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Abstract. This study exposes a critical weakness of the (0-1) knapsack dynamic 
programming approach, widely used for optimal allocation of resources. The (0-1) knapsack 
dynamic programming approach could waste resources on insignificant improvements and 
prevent the more efficient use of the resources to achieve maximum benefit. Despite the 
numerous extensive studies, this critical shortcoming of the classical formulation has been 
overlooked. The main reason is that the standard (0-1) knapsack dynamic programming 
approach has been devised to maximise the benefit derived from items filling a space with no 
intrinsic value. While this is an appropriate formulation for packing and cargo loading 
problems, in applications involving capital budgeting, this formulation is deeply flawed. The 
reason is that budgets do have intrinsic value and their efficient utilisation is just as important 
as the maximisation of the benefit derived from the budget allocation. 

Accordingly, a new formulation of the (0-1) knapsack resource allocation model is 
proposed where the weighted sum of the benefit and the remaining budget is maximised 
instead of the total benefit. The proposed optimisation model produces solutions superior to 
both – the standard (0-1) dynamic programming approach and the cost-benefit approach. 

On the basis of common parallel-series systems, the paper also demonstrates that because 
of synergistic effects, sets including the same number of identical options could remove 
different amount of total risk. The existence of synergistic effects does not permit the 
application of the (0-1) dynamic programming approach. In this case, specific methods for 
optimal resource allocation should be developed. Accordingly, the paper formulates and 
proves a theorem stating that the maximum amount of removed total risk from operations and 
systems with parallel-series logical arrangement is achieved by using preferentially the 
available budget on improving the reliability of operations/components belonging to the same 
parallel branch. Improving the reliability of randomly selected operations/components not 
forming a parallel branch leads to a sub-optimal risk reduction. The theorem is a solid basis 
for achieving a significant risk reduction for systems and processes with parallel-series 
logical arrangement. 
 
 
Keywords: risk reduction, (0-1) knapsack dynamic programming, cost-benefit analysis, 
parallel-series arrangement. 
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1. INTRODUCTION AND RELATED WORK 
 

The problem of optimal resource allocation to attain a maximum benefit is an important 
problem, which appears frequently in capital budgeting of departments and companies, 
cutting stock problems, packing and cargo loading problems.  

One of the most commonly used methods for solving the discrete resource allocation 
problem is the classical 0-1 knapsack dynamic programming approach which is also one of 
the most extensively studied combinatorial optimization problems. According to the classical 
formulation of this problem, a set   of possible independent options are given each of which 
brings benefit of magnitude ir  ( i = 1,2,...,n). The individual options i, are also characterised 
by their implementation costs . The options can be selected only once, hence each option 
can either be accepted or rejected. No option can be repeated and no option can be split. The 
task of optimal allocation of the available budget consists of determining the optimal subset 

P  of options associated with the maximum total benefit 
Pk

kr . The imposed constraint 

is the specified limited budget B: the total cost of the selected n options must not exceed the 
available budget B:  

Maximize: 



n

i
ii rx

1
                                                           (1) 

subject to the constraint: 

Bcx
n

i
ii 

1
                                                                 (2) 

where }1,0{ix  are decision variables; 1ix  if the risk-reduction option is accepted and 
0ix , otherwise. Normally, the sum of the costs of all options exceeds the existing budget B 

( Bc
Pk

k 


). The implicit assumption behind this formulation is that each option can be 

independently implemented with no consequences to other options (Reniers and Sorensen, 
2013). 

From (1)-(2) it is clear, that the purpose of the classical formulation of the knapsack 
problem is to maximise the value derived from filling an empty 'knapsack' of given size B, 
with no intrinsic value. For optimal packing and cargo loading problems this formulation is 
entirely adequate because the space filled with items has no intrinsic value. For resource 
allocation problems however, the allocated budget for achieving the desired maximum 
benefit, does have intrinsic value. The efficient use of the budget is just as important as the 
benefit derived from its allocation. 

The (0-1) knapsack dynamic programming approach has been intensively studied and used 
for a long time for optimal allocation of resources (Weingartner and Ness 1967; Horowitz 
and Sahni 1974; Moser et al., Martello and Toth 1990; 1997; Martello et al, 2000; Beier R., 
B.Vocking 2004; Fréville 2004; Šeda 2008; Chandra et al. 2007), and in particular, as a 
resource allocation method among competing projects. More recently, the 0-1 knapsack 
problem has also been discussed in (Dasgupta et al, 2008; Boyer et al, 2010; Puchinger et al, 
2010; Lin et al., 2011; Varnamkhasti 2012; Lalami et al., 2012). 

No discussion however seems to exist on the possibility of obtaining inferior solutions 
from the classical (0-1) knapsack problem formulation (1)-(2) compared to the competing 
cost-benefit approach for optimal allocation of resources. Despite the very large volume of 
existing research related to the (0-1) knapsack dynamic programming approach, this 
important point has been overlooked. 

Furthermore, despite that dynamic programming techniques have been around for a long 

ic
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time (Bellman, 1957), very few attempts have been made to use them for optimal allocation 
of risk-reduction resources. 

Richter et al. (1999) solved an optimal resource allocation problem to achieve a 
maximum prevention from infection. The objective function of the formulated model 
involved only two additive terms, corresponding to two independent populations. No details 
however were provided about the optimization algorithm. 

A dynamic programming solution of the safety resource allocation problem, in the case 
where the functions describing the risk reduction are arbitrary continuous functions, has been 
presented in Todinov (2012). The treatment however, did not cover the common case of 
discrete risk-reduction options. Mehr and Tumer (2006) solved the optimal budget allocation 
problem as a portfolio optimization problem, similar to the problem commonly solved in 
managing investment portfolios. However, this model has a narrow application and cannot be 
used in the common case of discrete risk reduction options. 

