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Abstract 
 

Random vibration fatigue loading occurs in automotive, aerospace, offshore and indeed in 

many structural and machine components. The analysis of these types of problems is often 

carried out using either time domain or frequency domain methods. Time domain rainflow 

counting together with Miner’s linear damage accumulation assumption is widely accepted as 

a method of rationalising stress amplitude and mean stress from random fatigue loading and 

the damage caused to the component. Frequency domain methods provide a faster alternative 

for the analysis of the same problem but the results are generally conservative compared to 

those obtained using time domain methods. This paper presents an artificial neural network 

(ANN) machine learning approach for the prediction of damage caused by random fatigue 

loading. The results obtained for ergodic Gaussian stationary stochastic loading is very 

encouraging. The method embodies rapid analysis as well as better agreement with rainflow 

counting method than existing frequency domain methods.  
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1. Introduction 
The paper presents a general machine learning Artificial Neural Network (ANN) method for 

the analysis of random fatigue loading problem. Virtually all fatigue loading inherently have 

random loading in addition to deterministic loads. Random fatigue loading is usually analysed 

in time or frequency domain. The widely accepted time domain approach is based on the 

rainflow counting method for reducing the loading spectrum 

into amplitude and mean loading data and the use of Miner's rule for the calculation of 

cumulative damage. Most wideband frequency domain methods include probability 

distribution functions with parameters that were determined based on minimising the error of 

correlation with the predictions based on rainflow counting and Miner's method [1]. The 

methods used for the determination of the parameters for the probability distribution function 

included intuitive empirical observations in some cases [1], [2].   While the success of the 

models developed are respectable, significant and wide discrepancies are still observed in the 

correlations. This problem may be partly attributed to the fact that the numbers of power 

spectral density samples used in the development of the models were few. Dirlik [1]  used 70 

and Petrucci [2] used 45.  

 

Artificial neural network has been known to provide greater scope for non-linear 

generalisation and ability to deal with a large number of input variables than direct application 

of optimisation methods [3], [4], [5]. Very little has however been reported in the literature on 

the use of artificial neural network method on problems related to random fatigue loading 

problems. A recent publication [6], [7] showed the possibility for ANN to be able to identify a 

spectral type and use this with various models such as Wirsching-Light, Zhao-Baker, 

Benasciutti-Tovo and Dirlik to predict damage [1], [8], [9], [10]. This effort did not however 

progress beyond the use of an idealised spectrum of loading. This paper presents an artificial 

neural network method for random loading fatigue analysis for predicting fatigue damage 



3 
 

using a broad range of spectral types and material properties. The model is based on a broad 

coverage of various properties and parameters such as spectral moments, ultimate tensile 

strength and fatigue strength coefficient and exponent. The results obtained generally 

demonstrate excellent ability of ANN to make better fatigue damage predictions compared to 

existing frequency domain methods.    

 

2.  Theory  

This section describes the main theoretical background for the work presented. The main 

aspects are characterisation of random loading, fatigue life, type of loading, material 

properties, and artificial neural network method. 

 

2.1 Characterisation of random processes and fatigue loading 

It is necessary to indicate that this work concerns statistical random processes or loading that 

are stationary and ergodic. Ergodicity means that the statistical properties of representative 

samples of the process are the same over the equal time interval. By stationarity, we mean that 

the statistical properties of the random process at a particular time over many representative 

samples are the same. These conditions in effect mean that the samples we analyse are 

representative of the loading over time.  The Fourier transform X(f) of a time domain signal 

x(t) is given by equation (1).  According to Perseval’s theorem [11] the energy under the time 

and frequency domains are the same, as expressed in equation (2).  





 dtetxfX ift2)()(      (1) 









 dffXdttx 22 )()(     (2) 

where t represents time and f represents frequency. The input output relationships of random 

processes are more conveniently described using the frequency domain representation. The 

power spectral density (PSD) equation (3) describes the variation of the power content of a 

signal in real terms with frequency. 
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where )( fGx is the PSD and the symbol E is used to denote the expectation of the value in 

bracket. The value of )( fGx  used in this work was normalised with respect to the sampling 

frequency. In the context of fatigue, the power input during loading into a component is 

related to the fatigue damage by parameters based on the PSD. The main parameters used are 

the moments of the PSD which are given by equation (4)  





0

)( dffGfm x
i

i       (4) 

where mi is the i th moment of the PSD Gx(f); i = 0, 1, 2, 4 are used for fatigue loading 

characterisation. Other parameters derived from the moments such as given in equations (5) 

and (6)  

  2/1
02 /)0( mmE        (5) 

  2/1
24 /)( mmPE        (6) 

provide estimates for the number of upward mean crossing and the number of peaks in the 

signal per second respectively. The irregularity factor, , of the signal is given by equation (7)  

 
                    

 

  2/1
402 /)(/)0( mmmPEE      (7) 

 

reflects the spread of the process,     tending to a value of 0 or 1 corresponds to a broad band 

or a narrow band signal respectively. An alternative description of bandwidth characteristics 

of a signal is given the Vanmarcke’s parameter 2/1
20

2
1 )]/(1[ mmmqx  [8].  

