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Abstract: Global chaotic analysis of heart rate variability (HRV) has been previously investigated. Preceding studies 
indicated impaired analysis in obese children and diabetic patients. However, its behaviour in response to exercise 
is not clear. We investigated the acute effects of physical exercise on global chaotic analysis of HRV. We investigated 
35 healthy men aged between 18 and 35 years old. Volunteers were instructed not to drink alcohol, caffeine or 
other autonomic nervous system (ANS) stimulants for 24 hours before the evaluation. Volunteers performed physi-
cal exercise on treadmill with intensity of 6.0 km/hour + 1% slope in the first five minutes for physically “warming 
up”. This was then followed by 25 minutes with intensity equivalent to 60% of Vmax, with the same slope according 
to the Conconi threshold. HRV was analyzed in the following periods: (a) control protocol; the 10-minute periods 
before the performance of the exercise and (b) the 10-minute periods after the performance of the exercise. Both 
periods of exercise were analyzed by the chaotic global techniques. The number of RR-intervals derived from the 
PQRST-motif of the ECG signal was processed by the algorithms, and were always 750 RR-intervals for all subjects 
both experimental and control.
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Introduction

The cardiovascular system is regulated through 
autonomic nervous system (ANS). At rest, there 
is a prevalence of the parasympathetic nervous 
system over the heart, inducing reduced levels 
of heart rate. Alternatively, autonomic adjust-
ments during physical exercise causes oppo-
site responses. At the beginning of exercise 
heart rate increases due to faster parasympa-
thetic withdrawal and later the sympathetic 
nervous system is activated. Immediately after 
exercise the heart rate recovery mechanism is 
regulated through parasympathetic recovery 
and sympathetic withdrawal [1].

In this context, heart rate variability (HRV) is  
a non-invasive method that investigates cardi-

ac autonomic regulation through evaluation  
of successive beat-to-beat temporal separa-
tions; referred to as RR intervals [2]. HRV 
responses to physical exercise are character-
ized by reduced HRV during the effort which 
remains after exercise [3].

Global chaotic analysis of HRV is a non-linear 
method that has received attention recently. 
Previous studies observed impaired chaotic 
globals to HRV in obese children [4] and diabet-
ic subjects [5].

While the responses of the traditional linear 
indices of HRV induced by exercise are well 
reported [6], it is not well defined about its 
behavior after an acute session of exercise. 
Moreover the investigations of non-linear meth-
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ods applied to HRV are pertinent, since the HRV 
is suggested to be non-linear and possibly cha-
otic [7]. There have been studies of chaotic 
global techniques [8] in mathematical models 
such as the Brusselator [9], Duffing [10] and 
Lorenz [11]. Applying these techniques to physi-
ological systems we endeavored to evaluate 
the acute effects of exercise on the globally 
chaotic parameters of HRV.

Methods

Study population

The subjects participating in the study were 35 
healthy male students; all non-smokers, aged 
between 18 and 35 years old. All volunteers 
were informed about the procedures  
and the objectives of the study and gave writ-
ten informed consent. All study procedures 
were approved by the Ethics Committee in 
Research of the Faculty of Sciences of the 
Universida deEstadual Paulista, Campus of 
Presidente Prudente (No. CEP-2011-385), and 
were in accordance with Resolution 196/96 
National Health 10/10/1996. Exclusion criteria 
included body mass index (BMI) >35 kg/m2; 
systolic blood pressure (SBP) >140 mmHg or 
diastolic blood pressure (DBP) >90 mmHg (at 
rest); cardiovascular, respiratory and reported 
neurological disorders.

Initial evaluation

Baseline information collected included: age, 
gender, weight, height and body mass index 
(BMI). Weight was determined using a digital 
scale (W 200/5, Welmy, Brazil) with a precision 
of 0.1 kg. Height was determined using a stadi-
ometer (ES 2020, Sanny, Brazil) with a preci-
sion of 0.1 cm and 220 cm of extension. BMI 
was calculated as weight/height2, with weight 
in kilograms and height in meters.