Indeed, the risk is often reduced by well-defined discrete options: purchasing new, more 
reliable and safer equipment, investing in personnel training, investing in improved security 
and control, investing in new systems, etc. Each risk-reduction option can either be accepted 
(included) in the optimal set of options or not. For each risk-reduction option, it is usually 
known from statistical data and experience, how large risk-reduction effect is achieved from 
implementing the option. For example, in the railway industry, the risk-reduction effect is 
commonly measured by estimating the expected number of prevented fatalities and injuries 
from implementing a particular option (Weli and Todinov, 2013). In the case of discrete risk-
reduction options, cost benefit analysis has been adopted by many industries and in particular 
by the railway industry, as a tool for optimal allocation of safety resources. In the railway 
industry for example, the safety budget allocation starts with assigning risk reduction options 
to the different risk contributors or risk scenarios resulting in a major railway accident. Each 
risk reduction option is assessed in terms of the benefit it brings and the cost of its 
implementation. The risk reduction options are ranked according to their benefit/cost ratio. 
By starting with the risk reduction option with the largest benefit/cost ratio, the options are 
sequentially included in the optimal set and a check is performed whether the aggregated cost 
of the selected risk reduction options has exceeded the allocated budget. The risk-reduction 
options whose aggregated cost is within the allocated budget are included in the optimal set. 
Consequently, the algorithm of the cost-benefit approach can be described by the following 
basic steps (Weli and Todinov, 2013): 

1. Rank the risk-reduction options in descending order, according to their benefit/cost  
ratio. 
2. Choose the risk-reduction option, with the highest benefit/cost ratio, which fits in the 

remaining budget. 
3. Update the remaining budget. 
4. Repeat steps 2 and 3 until no other risk-reduction option can be included in the 

optimal set. 
For n risk-reduction options, the ranking in descending order, according to the benefit/cost 
ratio, can be done in )log( nnO  time. As a result, the selection of risk-reduction options by 
following the cost-benefit method can always be made in )log( nnO   time. 

There have been attempts to substitute the cost-benefit analysis selection of discrete risk 
reduction options with the (0-1) knapsack dynamic programming approach. Thus, Pigman et 
al (1974) developed a dynamic procedure based on the (0-1) knapsack dynamic programming 
approach which selects the optimal combination of safety improvement projects for a given 
budget. Pigman et al (1974) compared the (0-1) dynamic programming method with the cost-
benefit approach and concluded that because the (0-1) knapsack programming procedure is 
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not constrained by the benefit-cost ratios, it utilises better the available resources and is a 
superior method to the cost-benefit analysis. 

More recently, the classical (0-1) knapsack dynamic programming method in 
combination with the risk matrix has been advocated for optimal risk reduction in (Genserik 
and Sorensen, 2013). All risks have been classified in the cells of a 4x5 risk matrix and 
investments are made to decrease the risk in cell i towards a cell j with a smaller risk. 
However, no details about the implementation algorithm have been presented.  

A detailed (0-1) knapsack dynamic programming algorithm for optimal allocation of risk-
reduction resources in the case of discrete and statistically independent risk-reduction options 
was described in (Todinov and Weli, 2013). Central to this algorithm was the concept 
‘amount of removed risk’ (expected potential loss) characterising the individual options 
which measures the derived benefit from their application. The removed risk was expressed 
in monetary terms - the expected cost of prevented accidents and fatalities. 

The individual risk-reduction options i, ( i = 1,2,...,n) are characterised by the amount of 
removed risk ir  (expected potential loss) and cost of implementation . Risk reduction 
options can be selected only once, hence each risk reduction option can either be accepted or 
rejected. 

The risk-reduction problem solved in (Todinov and Weli, 2013) followed the classical 
formulation of the (0-1) knapsack dynamic programming (1)-(2). This choice was justified by 
the nature of the considered problem - optimal allocation of a central safety budget for 
removing as many expected human fatalities as possible. In this case, the purpose is not to 
save resources and transfer them elsewhere, but to use the available budget to the full and 
prevent as many expected fatalities as possible. 

In cases concerned with preventing financial losses or in cases where remaining budgets 
can be transferred for risk reduction in other areas, the remaining budget is just as valuable as 
the derived benefit. In these common cases, recent studies exposed an unexpected weakness 
of the classical (0-1) knapsack dynamic programming formulation (1)-(2). The solutions 
based on the classical knapsack dynamic programming formulation (1)-(2) could waste 
resources on insignificant increase of the derived benefit. 

In addition, the presence of independent risk-reduction options whose implementation 
does not affect other options does not guarantee that the (0-1) dynamic programming 
approach could be applied for selecting an optimal set of risk reduction options. The 
existence of synergistic effects related to the selected sets of options does not permit the 
application of the (0-1) dynamic programming approach. In this case, other methods for 
optimal resource allocation should be used. 

 
 

2. THE PROPOSED METHOD 
 
 
2.1 A counter-example 
 

From the analyses published in the literature so far, it seems that the standard (0-1) 
knapsack approach is a real alternative to the cost-benefit approach. This perception however 
is rather deceptive as the next counter-example reveals. Suppose that the benefits and the 
costs of four risk reduction options preventing potential warranty costs are according to Table 
1. The available safety budget is 30 million. 
 
 

ic
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Table 1. Four risk reduction options each characterised with cost of implementation and magnitude of the 
removed risk. The total safety budget is 30 million. 
Risk-reduction 

option 
Removed risk 
[in millions $] 

Cost of implementation 
[in millions $] 

Benefit/Cost ratio 

A 33 10 3.3 
B 20.9 7 2.98 
C 26 14 1.86 
D 28 16 1.75 

 
 
All risk reduction options are characterised by a benefit/cost ratio greater than one. The 
standard (0-1) knapsack algorithm, selects risk reduction options C and D, which, within the 
fixed budget of 30 million, yield the largest risk reduction (54 million). Clearly, this is a 
flawed solution because if risk reduction options A and B had been selected, the risk 
reduction would be marginally smaller (53.9 million) but 13 million unnecessary expenses 
(43% of the budget) would have been saved. In fact the classical (0-1) knapsack algorithm 
‘chooses’ to spend 13 million towards a risk reduction of only 0.1 million, which effectively 
has a benefit/cost ratio 0077.013/1.0  . This is an indication of an extremely wasteful use of 
resources! 

It needs to be pointed out that in this counter-example, the cost-benefit approach selects 
correctly the risk reduction options A and B and avoids the problem associated with the 
standard (0-1) knapsack approach.  

