New GJA8 variants and phenotypes highlight its critical role in a broad spectrum of eye anomalies

AUTHORS

Fabiola Ceroni1, Domingo Aguilera-Garcia2,3, Nicolas Chassaing4,5, Dorine Arjanne Bax1, Fiona Blanco-Kelly2,3,6,7, Patricia Ramos2,3, Maria Tarilonte2,3, Cristina Villaverde2,3, Luciana Rodrigues Jacy da Silva2,3, Maria Juliana Ballesta-Martínez8, Maria Jose Sanchez-Soler8, Richard Holt1, Lisa Cooper-Charles9, Jonathan Bruty9, Yvonne Wallis9, Dominic McMullan9, Jonathan Hoffman10, David Bunyan11, Alison Stewart12, Helen Stewart6, Katherine Lachlan13,14, DDD Study15, Alan Fryer16, Victoria McKay16, Joëlle Roume17, Pascal Dureau18, Anand Saggar19, Michael Griffiths9, Patrick Calvas4,5, Carmen Ayuso2,3, Marta Corton*2,3, Nicola Ragge*1,10

*joint senior authors

AFFILIATIONS

1 Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK;
2 Genetics Service, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain;
3 Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain;
4 Service de Génétique Médicale, Hôpital Purpan, CHU Toulouse, France;
5 UMR 1056 Inserm - Université de Toulouse, Toulouse, France;
6 Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK;
7 Institute of Ophthalmology, University College London, London, UK;
8 Medical Genetics Department, University Hospital Virgen de la Arrixaca, Murcia, Spain;
9 West Midlands Regional Genetics Laboratory, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK;
10 West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham, UK;
11 Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury, UK;
12 Sheffield Clinical Genetics Department, Northern General Hospital, Sheffield, UK;
13 Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Princess Anne Hospital, Southampton, UK;
14 Human Genetics & Genomic Medicine, University of Southampton, Southampton General Hospital, Southampton, UK;
15 Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK;
16 Cheshire and Merseyside Genetics Service, Liverpool Women’s NHS Foundation Trust, Liverpool, UK;
17 Department of Clinical Genetics, centre de référence "AnDDI rares", Poissy Hospital GHU PIFO, Poissy, France;
18 Fondation ophtalmologique Adolphe-de-Rothschild, Paris, France;
19 Clinical Genetics Unit, St Georges University of London, London, UK.

Corresponding author: Professor Nicola Ragge, MD DM FRCP FRCOphth FRCPCH
Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK; West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women’s and Children’s NHS Foundation Trust, Mindelsohn Way, Birmingham, B15 2TG, UK.
Tel: +44 1865 484413
Fax: +44 1865 742177
E-mail: nragge@brookes.ac.uk; nicola.ragge@bwnft.nhs.uk
Acknowledgements

We would like to thank the patients and their families for their participation in our study. We are grateful to Suzanne Broadgate for assisting with the coordination of the project. We thank the Centrum Menselijke Erfelijkheid laboratory, Leuven, Belgium, for the diagnostic PAX2 testing. We also thank Dr Jean-Philippe Bault for the ultrasound examinations performed on family 2. This work was supported by grants from Baillie Gifford, Visually Impaired Children Taking Action (VICTA) (http://www.victa.org.uk/), Microphthalmia, Anophthalmia, Coloboma Support (MACS) (www.macs.org.uk), Oxford Brookes University Central Research Fund, Retina France, Fondation Maladies Rares, Spanish Institute of Health Carlos III (CP12/03256), Spanish Ministry of Economy and Competitiveness (SAF2013-46943-R), Mutua Madrileña Foundation and Cátedra de Patrocinio UAM-IIS-FJD of Genomic Medicine (University Autónoma of Madrid). The DDD study presents independent research commissioned by the Health Innovation Challenge Fund [grant number HICF-1009-003], see www.ddduk.org/access.html for full acknowledgement.
ABSTRACT

GJA8 encodes connexin 50 (Cx50), a transmembrane protein involved in the formation of lens gap junctions. GJA8 mutations have been linked to early onset cataracts in humans and animal models. In mice, missense mutations and homozygous Gja8 deletions lead to smaller lenses and microphthalmia in addition to cataract, suggesting Gja8 may play a role in both lens development and ocular growth.

