gap' - the need to have access to or generate enormous volumes of labelled data - which often 
comes only at costs outside the budget of all but the largest companies. A case study in design 
collaboration between an emerging company transitioning from a physical to a virtual 
technology, and a university research group with substantial expertise in AI systems is 
presented, both as an illustration of the complex design considerations and a model for how 
to build in-house expertise. The collaboration is ongoing and outcomes are still preliminary, 
but the company is now starting to gain an appreciation for the complexity of real-world AI 
deployments and has developed a strategic plan that enables future growth. The emerging 
overall message is that modern AI is more an exercise in data automation than process 
automation.  
 
Introduction 
 
   The last 2 decades in business computing have seen the extraordinary development of 
Artificial Intelligence (AI) from a set of specialised techniques for niche applications to a 
mainstream set of tools. Deploying Artificial Intelligence (AI) solutions in a business context 
has become extremely fashionable, but can easily be done without a critical appraisal of what 
the underlying use case is. What is AI going to do that cannot be achieved just as effectively 
by more mature (and arguably more transparent) technologies? A 'top-down' answer is 
typically not enough; it is, for instance, insufficient to say 'this AI will allow us to discover 
more profitable trading patterns' or 'that AI will will enable a dynamic Web site with content 
tuned to the needs of a particular customer'. Discussion of end goals like this may motivate 
considering AI-based solutions, but they do not constitute the kind of formal specification that 
makes it possible to evaluate whether, much less what implementation of, an AI system, will 
realise its high-level goals [Calegari2020]. AI solutions tend to be narrowly domain-specific, 
data dependent, and sensitive to implementation details. The crucial point to be understood 
here is that AI systems are not guaranteed to solve anything. 
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   Because of this sensitivity, a business aiming to deploy AI successfully generally has to 
have, or develop, substantial in-house expertise even before beginning the design process. 



This is a crucial step in digital transformation. Most modern artificial intelligence methods 
use powerful but extremely nuanced mathematical techniques, and the in-house team will 
need to be at least conversant in these mathematical algorithms (and their associated pitfalls) 
to be able to make rational design choices. The first step in the design of a working AI system 
is (or perhaps, should be) the enumeration of the mathematical, data, and application 
assumptions involved; and this will need to be referred to often in order to make sure such 
assumptions are not being violated (or taken for granted). Most prominent in modern systems 
in the chain of assumptions are those about the nature and distribution of the data 
[Marcus2020]. 
   An empirical approach to data collection or algorithm development generally yields 
inconsistent results. Design by trial and error tends to produce apparently working systems 
that then fail spectacularly when they encounter conditions outside the range of what had been 
thought of or tested ab initio [Cai2020]. Data sensitivity is the most well-known of these 
pathologies; even large companies have fallen afoul of this in situations that lead to serious 
PR embarrassments [Guardian2018]. Scaling is another major source of problems; it cannot 
be assumed that a system developed at prototype scale with a limited dataset will work at all, 
much less well, when scaled to a production environment [Brigato2020]. The converse is true 
as well; attempts to scale down large systems to a streamlined, efficient solution do not 
always succeed; and the results are often problem-dependent [Passalis2018]. Another 
emerging issue is cross-domain transfer and generalisability; it is almost hypnotically alluring 
to attempt to apply a working AI solution developed for one domain to another, which may 
even appear to be relatively similar - e.g. to transfer the knowledge from a music 
recommendation system to one designed to recommend books. But again, results have often 
been uneven [MLong2015], [Tan2017], [Ramirez2019]. The pattern that seems to emerge is 
that (well-designed) AI systems can transfer knowledge relatively well with very large 
systems and datasets, but smaller systems are less effective at such transfer [Hoefler2021]. 
Quite aside from the fact that the largest-scale systems are out of scope for all but the largest, 
most well-resourced firms, a dilemma emerges: expend the resources, manpower, and 
development time to create one large 'omnibus' AI, or develop a set of specialised AIs for each 
specialised task. Hence we return to the problem noted at the outset: what is AI going to do? 
   It is worth listing the major challenges involved in creating and deploying a successful AI 
system: 
 

• Application scoping 
 

• Problem specification 
 

• Data acquisition, annotation, and curation 
 

• Platform selection 
 

• Model selection 
 

• Model tuning 
 

• System validation 
 
   This study will examine a practical implementation of a complex AI system for a real 
business case - a firm engaged in real-time media delivery for sporting events, transitioning 
from an older, physically-based system to an AI-based approach. It will analyse the above 
challenges with a particular focus on the data acquisition, annotation, and curation problem 
(which turns out to dominate the considerations).  



The General Background of AI 
 
   Before describing the specifics, it is useful to describe the general background of Artificial 
Intelligence to put solutions in context. As a computational discipline, the roots of practical AI 
extend back to the late 1950s; the 'traditional' birth date being the Dartmouth Workshop of 
1956 [McCarthy1955]. However, despite several start-stop waves of AI adoption involving 
various techniques, the modern era of AI did not truly start to take shape until the emergence 
and eventual dominance of neural network techniques, based largely on so-called 'deep' 
networks. What it means for a network to be 'deep' is somewhat vaguely defined, but it refers, 
in general, to a network with considerably more 'layers' (arrays of neurons) that either the 2 
originally introduced in the Perceptron [Rosenblatt1958] (and later shown to be seriously 
limited by Minsky in 1969 [Minsky1969]) or the 3 shown to be sufficient to implement a 
universal function approximator [Hornik1991] . Neural networks are often represented 
diagrammatically as large-scale parallel systems (Fig. 1); this provides a convenient 
conceptual understanding, but in fact, most computers represent neural networks as linear 
algebra operations over very large matrices. 
 
 

Figure 1: A 'typical' modern deep convolutional neural network (CNN). Layers alternate between 
match-to-template convolutional layers and grouping 'max-pooling' layers, ending in fully-
connected layers to the 'heads'. 