Suppose that )10( TR  and )10( TC  denote the total removed risk and the total cost of the 
selected options characterising the (0-1) classical knapsack dynamic programming solution, 
respectively. Similarly, CBTR  and CBTC  denote the total reduced risk and the total cost of the 
selected risk reduction options characterising the cost-benefit solution. The comparative risk-
reduction effectiveness ratio   can then be calculated from  

||/)( )10()10( CBCB TCTCTRTR    
This ratio measures the effectiveness of the extra budget used by the standard (0-1) 

knapsack algorithm in reducing risk, compared to the cost-benefit solution. 
If the risk-reduction ratio   is too small, the classical (0-1) dynamic programming 

solution achieves only a marginal risk reduction, at a very large cost, and should be discarded 
in favour of the cost-benefit analysis solution. If the risk-reduction ratio   indicates that a 
substantial risk reduction has been achieved, the (0-1) knapsack solution results in a cost-
effective risk reduction and should be accepted as an alternative of the cost-benefit solution. 
From Table 1, 542826)10( TR ; 9.539.2033 CBTR ; 301416)10( TC  and 

17710 CBTC . The comparative ratio given by equation (2) then becomes: 
0077.0|1730|/)9.5354(   

which is only 0.7%. This ratio indicates a very inefficient use of safety resources and the 
standard (0-1) knapsack solution is worse than the cost-benefit solution. 

The main reason for this problem is that the classical (0-1) knapsack approach has actually 
been devised to maximise the total benefit derived from items filling space with no intrinsic 
value.  

It needs to be pointed out that if the budget had no intrinsic value or if spending the budget 
was analogous to filling empty space with no value, then the (0-1) dynamic programming 
approach would always yield an optimal solution. The budget however, does have intrinsic 
value and is just as important as maximising the risk reduction, particularly in the common 
case of risk reduction related to financial losses.  
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The direct application of the (0-1) dynamic programming approach devoid from the 
intrinsic value of the budget leads to resources being trapped on insignificant improvements 
and prevents the efficient use of resources to achieve a maximum risk-reduction benefit. 

For the separate departments in a company for example, it is important to determine how 
to allocate their limited safety resources in order to mitigate a number of relevant sources of 
risk. A fixed budget constraint is always present if the total cost of the available risk-
reduction options is greater than the amount of available resources.  

The analysis from Table 1 shows that a large amount of resources is wasted because 
resources are locked on an insignificant risk reduction.  

Wastage of resources on an insignificant improvement exists even in situations where the 
purpose of the risk reduction budget is the prevention of as many human fatalities as possible. 
Consider an example related to preventing accidents in the railway industry. Suppose that 
safety budgets are allocated for improving the safety of level crossings, reducing the risk of 
derailment, reducing the risk of train collision and reducing the train platform accidents. Each 
of these areas of safety improvement is associated with its distinct set of possible risk 
reduction options. In each of these areas, it is required to identify the optimal selection of 
options which achieves the most efficient risk reduction within the allocated resources for 
that particular area. It is very important not to waste resources on insignificant risk reduction 
in any of these areas because remaining (unused) resources in any of these areas could be 
shifted to prevent fatalities in other areas. In this sense, the more efficient use of risk 
reduction resources in each area ultimately translates to a higher total number of prevented 
fatalities. 

A very similar situation is present in the cases where safety budges are allocated for 
reducing the risk of certain diseases. Each particular disease is associated with its own 
distinct set of possible risk reduction options. Again, it is important not to waste resources on 
insignificant risk reduction in any of these risk areas because remaining resources in one of 
these areas could be transferred for more efficient disease prevention in the other areas. If 
resources are wasted on an insignificant reduction of the risk of diseases A,B and C for 
example, there may not be resources left for preventing fatalities from the equally dangerous 
disease D. The result is an inefficient use of resources. 

Unfortunately, often it is impractical to state and solve the budget allocation problem as a 
global optimisation problem at the level of the entire organisation (company), including all 
possible risk reduction options across all departments.  

The first reason is technical - the dimension of the problem is very big. The presence of 
thousands of risk reduction options makes it extremely difficult to apply an exact 
optimisation technique such as dynamic programming. In addition, it is difficult to provide 
consistency and coordination across many departments. As a result, some of the selected risk 
reduction options will be incompatible or may require complex conditions and constraints 
which could be difficult to resolve on a global scale. 

The second reason is that deciding upon and listing all available risk reduction options in a 
particular area, and not missing any risk reduction option, can only be done by experts with 
deep knowledge relevant to that particular area. As a result, the problem of optimal allocation 
of resources is a problem that needs to be solved by each responsible department. 

Finally, decomposing the problem of global optimisation into series of smaller-size 
problems solved by the relevant departments is essentially an application of the 'divide and 
concur strategy' which has already proved its benefits in solving efficiently large-scale 
optimisation problems.  
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2.2 Synergistic effects associated with independent risk reduction options 
 

The implicit assumption behind the classical (0-1) knapsack allocation problem 
formulation (1-2) is that the separate options are independent and their individual 
implementation does not affect other options. However, the next example shows that even if 
this assumption is fulfilled, in some cases, the (0-1) knapsack allocation still cannot be 
applied because of the synergistic effect from particular option selections. 

Consider the system in Fig.1 which transports water from three sources s1,s2 and s3 to a 
processing plant t. The water supply system consists of identical pipeline sections (the arrows 
in Fig.1a). The pipeline sections are subjected to random ruptures caused by intensive 
corrosion. The places of intensive corrosion are randomly located and it can be considered 
that each section essentially fails independently from the other sections. In addition, the 
replacement of any section has no effect on other sections. In other words, the separate 
pipeline sections can be regarded as independent components.  

Suppose that the water supply system fulfils its mission only if at least one parallel branch 
delivers water to the processing plant. As a result, a system failure is defined by a state for 
which none of the parallel branches delivers water to the processing plant.  

Suppose that each pipeline section is characterized by the same probability (for example 
0.6) of working after one year of continuous operation. Because of the deteriorated pipeline 
sections, the water supply system will certainly benefit from risk-reduction options consisting 
of purchasing and replacing old (deteriorated) pipeline sections (marked with 'o' in Fig.1) 
with new sections (marked with 'n' in Fig.1). Consequently, the replacement of any of the 
nine independently working pipeline sections can be viewed as a possible risk-reduction 
option. Now suppose that the available budget is sufficient for implementing exactly three 
options (for replacing exactly three pipeline sections). Suppose also that each new pipeline 
section is characterised by a probability 0.95 of working after one year of continuous 
operation. 