HRV analysis

Instantaneous RR intervals (RRi) were recorded 
with a digital telemetry system, consisting of  
a transmitter placed on the patient’s chest and 
a HR monitor (Polar® RS800CX; Polar Electro 
Oy, Kempele, Finland). This system detects ven-
tricular depolarization, corresponding to the R 
wave on the electrocardiogram, at a sampling 
rate of 1000 Hz and was previously validat- 
ed [12]. They were downloaded to the Polar 

Precision Performance program (v.3.0, Polar 
Electro, Finland). The software enabled the vis-
ualization of HR and the extraction of a cardiac 
period (RR interval) file in “txt” format. Following 
digital filtering complemented with manual fil-
tering for the elimination of premature ectopic 
beats and artefacts, 750 RR intervals were 
applied for the data analysis. Only series with 
sinus rhythm greater than 95% were included 
in the study. HRV was analysed during two time 
periods: the period before the exercise (con-
trol); and after the period of acute exercise 
(experimental).

Linear indices of HRV

For HRV analysis in the frequency domain we 
used the spectral components of low frequency 
(LF: 0.04 to 0.15 Hz) and high frequency (HF: 
0.15 to 0.40 Hz) in absolute (ms2) and in nor-
malized units. The spectral analysis was calcu-
lated with the Fast Fourier Transform algorithm 
[13].

Time domain analysis was achieved through 
the SDNN (average standard deviation of nor-
mal RR intervals), pNN50 (percentage of adja-
cent RR intervals lasting more difference than 
50 ms) and RMSSD (square root of the average 
square differences between normal adjacent 
RR intervals). For analysis of linear indices in 
the frequency and time domain we applied the 
Kubios HRV® analysis software [14].

Maximal oxygen consumption (Vmax) analysis

For the prescription of exercise intensity we 
used 60% of Vmax found in the progressive test 
through Conconi threshold, which has been 
proposed to estimate the anaerobic threshold 
for identifying the HR deflection point (PDGF) 
using a progressive test with the use of the  
Dmax method [15].

The volunteers underwent a thorough progres-
sive treadmill test (TPEE; Inbrasport ATL 2000) 
with initial speed of 8 km/hour which incre-
mented 1 km/hour each 2 minutes until voli-
tional, exhaustion or onset of clinical changes 
that prevented the continuity of test, such as 
dizziness, shortness of breath or intense “air 
hunger [16, 17]”. The inclination of the treadmill 
remained fixed at 1%, since this condition 
reflects more precisely the energy cost of run-
ning outdoors.
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During the test we recorded HR at the end  
of each phase and perceived exertion (PSE) 
through the Borg Scale [18]. We acknowledged 
volunteers that reached up to 90% of maximal 
HR [19].

For the identification of PDGF, the matched HR 
and speed points were plotted. Subsequently, 
the values were adjusted by means of a third-
degree polynomial function and a linear equa-
tion of the first degree, which are data derived 
from each individual. Afterwards, the difference 
of the values of HR obtained through the above 
mentioned equations were calculated and a 
curve was designed with these values. We con-
sidered the PDFC as the highest value before  
a change of direction in curve [19].

Exercise protocol

Data collection was initiated in the same sound-
proofed room for all volunteers. The tempera-
ture was between 21°C and 25°C and the rela-
tive humidity between 50% and 60%. Volunteers 
were instructed not to drink alcohol, caffeine or 
other autonomic nervous system (ANS) stimu-
lants for 24 hours before the evaluation. Data 
were collected on an individual basis, always 
between 18:00 and 21:00 to avoid circadian 
influences [20]. All procedures necessary for 
the data collection were explained to each sub-
ject separately, and the subjects were instruct-
ed to remain at rest and avoid talking during 
the collection.