 
 
Although they have a 'different' parallelism than their diagrammatic counterparts, such 
operations are very naturally suited to parallel systems and have become routinely 
implemented on specialised hardware, typically, Graphics Processing Units (e.g. nVIDIA 
RTX series) (https://www.nvidia.com/en-us/design-visualization/ampere-
architecture/),(https://www.nvidia.com/en-gb/design-visualization/rtx-a6000/) that efficiently 
compute matrix-vector products, the core of neural networks in modern implementations. It is 



now understood that neural networks are an alternative formulation of Bayesian machine 
learning [Hoefler2021], which itself derives from the Bayesian reasoning systems that 
dominated AI in the early 2000s. Bayesian and other machine learning approaches still have 
significant applications and deployments in modern AI systems. In either case, similar 
challenges apply, but the deep neural network case can conveniently be used to illustrate 
many of the features of modern AI systems and indicate the main considerations. 
   Deep networks themselves have grown from relatively 'shallow' (in modern terms) networks 
involving 'only' 8-16 layers [Krizhevsky2012], to very large-scale systems with 100+ layers 
[He2016] [Justus2018] (Fig. 2). The most popular forms of modern neural network are 
Convolutional Neural Networks (CNNs) - which internally do a complex match-to-template 
with the data [LeCun1998]; and Transformers - which correlate data elements across 
sequences of data [Vaswani2017]. Many other models exist, each offering some tradeoff of 
different capabilities for different classes of problem, but CNNs, in particular, are widely used 
in machine vision applications [Jiao2019], [Abirami2021], which is completely rational 
considering their original inspiration in the visual cortex of humans and other mammals [Al-
Aidroos2012]. It is not thought CNNs actually implement the processing the visual cortex 
does, but the structural similarities do suggest some affinity. Most CNNs for real applications 
can be split into 3 structures. The 'backbone' is the early layers of the network and is used for 
changing the input data representation into one the later network can use efficiently. 
Backbone networks are highly standard and go by names like AlexNet [Krizhevsky2012], 
VGG [Simonyan2015], or ResNet [He2016]. The 'neck' is the component that computes the 
statistical distributions and correlations that map input spaces to output spaces, e.g. 'features' 
to 'classes' or 'blocks' to 'regions'. Neck structures are typically tuned to suit the application, 
but remain general (and reusable) since their purpose is to produce universal representations. 
Typically a developer does not entirely hand-craft the neck but customises it from an off-the-
shelf neck component. The 'head(s)' transform the general patterns represented in the neck to 
the specific output representations needed for the particular application, e.g. a set of labels 
such as 'ball', 'player', 'grass' etc. There may be several heads [Masaki2021] representing 
different label classes or properties - and these are entirely designed by the developer for the 
specific use. It should thus be seen that in essence, what CNNs are actually doing is nothing 
more than juggling the representation. The entire process of a CNN consists of finding an 
output representation that efficiently encodes the latent information desired from the input 
data. 
   What has led, arguably, to the widespread adoption of CNNs and other deep neural 
networks is the emergence of 'frameworks', integrated toolchains that link naturally with 
hardware platforms like nVIDIA and allow a high-level specification to be compiled directly 
down into code heavily optimised for the hardware. Frameworks not only reduce the design 
cycle by allowing networks to be assembled in 'building-block'-like fashion from a library of 
standard components, but also greatly improve the resultant performance by using powerful 
automated optimisations that replace what would otherwise be possibly months of hand-
tuning. Popular frameworks include TensorFlow (https://www.tensorflow.org), PyTorch 
(https://pytorch.org), and Keras (https://keras.io) (names that may be familar to many 
readers). These tools allow rapid application development and may appear to make neural 
network development  



 

 

a. A 'shallow' siamese CNN [Koch2015] b. A 'deep' CNN (ResNet50) [He2016] 
Figure 2: CNN development. The network on the left has only 11 layers; by contrast the network on 
the right has 50 layers (and larger versions of the same ResNet architecture have up to 152) 
 
 
entirely straightforward, but feature significant quirks which must be dealt with and require 
considerable experience [Dai2022], (https://www.knowledgehut.com/blog/data-
science/pytorch-vs-tensorflow). First, these frameworks are typically dependent on a very 
specific computer and operating system environment including particular versions of support 
libraries, hardware, and environment variables. Merely configuring a system to run any 



framework for the first time can take up to a week   (or more). Environment-manager software 
like Conda (https://conda.io) can, at least, manage the software dependencies reasonably, but 
hardware is another matter - and typically the user or developer must match their framework 
version and installation to the hardware they actually have on their system. Second, different 
framework versions can yield different performance for the same networks, and this means 
that an AI developed on one system does not necessarily migrate neatly to another; indeed, it 
is frequently the case that older versions or hardware might yield better performance than 
newer versions [Shahriari2022]. This, in turn, leads to a third quirk, that results may not be 
reproducible; one cannot, for example, rely on published benchmark studies to decide upon 
networks because the performance (or even functionality!) reported in such articles may 
depend upon a particular setup [Elshawi2021], and see e.g. 
(https://pytorch.org/docs/stable/notes/randomness.html). Overall, then, frameworks are an 
essential but temperamental part of modern AI development, rather like a Formula 1 race car: 
a high-performing vehicle, but one which requires a competent driver and continuous 
maintenance by an expert crew. 
   It has already been noted that CNNs are really doing nothing more than finding efficient 
data representations. For them to do so, they need data; a LOT of data. The problem is more 
subtle than it may initially seem; essentially, since large-scale neural networks contain many 
millions or billions of weights (commonly called 'parameters' in modern terminology), they 
may have the representational power to encode the entire dataset, if the dataset is small 
[Hoefler2021]. Therein lies the problem: if they do encode the entire dataset, the system is 
nothing more than a complex, opaque look-up table; the same results could have been had by 
simply storing the inputs as (input, class) pairs. This is useless; there is no 'intelligence' in this 
case because the network is not representing general properties of the system but simply 
mirroring the data, the well-known problem known as 'overfitting' [Shorten2019]. 
Overtraining happens whenever a suitably large network is presented with a suitably 'small' 
dataset for a long enough training time. For billions of weights, corresponding billions of data 
values need to be presented. But now this in turn creates a pair of related problems. First, 
training takes time, billions of data items may take weeks of time to process 
[Thompson2020], with enormous energy cost as well [Patterson2020], and this is likely 
entirely beyond the resources of most smaller firms, whilst being inefficient for larger firms 
(unless the result has unusually widespread application) [Brown2020]. Second and more 
critically, using supervised learning methods, a very substantial chunk of this data needs to be 
annotated data - marked up with 'correct' identifications, and annotation is generally a tedious, 
labour-intensive manual process [Hinterstoisser2019]. There are partial solutions from 
unsupervised or 'semi-supervised' learning methods [Ouali2020], [Li2022], but these are not 
usually complete, are typically less accurate, and involve even longer training times. Solving 
the data problem is now being discovered to be perhaps the crux issue in AI deployment, as 
indeed will be seen in the case study presented here. 
 