Following screening of GJA8 in a cohort of 426 individuals with severe congenital eye anomalies, primarily anophthalmia, microphthalmia and coloboma, we identified four known (p.(Thr39Arg), p.(Trp45Leu), p.(Asp51Asn) and p.(Gly94Arg)) and two novel (p.(Phe70Leu) and p.(Val97Gly)) likely pathogenic variants in seven families. Five of these co-segregated with cataracts and microphthalmia, whereas the variant p.(Gly94Arg) was identified in an individual with congenital aphakia, sclerocornea, microphthalmia and coloboma. Four missense variants of unknown or unlikely clinical significance were also identified. Furthermore, the screening of GJA8 structural variants in a subgroup of 188 individuals identified heterozygous 1q21 microdeletions in five families with coloboma and other ocular and/or extraocular findings. However, the exact genotype-phenotype correlation of these structural variants remains to be established.

Our data expand the spectrum of GJA8 variants and associated phenotypes, confirming the importance of this gene in early eye development.

Key words: Cataract, microphthalmia, coloboma, congenital aphakia, GJA8, Cx50
INTRODUCTION

Anophthalmia (absent eye), microphthalmia (small eye) and coloboma (optic fissure closure defects), collectively referred to as AMC, form a spectrum of developmental eye disorders, with an overall estimated incidence of 6-13 per 100,000 births (Shah et al., 2011; Skalicky et al., 2013). AMC can occur alone or in combination with other ocular anomalies, such as early onset cataract and anterior segment dysgenesis (ASD). They are associated with extraocular features in just over half of cases (Shah et al., 2012) and can form part of a syndrome (Slavotinek, 2011). The etiology of AMC is characterised by marked genetic heterogeneity. This reflects the complexity underlying eye morphogenesis, a conserved process that requires a series of highly coordinated events, both at the molecular and the structural level, and is tightly regulated by a network of transcription factors, extracellular signaling molecules, cell-cycle regulators and adhesion proteins (Reis and Semina, 2015).

Connexins (Cxs) are a homogeneous family of transmembrane proteins with a crucial role in intercellular communication. They present a conserved topology, which consists of four transmembrane α-helices (TM1-TM4) joined by two extracellular loops (ECL1 and ECL2) and one cytoplasmic loop (ICL), flanked by a short cytoplasmic N-terminal domain (NT) and a long cytoplasmic and less conserved C-terminal domain (CT). Cxs oligomerise in hexameric complexes called connexons, and allow the transmembrane passage of ions and small solutes (≤1 kDa). Connexons can function independently as hemichannels (HCs) or they can dock with their counterparts on the juxtaposed cell to form a gap junction channel (GJC), enabling the direct exchange of small molecules. Given their role in cell-cell communication and tissue homeostasis, Cxs have been implicated in a variety of biological and pathological processes (Pfenniger et al., 2011; García et al., 2016), including myelin-related diseases (Cx32 and Cx47), heart malformations and arrhythmia (Cx40), hearing loss...
and skin disorders (Cx26, Cx30, Cx30.3 and Cx31), oculodentodigital dysplasia, a syndrome
also involving microphthalmia, microcornea, cataract and/or spherophakia (Cx43), and early
onset cataract (Cx46 and Cx50).

As with AMC, developmental or early onset cataracts are a clinically heterogeneous group of
disorders, presenting as isolated anomalies or part of a syndrome. More than 110 genes have
been implicated in congenital cataracts (Gillespie et al., 2014), with mutations in Cxs
accounting for around 16% of cases with a known genetic cause (Shiels and Hejtmancik,
2017). Since the lens does not have any blood supply, it strongly depends on an extensive
network of GJCs for the intercellular communications that are critical for its development and
the maintenance of its transparency. The most abundant Cxs in the lens are Cx46 and Cx50,
which can also form mixed hexamers. Cx46, encoded by *GJA3*, is expressed only in fiber
cells, whereas Cx50, encoded by *GJA8*, is present throughout the lens.