 

Twelve different forms of spectra including those used by Dirlik, 1985 [1], Tovo [12] and 

Benasciuttti and Tovo [8] as illustrated in Figure 1 were used in this study. The frequency 
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values fi  , i = 1,6;  spectral amplitudes di, i=1,3 and shape modification parameters d4 and d5 

were chosen using the Latin Hypercube Sampling (LHS) [13] experimental design approach. 

This facilitates maximum coverage of the fatigue loading space. The ranges of the material 

properties, i.e the ultimate tensile strength, uts,  and fatigue strength and fatigue strength 

exponents a and b; and the limits of the spectral moment values mi, i = 0,1,2,4 considered in 

the work are highlighted in Table 1.   

 

2.2 Frequency domain damage prediction models 

The Miner’s linear cumulative damage rule for different fatigue loading states (Sai, Smi and ni) 

is given by  


i

ii NnDE /)(      (8) 

where E(D) is damage fraction, Sai, Smi and ni, in the case of stress fatigue loading analysis, 

are the amplitude and the mean stress and number of cycles representing the loading 

corresponding to state i. Ni is the number of cycles under the loading state that on its own will 

cause fatigue failure.  The life Ni is determined in terms of the fatigue properties of the 

material and the mean stress as highlighted in equations (9) and (10)   

 b
iiai NaS         (9) 

)/1( UTSmii S        (10) 

where a and b are the fatigue strength and exponents values for the material based on stress 

amplitude. The mean stress parameter i  in equation (10) is the Goodman’s correction factor 

for accounting for the effect of the mean stress and uts is the ultimate strength of the material. 

The frequency domain expression for fatigue damage prediction which includes Miner’s rule 

[14] is generally written as in equation (11)  





0
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k
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where T is the fatigue loading signal sampling time, E(P) = (m4 / m2)1/2 is the number peaks in 

the signal per second as indicated in equation (6), S is the stress range variable, v = -1/b and k 

= (2a)-1/b and p(S) is the probability distribution function expressing the possibility of 

occurrence of S.  Dirlik [1] in 1985 derived a probability distribution function p(S) based on 

the combination of statistical Rayleigh,  Normal and additional distributions. The parameters 

of the distribution were determined using optimisation and heuristic observations to match the 

form of the distribution with results that obtained using rainflow counting method for 70 

different types of spectral. The form of the p(S) obtained is given in equation (12) 

2/12
3

2
2
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222

o
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DSp 








    (12) 

where S represents stress range, Z is stress range normalised using the root of the spectral 

moment m0. All other parameters R, Q, D1, D2 and D3 are intrinsically functions of the 

spectral moments mi, i=0,1,2 and 4. Petrucci and Zuccarello [2] presented a fatigue damage 

solution in the form shown in equation (13). 

 kvPEDE pxx  2/)],,,([exp)()(     (13) 

The function pxx v  and,,,  variablesits and,  are also functions of the spectral moments 

mi, i=0,1,2 and , and k is a fatigue material property. 

 

2.3 Machine learning artificial neural network implementation 

An artificial neural network (ANN) is a mathematical model that is designed with the aim for 

it to function like the neural network in the human brain maps input data to the appropriate 

output data. ANNs are often used as pattern classifiers or as function approximators. Function 

approximation is the primary mode for the ANNs used in the work; pattern recognition is 

intrinsic. Three layers of neuron as illustrated in Figure 3 is generally accepted as sufficient to 

represent any non-linear function approximation [15].  Each of the hidden and output layer 

neuron which we here represent by the index j is connected to the neurons in the preceeding 
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layer. The preceeding layer to the output layer is the hidden layer and correspondingly the 

preceeding layer to the hidden layer is the input layer. We have used the index i here to 

represent neurons in a preceeding layer. The strength of the connection between neurons j and 

i  are often represented by the term wij. The bias value for each hidden and output neuron is 

indicated in Figure 2 by the symbol  j. 