Case Study: Background 
 
   The company to be considered: Supponor, Ltd. (http://www.supponor.com) is an emerging 
market leader in the field of targetted advertising provision. Specifically, Supponor operates at 
sporting events, to take LED billboards or other advertising placement points on the field or 
venue of play, and substitute the locally-visible content for content more suitably targetted to 
the regions or countries where the event is being broadcast live via television. The problem is 
very dynamic: Supponor's systems must be able to detect the regions of advertising content 
from the video stream, blank out these regions, and substitute different content, without 
accidentally blanking out critical video such as players, balls, etc. All of this must be done in 
real-time, at full frame rate, whilst considering problems of e.g. distortion in the image, 
altered aspect ratio due to camera angle, transient occlusions, weather, lighting contrast across 



the scene, etc. Supponor initially entered into the market using proprietary physical 
technology directly installed on the field of play to be able to perform the real-time 
substitutions. However, the system was cumbersome, installation and setup time was 
significant, cost to the sporting organisation considerable, and the system represented a fixed 
capital investment with significant risks. As time went on it was clear there were further 
problems with diversification and expansion: a system installed for a given venue or sport did 
not easily transfer to different venues or sports; progressive changes within the sport either to 
play or to venue facilities could mean opportunities lost and/or costly changes to the installed 
system; the approach relied on long-term commitments from sporting organisations 
(generally, the leagues or associations in the relevant country for the relevant sport); the 
system was vulnerable to physical faults or disruptions; and perhaps most critically, the 
startup costs were more than all but the most well-resourced organisations (generally, the 
'premier' leagues in big-market sports) could afford. In short, the fixed-installation nature of 
their existing technology prevented an agile business model. Supponor decided, therefore, to 
consider the possibility of full digital replacement, based purely on the video data as 
processed by an AI for video scene understanding. Their experience provides a good example 
of digital transformation in practice. 
   The company was put in contact with leading experts from Oxford Brookes University with 
a strong background in scene understanding; in particular, members of the Visual AI Lab 
(VAIL) (https://www.brookes.ac.uk/research/units/tde/groups/visual-artificial-intelligence-
laboratory), 
led by Prof. Fabio Cuzzolin. The VAIL team outlined a programme of work aimed at 
exploring the feasibility of using digital replacement approaches - technology that could not 
only substitute for the existing system but add additional capabilities, such as the ability to 
transfer directly to new sports or venues with little start-up time, or to overlay advertisements 
not just on the raw video, but potentially on that supplied by third-party broadcasters who 
have already overlain additional data layers (e.g. a running 'score ticker' at the bottom of the 
screen, etc.). The groups agreed to develop a Knowledge Transfer Partnership (KTP) with a 
dual purpose: on the one hand, to explore state-of-the-art AI video replacement solutions, and 
on the other to promote the development of the necessary in-house expertise in AI noted in the 
introduction to permit Supponor to continue forward with further developments. KTPs are a 
particular funding route supported by UK Research and Innovation (UKRI) 
(https://www.ukri.org/opportunity/knowledge-transfer-partnership/), the UK's national 
research funding body, to support close collaborations between industry and academia, 
particularly for de-risking exercises and/or development of in-house knowledge in leading-
edge research at the margins of commercial viability. The project was eminently suited to this 
type of funding arrangement; work began in September, 2021. 
   Forming such partnerships, however, takes time, and in the period between the initial 
contact between Supponor and Brookes, and the start of the actual project, Supponor itself 
had already begun preliminary development of all-digital replacement technology. Much of 
this was in recognition of the clear limits of the original physical approach. But additional 
drivers included further developments in their target sports, particularly football, Supponor's 
initial primary area of focus (and in which they have by far the largest market penetration). 
There, the introduction of features like second rows of billboards and advertising 'carpets' 
placed directly on the pitch offered new opportunities that could not be exploited with the 
existing system. Furthermore, diversification into additional sports such as basketball (in the 
NBA) and hockey (the NHL), presented a complex rollout roadmap with considerable start-up 
time for organisations eager to go 'live' early and at a large scale. Only all-digital replacement 
could solve these problems, and so Supponor built its own internal technical development 
group and an initial all-digital system, borrowing heavily from the existing technology, with a 
plan to transition away from the physical installations as quickly as the AI-based technology 
could mature. The state-of-play at the beginning of the project was thus that Supponor had 



what could be considered a prototype all-digital system (albeit in real deployments), but with 
significant limitations to its use or future potential. 
 