Genetic studies in mice have demonstrated that the homozygous knockout of either *Gja3* or
Gja8 leads to cataracts, but with important phenotypic differences. The deletion of *Gja3*
causes severe progressive nuclear cataracts, but does not alter ocular growth (Gong et al.,
1997). In contrast, *Gja8*-null mice develop milder nuclear cataracts at an early postnatal age
and exhibit significantly smaller lenses and microphthalmia (White et al., 1998; Rong et al.,
2002), indicating that the two Cxs have overlapping, but distinct functions. In addition, the
targeted replacement of *Gja8* with *Gja3* (Cx50KI46 knockin mice) prevents the loss of
crystalline solubility, but not the postnatal growth defect resulting from the *Gja8* deletion
(White, 2002), confirming the functional diversity of the two proteins and the involvement of
Gja8 in the control of normal ocular growth. This is also supported by mouse lines carrying
missense mutations in *Gja8* (Steele et al., 1998; Graw et al., 2001; Chang et al., 2002; Xia et
al., 2012; Berthoud et al., 2013) and by rabbit models with CRISPR-Cas9 mediated *GJA8*
knockout (Yuan et al., 2016): both develop cataracts, microphthalmia and smaller lenses.
Moreover, severe cataracts and small lenses have also been observed in transgenic mice overexpressing Gja8 (Chung et al., 2007), indicating that any significant dysregulation of Gja8 could be deleterious for eye development.

In humans, missense and frameshift mutations in GJA8 (OMIM 600897) have been associated with cataracts (Beyer et al., 2013; Yu et al., 2016). Rarely, the phenotype also includes additional ocular abnormalities, mainly microcornea and iris hypoplasia (Devi and Vijayalakshmi, 2006; Hansen et al., 2007; Hu et al., 2010; Sun et al., 2011; Prokudin et al., 2014; Ma et al., 2016), but in a few cases also microphthalmia (Ma et al., 2016) and sclerocornea (Ma et al., 2018). Interestingly, defects in the formation of the lens have also been observed (Ma et al., 2018). The cataracts described in these individuals vary in both their location (e.g., nuclear, zonular, lamellar or total) and appearance (e.g., total, pulverulent or dense). The mutations are predominantly heterozygous and only few homozygous variants have been reported, all in consanguineous families (Ponnam et al., 2007; Schmidt et al., 2008 Ponnam et al., 2013; Ma et al., 2016). These pathogenic variants lead to amino acid alterations distributed throughout the protein (Yu et al., 2016), although mostly localised between the domains TM1 and TM2. They are predicted to affect protein function through various mechanisms, such as by inducing misfolding and/or mislocalisation or by altering channel properties (Beyer et al., 2013).

Copy number variants (CNVs) in the distal region of chromosome 1q21 and including GJA8 are rare in the general population, but have recurrently been identified in individuals with a broad range of different clinical diagnoses (Brunetti-Pierri et al., 2008; Mefford et al., 2008; Stefansson et al., 2008 Bernier et al., 2016). These primarily include developmental delay, microcephaly and psychiatric disorders, although the enrichment of 1q21 CNVs in individuals with these disorders could partly be related to ascertainment bias. However, some cases also have eye anomalies, such as cataracts (Brunetti-Pierri et al., 2008; Mefford et al.,
2008; Rosenfeld et al., 2012; Bernier et al., 2016; Ha et al., 2016), microphthalmia (Mefford et al., 2008) and coloboma (Brunetti-Pierri et al., 2008). Among the genes affected by these recurrent microdeletions/microduplications, GJA8 represents a strong candidate for the ocular anomalies described in some of the 1q21 CNV carriers.

To investigate further the importance of GJA8 in human eye morphogenesis and provide a better understanding of the range of developmental ocular anomalies associated with mutations in this gene, we screened GJA8 in a cohort of 426 unrelated patients (304 UK, 121 Spanish and 1 large French pedigree) with congenital eye anomalies in the AMC spectrum. Two novel and four known likely pathogenic sequence variants were identified in seven families, with one variant being present in two unrelated families. This expands the catalogue of GJA8 variants likely to be contributing to eye anomalies and the spectrum of phenotypes associated with this gene. Moreover, we also identified heterozygous 1q21 microdeletions including the gene GJA8 in five additional families, although the pathogenicity of these variants remains to be established.
MATERIALS AND METHODS

Cohort description.