Volunteers performed physical exercise on 
treadmill exercise with intensity of 6.0 km/hour 
+ 1% slope in the first five minutes for physical- 
ly “warming up”, followed by 25 minutes with 
intensity equivalent to 60% of Vmax according  
to the Conconi threshold with the same slope. 
HRV was analyzed in the following periods: con-
trol protocol-the 10-minute period before the 
performance of the exercise and the 10-minute 
period after the performance of the exercise.

Chaotic assessment

Statistical analysis: As mentioned in the intro-
duction a potential criticism in previous studies 
on diabetes [5] and childhood obesity [4] with 
respect to chaotic global parameters is that  
the spectral entropy [21] and spectral Detrend- 
ed Fluctuation Analysis (sDFA) [8] examination 
may be more sensitive if we applied the Shan- 

non entropy [22, 23] and DFA [24] algorithms  
to the multi-taper spectrum [25, 26] rather 
than the Welch [27] power spectrum. Thus  
the spectra applied in all three chaotic global 
parameters would be identical.

MTM is useful for spectral estimation and sig-
nal reconstruction, of a time series of a spec-
trum that may contain broadband and line com-
ponents. MTM is non-parametric since it does 
not apply an a priori, parameter dependent 
model of the process that generated the time 
series under analysis. MTM reduces the vari-
ances of spectral estimates by using a small 
set of tapers. Data is pre-multiplied by orthogo-
nal tapers created to minimize the spectral 
leakage owing to the finite length of the time 
series. A set of independent approximations of 
the power spectrum is calculated.

Functions identified as discrete prolate spheroi-
dal sequences (DPSS) [28] are a set of func-
tions which optimize the tapers. They are 
defined as eigenvectors of a Rayleigh-Ritz [29] 
minimization problem. In this study the param-
eters for MTM are: (i) sampling frequency of 1 
Hz; (ii) time bandwidth for the DPSS is 3; (iii) 
FFT length of 256; (iv) Thomson’s adaptive non-
linear combination method to combine individ-
ual spectral estimates.

Chaotic globals: High spectral entropy (hsEn-
tropy) [30] is a function of the irregularity of 
amplitude and frequency of the power spec-
trums peaks. It is derived by applying Shannon 
entropy to the MTM power spectrum. This out-
put is then normalized so that the sum of the 
magnitude is equal to unity; giving a normalized 
power spectrum. We then calculate an interme-
diate parameter which is the median Shannon 
entropy of the value obtained from three differ-
ent power spectra using the MTM power spec-
tra under three test conditions: a perfect sine 
wave, uniformly distributed random variables, 
and finally the experimental oscillating signal. 
These values are then again normalized math-
ematically so that the sine wave gives a value 
of zero, uniformly random variables give unity, 
and the experimental signal between zero and 
unity. It is this final value that corresponds to 
hsEntropy.

The standard DFA algorithm can be applied to 
datasets where statistics such as mean, vari-
ance and autocorrelation vary with time. Re- 
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garding DFA, the scaling exponent, α is not  
constant. Such variability and introduction of 
errors in the time-series and its mathematical 
relationships over the duration of the datasets 
is reduced by applying the algorithm to power 
spectra. To obtain high spectral Detrended 
Fluctuation Analysis (hsDFA) [30] we calculate 
the spectral adaptation in exactly the same way 
as for hsEntropy using a MTM power spectrum 
with the same settings; but DFA rather than 
Shannon entropy is the algorithm applied. It is 
important to realize that the hsDFA is the same 
as sDFA except the power spectrum is the MTM 
type rather than that of Welch’s.

Spectral Multi-Taper Method (sMTM) [8] is 
founded on the increased intensity of broad-
band noise in power spectra generated by irreg-
ular and chaotic signals. sMTM is the area 
between the MTM power spectrum and the 
baseline.