The Supponor Experience 
 
   In spite of the extremely early nature of the new digital solution, Supponor's initial 
experience was reasonably positive. Deployments in football largely worked as a drop-in 
replacement for the physical technology with minimal start-up time; perhaps this was not 
surprising given Supponor's extensive experience and deployments in football. Viewer 
familiarity with the displayed effects also no doubt played a rôle; it is considerably easier to 
deploy replacement technologies with marginally different behaviour to an audience already 
familiar with the overall effect, than it is to introduce hitherto unseen technologies to 
completely inexperienced audiences not expecting significant changes to their existing 
experience.  
   An object lesson in how this can come into play was encountered in deployment to the 
NHL. Supponor itself was, in fact, well aware of the limitations and potential for teething 
problems and strongly recommended a cautious roll-out, but NHL management was eager to 
get the system live at full scale across the league early, and opted for a very aggressive roll-
out plan. Given that there were no immediate technology concerns, just a general sense at 
Supponor that an ambitious deployment schedule would be inviting trouble, the groups 
proceeded with immediate roll-out. As things happened, the technical issues encountered 
revolved not around the AI components, which generally worked acceptably, but on 
integration issues such as video format, display resolution, hardware, etc. These generated a 
spike of technical support load for Supponor, but the larger problem was how these relatively 
minor issues affected the viewer experience. Although the roll-out was by and large 
successful, it produced something of an Internet backlash amongst die-hard NHL fans who 
felt that the resulting effects were too visually intrusive or noticeable [CBC2022]. In turn, this 
wave of outrage generated a group of fans using their own video tools to isolate and 
characterise particular artefacts in the video stream which would probably pass for unnoticed 
to the casual observer, but pointed out in this way, suddenly became very distracting. As a 
consequence, Supponor was bombarded by a wave of online criticism, arguably unfairly 
directed at them, because they had already been keenly aware of the limitations of the existing 
system. This demonstrates that it is not only important that a company have in-house expertise 
in AI, but also that they need to be able to communicate this effectively to their user base so 
that users do not end up with unrealistic expectations. 
   A level-headed analysis suggests that what was necessary in this situation was to temper 
expectations carefully for all parties. Undoubtedly, the NHL moved extremely aggressively 
and underestimated the strength of fan discontent, particularly with regard to heavily intrusive 
or distracting advertisements that quite literally drew attention to themselves. This is to be 
contrasted with the cautious plan adopted by the Bundesliga in Germany which requires 
extensive system validation and continuous analysis following each match to retain 
certification. Perhaps surprisingly, Supponor itself may have ended up being aided by the 
NHL experience, because fan response provided an unforeseen torrent of debugging 
information. In essence, the group of disgruntled fans provided free identification of artefacts 
at scale, without being so overwhelming in number as to colour the largely positive 
experience of the majority. Further disruptions are likely to decrease in scale as viewers 
become 'acclimatised' and the identified issues are ironed out. However, these transitions 
could have been made more smoothly if the rollout had been preceded with a period of pilot 
trial and perhaps focus groups amongst the fan base, lessons which apply equally to any 
would-be deployer of state-of-the-art AI solutions. 
   Teething pains aside, Supponor's immediate transition to AI technology has been 
surprisingly rapid and successful. At end of 2021 the company was just starting to transition 



and their combined physical/virtual deployments amounted to 800, up from about 150 from 
the previous year. By contrast, at the end of 2022, the company foresees 3,000 deployments 
(matches/events covered), the greatest part of the increase coming from the NHL deployment 
of approximately 1,400 games (it should be noted that the scale of this rollout alone, 
compared to the comparatively conservative growth in football rollouts the previous year 
indicates the ambitiousness of the NHL schedule). However, the jump from 150 to 800 and 
then subsequently to 3,000 was entirely driven by the virtual technology - demonstrating how 
rapidly AI has overtaken the physical technology. Revenue growth likewise was strong, a gain 
of 140% between 2021-22 and 2022-23 financial years. The company has now started to work 
with Formula 1, who, following the more cautious approach recommended, have seen a 
successful pilot project form the basis of talks for a more long-term, wide-scale deployment. 
AI will be particularly important here because the international nature of F1 and the extremely 
unique, individual nature of each venue more-or-less necessitates off-site processing not tied 
to a physical installation - something the virtual solution enables which had previously been 
infeasible. The question then may be - what is left for the KTP to explore? Has not Supponor 
negotiated the learning curve in the digital transformation successfully and do they not as a 
result have the required in-house expertise already? 
 
Crafting State-of-the-Art Solutions 
 
   At first glance, it may seem like Supponor has already solved most, if not all, of the major 
issues involved in transitioning to an AI virtualisation solution. However, the truth - hinted at 
in who Supponor is working with - is that this process is still relatively expensive and 
resource-intensive. The AI must, in essence, be hand-crafted for each new sport, and less 
potential has been observed for cross-domain transfer than might have been hoped, under the 
existing approach. Sports with relatively similar game play and venue setup like hockey and 
football, might, for example, offer hope that the system could be generalised to work with an 
arbitrary such 'players on a pitch' format, yet the systems themselves are individual for each. 
F1, meanwhile, presents an entirely new class of sport, with little expectation of direct 
transfer, and developing what is in essence a new system from the ground up requires 
considerable compute as well as human resources over many months. What is needed is an 
approach that can somehow generalise across sports, to the overall class of video infilling, 
and this involves moving from simple video segmentation (bounding different objects in a 
scene) to true video understanding (identifying the type of object bounded and being able to 
characterise - and predict - its behaviour). If then, the original aim of the KTP was to build 
expertise and develop a proof-of-concept, the goal has now changed: a proof-of-concept exists 
together with some in-house expertise, but what is wanted now is a more general system and a 
shift of design approach away from ad-hoc, hand-crafted AIs towards ones based on more 
universal, generalisable methods. 
   Originally the analysis focussed on so-called 'whole-scene' understanding. Supponor's 
existing virtual AI method trains only on cropped or masked patches of the original video 
stream - isolating the areas thought to be of interest and then implementing limited scene 
segmentation within those areas. This has strong similarities with the '2-stage' models 
[He2017] often used in perception systems for applications like autonomous driving: an initial 
model separates regions, and a second stage of processing segments within the region by 
applying class labels. However, recent research suggests such 2-stage models may be 
discarding global information across the scene that can inform segmentation, in other words, 
that can provide further conditioning on the posterior region probabilities. 'End-to-end' 
systems [JLong2015] produce segmented objects without any division into regions; this is 
particularly useful for the case of relatively slow-moving objects which, over a series of 
frames, smoothly change position in the visual field; many sports have this characteristic, and 
so an end-to-end system based on full semantic segmentation of the scene appears to make 



sense (Fig. 3). It was also thought that this might allow better cross-domain transfer, as the 
network is learning general properties of segmentable shapes, rather than properties of objects 
of a specific expected size or shape within the visual field.  
 