The identical pipeline sections are independent and interchangeable and the replacement 
of any section has no effect on the other sections. In addition, the selection of any three 
sections for a replacement results in the same expected number of prevented component 
failures in the system. Because of the symmetry of the system in Fig.1a, it seems that any 
three risk-reduction options could be replaced with new sections (Fig.1b, Fig.1c and Fig.1d), 
to the same effect. This conclusion however would be incorrect. 

Because of the synergistic effect of the selected options, the total removed risk is highest if 
the available budget is spent preferentially on replacing pipeline sections forming an entire 
parallel branch (Fig.1d), as opposed to replacing randomly selected sections from different 
branches (Fig.1b,Fig.1c). 
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Figure 1. A water supply system consisting of three parallel branches including three separate sections. 
 

Indeed, the probability that there will be at least one branch delivering water after one year of 
operation, if one section is replaced from each parallel branch (Fig.1b), is: 

71.0)95.06.01(1 32 bR  
The probability that there will be at least one branch delivering water after one year of 
operation, if two sections are replaced from the same branch, and one section from another 
branch (Fig.1c) is: 

76.0)95.06.01()6.095.01()6.01(1 223 cR  
The probability that there will be at least one branch delivering water after one year of 
operation, if three sections from the same branch are replaced is: 

91.0)95.01()6.01(1 323 dR  
This example shows that in some cases, even for identical and independent risk-reduction 

options whose individual implementation has no consequences for other options, the amount 
of total removed risk depends on the actual selection of the risk reduction options. 

Consider now the case where the water supply system fulfils its mission, only if all three 
branches deliver water to the processing plant. If no old sections are replaced with new ones, 
the probability of no failure of the water supply within one year of operation is 

01.06.0 9 R   
which is the probability that all nine sections will be in working state at the end of the year. 

If exactly three sections are replaced, no matter which three sections are replaced, the 
probability of no disruption in the water supply, within one year of operation, remains the 
same: 

04.095.06.0 36 R  
In other words, in this case, the same amount of total risk is removed, irrespective of the 
selected set of risk reduction options. This different result, obtained for the same physical 
system, can be explained by the fact that despite that the nine water sections are physically 
still arranged as a parallel-series system, with respect to delivering a full-capacity flow of 
water to the processing plant, they are logically arranged in series. In this case, the synergistic 
effect from the option selection is not present and the total amount of removed risk is 
insensitive to which set of three options is selected. 

The considered example involving a parallel-series logical arrangement is very common. 
It holds for example in the case where the risk-reduction options are investments in training 
people. 



9 
 

Indeed, consider the case where three groups of people (teams) A, B and C, each of which 
includes three independently working team members, work towards eliminating the same 
major hazard (Fig.2). The risk is reduced if at least one of the teams succeeds in eliminating 
the hazard. Within each team, the task of eliminating the major hazard is divided into 
subtasks among the team members. Every single person in a team must accomplish their sub-
task successfully, in order for the team to eliminate the hazard successfully. 

The identical risk reduction options are the resources invested in training a single person. 
The training increases the probability that the sub-task conducted by the person will be 
accomplished successfully. Suppose that an untrained person accomplishes successfully their 
sub-task with probability k ( 10  k ), while investing in training of that person increases the 
probability of accomplishing the task to km  , ( 1m ). 

If the available budget is sufficient to train three people only, a random selection of three 
people for training, from different groups is a strategy far from optimal. It results in 
probability 

32 )1(1 mkpa   
of removing the hazard for the case in Fig.2a and probability 

)1)(1)(1(1 223 mkkmkpb   
for the case in Fig.2b. 

Investing in training all the people from a single team results in the highest probability  
)1()1(1 323 mkpc   

of successfully accomplishing the task.  
Indeed, and the difference ac pp   can be presented as 

])1(2[)( 422 kmmkkmkpp ac   
In this expression, 1m  and 1k , hence 01 2 mk . In addition, because 1m , 1k  

and km  , it follows that 04  km . Consequently, 0 ac pp  or ac pp  . 
Similarly, the difference bc pp   can be presented as 

22 ))()(1)(1( mkmkkkkpp bc   
In this expression, 10  k  and 0m , hence 01  k , 012  kk , 0mk  and 

0)( 2 mk . Consequently, 0 bc pp  or bc pp  . 
Clearly, the total removed risk depends on the selection of the risk reduction options. In 

reality, the cost of training and the amount of reduced risk is different for each team member. 
In either case however, the (0-1) dynamic programming approach cannot be applied to 
optimise the optimal selection of risk reduction options because the amount of reduced total 
risk depends on the actual selection of the risk reduction options. 

 

 
Figure 2. Three groups of people working towards eliminating the same major hazard. 

 
Finally, consider a case of a production system similar to the one in Fig.1 which includes 

again old pipeline sections (O) transporting fluid from the sources s1,s2 and s3 to the sink t. 
The pipeline sections are characterised by a failure frequency (expected number of failures 
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per year) of 8  year-1. The capacity of each pipeline section was chosen to be 100 thousand 
cubic meters of fluid per day. Each failed section requires 20 days to be repaired. During the 
repair of a failed pipeline section, the corresponding parallel branch is not delivering any 
fluid. 

Suppose that the available budget is used to achieve the maximum possible removal of 
risk of lost production due to failures of pipeline sections. 

An indication of the loss of production is the production unavailability 1-A where A is the 
production availability of the system. Production availability is an important indicator of the 
performance of repairable production systems. It is defined as the ratio of the total amount of 
production fluid delivered by the system for one year in the presence of failures of the 
pipeline sections to the total amount of production fluid which can be potentially delivered in 
the absence of failures (Todinov 2013). Even a very small percentage decrease in the 
production availability (1-2%) translates into big financial losses over the entire period of 
operation. 

Suppose that the available risk-reduction options are: replacing 3 old pipeline sections (O) 
with new sections (N) and replacing another 3 pipeline sections with medium-age sections 
(M). 

The failure frequency of the new sections (N) is 0.1 year-1 while the failure frequency of 
the medium-age sections (M) is 2 year-1. The downtime for repair for the new sections and 
the medium-age sections is again 20 days. Figure 3 represents different choices of pipeline 
sections to be replaced. 