A cohort of UK, Spanish and French families with AMC (Supplementary Table 1) was analysed for GJA8 variants. The UK families (n=304) were recruited as part of a national ‘Genetics of Eye and Brain anomalies’ study, approved by the Cambridge East Ethics Committee (04/Q0104/129) and had not received a genetic diagnosis. Family 5 was also recruited into the Deciphering Developmental Disorders (DDD) Study, which has UK Research Ethics Committee approval (10/H0305/83, granted by the Cambridge South REC, and GEN/284/12 granted by the Republic of Ireland REC). The UK families consisted of 55 probands with anophthalmia, 205 with microphthalmia and 44 with other anomalies within the AMC spectrum; 168 individuals were bilaterally affected and 160 had extra-ocular anomalies. The Spanish families (n=121) consisted of 6 individuals with anophthalmia, 42 with microphthalmia and 73 with other anomalies within the AMC spectrum; 100 individuals were bilaterally affected and 41 had extra-ocular anomalies. They were consented for genetic studies approved by the Ethics Committee of the University Hospital Fundación Jiménez Díaz (FJD, Madrid, Spain) and according to the tenets of the Declaration of Helsinki. The four-generation French pedigree consisted of 15 individuals with congenital cataracts and microphthalmia and consented for the study during their clinical treatment.

Identification of sequence and structural variants in GJA8.

The human gene GJA8 presents one isoform (NM_005267.4), comprising of two exons, with the coding sequence (CDS) entirely contained within exon 2. Sequence variants in the CDS were detected using a combination of Next-Generation Sequencing (NGS) methods and direct sequencing: 35 patients were screened by whole exome sequencing (WES), 207 patients using different targeted NGS panels of eye development genes including GJA8, and 184 patients by Sanger sequencing, which was also used to validate NGS findings and check
family segregation. Additionally, CNV data was available for 188 of these patients: 151 individuals (96 UK and 55 Spanish) had been assessed by array-based Comparative Genomic Hybridization (aCGH), with resolutions ranging from 44 kb to 244 kb, whereas for 37 Spanish individuals, CNVs were detected from NGS data using a read depth comparison approach. A detailed description of the different methods can be found in the Supplementary Materials and Supplementary Table 1. The genomic coordinates of the sequence and structural variants are reported according to Build GRCh37/hg19. The allelic frequencies of the sequence mutations were obtained from the Genome Aggregation Database (gnomAD, http://gnomad.broadinstitute.org/) (Lek et al., 2016). For each variant of interest, amino acid conservation across species was visually inspected using the Vertebrate Multiz Alignment & Conservation (100 Species) track from the UCSC Genome Browser. Three conservation scores were annotated using the database dbNSFP v.3.3 (Liu et al., 2016), specifically the GERP++ Rejected Substitutions (RS) score (Davydov et al., 2010), phyloP 100way_vertebrate score (Siepel et al., 2006) and phastCons 100way_vertebrate score (Siepel et al., 2005). Putative functional effects of amino acid substitutions were evaluated with the in silico tools SIFT (Kumar et al., 2009) and PolyPhen-2 (Adzhubei et al., 2010).

Validation of mosaicisms and CNVs.

In order to assess potential mosaicism and independently validate aCGH findings, we developed Digital Droplet PCR (ddPCR) assays for the sequence variant in family 1 and three of the GJA8 microdeletions identified (families 12, 13 and 14) (Supplementary Materials). ddPCR assays were performed using a ddPCR QX200 System (Bio-Rad Laboratories). Primers and Taqman probes were specifically designed for the GJA8 variant p.(Thr39Arg) using a custom Applied Biosystems TaqMan SNP Genotyping Assay (Thermo Fisher Scientific). For CNV analysis, commercial Taqman Copy Number assays (Thermo Fisher Scientific) were used for exon 2 of GJA8 and a reference gene (human RNase P gene).
RESULTS

Point mutations identified in *GJA8*.

Screening of the *GJA8* coding region in our cohort of 426 individuals with AMC detected 10 missense variants in 11 unrelated families (Tables 1 and 2). For each missense variant, the amino acid conservation across species is shown in the Supplementary Fig. 1. Taking into account the segregation patterns, the frequency of the variants in public databases of unaffected individuals (Table 2), *in silico* predictions of functional effects and previous reports from the literature (Table 2), as suggested by (Richards et al., 2015), six of these variants (p.(Thr39Arg), p.(Trp45Leu), p.(Asp51Asn), p.(Phe70Leu), p.(Gly94Arg) and p.(Val97Gly)) were considered likely causative, giving a frequency of 1.6% of independent individuals with AMC conditions (7/426) carrying likely pathogenic *GJA8* sequence variants.