 

Before an ANN can be used, it needs to be trained on data for which the inputs and the 

corresponding target outputs are known. The training process used in this work is based on  

the feedforward – backpropagation multilayer perceptron (MLP) method. As highlighted in 

the foregoing the connection weights wij as well as the bias j are initially set to some randon 

values, e.g from ~n(0,1) which is a standard normal distribution population with 0 mean and 

variance of 1. The training proceeds by feeding known inputs into the network and obtaining 

its corresponding predictions for the output.  In this process, each internal and output neuron j 

receives a weighted sum xj of input values xi from the preceding neurons i according to 

equation (14). The output from the neuron j denoted by yj = f(xj) is as given in equations (15) 

and (16) for the internal and output neurons respectively; 


i

iijj xwx       (14) 

)exp(1
1

jj
j x

y
 



     
(15) 

jjj xy 

       
(16) 

The sigmoid function in equation (15) is numerically desirable in the perceptron model as it 

ensures that all values passing to the next neuron lie in the range [0,1] and more importantly 

the form of its derivative makes it easy to determine its derivative which is used in the 

backpropagation process for weight adjustment. The parameter  in equation (15) modifies 

the slope of the sigmoidal function. Its value was set to 0.35 which was the magnitude found 
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to give consistently good prediction in a previous work [3]. The output layer used a linear 

transfer function, to ensure that erroneous outputs were easy to identify. 

 

The output yj from (16) will not in general match the known output corresponding to the 

inputs used from the data set, at least in the first feedforward through process. The mis-match 

error, usually the mean square error value, is then used in the backpropagation process to 

adjust or  modify the weights wij and bias j so that better prediction can be made by the 

network in the next feedforward iteration process. A number of iterations of feedforward – 

backpropopagation is required before the weights become useful and able to make a right 

prediction on the current data and subsequently on a previously unseen input data. Various 

backpropagation algorithms have been devised for the training of networks. The method used 

in this analysis was based on the +Rprop algorithm which is known to have excellent 

convergence characteristics [3], [16]. The parameters required for the optimal convergence of 

the training in this approach has been identified for most problems and are not dependent on 

trial and error. For research flexibility purposes, the implementation of the ANN in this work 

was carried out using a set of in house routines developed in a MATLAB [17] environment. 

The inputs used in this work is discussed in what follows. The output is fatigue damage 

fraction. 

 

As to be expected the fatigue properties of the material were essential inputs. It is tempting to 

simplistically expect ANN to be able to deduce the loading characteristics from the random 

time fatigue loading data that is available directly. Preliminary investigation showed that this 

approach was not feasible. As highlighted in Section 2.1 of this paper, the moments m0, m1, 

m2 and m4 have been identified as parameters from the frequency domain that characterise the 

original time domain random fatigue data [1]. These parameters together with the fatigue 

properties of the material i.e. uts,  a and b  were found useful in this work for the prediction 
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of fatigue damage using ANN. These seven parameters were fed into the input layer. This is 

the mimimum set of input data required to describe a broadband problem; 3 parameters 

describe the material properties and the 4 moments describe the spectral characteristics as 

used in Dirlik [1]. The use of higher moments such as mi, i > 4 compared to the cases i = 0, 1, 

2 and 4 does not present additional information that could help with the prediction 

generalisation, instead they will increase the number of input variables to be considered in the 

training deduction process. Higher moments are simply products of the PSD and the 

frequency raised to higher powers. The range i = 0, 1, 2 and 4 already contain constant, odd 

and even powers of the frequency. Any higher odd or even powers of the frequency will not 

be adding new information. All the input variables used in the study were scaled to fall 

between 0 and 1. The number of neurons in the output layer was one representing the fatigue 

damage fraction predicted. Although it is suggested that half the sum of input and output 

neuron [18], [19] is adequate as the number to be set for the hidden layer neuron, 

experimentation with this number in this work did not show good prediction. The number of 

hidden layer found to give good prediction was betwee 35 and 45; 40 was used for the work 

presented here. The recommendation to use about 20 times the total number of neurons [19] 

provided some guidance for the number of patterns constructued for the ANN training and 

testing in this study. In order to include extereme conditions, the numbers of patterns 

developed and used ranged from 100 to 20,000.  

 

2.4 Overall procedure 

A flowchart describing the overall process followed in the developments for this work is 

summarised in Figure (3). The analysis starts with the composition of trial space of many 

different spectral forms as illustrated in Figure 1. The shapes and frequency parameters in the 

spectra are randomly permuted using design of experiment methods [20] . As highlighted in 

the foregoing, different sample sizes ranging from 100 to 20000 were analysed in the course 
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of the study.  Fatigue material properties uts, a and b were sampled in the range 200 – 2000 

MPa, (1.17 – 13.61) uts and -0.850 to -0.333 respectively.  The range for the strength 

accommodates most alloys known from copper to maraging steels, both the fatigue slope b 

and strength coefficient a cover all typical values [2] which are dependent on factors such as 

dimension, surface finish, type of loading and notch factor.  