 

Figure 3: End-to-end convolutional network for semantic segmentation, from [JLong2015] 
 
   However, it became quickly apparent that traditional full scene segmentation faced a 
daunting barrier: the need for labelled data. For semantic segmentation to work, typical 
systems require training using large datasets annotated with the ground truth for both regions 
and labels. Thus, for example, a player on the pitch has to be given both an outline, and a 
label indicating this object is of class 'player'. It does not take long to realise that with 
complex, variable shapes like players, labelling video images will be a tedious and time-
consuming process; many players in many postures and locations will have to be hand-
annotated, the pixel boundaries may not be clear-cut, and if 2 objects intersect on the field it is 
not immediately obvious how they should be segmented, particularly if prediction is desired 
for the next frame. Existing training data was, for the most part, only partial frames, which 
makes sense in the case of Supponor's first-generation AI system, but would not be useful to 
develop a full-scene understanding model. For new generations of AI to be deployed, some 
method of generating labelled data rapidly, cheaply, and at scale would be essential, and it 
became very apparent that this challenge, indeed, would dominate the entire process of 
transitioning to a virtual AI system. 
 
The Data Gap 
 
   The basic problem - the 'data gap' is starting to be understood throughout the AI industry as 
one of the most formidable ones to overcome. Generating large labelled datasets is both 
labour-intensive and time-consuming. There are firms that specialise in manual annotation of 
datasets, typically by outsourcing the annotation to a contract labour pool, e.g. Mindy 
(https://mindy-support.com/services-post/data-annotation-services), Qualitas Global 
(https://www.qualitasglobal.com), but for the scale of annotation that makes effective training 
possible, costs remain significant. Quotes for annotation of only 2000 frames of data for 
Supponor ranged from about $11,000 to about $27,000; and it was generally thought that this 
volume of labelled frames is not sufficient in itself (that is, without the use of other 'data 
augmentation' methods) to train a full-scene understanding system to a production standard.  
   This is a cost often overlooked in the deployment of AI systems. Research articles often 
quote impressive state-of-the-art performance figures for tasks like semantic segmentation 
[Chen2018], but these articles often conceal 2 hard truths. In the first instance, many articles 
are written focussing on established standard benchmark datasets. Such datasets have 
typically been assembled by large teams or consortia over many years and reflect a very large 



prior investment [Lin2014]. Furthermore, standard benchmark datasets may be somewhat 
informative as to abstract performance capabilities of a system, but are typically not tuned to 
specific application requirements and are not suitable for training models for production 
applications. Some cross-domain transfer is possible, but results are often disappointing 
[Zhang2020], [Zhang2021]. In the second instance, state-of-the-art figures are often quoted in 
articles [Chen2020], [HWang2021] by large research teams working for the very largest firms 
in the field, e.g. Google, Amazon, or Microsoft, who are lavishly resourced in compute 
hardware, staffing, and access to data sources. Such a level of data access is not generally 
available to most firms. Indeed, many times access to data is blocked behind paywalls, as 
companies, increasingly aware of the value of data, understandably attempt to monetise their 
assets. Frequently, this is at rates that, while reflecting the labour involved in their creation, 
remain utterly inaccessible to small and medium-sized enterprises (SMEs). When one 
considers that even how much value the dataset would have to the customer company, may 
not be easily assessable without prior access to the data itself and some pilot trials, it becomes 
hard to justify what looks like a risky fixed investment in what could turn out to be a 'pig in a 
poke'. 
   For specialised domains such as Supponor's video-infill case, useful data may be 
unavailable even if the company has the resources to purchase it from an external source. 
Existing datasets, whether open-access or pay-for-play, tend to focus on general scene 
understanding for generic scenes or videos - the sort of application most useful e.g. to label 
photos on an Internet picture gallery or provide annotations for a film database. This may be 
useful to mass-market content providers, but is of less interest to domain specialist 
companies, especially those whose business model is primarily B2B focussing on the needs of 
client organisations rather than end consumers. A quick inspection made it clear that there was 
very, very little in the way of pre-existing datasets for the Supponor case. Hence there was a 
decision to be made: spend the time and money on extensive hand annotation, or look for 
alternative methods to bridge the data gap. 
 
Solutions to the Data Gap 
 
   Efforts examined a variety of approaches. These include: using standard automated 'data 
augmentation' strategies [Shorten2019] to expand Supponor's existing labelled datasets; use of 
simulation to create complete 'virtual worlds' that come automatically available with ground 
truth information (because it is inherent to the simulation itself'); hybrid approaches 
combining both limited full-scene understanding with local scene segmentation similar to 
Supponor's existing system; unsupervised and 'semi-supervised' [Wang2019], [Chen2020] 
learning techniques that can bootstrap the learning to the point where a smaller labelled 
dataset is sufficient to fine-tune the system; enhanced annotation tools that permit faster and 
more automated manual annotation, and simply 'biting the bullet' and outsourcing a large 
dataset to an annotation firm. 
   Even the most cursory look at the costs involved in hand annotation - as seen above, quickly 
eliminated the full-annotation approach at the outset. Much more than $20K would not have 
been economically justified given uncertainty of outcomes - nor was it within the budget of 
the KTP. Data augmentation and hybrid strategies were also quickly eliminated, in part by 
early trials that performed poorly, but more realistically, because transferring a partial-scene 
dataset to full-scene dataset would be complex, error-prone, and dependent on prior 
assumptions. The simulation approach was looked at more seriously; the existence of game 
engines that, for example, include football, hockey, etc. hinted at the possibility of progress. 
As a future research direction for the general annotation problem, such simulation-based 
approaches look promising because, in principle, they can automatically generate arbitrary 
volumes of labelled data with almost infinite permutations [Hinterstoisser2019]. However, 
again, a realistic appraisal concluded that game engines and other simulation platforms are 