In family 1 (Fig. 1a), the heterozygous variant p.(Thr39Arg) (NM_005267.4:c.116C>G) was identified in the male proband (III:1), who presented with bilateral microphthalmia, sclerocornea, cataracts and nystagmus, left secondary glaucoma and a grossly cupped atrophic disc (Fig. 1b). Extraocular anomalies were not observed. The Sanger sequencing profile was suggestive of mosaicism in his mother (II:2), who was diagnosed with early onset cataracts and right exotropia. Mosaicism was confirmed and quantified by ddPCR in blood samples, with an estimated fractional abundance of 25% for the mutated allele (Fig. 1c). The variant was absent in the maternal grandparents, suggesting that it arose as a *de novo* post-zygotic event in the mother. The substitution of threonine 39, located in the TM1 domain, is predicted deleterious by Polyphen-2 and SIFT. Interestingly, the change p.(Thr39Arg) is absent in dbSNP147 and gnomAD, but has been previously described in a family with congenital cataracts, microcornea and iris hypoplasia (Sun et al., 2011).

In family 2 (Fig. 1d), a four-generation pedigree with autosomal dominant congenital cataracts, we initially identified the variant p.(Trp45Leu) (NM_005267.4:c.134G>T) in the
proband III:2, who had a diagnosis of dense congenital cataracts, microphthalmia and nystagmus. Sanger sequencing was performed on five additional family members (four affected with the same clinical diagnosis and one unaffected) and showed that the variant co-segregated with the ocular phenotype. The same amino acid substitution, predicted deleterious by Polyphen-2 and SIFT, has been previously described in another multi-generation family including eleven individuals with autosomal dominant congenital cataracts (Mohebi et al., 2017). Moreover, a different missense variant affecting the same amino acid, p.(Trp45Ser) (NM_005267.4:c.134G>C, rs864309688), has been reported in a three generation family with bilateral congenital cataracts and microcornea (Vanita et al., 2008), in a sporadic case with bilateral anterior cortical/nuclear cataracts (Ma et al., 2016) and in a three generation family with paediatric cataracts (Javadiyan et al., 2017). Functional experiments showed that p.(Trp45Ser) inhibited the formation of functional intercellular channels or hemichannels and decreased the junctional conductance induced by wild-type Cx50 and Cx46, acting as dominant negative inhibitor (Tong et al., 2011). Tryptophan 45 is an evolutionary conserved residue located in the TM1 domain and its substitution with leucine or serine has not been observed in controls (gnomAD).

In family 3 (Fig. 1e) and family 4 (Fig. 1f), we identified the variant p.(Asp51Asn) (NM_005267.4:c.151G>A; rs864309703), which affects a highly conserved amino acid located in the ECL1 domain. This change, predicted deleterious by Polyphen-2 and SIFT, has been previously reported in a patient with bilateral microphthalmia, congenital cataracts and sclerocornea (Ma et al., 2016; Ma et al., 2018). In family 3, the mutation occurred as a de novo event in the male proband, who presented with bilateral microphthalmia with associated cataracts, anterior segment dysgenesis and persistent pupillary membranes. Extraocular anomalies were not observed. In the three-generation family 4, the heterozygous variant was identified in both the proband (III:1) and her affected father (II:4). Head axial computed
tomography scanning of the proband at 29 years old showed borderline bilateral microphthalmia and enophthalmos (posterior displacement of the eye), although her ocular globes had a size of 20mm (right eye) and 18mm (left eye). At 32 years of age, the proband had no light perception on the right and light perception on the left. The right eye was phthisical, with no discernible anterior segment structures; the left eye had a corneal leukoma, cataract and corectopia. The father was diagnosed with bilateral microphthalmia and congenital cataracts. The paternal grandfather (I:1) and one of the paternal uncles (II:3), now deceased, were also affected. The mother (II:5) was affected by congenital glaucoma. However, the proband did not carry a mutation in any known congenital glaucoma-associated genes included in a custom targeted NGS panel containing 121 eye developmental genes, 9 of which are associated with congenital glaucoma. No extraocular anomalies were observed.