For every combination of spectra parameters, the corresponding time domain signal for the 

selected spectrum was generated using equation (17) [21],  

  



N

k
nkkxn ftffGtx

1
,

2/1 )]2[cos(])(2[)(     (17) 

where n is the sample number, N is the number of discretisation of the spectrum (PSD), with 

fkfk  )5.0( and nk ,  are mutually independent random phase angles distributed 

uniformly over the range 0 to 2. The maximum frequency considered for the fatigue data in 

the study was 200 Hz. The sampling frequency used varied from the corresponding Nyquist 

frequency of 400 Hz to 6.40 kHz. The higher sampling frequencies were considered in the 

light of recent findings  [22]. Up to 5000 discretisation of the frequency range and 32000 time 

steps were considered. The x(t) obtained was scaled so that the highest peak or deepest valley 

lied within 5 to 83% of the ultimate tensile strength value. This scaling reduced the possibility 

of any of the time data leading to extremely low values of oscillation before final fatigue 

damage occurs. This process provided a pool of input output for the training of the ANN 

described in section 2.3. The signals were analysed using an in house ANN routine and as 

well as own rainflow counting routine. The analysis used the material fatigue properties to 

determine corresponding damage intensity (i.e. damage per second) for each of the signals 

generated.  
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3.  Results  

This section presents a verification of the routines developed against results of fatigue 

analysis using a spectrum pattern that has been analysed by other researchers. The 

convergence and robustness characteristics of the pattern recognition artificial neural network 

method developed are then demonstrated. The predictions made using the method developed 

was compared against results obtained using existing frequency domain methods such as 

Dirlik’s[1] and Petrucci and Zuccarello’s [2] methods. Several spectrum shapes and an 

extensive range of material properties values were considered.  

3.1  Correspondence of frequency and time domains  

The aim of this section is to demonstrate the agreement of energy content in both the 

frequency and time domain data used because this is fundamental to right predictions using 

ANN. Although a systematic difference in the values could still lead to good prediction, this 

type of oversight was avoided in this work. As highlighted in section 2.1 the template spectral 

in Figure 1 were used to generate time domain data, x(t), with the aim to cover a wide variety 

of spectral shapes as much as possible. It is necessary to scale the time domain data to match 

the randomly selected alloy ultimate tensile strength property. As highlighted in Section 2.4, 

this was to limit the possibility of virtual monotonic load leading to instantaneous failure 

being considered as a fatigue event. After scaling, the spectral shape of the scaled time 

domain data in the frequency domain was re-determined. Figure 4 shows six of such spectral 

shapes obtained and the corresponding time domain data that produced them are shown in 

Figure 5.  The shapes of the template spectral can be seen to be preserved although the edges 

show some oscillation. The oscillation is inconsequential because the power spectral density 

functions of real fatigue loads is hardly ever smooth. Based on equation 2, Table 2 shows that 

the energy obtained from the spectral shapes used in the study and the corresponding time 

domain signals agree to within 0.5% of the spectral value. The power from the spectral shape 
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is the same as the spectral moment m0 and the power from the time domain is simply the 

mean of the square of the peaks and valleys of x(t).   

3.2 Comparison of ANN prediction with rainflow and other frequency domain methods 

The number of patterns used for the ANN training was 5000 for this analysis. The training of 

the network was carried out using 90% of the pattern data cases. The test of the ANN 

prediction was carried out using the remaining 10% of the pattern generated. Spectral patterns 

a to f  which included the narrow band was first considered and then broad band study 

excluding it was then considered. The results obtained for the 500 test cases are plotted in 

Figure 6 and 7.  Figure  6 contains the log – log plots of the results of damage predicted using 

ANN, Dirlik and Petrucci frequency domain methods against the time domain Rainflow 

counting prediction method. The use of log – log plot allows verification of correlation of data 

with the rainflow counting methods across the wide range of small damage values, about 10-16 

to relatively high values of 1. The R2 correlation value and the slope coefficient of the linear 

best fit lines are included in the plots to show the relative agreement of the methods with the 

rainflow counting method.  The linear plots of the results are also shown in Figures 8 and 9 to 

aid the direct comparison of the results obtained eliminating the non-linear effect of the 

logarithmic scale.   

As can be seen in the results in Figures 6 and 7, good correlation was obtained between ANN 

and the other frequency domain methods against the Rainflow counting method. The R2 

correaltion values ranged between 0.905 and 0.999 for the log log plots. The coefficient of 

linear fit which is supposed to be equal to 1.000 varied between 0.974 and 1.034 for the log 

log plots. The R2 correaltion values ranged between 0.976 and 0.998 for the linear plots in 

Figures 8 and 9 and the coefficient of fit varied between 0.972 and 1.299. 
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The correlation and slope coefficients show the ANN predictions to perform better than Dirlik 

and Petrucci methods. Both Dirlik and Petrucci methods show significantly higher slope 

coefficients i.e. 1.293 and 1.17 compared to 0.974 to 0.995 for the ANN. This indicates that 

the damage predicted using the ANN is averagely closer to the Rainflow counting values. The 

higher values of the Dirlik and Petrucci methods suggest that they are very conservative 

prediction methods.   