The production availability, for one year of operation, of the different variants in Fig.3 was 
assessed by using the discrete-event simulator for the production availability of repairable 
flow networks described in (Todinov 2013). The production availabilities characterising the 
different variants were as follows: system ‘a’: 62.3%; system ‘b’: 64.3%; system ‘c’: 64.6% 
and system ‘d’: 68.4%. The largest production availability was associated with system ‘d’. 

The largest removed risk of lost production due to failures was achieved for variant ‘d’, 
which is associated with more than 6% increase in production availability compared to the 
worst variant ‘a’. This is a significant improvement. 

 

 
Figure 3. A production system consisting of three parallel branches and different state of deterioration of the 

pipeline sections. 
 
 
2.3 An alternative formulation of the 0-1 dynamic programming approach 
incorporating the intrinsic value of the available budget 
 

The counterexample from Table 1 exposes the danger associated with following blindly 
the classical (0-1) knapsack dynamic programming solution for optimising the allocation of 
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risk reduction resources. Despite that the standard (0-1) knapsack dynamic programming 
algorithm always yields the exact solution in maximising the risk reduction within a fixed 
budget, it could still generate “solutions” wasting valuable resources with insignificant return. 

The counterexample from Table 1 shows that there is clearly a need for incorporating the 
value of the remaining safety budget. Consequently, the requirement for a maximum total 
removed risk 

Pk
kr  should be abandoned, because it leads to a wasteful use of safety 

resources. 
This predicament can be resolved by introducing weights ( )1(,   ; 10  ) assigned 

to both the amount of removed risk and the remaining budget, to reflect the value of the 
remaining budget. For risk reduction options all characterised by benefit/cost ratio greater 
than unity, what needs to be maximised is not the total amount of removed risk 

Pk
kr  but the 

weighted total removed risk 
Pk

kr  and the weighted remaining budget ])[1(
1




n

i
ii xcB

. This formulation prevents expending most of the remaining budget on a marginal risk 
reduction. 
Following these considerations, the appropriate model of the optimal budget allocation 
among independent risk reduction options is given next:  
Given the constraint:  

Bcx
n

i
ii 

1
                                                                  (3) 

Maximize the sum: ])[1(
11




n

i
ii

n

i
ii xcBrxX                                      (4) 

where }1,0{ix  are decision variables; 1ix , if the risk-reduction option is accepted and 
0ix , otherwise. Because the available budget B is a constant, maximising the sum X in 

equation (4) is equivalent to maximising 



n

i
ii

n

i
ii xcrxX

11

)1(  . The two 

summations can be combined and, as a result, what should be maximised is the expression 

])1([
1

i

n

i
ii crxX  



                                                    (5) 

The weights can be conveniently altered to reflect correctly the value of unit removed risk 
and the value of unit remaining budget. Usually, both the removed risk and the available 
budget are measured in the same monetary units and 5.0  is the natural weighting factor 
reflecting that the value of unit removed risk is the same as the value of unit remaining 
budget. 

Thus, for ( 5.0 ), equation (5) becomes 

)(5.0
1

i

n

i
ii crxX  



                                                    (6) 

which is equivalent to maximising 

)(
1

i

n

i
ii crxX 



                                                        (7) 
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3. RESULTS 
 
3.1 Optimal allocation of risk reduction resources incorporating the intrinsic value of 

the available budget 
 
Implementation details related to the (0-1) knapsack dynamic programming algorithm have 

been discussed in detail in (Todinov and Weli, 2013) and will not be repeated here. The 
difference is that the expression to be maximised is (7) instead of (1). 

The (0-1) knapsack algorithm, applied to the counter-example from Table 1 now yields the 
correct solution. Options A and B are selected as optimal options and not options C and D. 
This shows that the proposed model produces a superior solution compared to the standard 
(0-1) dynamic programming algorithm. 

The proposed model also yields a solution superior to the cost-benefit solution. This will 
be illustrated by the next example from the railway industry. A similar example has been 
considered in (Weli and Todinov, 2013). Table 2 lists 5 risk reduction measures (A,B,C,D and 
E) associated with different amount of removed risk and different costs. 

Suppose that from the central safety budget, a total budget B=$2.6 million has been 
allocated to a team responsible for the reduction of platform train accidents with passengers. 
This is a major risk which is located in the high-risk region of the risk matrix. The first risk 
reduction option ‘A’ requires the train driver to operate a CCTV monitoring of the platform. 
The train will not be started if there are passengers stuck at the door, fallen onto the track or 
fallen between train and platform. Option B requires introducing stop plungers - wall 
mounted alarm devices at specified locations/intervals within the platform area which can be 
operated by platform staff or passengers. Trains in the platform area will be brought to a halt 
by operating any of these plungers. Option C includes equipping the train doors with sensors 
to reduce the possibility of trapping and dragging passengers. Option D consists of gap fillers 
between train and platform to reduce accidents where passengers fall between train and 
platform whilst boarding the train. Option E includes a system preventing opening the train 
doors on the wrong side of the platform (Weli and Todinov 2013). 
The five key risk reduction options, A,B,C,D and E have been evaluated, and the 
corresponding magnitudes of removed risk and costs are according to Table 2. 

Following the cost-benefit approach, the risk reduction measures C and A, with the largest 
benefit/cost ratio will be selected. The combined cost of the selected risk reduction measures 
is $2.3 million - well within the fixed budget of $2.6 million. The removed risk is $4.7 
million. 

The proposed model yields an optimal set including risk-reduction options B,C and D with 
a combined cost exactly $2.6 million (equal to the available budget) and removed risk equal 
to $5.1 million. The risk-reduction ratio  

33.1|3.26.2|/)7.41.5(   
equals 133%, which indicates that the proposed solution produces a substantial return on the 
extra resources. The proposed model in section 2.3 yields a solution superior to the cost-
benefit solution. 
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Table 2. Risk reduction measures with the associated costs and magnitudes of the removed risk. The total 
budget is $2.6 million. 
Risk reduction 
option 

Removed risk 
[in millions $] 

Cost of implement. 
[in millions $] 

Benefit/Cost ratio 

A 2.4 1.2 2 
B 1.3 0.7 1.857 
C 2.3 1.1 2.09 
D 1.5 0.8 1.875 
E 1.6 0.9 1.777 

 
Table 3 lists 7 risk reduction options (A,B,C,D,E,F and G) with removed risks and costs, 

according to the table. The total budget is B=$170 thousand. Following the cost-benefit 
approach, risk reduction options A,B and C, associated with the largest benefit/cost ratio will 
be selected. The combined cost of these risk reduction options is 140$CBTC  thousand, well 
within the fixed budget of $170 thousand. The removed risk is 1478$CBTR  thousand. 