In family 5 (Fig. 1g), the novel variant p.(Phe70Leu) (NM_005267.4:c.208T>C) was identified in the proband III:2, diagnosed with bilateral microphthalmia, congenital cataracts and secondary glaucoma. Segregation analysis showed that the mutation was a de novo event in the affected mother (II:2), who also had microphthalmia and cataracts. Phenylalanine 70 is a conserved amino acid located in the ECL1 domain, and its substitution is predicted to be deleterious by SIFT and Polyphen-2.

In family 6 (Fig. 1h), we identified a missense variant p.(Gly94Arg) (NM_005267.4:c.280G>A) in a male proband of Chinese ethnicity (II:1) presenting with bilateral congenital aphakia (absence of the lens), corneal opacity, bilateral microphthalmia with iris and optic disc coloboma, and bilateral primary glaucoma. No extraocular anomalies were observed. No details of parental phenotype or DNA were available. Interestingly this change, predicted deleterious by SIFT and Polyphen-2 and located in the TM2 domain, is absent in gnomAD, but has been previously identified as a de novo event in a child with bilateral corneal opacification and microcornea, bilateral rudimentary lenses and bilateral...
In family 7 (Fig. 1i), the female proband (II:1) carried a *de novo* variant p.(Val97Gly) (NM_005267.4:c.290T>G), predicted deleterious by SIFT and Polyphen-2 and located in the TM2 domain. This previously undescribed variant was identified by the DDD study (DECIPHER ID: 259194) and confirmed with Sanger sequencing. She had bilateral microphthalmia, anterior segment dysgenesis and dense cataracts, treated with lensectomies, and right secondary glaucoma, with no extraocular features. The significance of the other four variants identified in the screening (Supplementary Fig. 2) was considered ‘uncertain’ (p.(Leu292Gln)) or ‘unlikely to be pathogenic’ (p.(Leu7Met), p.(Asn220Asp) and p.(Gly333Arg)).

A novel amino acid change, p.(Leu292Gln) (NM_005267.4:c.875T>A) was identified in a proband with bilateral mild cataracts and optic nerve coloboma associated with nystagmus, photophobia and small kidneys (family 8). The substitution of leucine 292, located in the CT domain, is predicted benign by SIFT, but deleterious by Polyphen-2. Sanger sequencing of *PAX2* revealed that the proband II:3 also carried a novel heterozygous frameshift variant in this gene (NM_003987.2:c.529_530ins13, p.(Ala177Glyfs*8)), which introduces a premature stop codon in exon 5. Sanger sequencing excluded the maternal inheritance of both the *GJA8* and the *PAX2* variants; paternal DNA was unavailable for segregation analysis.

The *GJA8* variant p.(Leu7Met) (NM_005267.4:c.19C>A; rs150441169), located in the N-terminal domain and predicted deleterious by SIFT and Polyphen-2, was detected in a patient (II:1) with syndromic unilateral microphthalmia, and was inherited from his unaffected father (family 9). The family is of African ethnicity and the minor allele frequency (MAF) for the African/African-American population in gnomAD is 0.28%. Different substitutions of this amino acid have been described before as disease-causative mutations: p.(Leu7Pro) (NM_005267.4:c.20T>C) was identified in a family with inherited cataracts (Mackay et al., 2018).
2014) and p.(Leu7Gln) (NM_153465.1:c.20T>A) in a rat model with nuclear pulverulent cataracts and, in the case of homozygous rat mutants, microphthalmia with hypoplastic lens (Liska et al., 2008). However, in contrast with these previously reported variants, the frequency of the p.(Leu7Met) variant in unaffected individuals, in particular of African/Afro-American ethnicity, suggests that the substitution with a methionine might be tolerated.