complex systems with steep learning curves, the required expertise lay outside the skill sets of 
the team, and it was not at all immediately clear that off-the-shelf or even fully bespoke in-
house simulation would be sufficiently similar to the real world to be useful for training. 
Simulation remains a very promising avenue for future exploration, but in the present is too 
dependent on personnel with matching skills. 
   The remaining options were to leverage special-purpose annotation tools and to explore 
unsupervised and partially-supervised methods. Supponor developed contacts with V7 Labs 
(https://www.v7labs.com), a firm offering a semi-automated annotation tool that promises 
dramatic reduction in annotation time. Although it was not yet definitely clear that it would 
reduce the costs to annotate significantly, it was reasoned that, given that the tool could 
potentially improve annotations for the production team working on Supponor's existing AI 
solution as well as for the research team in the KTP, a trial was justified. A quick series of 
tests followed and resulted in the following conclusions. First, it was found that indeed the 
annotation time dropped significantly - from hours per frame to around 45 minutes per frame. 
Second, the annotator could be used to edit frames automatically annotated using other AI 
methods, to produce accurate ground-truth data efficiently using a combination of automatic 
and manual methods. Finally, it was also concluded that whilst these results were effective 
and certainly justified the purchase of the V7 tool, they would still be inadequate for the 
extent of data required.  
   Almost inevitably, then, the group was looking at using unsupervised/semi-supervised 
methods. As it happened, such approaches were already built into the project, so these already 
looked like attractive options, but they were brought significantly forward in the project 
timeline by the pressing need to be able to use a minimum of hand-labelled data. Very 
recently, 'self-supervised' techniques which use information metrics to extract latent data have 
suddenly gained traction, and seen promising reported results in the literature [Lai2020], 
[NWang2021]. In part, this may be because the limitations of hand annotation and supervised 
learning are now becoming very evident to all research AI practitioners. Nevertheless, it is an 
emerging field, not one where many firms have existing in-house expertise, and indeed, it lies 
entirely outside the experience of the existing Supponor technical team. By contrast, the KTP 
partners at Brookes were already looking into these methods intensively and have some 
preliminary results, so it has proven a natural fit to extend these methods into the Supponor 
project, with the aim not only to improve the system, but to embed the knowledge and 
expertise brought to the in-house team and create a core capability extending Supponor's 
competitive advantage. Results (Fig. 4) thus far have been confined to benchmark datasets, 
but already suggest that a semi-supervised learning stage can automate annotations to about 
65% accuracy - not enough, yet, for production-quality full-scene understanding, but enough 
to reduce the manual annotation requirements to a few thousand frames.  
 
 

Original Video Ground Truth Segmentation Self-Supervised Prediction 
Figure 4: Example of preliminary results from self-supervised learning on benchmark datasets. 
From presentation to KTP LMC4 meeting presentation, 29 November 2022 
 
A staged path of development has been established with a network successively augmented by 
self-supervised pre-training, partially-supervised training, and fine-tuned training with full 
manual annotation using the V7 tools. (Fig. 5)  



 

Figure 5: Development path. The system is being evolved from a self-supervised initial setup to a 
network ultimately implementing full-scene segmentation with a combination of annotated and 
unannotated data pretrained using self-supervised learning. From presentation to KTP LMC4, 29 
November 2022. 
It is still early to conclude exactly how effective this pipeline will be. It is, however, 
abundantly clear that this would not have been possible without the KTP partnership to 
transfer research expertise to the commercial environment. 
 
Conclusions 
 
   The overall experience of both Supponor and Brookes in the KTP powerfully reinforces 
how critical it is for firms to understand fully the technical as well as business implications of 
automation using AI. In-house expertise is vital if initiatives are to be successful; without it, a 
company on the one hand is ill-prepared to handle the unexpected pitfalls of AI development, 
on the other unable to take advantage of recent developments in a field still rapidly advancing. 
Indeed, Supponor has quickly recognised the importance of this and as a result has begun 
forming an in-house research team (based in France) to supplement the development team 
(based in Finland). The 2 teams have complementary rôles; the development team is 
responsible for day-to-day deployments, bugfixes, and maintenance of the existing system, 
whilst the research team is responsible for taking recent advances from the academic research 
community and translating them into a strategic technology roadmap for the future. The 
Supponor-Brookes KTP, meanwhile, is a direct link into academic research at the edge of the 
state-of-the-art - an information conduit that gives Supponor access to skills and technologies 
beyond the commercial horizon. Where this leads to remains to be seen, but it seems clear that 
Supponor is now on a rapidly ascending trajectory with its wholehearted embrace of a fully-
virtual AI content infill technology. 
   The entire process has also put the spotlight strongly on the data-generation problem. It 
appears that for AI development of the future, this will dominate research, over and above 
even the creation of new models. In the past AI was thought about mostly as automating the 
problem of data processing; the future appears headed towards data creation. Both the 
research and the software pipeline under investigation in the Supponor-Brookes KTP now 
looks more like a process to automate the generation of information using AI and machine 
learning methods, than it is to automate their interpretation. Perhaps fittingly, this is where 
Supponor started: the entire business is based on creative content infill; it now appears that 



their AI systems of the future will be performing content infill on themselves. In the end, AI 
may work best when it embodies the intelligence built into the company deploying it. 
 