3.3 Sensitivity to alternate sampling  

This case attempts to detect the sensitivity of accuracy of prediction on alternate sampling 

compared to the sampling used to train the network. This is a helpful process in order to 

ensure that the ANN training had not over fitted or ‘memorised’ data. Consequence of 

overfitting is normally reflected in poor prediction when different unseen data is fed into the 

network. In order to generate the sample data for the neural network verification, each of the 

material properties, uts, a and b and spectral templates and moments shown in Table 1 were 

re-sampled randomly but of course within the limits shown in the table.  Results from four 

runs from such sampling are presented in Table 3. Each run consisted of ten batches of data 

and each batch had 100 independent samplings, i.e 100 of the time domain data x(t).  The 

results  of the studies were assessed by using the Pearson product-moment correlation 

coefficient, RX,Y, equation (18), the coefficient of linear fit, m, equation (19)  and the 

normalised root mean square deviation, En, equation (20)  

                    
YX

YX
YX

YXER


 )])([(
,


      (18) 

)(var/),(cov XYXm      (19) 
 

)ˆ(/])[( 2/12 XXXYEEn


                    (20) 
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where X and Y represent rainflow and the predicted  E(D) defined in equation (8) respectively 

and , , E, var, and cov denote statistical mean, standard deviation, expectation, variance 

and covariance respectively. X and ˆ 
X  are the maximum and minimum values of the rainflow 

damage values. RXY and m values are shown Table 3(a) and (b) for two runs and actual 

damage values are compared in Tables 3(c) and (d) for some randomly selected spectrum. The 

error En were determined  in Table 4 is the average normalised root mean square error for 

each batch of 100 runs.  

 

3.4 Effect of training characteristics and performance on unseen spectral 

The effect of training characteristics such as number of signals and fraction of data used to 

train the ANN on the coefficient of fit with rainflow counting result was studied. All the 

spectral patterns shown in Figure 1 were used in the study. The number of signals used were 

100, 300, 500, 1000, 2000, 5000, 10000 and 20000. The fraction ntr of data used for training 

was varied from 0.1 to 0.9 in steps of 01. The remaining fractions 1 - ntr were then used to test 

the ability of the ANN to predict fatigue damage. The results obtained are summarised in 

Table 5. It can be seen from the table, for number of cases varying from 100 to 500, that the 

coefficient of fit m varied widely especially for low fraction of data was used for training. The 

fit for the higher number of cases from 1000 and over varied less widely compared to the 

lower number cases. In order to verify the performance of ANN on unseen patterns, training 

was again conducted using only spectral types a to f in Figure 1. The performance of ANN 

based on this selection of spectral was tested on unseen spectral types g to m. The results of 

the wider study can be exemplified by the data shown in Table 6. The average coefficient of 

fit m is  1.0421 with a standard deviation of 0.1731.  This figures were obtained by ignoring 

the contribution of the prediction based on 100 cases for training. This overall performance 

suggest that many unseen types of spectral may be within the interpolative capabilities of the 

ANN model. 
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3.5  Verification with published data. 

The aim of this section was to use the routines developed in this work to solve a similar 

problem as has been carried out by other researchers. A two-peaked power spectral spectrum, 

illustrated as spectrum i in Figure 1, described in the time domain by the equation (20) was a 

simplified basis to compare the performance of Dirlik’s frequency domain method against the 

prediction of the time domain rainflow method [14, 23]. The spectrum chosen has two 

frequency contents f1 and f2  which in this case are taken to be  10 and 100 Hz respectively and 

PSD values G1(x) and G2(x) were taken as 10000 and 2500 MPa2/Hz respectively. The stress 

time history is obtained by adding the contributions from two sine waves corresponding to 

each of the frequencies  in the spectrum. 

  

)2sin()2sin()( 2211 tfAtfAtx       (20) 

 

For the sine wave form shown in (18), the amplitude is obtained from 2  times the root 

mean square value of the corresponding block. In this case for a unit block width of 1 Hz was 

considered. Therefore MPaA 42.1411000,1021  , we obtain similarly A2 = 

70.71 MPa. By superposition the actual amplitude corresponding to f1 is 141.42 + 70.71 = 

211.13 MPa. The material considered by both [14] and [23] was SAE 1008 which has 

ultimate tensile strength of 1240 MPa and the corresponding fatigue material strength 

coefficient and exponents  a and b  in equation (9) are 1145 MPa and -0.18 respectively.  