The variant p.(Asn220Asp) (NM_005267.4:c.658A>G; rs138140155, gnomAD total-MAF=0.24%) was identified in an individual with bilateral microphthalmia and chorioretinal colobomas involving the optic disc, as well as microcephaly associated with normal development and faltering growth (family 10) and was inherited from her unaffected father. This substitution of asparagine 220, located in the TM4 domain and predicted deleterious by SIFT and Polyphen-2, has been reported before in a proband with congenital cataract and microcornea (Ma et al., 2016) and in a three generation family with congenital cataracts and aphakic glaucoma (Kuo et al., 2017). However, in those families it did not co-segregate with the phenotype and therefore was classified as benign. This was also supported by functional experiments showing that this rare polymorphism did not abolish intercellular channel function (Kuo et al., 2017).

The variant p.(Gly333Arg) (NM_005267.4:c.997G>C; rs587600450, gnomAD total-MAF=0.009%) was observed in a proband with unilateral microphthalmia and chorioretinal coloboma involving the optic disc, and was inherited from her unaffected father (family 11). This heterozygous change occurs in the CT domain and is predicted as tolerated by both SIFT and Polyphen-2.

1q21 copy number variants overlapping with GJA8.

GJA8 is part of a complex genomic locus, 1q21.1-q21.2, characterised by the presence of numerous segmental duplications (SDs), which make the region susceptible to recurrent rearrangements. To investigate whether structural variants affecting GJA8 were present in our
cohort of families with AMC, we examined a subset of 188 unrelated individuals for whom copy number information was available from aCGH and/or NGS data. As such, the samples for which CNV data were generated were not chosen according to any selection criteria applied across the total cohort, and therefore they effectively represented a randomly-selected subset of independent AMC cases. This resulted in the identification of 1q21 microdeletions in five families (Fig. 2, Table 1).

The first microdeletion was identified in a proband (family 12, Fig. 2b) with bilateral coloboma of the iris and choroid, mild dysmorphic features (broad forehead, narrow palpebral fissures, depressed nasal root and low set ears), scoliosis, genu valgum and gastroesophageal reflux. She had normal developmental milestones. This CNV, detected from the screening of a custom NGS panel of 121 eye development genes, was further confirmed by both aCGH and ddPCR (Supplementary Fig. 3). It spans approximately 2 Mb (chr1:145388977-147395401, Build GRCh37/hg19) and affects 40 RefSeq genes. Segregation analysis revealed that this structural variant arose as a de novo event in the proband.

The second microdeletion was identified in a female proband with unilateral chorioretinal coloboma involving the optic disc, band keratopathy, cataract and secondary glaucoma without extraocular anomalies, and was inherited from her unaffected father (family 13, Fig. 2b). The minimal deleted region (chr1:146155983-147824178, Build GRCh37/hg19) spans approximately 1.67 Mb and affects 24 RefSeq genes. To validate the microdeletion and test the hypothesis that the unaffected status of the father could be due to mosaicism, we performed a ddPCR assay. However, this experiment confirmed the full heterozygous status of the microdeletion in both individuals (Supplementary Fig. 3b).

The third microdeletion was found in a female proband with extreme microphthalmia in the right eye and iris, chorioretinal coloboma in the left eye, cleft lip and palate, and neonatal
seizures (family 14, Fig. 2b). The minimal deleted region (chr1:146564743-147735011, Build GRCh37/hg19) spans approximately 1.17 Mb and affects 17 RefSeq genes. The presence of the CNV in the mother was excluded by ddPCR (Supplementary Fig. 3b). The father and other family members were unavailable for phenotypic and segregation analysis.

The fourth microdeletion (chr1:146497694-147825519, Build GRCh37/hg19), spanning approximately 1.33 Mb and affecting 20 RefSeq genes, was identified in two independent families (families 15 and 16, Fig. 2b). In family 15, it occurred as a de novo event in a proband with bilateral iris and chorioretinal coloboma involving disc, and nystagmus, without extraocular anomalies. The presence of the CNV in the parents was excluded by aCGH. Clinical re-assessment of the family revealed that the father presented blue dot lens opacities and cavernous disc anomalies with a pit in the right eye and mild cavernous disc anomaly or pronounced optic cup in the left eye. In family 16, a three-generation pedigree with coloboma, the microdeletion was detected by aCGH in the proband (III:6), who showed bilateral chorioretinal coloboma and microphthalmia in the right eye associated with microcephaly and normal development, and in the affected father (II:5), who presented with microphthalmia and coloboma in the right eye. The cousin III:2 was also affected with unilateral iris and chorioretinal coloboma. However, segregation analysis could not be performed on this individual.