References 
[Abirami2021] R. N. Abirami, P. M. D. R. Vincent, K. Srinivasan, U. Tariq, and C.-Y. Chang, 
'Deep CNN and Deep GAN in Computational Visual Perception-Driven Image Analysis', 
Complexity, vol. 2021, April 2020 
[AlAidroos2012] N. Al-Aidroos, C. P. Said, and N. B. Turk-Browne, 'Top-down attention 
switches coupling between low-level and high-level areas of human visual cortex', Proc. Nat. 
Acad. Sci. USA vol. 109. no. 35, 4 Sep. 2012 
[Brigato2020] L. Brigato and L. Iocchi, 'A Close Look at Deep Learning with Small Data', 
Proc. 25th Int. Conf. Patt. Recog. (ICPR 2020), 2020 
[Brown2020] T. Brown, et al. 'Language Models are Few-Shot Learners', arXiv:2005.14165, 
May 2020 
[Calegari2020] R. Calegari, G. Ciatto, E. Denti, and A. Omicini, 'Logic-Based Technologies 
for Intelligent Systems: State of the Art and Perspectives', Information, vol. 11 no. 167, March 
2020 
[CBC2022] G. Nixon, 'The ads are virtual, but for some NHL fans, the irritation is real', 
Canadian Broadcasting Company (CBC) News, 15 October 2022 
[Chen2018] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff and H. Adam, 'Encoder-Decoder 
with Atrous Separable Convolution for Semantic Image Segmentation', Proc. 2018 Euro. 
Conf. Comput. Vis. (ECCV 2018), 2018 
[Chen2020] L.-C. Chen, R. G. Lopes, B. Cheng, M. D. Collins, E. D. Cubuk, B. Zoph, H. 
Adam, and J Shlens, 'Naive-Student: Leveraging Semi-Supervised Learning n Video 
Sequences for Urban Scene Segmentation', Proc. 2020 Euro. Conf. Comput. Vis. (ECCV 
2020), 2020 
[Dai2022] H. Dai, X. Peng, X. Shi, L. He, Q. Xiong, and H. Jin, 'Reveal training performance 
mystery between TensorFlow and PyTorch in the single GPU environment', Science China: 
Information Sciences, vol. 65, January 2022 
[Elshawi2021] R. Elshawi, A. Wahab, A. Barnawi, and S. Sakr, 'DLBench: a comprehensive 
experimental evaluation of deep learning frameworks', Cluster Computing, vol. 24, 2021 
[Guardian2018] 'Google's solution to accidental algorithmic racism: ban gorillas', The 
Guardian, 12 January 2018 
[He2016] K. He, X. Zhang, S. Ren, and J. Sun, 'Deep Residual Learning for Image 
Recognition', Proc. 2016 Int. Conf. Comput. Vis. Patt. Recog. (CVPR 2016), 2016 
[He2017] K. He, G. Gkioxari, P. Dollár, and R. Girshick, 'Mask R-CNN', Proc. 2017 IEEE 
Int. Conf. Comput Vis. Patt. Recog. (CVPR 2017), 2017 
[Hinterstoisser2019] S. Hinterstoisser, O. Pauly, H. Heibel, M. Marek, and M. Bokeloh, 'An 
Annotation Saved is an Annotation Earned: Using Fully Synthetic Training for Object 
Detection', Proc. 2019 Int. Conf. Comput. Vis. (ICCV 2019), 2019 
[Hoefler2021] T Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden and A. Peste, 'Sparsity in Deep 
Learning: Pruning and growth for efficient inference and training in neural networks', J. 
Mach. Learn. Res., vol. 23, September 2021 
[Hornik1991] K. Hornik, 'Approximation capabilities of multilayer feedforward networks', 
Neural Networks, vol. 4 no. 2, 1991 
[Koch2015] G. Koch, R. Zemel, and R. Salakhutdinov, 'Siamese Neural Networks for One-
Shot Image Recognition', Proc. 32nd Int. Conf. Mach. Learn. (ICML 2015), 2015 
[Krizhevsky2012] A. Krizhevsky, I. Sutskever, and G. E. Hinton, 'ImageNet Classification 
with Deep Convolutional Neural Networks', Adv. Neur. Inf. Process. Syst. 25 (NIPS 2012), 
2012 
[Jiao2019] L. Jiao, F. Zhang, F. Liu, S. Yang, L. Li, Z. Feng, and R. Qu, 'A Survey of Deep 
Learning-based Object Detection', IEEE Access, vol. 7, September 2019 