Applying the algorithm discussed earlier yields an optimal set including risk reduction 
options B,D and G. The combined cost of these options is 169$TC  thousand (within the 
fixed budget of $170 thousand) with a total removed risk 1735$TR  thousand. The 
comparative ratio is 

86.8|140169|/)14781735(   
As can be verified, despite that the comparative ratio is smaller than the benefit/cost ratio of 
each risk-reduction option the total risk reduction is substantial ($257 thousand), which 
provides an excellent return on the invested extra budget of $29 thousand. Clearly, the 
solution from the proposed model should be preferred to the cost-benefit solution. 
 
Table 3. Risk reduction options with the associated costs and magnitude of the removed risk. The available 
budget is B=$170 thousand. 
Risk reduction 
option 

Removed risk 
[in thousands $] 

Cost of implement. 
[in thousands $] 

Benefit/Cost ratio 

A 442 41 10.78 
B 525 50 10.5 
C 511 49 10.4 
D 593 59 10.05 
E 546 55 9.927 
F 564 57 9.89 
G 617 60 10.28 

 
 
Table 4 lists 24 different risk-reduction options and available budget B = $6404180. The 
options selected in the optimal set by the proposed model are shown in the last column of the 
table.  
 
 
Table 4. Risk-reduction options with the associated costs and magnitude of the removed risk.  
              The total budget is $6404180. 
Risk 
reduction 
option 

Removed  
risk, $ 

Cost of implement. 
$ 

Benefit/Cost 
ratio 

Selection 
indicator 

1 825594 382745 2.1570 1 
2 1677009 799601 2.0973 1 
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3 1676628 909247 1.8440 0 
4 1523970 729069 2.0903 1 
5 943972 467902 2.0175 1 
6 97426 44328 2.1978 1 
7 69666 34610 2.0129 0 
8 1296457 698150 1.8570 0 
9 1679693 823460 2.0398 0 

10 1902996 903959 2.1052 1 
11 1844992 853665 2.1613 1 
12 1049289 551830 1.9015 0 
13 1252836 610856 2.0510 1 
14 1319836 670702 1.9678 0 
15 953277 488960 1.9496 0 
16 2067538 951111 2.1738 1 
17 675367 323046 2.0906 0 
18 853655 446298 1.9127 0 
19 1826027 931161 1.9610 0 
20 65731 31385 2.0943 0 
21 901489 496951 1.8140 0 
22 577243 264724 2.1805 1 
23 466257 224916 2.0730 1 
24 369261 169684 2.1762 1 

 
 
For a small number of risk reduction options (up to 12), the proposed model has been 

validated by using a recursive backtracking algorithm generating, evaluating and comparing 
all possible combinations of risk-reduction options, after which the best combination, 

associated with the largest sum )(
1

i

n

i
ii crxX 



 is selected.  

 
Table 5. A validation test example including 12 risk-reduction options, the associated costs and magnitudes of 

the removed risk. The total budget is $1600 thousand. 
Risk 
reduction 
option 

Removed  
risk 
[x 1000 $] 

Cost of 
option 
[x 1000 $] 

Benefit/Cost 
ratio 

Selection 
indicator 

1 245 182 1.35 0 
2 311 166 1.87 1 
3 412 240 1.72 1 
4 567 378 1.5 1 
5 188 112 1.68 0 
6 443 277 1.6 1 
7 116 79 1.47 0 
8 89 45 1.98 0 
9 398 217 1.83 1 

10 178 98 1.82 1 
11 477 201 2.37 1 
12 289 245 1.18 0 

 
A validation test has been conducted including 12 risk reduction options, with removed 

risks and costs according to Table 5. The optimal selection produced by the proposed model 
is given in the last column of Table 5. The execution of the recursive backtracking algorithm 
yielded options 2,3,4,6,9,10,11 as optimal options, with total cost $1577 thousand. This result 
matched exactly the result from the proposed model in section 2.2. 

A number of additional tests have also been conducted, with a different number of risk-
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reduction options. Invariably, the results from the recursive backtracking procedure matched 
exactly the results from the proposed model. The worst-case running time of the (0-1) 
dynamic programming algorithm for optimal allocation of a safety budget is )( BnO   where, 
n is the number of available options and B is the size of the budget as an integer number. 
Expressing the available budget B, the removed risk and the cost of the options as numbers 
(e.g. rounded to the nearest thousand) makes the (0-1) dynamic programming algorithm very 
efficient, which is indicated by the results for the set of options in Table 4. Despite the large 
budget and the presence of risk-reduction options with very different costs, the solution was 
obtained by the (0-1) knapsack algorithm after 1.75s, on a computer with a processor Intel 
(R) Core (TM) 2 Duo CPU T9900 @ 3.06 GHz. 

 
Going back to the second limitation of the classical (0-1) dynamic programming approach, 

for two sets including the same number of identical statistically independent risk-reduction 
options, because of synergistic effects some sets of options removes more risk compared to 
the other sets. The classical (0-1) knapsack dynamic programming approach cannot handle 
cases where synergistic effects are present. 

To be applicable to problems of optimal risk reduction, the (0-1) knapsack dynamic 
programming approach must operate with risk-reduction options for which no synergistic 
effects are present and the total removed risk depends only on the sum of the removed risks 
by the separate options.  

The risk-reduction options in various industries possess this property. Examples of such 
options have already been given from the railway industry. 

A good test signalling the presence of synergistic effects among the risk reduction options 
is to assume temporarily that each of the risk reduction options has the same cost and 
removes the same amount of risk. Next, a check is performed whether any selection of m risk 
reduction options removes the same amount of total risk. If particular selections of options 
remove more total risk than other selections, synergistic effects are present and the (0-1) 
dynamic programming approach cannot be applied. 