Further statistical analysis: The parameter [CF- 
Px] represents Chaotic Forward Parameter and 

x corresponds to the pre-exercise (control) and 
post-exercise datasets (experimental). There 
are seven different permutations of three cha-
otic global parameters. Since hsDFA responds 
to chaos in the opposite way to the others we 
subtract its value from unity when applying 
here. All three chaotic global values have equal 
weighting. The significances of the various com-
binations is assessed by multivariate analysis 
later. It is expected that the [CFP] which applies 
all three should be the most significant since  
it takes the most information and processes it 
in three different ways.
[ 1] [ ( ) ( ) (1 [ ( )]) ]

[ 2] [ ( ) (1 [ ( )]) ]

[ 3] [ ( ) ( ) ]
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Figure 1. Time domain indices of HRV be-
fore (Pre) and after exercise (Post). SDNN: 
standard deviation of normal-to-normal RR 
intervals; pNN50: the percentage of adja-
cent RR intervals with a difference of dura-
tion greater than 50 ms; RMSSD: root-mean 
square of differences between adjacent 
normal RR intervals in a time interval; ms: 
milliseconds.
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The potential pitfall in the analysis here is that 
the since we are only taking spectral compo-
nents; the phase information is lost. Taking 
groupings of spectral parameters in addition to 
the interpeak parameters could be a rewarding 
exercise. Nevertheless, there are other tech-
niques which could be supplementary to the 
[CFP] such as DFA [24], Shannon entropy [31], 
fractal dimension [32], correlation dimension 
[33, 34], approximate entropy [35, 36] and 
sample entropy [37-39]. Note however that 
these techniques are standard techniques 
applied to the temporal separations of the 
RR-intervals. They are not chaotic globals and 
do not include a power spectrum step in the 
algorithm.

Results

Linear analysis of HRV

Figure 1 illustrates data regarding time do- 
main analysis of HRV. We observe significant 
increase of SDNN index and significant reduc-
tion of pNN50 and RMSSD immediately after 
exercise.

We note in Figure 2 the behavior of the spectral 
analysis of HRV, indicating significant decrease 
of LF and HF in absolute units and significant 
increase of LF/HF ratio immediately after ex- 
ercise.

Mean, standard deviation & significances

Parametric statistics generally assume the 
data are normally distributed, hence the use  
of the mean as a measure of central tendancy. 
If we cannot normalize the data we should not 
compare means. To test our supposition of nor-
mality we applied the Anderson-Darling [40] 
and Lilliefors [41] tests. The Anderson-Darling 
test for normality applies an empirical cumula-
tive distribution function. The Lilliefors test is 
an alternative algorithm which can be applied 
in these circumstances where the number of 
subjects is quite low. In the majority of cases 
the P<0.05; for both tests so we cannot assert 
that the observations follow a normal distribu-
tion. Therefore we have a probability plot of 
mainly non-normal data and so we must apply 
the Kruskal-Wallis [42] test of signficance. The 
results illustrate that there is a wide variation in 

Figure 2. Frequency domain indices 
of HRV before (Pre) and after exercise 
(Post). LF: low frequency; HF: high fre-
quency; LF/HF: low frequency/ high fre-
quency ratio; ms: milliseconds.
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both the mean values and standard deviation 
for both pre-exercise and post-exercise (See 
Table 1; Figure 3). The Kruskal-Wallis algorithm 
computes a significant statistical result for 
three of the seven combinations (P<0.001) for 
pre-exercise versus post-exercise. These are 
combinations [CFP1, 3 & 6]. In all three cases 
there has been a reduction in the values of cha-
otic globals indicating a lost of complexity fol-
lowing 10 minutes of acute exercise.

Multivariate analysis

Principal Component Analysis (PCA) (43) is a 
multivariate statistical technique which can be 
applied here (See Table 2; Figure 4). We have 
the values of [CFP] for seven groups for 35 sub-
jects who are undergoing acute physical exer-
cise; hence a grid of 7 by 35 to be assessed.

The first principal component (PC1) has a vari-
ance (eigenvalue) of 4.3677 and accounts for 
62.4% of the total variance. The second princi-
pal component (PC2) has an eigenvalue of 
2.6146 accounting for 99.7% of total variance. 
The second component has a proportion of 
influence of 37.4%. Therefore we can assume 
that most variance is acheived in the first two 
components. This causes a steep scree plot.