[Lai2020] Z. Lai, E. Lu, and W. Xie, 'MAST: A Memory-Augmented Self-Supervised 
Tracker', Proc. 2020 IEEE Conf. Comput. Vis. Patt. Recog. (CVPR 2020), 2020 
[LeCun1998] Y. LeCun, Y. Bottou, Y. Bengio, and P. Haffner, 'Gradient-based learning 
applied to document recognition', Proc. IEEE, vol. 86 no. 11, 1998 
[Li2022] L. Li, T. Zhou, W. Wang, L. Yang, J. Li, and Y. Yang, 'Locality-Aware Inter-and 
Intra-Video Reconstruction for Self-Supervised Correspondence Learning', Proc. 2022 IEEE 
Conf. Comput. Vis. Patt. Recog. (CVPR 2022), 2022 
[Lin2014] T.-S. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. 
L. Zitnick, 'Microsoft COCO: Common Objects in Context', Proc. 2014 Euro. Conf. Comput. 
Vis. (ECCV 2014), 2014 
[JLong2015] J. Long, E. Shelhamer, and T. Darrell, 'Fully Convolutional Networks for 
Semantic Segmentation', Proc. 2015 Int. Conf. Comput. Vis. Patt Recog. (CVPR 2015), 2015 
{MLong2015] M. Long, Y. Cao, J. Wang and M. I. Jordan, 'Learning Transferable Features 
with Deep Adaptation Networks', Proc. 32nd Int. Conf. Mach. Learn. (ICML 2015), 2015 
[McCarthy1955] J. McCarthy, M. L. Minsky, N. Rochester, and C. E. Shannon, 'Proposal for 
the Dartmouth summer research project on artificial intelligence, Tech. Rep., Dartmouth 
College, 1955 
[Masaki2021] S. Masaki, T. Hirakawa, T. Yamashita, and H. Fujiyoshi, 'Multi-Domain 
Semantic-Segmentation using Multi-Head Model', Proc. 2021 IEEE Intell. Transp. Syst. Conf. 
(ITSC 2021), 2021 
[Minsky1969] M. L. Minsky and S. Papert, Perceptrons: An Introduction to Computational 
Geometry, MIT Press 1969 
[Ouali2020] Y. Ouali, C. Hudelot, and M. Tami, 'Semi-Supervised Semantic Segmentation 
with Cross-Consistency Training', Proc. 2020 Conf. Comput. Vis. Patt. Recog. (CVPR 2020), 
2020 
[Passalis2018] N. Passalis and A. Tefas, 'Learning Deep Representations with Probabilistic 
Knowledge Transfer', Proc. 2018 Euro. Conf. Comput. Vis. (ECCV 2018), 2018 
[Ramirez2019] P. Z. Ramirez, A. Tonioni, S. Salti, and L. Di Stefano, 'Learning Across Tasks 
and Domains', Proc. 2019 Int. Conf. Comput. Vis. (ICCV 2019), 2019 
[Rosenblatt1958] F. Rosenblatt, 'The perceptron: A probabilistic model for information 
storage and organization in the brain', Psych. Review, vol. 65 no. 6, 1958 
[Shorten2019] C. Shorten and T. M. Koshgoftaar, 'A survey on Image Data Augmentation for 
Deep Learning', J. Big. Data, vol. 6, 2019 
[Shahriari2022] M. Shahriari, R. Ramler, and L Fischer, 'How Do Deep-Learning Framework 
Versions Affect the Reproducibility of Neural Network Models?' Mach. Learn. Knowl. Extr. 
vol. 4, 2022 
[Simonyan2015] K. Simonyan and A. Zisserman, 'Very Deep Convolutional Networks for 
Large-Scale Image Recognition', Proc. 2015 Int. Conf. Learn. Represent. (2015) 
[Tan2017] B. Tan, Y. Zhang, S. J. Pan, and Q. Yang, 'Distant Domain Transfer Learning', Proc 
31st AAAI Conf. Artific. Intell. (AAAI17), 2017 
[Vaswani2017] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. 
Kaiser, and I. Polosukhin, 'Attention Is All You Need', Adv. Neur. Inf. Proc. Syst. 31 (NIPS 
2017), 2017 
[Wang2019] W. Wang, H. Song, S. Zhao, J. Shen, S. Zhao, S. Hoi, and H. Ling, 'Learning 
Unsupervised Video Object Segmentation through Visual Attention', Proc. 2019 IEEE Conf. 
Comput. Vis. Patt. Recog. (CVPR 2019), 2019 
[HWang2021] H. Wang, X. Jiang, H. Ren, Y. Hu, and S. Bai, 'SwiftNet: Real-time Video 
Object Segmentation', Proc. 2021 IEEE Conf. Comput. Vis. Patt. Recog. (CVPR 2021), 2021 
[NWang2021] N. Wang, W. Zhou and H. Li, 'Contrastive Transformation for Self-Supervised 
Correspondence Learning', Proc. 35th AAAI Conf. Artific. Intell. (AAAI-21), 2021 
[Zhang2020] Y. Zhang and B. D. Davison, 'Impact of ImageNet Model Selection on Domain 
Adaptation', Proc. 2020 IEEE Winter Applic. Comput. Vis. Wkshp. (WACVW 2020), 2020  



[Zhang2021] G. Zhang, H. Zhao, Y. Yu, and P. Poupart, 'Quantifying and Improving 
Transferability in Domain Generalization', Adv. Neur. Info. Proc. Syst. 35 (NeurIPS 2021), 
2021 
 
 
 
About the Authors 
 
Alexander Rast is a Senior Lecturer in Computer Science at Oxford Brookes University. He 
is a member of the Artificial Intelligence and Robotics research group and affiliated with the 
Visual AI Laboratory. He has close partnerships with several other research groups including 
the Autonomous Driving and Intelligent Transport group and the Institute for Ethical AI. His 
research interests focus on neural networks, with an emphasis on hardware implementations 
of spiking neural systems (neuromorphic chips). He is particularly concerned with embedded 
and robotic applications of neural networks (both spiking and nonspiking) and has worked on 
perception, visual attention, language grounding, and neuromorphic-robotic integration. 
Along with Fabio Cuzzolin he is one of the 2 academic supervisors for the Brookes-Supponor 
Knowledge Transfer Partnership. 
 
Vivek Singh is the Knowledge Transfer Partnership (KTP) Associate for the Brookes-
Supponor KTP. His background includes previous work with the Visual AI Laboratory on 
models for visual semantic segmentation in the surgical operating theatre under the SARAS 
project. His research focusses on scene understanding, semantic scene segmentation, object 
and action detection and recognition, and facial expression analysis. 
 
Steve Plunkett is the Chief Product Officer for Supponor, Ltd. and has overall technical 
responsibility for Supponor's AIR digital-replacement technology. He is the KTP company 
supervisor for the project and has day-to-day responsibility for managing progress. 
 
Andrew Crean is the Chief Financial Officer for Supponor, and is the Chairman of the KTP 
Local Management Committee (LMC), with overall oversight of the entire project. He sets 
strategic directions for the project, and ensures research objectives are matched with 
Supponor technical and market requirements.  
 
Fabio Cuzzolin is a Professor of Computing at Oxford Brookes University and the director of 
the Visual AI Laboratory. He is the lead academic in the Brookes-Supponor Knowledge 
Transfer Partnership, and is currently PI for 8 funded projects with a total budget of 
£5,000,000. Professor Cuzzolin’s research focusses on artificial intelligence and its 
applications to computer vision and robotics. As founder in 2012 of OBU’s Visual Artificial 
Intelligence Laboratory he has been conducting work at the boundaries of computer vision. In 
particular the Lab is world-leading in deep learning for detecting and recognising human 
actions, as evidenced by some of the best detection accuracies to date and the first system 
(2017) able to detect multiple action instances in a streaming video in real time. The work has 
been highly cited in the field and has led publications in top computer vision journals such as 
IEEE PAMI and IJCV. Parts of the technology are being spun off as the foundations for a 
start-up company. The team’s focus has now shifted towards issues at the boundaries of visual 
AI, such as the modelling via deep learning of complex activities performed by multiple 
people and agents, the predicting of future events and intentions, and the creation of a 
machine theory of mind. 
 