Consider a case where again, the available risk reduction options are investments in 
training people. In the first case, three teams A,B and C, each of which contains three 
independently working team members, work in three different safety areas. Team members 

1A , 2A  and 3A  reduce the risk of derailment; team members 1B , 2B  and 3B  reduce the risk 
of train collision and team members 1C , 2C  and 3C  reduce the risk of train platform 
accidents. In this case, no requirement is present for each team member to be successful in 
their allocated task for the risk to be reduced. The effort of each team member reduces 
independently the corresponding risk. Investing in training of team members results in a 
proportional reduction of the corresponding risk.  

Now assume that the efforts from each team member reduce the same amount of risk and 
investment in training of any team member results in the same amount of removed extra risk. 
If the efforts of each team member result in the same amount of removed risk, it is clear that 
selecting any combination of m options (people to train) will result in the same amount of 
reduced total risk. No synergistic effect is present and the total removed risk does not depend 
on the selection of the risk reduction options. In reality, the cost of training and the amount of 
reduced risk will be different for each person and the (0-1) dynamic programming approach 
can be applied to determine the optimal selection of people for training. 

This case can be compared with the case already discussed in Section 2.2 where the three 
teams work in parallel on the task of eliminating the same major hazard and the total risk is 
reduced if at least one of the teams succeeds in eliminating the hazard. Again, it can be 
assumed temporarily that the efforts of each team member have the same impact. From the 
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analysis presented in Section 2.2  however, it is clear that despite that all risk reduction 
options are identical and independent, because of the synergistic effect, the (0-1) dynamic 
programming approach cannot be applied to optimise this case. 
 

In many real cases, the risk-reduction options are not statistically dependent but this does 
not preclude the use of the (0-1) knapsack problem for determining the optimal resource 
allocation. In some cases, the selection of one of the risk-reduction options iA  automatically 
excludes the selection of a series of other options jA , ji  .  (  ji AA ). For example, 
purchasing a particular type iA  signalling system/breaks excludes purchasing another type 

jA  of signalling system/breaks. In other cases, the selection of a risk-reduction option A 
requires the selection of other risk-reduction options iB  ( iBA ). Such is the case where 
purchasing a signalling system (option A) requires investing in training (option 1B ) and 
purchasing an improved communication system (option 2B ). 

There are also asymmetrical risk-reduction options where option A for example can be 
selected without option B but option B cannot be selected without option A. For example, 
option A consisting of purchasing calibration and maintenance services of equipment  
controlling an important functional parameter (e.g. temperature, pressure, concentration) 
cannot be done without purchasing the controlling equipment. 

These numerous option constraints can be presented as additional constraints to the (0-1) 
knapsack problem. The optimal solution can still be found by solving the (0-1) knapsack 
problem provided that no synergistic effects are present for the different sets of options. 
 
 
3.2 Optimal strategy in reducing the total risk in parallel-series systems 

 

The parallel-series logical arrangement example in section 2.2 demonstrated that the (0-1) 
dynamic programming approach cannot be used if synergistic effects are present. The 
parallel-series logical arrangement is a common logical arrangement in safety devices 
working in parallel for preventing the occurrence of a particular risk event. Consider a safety-
critical system for detecting the release of heath from incipient fire, based on n heath 
detectors working in parallel, each of which consist of a heath sensor, control block and an 
alarm. Upon fire, the system detects the heath release if at least one of the detectors working 
in parallel detects the heath release. This system has a parallel-series logical arrangement 
because the heath detectors are logically arranged in parallel while the components building 
them (heath sensor, control block and an alarm) are logically arranged in series. 

Because systems with parallel-series logical arrangements (Fig.4) are very common, and 
the optimal selection of risk reduction options cannot be resolved by the (0-1) dynamic 
programming approach, a specific method should be developed for accomplishing the task of 
optimal resources allocation which delivers the smallest risk of system failure.  

The cases in Fig.1 Fig.2c and Fig.3d are examples of well-ordered parallel-series systems. 
A well-ordered parallel-series arrangement is obtained if the available components are used 
to build the branch with the highest possible reliability/availability, the remaining 
components are used to build the next parallel branch with the highest possible 
reliability/availability and so on, until the entire parallel-series arrangement is built. 

Another example of a well-ordered parallel-series system is the system in Fig.4, where in 
the parallel branches there are three pre-existing components with reliabilities 78.001 r , 
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75.002 r  and 80.003 r . These components are always attached to the corresponding 
branches and cannot be swapped. There are also empty sockets which can accommodate 
type-A components and type-B components. There are two type-A components: an old 
component with reliability 0.57 and a medium-age component with reliability 0.67. There are 
also six type-B components: three old components with reliability 0.7 and two medium-age 
components with reliability 0.8. The system with the highest possible reliability (the largest 
removed risk of system failure) is the system shown in Fig.4. In this system, the branch with 
the highest possible reliability (the second branch) cannot be improved by interchanging type 
B components with type B components from other branches. The next highest-reliability 
branch (the third branch) cannot be improved by interchanging components with the less 
reliable first branch.  

 

 
Figure 4. A parallel-series logical arrangement with three pre-existing components with specified reliabilities 

and eight interchangeable components. 
 
Yet another example of a parallel-series mechanical system is the one in Fig.5 featuring a 

pipeline with three interchangeable valves V1, V2 and V3 of the same type. The valves are 
initially open and are closed on demand by the actuators A1, A2 and A3 (all of the same type 
and therefore interchangeable), which are energized by the control modules CM1,CM2 and 
CM3, also of the same type and therefore interchangeable.  

The reliability network of the system from Fig.5a is given in Fig.5b. With respect to the 
function stopping the fluid in the pipeline on demand, the valves are logically arranged in 
parallel, while the actuators and the control modules are logically arranged in series (Fig.5b). 
This is because at least one of the three valve blocks needs to be operational to stop the fluid 
in the pipeline. For a valve block to be operational, the valve, the corresponding actuator and 
control module must all be operational. 