 

In this simplified analysis, the effect of the mean stress Smi in equation (10) is not considered 

hence i  in equations 9 and 10 is 1. The longest lives possible under the stress amplitudes 

212.30 and 70.71 MPa from equation (9) are N1 and N2 which are equal to 1.17 x 104 and 5.23 

x 106 respectively. The number of cycles 21   and nn , for 1 second of loading, corresponding 
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to frequencies f1 and f2 are 10 and 100 cycles respectively. Substituting these values of ni and 

Ni into equation (8) gives a damage fraction E(D) = 8.75 x 10-4. This is an approximate 

rainflow counting solution. Our computer implementation of Dirlik’s method gave a result of 

1.38 x 10-3. Accounting for the higher frequencies used in this work, our results are within 1% 

of those by [14]. Our computer implementation of rainflow counting and Miner’s rule for the 

time domain signal gave a result of 8.2 x 10-4 and the artificial neural network trained in this 

work gave a result of 8.80 x 10-4. These results are within 6% of the simplified  calculations. 

This validation test along with other tests shown in the foregoing  demonstrate that the 

method presented is capable of excellent results and closer to rainflow counting results than 

Dirlik’s method predictions. 

 

In order to broaden the verification of the performance of the ANN model, different 

combinations of frequency and the amplitude in equation (18) as well as material properties, 

uts, a and b were independently re-sampled to generate 100 set of time domain data. The 

corresponding PSD and spectral moments were obtained and material data were fed into the 

ANN to make predictions for fatigue damage. The results obtained are shown plotted on log-

log and linear scales in Figure 10. Good correlation can be seen in the plots in 10(a) and (b). 

The plot of Vanmarcke bandwidth parameter for the 1000 data used in training the ANN 

network and 100 data that were used for testing against the log of the damage fraction is 

shown in 11 (a). The spread of the bandwidth for the 100 independent cases used for the 

verification is shown by the plot of the corresponding Vanmarcke bandwidth parameter 

against the log of damage fraction in Figure 11 (b). It can be seen from  that a good breadth of 

the Vanmarcke’s bandwidth parameter was tested and good fit was obtained between ANN 

and rainflow counting results as can be seen in Figure 10(b). 
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4.0 Discussion 

In general the approach presented produced excellent correlation between predicted and time 

domain rainflow – Miner’s rule damage target values. The correlation coefficient for 

predicted and target damage values for Dirlik [1] and ANN developed herein are very similar 

but the coefficient of fit for the ANN model is much closer to 1.00 than those obtained by 

Dirlik’s method. The correlation coefficient and coefficient of fit for Petrucci and Zucarello 

were not as good as those of either the ANN or Dirliks method. The ANN approach 

developed provides a new competitive avenue for random fatigue damage prediction.  

 
The results of the sensitivity study showed that the coeficient of fit between ANN and 

rainflow counting results was stable for many independent sampling of data. Table 3 for 

example shows results of 20 batches of independent runs. Each batch contained 100 

independently composed spectra. The coeficients did not deviate in any significant way from 

those obtained during the initial training and testing of the ANN.  The table also show raw 

individual fatigue damage data in 3(c) and 3(d) and how these compare with the rainflow 

results.  Excellent agreement can be seen in most of the cases and better agreement can be 

seen for the ANN than for the Dirlik and Petrucci and Novo models. When only broadband 

data is used for the ANN training less error in predictions can be seen in Table 4 compared to 

the other methods analysed. 

 

The results from the effect of training characteristics, Table 5 can be seen to indicate that 

about 1000 spectral cases and above are needed to produce ANN models that correlate well 

with the rainflow counting results. The number of spectral type in this study was 12 as shown 

in Figure 1. The statistical nature of the ANN approach shows in the weights obtained in 

Table 5. The table shows that higher number of samples does not necessarily guarantee that 

perfect ANN weights will be obtained. It can be seen that as low as 0.70 and 0.80 coefficients 

of fit were obtained for 2000 and 20000 samples respectively. The corresponding ntr values in 
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these two cases were 0.8 and 0.6 respectively.  The fraction of training ntr for good coefficient 

of fit, m, i.e. close to 1 can be as low as 0.1 as can be seen Table 5. It should be noted 

however that low number of samples and low ntr generally represents low coverage of the 

random fatigue problem space. The observation made in the course of this work was that only 

ANN models that lead to good coefficient of fit, i.e as close as possible to 1 should be used. 

As indicated above the higher the value of ntr the better. For example, for the 5000 case in 

Table 5, ntr  = 0.2 produced m = 0.9951 while  ntr  = 0.8 produced m = 0.9881. A test on 100 

independent cases of spectral type h using ANN weights from these two cases produced m = 

1.0180 and 1.0020 respectively. Clearly, the latter is to be preffered.   

 

It is helpful to highlight the limits of the analysis carried out in this paper. The spectral and 

material properties considered have been limited to those practically feasible values shown in 

Table 1. The limits can be however be changed to cover any application that may be found to 

fall out of these limit. An ANN model is usually only used to solve similar problems as those 

used for its training. The analysis carried out in Section 3.4 shows that some unseen spectral 

types are within the interpolative capability of the ANN procedure described herein. 