The component loadings plot is a vector plot 
screening a representation of the estimate of 
each original variable as the fit by any two in-
model principal components. There are as 
many vectors as there are original variables. 
The magnitude of each vector corresponds to 

CFP3 and CFP6. However previous stuudies 
indicate that CFP1 is the most significant over-
all as achieved in the optmization study by 
Garner and Ling (2014) (8). The best balance is 
acheived in both Kruskal-Wallis and multivari-
ate analysis for CFP1. CFP6 is just the level  
of broadband noise obtained from the MTM 
power spectrum. Additionally, we can observe 
from the component loadings that CFP1 & 
CFP3 are similar as they are pointing in the 
same direction. CFP3 is the equal to CFP1 but 
with the hsDFA function absent. All CFP1, CFP3 
and CFP6 have sMTM as a function in their 
permutation.

Discussion

This investigation was undertaken to evaluate 
the effects of physical exercise on chaotic 
behavior of HRV. The method was based on 
chaotic global analysis of RR intervals. In this 
circumstance, the chaotic response of HRV in 
the male subjects after acute exercise decreas-
es. The function which applied all three chaotic 
globals was considered statistically most sig-
nificant based on the optimization study of 
Garner & Ling [8] and also two statistical tests; 
Kruskal-Wallis and PCA. This is useful in risk 
assessments of subjects undergoing extreme 
levels of exercise over short periods until ex- 
haustion.

Based on our data, linear behavior of HRV dur-
ing recovery phase of exercise was character-
ized by reduced values of RMSSD, pNN50 and 

Table 1. The table below shows the mean values and stan-
dard deviation for Chaos Forward Parameters [CFP1 to 7] 
for 750 RR intervals from the pre-exercise and post-exercise 
subjects
Combination 
of Chaotic 
Globals

Mean & SD
Pre-Exercise 

(N=35)

Mean & SD
Post-Exercise 

(N=35)

Kruskal-Wallis
(p-value)

CFP1 0.8972 ± 0.1046 0.8091 ± 0.1219 <0.001
CFP2 0.5793 ± 0.0846 0.5904 ± 0.0883 0.4313
CFP3 0.7952 ± 0.0853 0.7081 ± 0.1020 <0.001
CFP4 0.7856 ± 0.1819 0.6579 ± 0.1968 0.0022
CFP5 0.3992 ± 0.1316 0.3708 ± 0.1440 0.1730
CFP6 0.6737 ± 0.1407 0.5401 ± 0.1475 <0.001
CFP7 0.3693 ± 0.1756 0.4071 ± 0.1839 0.1923
Kruskal-Wallis test of significance was applied to results as normality could 
not be established from the data.

the explained standard deviation 
of the variable. The cosine of the 
angle between any two vectors 
approximates the correlation bet- 
ween the corresponding variables. 
Thus, two variables are highly cor-
related if their vectors are close to 
pointing in the same or opposite 
directions. Two variables are high- 
ly uncorrelated if their vectors are 
close to perpendicular. The axes 
titles illustrate the percentage of 
total variance contributed by cor-
responding component.

When we observe the results of 
PCA; and recalling the Kruskal-
Wallis statistical analysis we con-
sider only combinations CFP1, 
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HF and LF in absolute units, while LF/HF ratio 
increased.

The traditional HRV indices most used include 
time (standard deviation of all normal RR inter-
vals and the root-mean square of differences 
between adjacent normal RR intervals) and fre-
quency domain (low and high frequency) [2]. 

Physical exercise acutely reduces the above-
mentioned indices, indicating decreased cardi-
ac parasympathetic modulation [44].

Embedding Dimension, Largest Lyapunov Ex- 
ponent, Detrended Fluctuation Analysis(DFA) 
were also investigated during exercise and 
recovery and it was reported that HRV present-
ed a chaotic behavior regardless of the exer-
cise intensity [45]. In this manner, we firstly 
hypothesized that HRV analyzed through global 
chaotic parameters would present the same 
behavior. We found chaotic behavior of HRV 
immediately after physical exercise through 
global chaotic analysis, supporting this method 
to be used for HRV responses during physiolog
ical situations.