 

 

Figure 5. a) A functional diagram of three valve blocks on a pipeline; b) Reliability block diagram of the 
function “stopping the fluid in the pipeline”. 
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The results obtained for a number of well-ordered parallel-series systems have been 

verified by a computer simulation. The computer simulation consisted of specifying the 
reliabilities of the interchangeable components in the branches and calculating the 
reliability/availability of the well-ordered system. The second phase of the validation 
program was a “random shuffle” of the interchangeable components in the branches, by 
generating random indices of components from different branches and swapping their 
reliability values. The swapping guarantees that any resultant system includes exactly the 
same set of interchangeable components as the initial system. After the random shuffle, the 
reliability/availability of the shuffled system was calculated and compared with the reliability 
of the well-ordered system. If the reliability/availability of the well-ordered system was 
greater than or equal to the reliability of the shuffled system, the content of a counter was 
increased. At the end, the probability was calculated that the well-ordered system has 
reliability/availability not smaller than the reliability of the shuffled system. In all conducted 
simulations, this probability was always equal to one, which leads to the conjecture that the 
well-ordered parallel-series arrangements are characterised by the largest 
reliability/availability. These results lead to establishing the following general result: 

 
Theorem. Among all possible parallel-series logical arrangements, the well-ordered 
parallel-series logical arrangement possesses the highest possible reliability.  

 
Proof. This proposition will be proved by contradiction and by making use of the extreme 
principle. Suppose that there is a parallel-series logical arrangement which is not well-
ordered and which possesses the highest possible reliability. Without loss of generality, 
suppose that the parallel branches in this arrangement have been re-arranged in such a way 
that for any two branches ‘i’, ‘j’ for which ji  , the reliability iR  of the branch ‘i’ is not less 
than the reliability jR  of branch ‘j’ ( ji RR  ). If the parallel-series arrangement is not well-
ordered, then there must be two branches with indices a and b ( ba  ) and reliabilities 

ba RR  , where there will be at least one component in branch a with a smaller reliability 
than the reliability of the analogous component in branch b. Suppose that naa aaaR  ...21  
and nbb bbbR  ...21  are the reliabilities of branches a and b and na , nb  are the number of 
components in branches a and b, correspondingly. The quantities ia  and ib  stand for the 
reliabilities of the components in branches 'a' and 'b', respectively. Without loss of generality, 
suppose that 'na' and 'nb' are the indices of the two analogous components in branches 'a' and 
'b', for which nbna ba   is fulfilled. 

The reliability of the initial system can be presented as 
]1[)...1)(...1(1 21211 restnbnasys RbbbaaaR                          (8) 

where restR  is the reliability of the rest of the parallel-series arrangement (not including 
branches 'a' and 'b'). 

After swapping the components with indices na and nb, the reliability of the resultant 
system becomes 

]1[)...1)(...1(1 1211212 restnanbnbnasys RabbbbaaaR                  (9) 
Subtracting (9) from (8) yields: 

]1[)......)(( 12112121 restnananbnasyssys RbbbaaabaRR                  (10) 
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Because nbbnaa bbbRaaaR  ...... 2121  (by the way the branches have been 
arranged in descending order according to their reliability) and because nbna ba   by 
assumption, the inequality  

121121 ......   nbna bbbaaa                                               (11) 
holds, which means that in equation (10),  

0...... 121121   nbna bbbaaa . 
Since 01  restR  and 0 nbna ba , the right hand side of equation (10) is negative, which 
means that the resultant system (after the swapping of components) has a higher reliability (

12 syssys RR  ). This contradicts the assumption that the initial system (before the swap of 
components) was the system with the highest possible reliability. Therefore, the reliability of 
a system which is not well-ordered, can always be improved by swapping components 
between parallel branches until a well-ordered system is finally attained. The well-ordered 
system is unique and there can be no two well-ordered systems. Because a parallel-series 
system can either be a well-ordered or not well-ordered system, the well-ordered system has a 
higher reliability compared to any other arrangement. The theorem has been proved.■ 
 

This result provides an opportunity to remove the maximum amount of total risk of failure 
in parallel-series arrangements by concentrating the available resources on renewing single 
parallel branches as opposed to renewing randomly selected components in the system. 

This result also provides the valuable opportunity to improve the reliability/availability of 
common engineering systems with parallel-series logical arrangement of their components 
without the knowledge of their reliabilities and without any investment. Unlike traditional 
approaches, which invariably require resources to achieve a reliability improvement and 
system risk reduction, a risk reduction can also be achieved by appropriate permutation of the 
available interchangeable components between the parallel branches. 

Components of similar level of deterioration (reliability levels) should be placed in the 
same parallel branch.  
 
 
4. CONCLUSIONS 
 
● The classical (0-1) knapsack dynamic programming formulation used for optimal 
allocation of safety resources to achieve a maximum benefit yields highly undesirable 
solutions, wasting resources on insignificant risk reduction. 
 
● The classical knapsack dynamic programming approach maximises the total benefit 
derived from items ‘filling a space’ with no intrinsic value. While this is an appropriate 
formulation for packing and cargo loading problems, for applications involving capital 
budgeting, this formulation is deeply flawed. The reason is that budgets do have intrinsic 
value and their efficient use is just as important as the maximisation of the benefit derived 
from the budget allocation. 
 
●  A new resource allocation model has been proposed, where the weighted sum of the 
benefit (total removed risk) and the remaining budget is maximised. The proposed model 
produces solutions superior to both – the classical (0-1) dynamic programming approach and 
the cost-benefit approach.  
 
● The proposed approach promotes a more efficient use of the risk reduction resources by 
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preventing them from being locked into insignificant benefit improvement. The proposed 
approach permits freeing risk-reduction resources from areas of diminishing returns to other 
areas where more risk could be removed with the same levels of investment. 
 
● Because of synergistic effects, sets including the same number of identical options could 
remove different amount of total risk. The existence of synergistic effects does not permit the 
application of the (0-1) dynamic programming approach. In this case, specific methods for 
optimal resource allocation should be developed. 
 
● For systems with parallel-series logical arrangement, the maximum amount of risk is 
removed by using the available resources preferentially, on improving the reliability of 
operations/components building an entire parallel branch. Improving the reliability of 
randomly selected operations/components leads to a sub-optimal risk reduction. 
 
●  The concept ‘well-ordered parallel-series arrangement’ has been introduced and, by using 
the extreme principle, a relevant theorem has been stated and proved: 'among all possible 
parallel-series logical arrangements, the well-ordered parallel-series arrangement has the 
highest reliability'. 
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