5.  Conclusions 

Artificial neural network approach has been presented as a new competitive method for the 

analysis of random fatigue loading problems. Excellent correlation and coefficients of fit were 

obtained when compared to rainflow – Miner’s rule method. The method yields better 

agreement with time domain results than notable frequency domain methods such as Dirlik 

and Petrucci and Zucarello methods. The results from this work shows that ANNs have 

significant potrential that can be tapped in developing more accurate frequency domain 

fatigue solutions.  The interpolative capability of ANN on unseen spectral types demonstrates 

that the method has potential for wide application as a random fatigue loading analysis 

method. Future work will consider non Gaussian data. 
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Figure 10  
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Prop uts(MPa) a b m0 m1 m2 m4 

Min 200 261 -0.333 1.86E+01 6.71E+02 1.49E+04 2.85E+06 

Max 2000 26543 -0.085 4.13E+05 3.89E+07 5.27E+09 1.07E+14 
 

 

 

Table 1 

 

 

 

 

 

 

 

 

 

Table 2 

 

 

 

 

Spec uts(MPa) m0(MPa2) Px(Mpa2) Diff (%) 

1 1873 4107 4106 -0.024 

2 935 21283 21281 -0.009 

3 847 3144 3125 -0.604 

4 701 28227 28218 -0.032 

5 1054 30685 30825 0.456 

6 1552 23022 22949 -0.317 
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Batch ANN Dirlik PZ 

R(x,Y) m R(x,Y) m R(x,Y) m 

1 0.9921 0.8715 0.9999 1.0903 0.9916 0.9698 

2 0.9925 1.0846 0.9908 1.2159 0.9463 1.1763 

3 0.9995 1.1517 0.9993 1.2558 0.9989 1.0128 

4 0.9994 1.1664 0.9979 1.1566 0.9985 0.9642 

5 0.9989 1.0609 0.9972 1.1677 0.9689 1.2175 

6 0.9988 0.9167 0.9967 1.1848 0.9714 1.0431 

7 0.9990 0.9773 0.9990 1.1171 0.7918 0.8175 

8 0.9918 0.9353 0.9892 1.0704 0.7150 1.3371 

9 0.9860 0.9894 0.9925 1.1562 0.9523 0.8420 

10 0.9985 0.9151 0.9994 1.0810 0.9982 0.7798 

Mean 0.9957 1.0069 0.9962 1.1496 0.9333 1.0160 

StDev 0.0047 0.1036 0.0039 0.0604 0.0984 0.1827 

 

Table 3(a)            Run 1 Mixture 

 

Batch ANN Dirlik PZ 

R(x,Y) M R(x,Y) m R(x,Y) m 

1 0.9993 0.9682 0.9963 1.1196 0.9484 1.0526 

2 0.9995 0.9628 0.9994 1.2062 0.9926 0.7952 

3 0.9986 1.0551 0.9986 1.2253 0.9958 0.8296 

4 0.9999 1.0373 0.9999 1.1702 0.9938 0.9512 

5 0.9943 0.8997 0.9954 1.0690 0.9909 0.7308 

6 0.9997 0.9100 0.9999 1.1423 0.9997 0.9755 

7 0.9955 0.9790 0.9882 1.0971 0.9982 0.9593 

8 0.9994 1.0858 0.9969 1.2557 0.9991 1.0085 

9 0.9912 1.0400 0.9813 1.4129 0.9854 0.9699 

10 0.9993 0.9725 0.9998 1.1670 0.9835 1.0177 

Mean 0.9977 0.9910 0.9956 1.1865 0.9887 0.9290 

StDev 0.0030 0.0618 0.0061 0.0982 0.0152 0.1063 

 

Table 3 (b)  Run 2 BroadBand 
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Spectrum 

/ x(t) 

uts 

(MPa) 

a (MPa) b Rainflow ANN Dirlik PZ 

1 1569 5731 -0.190 9.57E-07 8.05E-07 1.21E-06 4.56E-07 

2 1687 5868 -0.194 1.73E-02 1.34E-02 3.08E-02 3.73E-02 

3 1049 6608 -0.199 3.98E-06 5.54E-06 6.89E-06 6.94E-06 

4 1525 7004 -0.289 2.30E-03 2.34E-03 2.41E-03 1.80E-03 

5 1115 5626 -0.116 1.44E-09 1.43E-09 3.98E-09 7.55E-10 

6 1789 11484 -0.313 2.63E-02 3.37E-02 3.86E-02 3.93E-02 

7 463 1820 -0.228 1.28E-04 5.31E-05 2.36E-04 2.87E-04 

8 1386 16727 -0.179 1.43E-06 1.34E-06 1.65E-06 1.11E-06 

9 313 3708 -0.204 1.04E-08 1.17E-08 1.32E-08 6.89E-09 

10 1663 22620 -0.106 1.35E-12 8.82E-13 3.77E-12 9.56E-13 

 