We reported that amongst all Chaos Forward 
Parameters, CFP2, CFP5 and CFP7 did not 
detect significant responses induced by physi-
cal exercise. Global chaotic analysis of HRV 
was illustrated in different conditions, such as 
obesity [4] and diabetes [5], suggesting this 
nonlinear method to analyzes HRV in patho- 
logical situations. In obese youths, CFP2, CFP4, 
CFP5 and CFP7 were not significant compared 
to control group [46], whereas in diabetic pati- 
ents only CFP3 was significant compared to 

Figure 3. The boxplots illustrate basic statistics of [CFPx] for the 750 RR intervals of 35 pre-exercise (left) and 35 
post-exercise (right) subjects. The output is measured in arbitrary units (a.u.). The point closest to the zero is the 5th 
percentile and the point farthest away is the 95th percentile. The boundary of the box closest to zero indicates the 
25th percentile, a line within the box marks the median, and the boundary of the box farthest from zero indicates the 
75th percentile. Whiskers (or error bars) above and below the box indicate the 90th and 10th percentiles.

Table 2. The table below illustrates the rel-
evant Principal Component Analysis for CFP 
for 7 groups of 35 subjects who are post-
exercise subjects 
Chaotic Global
Combination CFPx

Principal 
Component 1

Principal  
Component 2

CFP1 0.337 -0.438
CFP2 -0.090 -0.606
CFP3 0.143 -0.588
CFP4 0.478 0.019
CFP5 0.462 0.159
CFP6 0.477 -0.038
CFP7 -0.433 -0.261
Note the application of high spectral variants of chaotic 
globals used to generate the data for analysis here. We 
assume from Kruskal-Wallis significance that the only 
three groups to be assessed are CFP1, CFP3 and CFP6 
(P<0.001). The scree plot values tell us that the only 
principal components required are the first two.
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control group [5]. In addition, in children with 
malnutrition a decrease in chaotic response of 
HRV was also reported [47].

Conversely, our study aimed to verify HRV re- 
sponses analyzed with Chaos Forward Para- 
meters in the recovery phase of exercise in 
healthy men, not a pathological condition. We 
illustrated that physical exercise acutely re- 
duced the chaotic behavior of HRV. Recently, 
global chaotic analysis failed to detect signifi-
cant HRV respones in the mental arithmetic 
overload test [48], however, the authors did not 
find significant responses of the linear indices 
in the time and frequency domain, indicating 
that the mental test did not induce significant 
responses.

We call for awareness of nonlinear analysis of 
HRV because nonlinear mechanisms are sug-
gested to be related to heart rate dynamics as 
well as organic systems. If only linear methods 
are applied to RR intervals there is a possibility 
of losing some information, suggesting that the 
traditional data analysis techniques in the time 

cal practice, since complex systems require 
computational and theoretical experience. In 
this circumstance, we encourage clinicians to 
join linear and nonlinear analysis of HRV to test 
their routines.

Conclusion

Physical exercise acutely reduced the chaotic 
behavior of HRV analyzed through global cha
otic parameters, supporting the use of this cha
otic method applied to RR intervals.
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and frequency domains are 
often not sufficient to char-
acterize the complex dynam-
ics of generation of the 
heartbeat [6].

Another important advan-
tage of nonlinear analysis of 
HRV is that it does not pro-
vide responses associated 
with the degree of variabili- 
ty (quantification), but the 
quality and correlation pro- 
perties of the signal [49]. 
Previous studies reported 
nonlinear methods as clini-
cally relevant to interpreta-
tion of pathological mecha-
nisms related to HRV, pro-
viding complementary infor-
mation with linear methods 
[50, 51].

Although we have highlight-
ed important points regard-
ing nonlinear analysis of 
HRV, biomedical engineer-
ing literature have present-
ed some methods that have 
never been applied to clini-
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