Table 3(c) Run 1 Batch 1 Mixture 

 

 

 

Spectrum 

/ x(t) 

uts 

(MPa) 

a (MPa) b Rainflow ANN Dirlik PZ 

1 
1108 3767 -0.263 3.85E-02 3.96E-02 4.66E-02 6.10E-02 

2 
1505 4384 -0.201 6.38E-06 6.99E-06 9.66E-06 4.61E-06 

3 
859 2960 -0.280 2.58E-02 2.58E-02 3.00E-02 2.06E-02 

4 
317 3802 -0.207 5.72E-11 3.70E-11 6.66E-18 4.19E-11 

5 
454 1110 -0.098 9.49E-07 1.29E-06 5.63E-06 1.14E-06 

6 
721 2872 -0.197 2.44E-05 2.63E-05 3.75E-05 2.36E-05 

7 
1413 5478 -0.142 7.57E-06 4.61E-06 8.79E-06 3.20E-06 

8 
1591 10674 -0.230 1.52E-04 1.51E-04 1.91E-04 1.35E-04 

9 
564 6633 -0.329 6.48E-04 7.15E-04 7.79E-04 5.58E-04 

10 
932 7693 -0.170 8.18E-09 8.86E-09 1.48E-08 4.99E-09 

 

Table 3(d) Run 2 Batch 2 Broadband 

 

 

 

 

 



32 
 

 

Batch Mixed Broad Band 

ANN 
 

Dirlik PZ ANN Dirlik PZ 

1 0.0211 0.0709 0.0205 0.0064 0.0208 0.0473 

2 0.0153 0.0711 0.1138 0.0051 0.0225 0.0241 

3 0.0157 0.0348 0.0210 0.0092 0.0281 0.0222 

4 0.0355 0.0262 0.0281 0.0046 0.0198 0.0133 

5 0.0296 0.0458 0.0509 0.0143 0.0129 0.0296 

6 0.0306 0.0240 0.0154 0.0094 0.0146 0.0035 

7 0.0506 0.0127 0.0168 0.0102 0.0212 0.0076 

8 0.0242 0.0790 0.0769 0.0110 0.0328 0.0051 

9 0.0310 0.0958 0.0815 0.0245 0.0859 0.0290 

10 0.0068 0.0254 0.0282 0.0073 0.0285 0.0308 

 

Table 4 

 

 

 

 
ntr 

No of cases 

100 
 

300 500 1000 2000 5000 10000 20000 

0.1 
9.0836 0.4395 0.5749 1.0279 0.9762 0.9099 0.7485 1.0033 

0.2 
0.5483 0.7361 1.1393 1.4905 0.9154 0.9951 0.8604 1.0081 

0.3 
1.5634 1.0516 1.1471 0.8624 0.9302 0.8787 0.9529 0.9764 

0.4 
0.4277 1.2599 0.9772 0.9413 0.8291 0.9363 1.0249 0.9433 

0.5 
0.6744 0.7515 0.9762 0.9474 0.9278 0.9309 0.8326 0.9172 

0.6 
0.9197 0.5562 0.7993 0.8692 0.9249 0.8999 0.9181 0.7972 

0.7 
1.0172 0.7711 0.7952 0.9654 0.9337 0.9513 0.8565 0.9630 

0.8 
1.0713 0.6631 0.7058 1.1615 0.7035 0.9881 0.8719 0.8757 

0.9 
0.9900 0.9454 0.6552 1.0843 1.1001 0.8776 1.0033 0.9583 

Mean 1.8106 0.7972 0.8634 1.0389 0.9157 0.9298 0.8966 0.9381 

St Dev 2.7477 0.2528 0.2069 0.1951 0.1066 0.0430 0.0873 0.0669 

 

 

Table 5 
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ntr 

No of cases 

100 
 

300 500 1000 2000 5000 

0.1 
2.1739 1.0011 0.7600 1.0091 1.3163 1.0889 

0.2 
0.5248 0.9277 1.1844 1.0218 1.1029 1.0907 

0.3 
0.4260 0.8821 1.0583 1.2605 1.0427 1.1058 

0.4 
0.8444 1.1010 0.8365 0.7375 1.0905 1.0727 

0.5 
0.4756 1.0526 1.7378 0.8055 1.1827 1.1347 

0.6 
0.4024 1.0251 1.2307 0.8035 1.0027 1.1026 

0.7 
0.4248 0.9938 1.1014 0.7804 1.0846 1.1100 

0.8 
0.9581 1.1135 0.9713 0.7785 0.9581 1.0519 

0.9 
0.3923 1.0218 1.0178 0.8396 1.1563 1.1494 

Mean 
0.7358 1.0132 1.0998 0.8929 1.1041 1.1007 

St Dev 
0.5770 0.0746 0.2831 0.1709 0.1060 0.0297 

 

 

Table 6 
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