The predicted boundaries of these CNVs indicated that these rearrangements belonged to different classes of 1q21 microdeletions. Recurrent 1q21 CNVs occur at four breakpoint regions (BP1-BP4), each corresponding to a large block of highly homologous SDs (Mefford et al., 2008). Further, the locus can be divided into two distinct regions: a proximal region included between BP2 and BP3 and a distal region, flanked by BP3 and BP4, which mediate the most recurrent CNVs of the 1q21 locus. While the microdeletions found in families 13-16 were distal rearrangements occurring between BP3 and BP4 (class I), the microdeletion
detected in family 12 was flanked by the breakpoints BP2 and BP4 and extended from the proximal through to the distal region (class II). Despite their rarity in the general population, both types of 1q21 microdeletions appeared to be enriched in our AMC cohort. We compared the frequency of these CNVs in our cases with control individuals previously reported in the literature (Rosenfeld et al., 2012): BP3-BP4 microdeletions occurred in 4 out of 188 individuals with AMC versus 12 out of 65282 controls (2.13% versus 0.02%, Fisher’s exact test p=1.17 x 10^{-7}), whereas BP2-BP4 microdeletions occurred in 1 out of 188 individuals with AMC versus 1 out of 65927 controls (0.532% versus 0.002%, Fisher’s exact test p=0.0057).

Taking into account all the 1q21 microdeletions identified in our cohort, the minimally deleted region spans approximately 830 kb (chr1:146564743-147395401, Build GRCh37/hg19) and includes 11 genes (NBPF19, NBPF13P, PRKAB2, CHD1L, PDIA3P1, FMO5, LINC00624, BCL9, ACP6, GJA5, GJA8). In addition to Gja8, a role in eye development has been shown also for Bcl9, a co-activator for β-catenin-mediated transcription in Wnt signaling (Bienz, 2005). A recent study has demonstrated that Bcl9 is also part of the Pax6-dependent regulatory circuit and contributes to mouse lens formation (Cantù et al., 2014). No other genes known to be relevant in eye development are present in the region.

Sequence analysis of the coding region of GJA8 in the probands carrying 1q21 microdeletions did not reveal any variant on the remaining allele. In family 12, no additional pathogenic variants were identified from the targeted NGS screening of 121 eye developmental genes. In family 13, the NGS targeted sequencing of 351 diagnostic genes for eye developmental anomalies in proband II:2 identified an in-frame deletion of 6bp in FOXC1 (NM_001453.2:c.1338_1343del, p.(Gly447_Gly448del)), maternally inherited. This rare variant (gnomAD total-MAF=0.06%) is reported as a multi-allelic SNP (rs572346201),
which occurs in a region coding for a poly-Glycine stretch. Although its clinical significance is unknown, due to the repetitive nature of this region, it is likely to represent a natural polymorphism.

DISCUSSION

Mutations in Cx50, encoded by *GJA8*, have been primarily linked to congenital and early onset cataract in humans and also animal models. However, recently in a small number of cases *GJA8* mutations have also been associated with a broader phenotype which can include microphthalmia, sclerocornea and lens abnormalities (Ma et al., 2018).

In this study, we have investigated the role of *GJA8* in a cohort of 426 individuals with a wide range of developmental eye anomalies, and identified 16 families with AMC carrying genetic alterations of *GJA8*. These included six likely pathogenic sequence variants (p.(Thr39Arg), p.(Trp45Leu), p.(Asp51Asn), p.(Phe70Leu), p.(Gly94Arg) and p.(Val97Gly)) detected in seven unrelated families, four missense variants (p.(Leu7Met), p.(Asn220Asp), p.(Leu292Gln) and p.(Gly333Arg)) with uncertain or unlikely clinical significance and four heterozygous 1q21 microdeletions involving *GJA8* detected in five unrelated families of uncertain significance.

Segregation analyses were possible for five out of six likely pathogenic sequence variants and showed that these occurred either *de novo* or co-segregated with the disease in an autosomal dominant fashion. These variants were bioinformatically predicted damaging and have not been reported in unaffected individuals according to public databases. Interestingly, three of these changes (p.(Thr39Arg), p.(Trp45Leu) and p.(Asp51Asn)) have been previously described in families with cataracts (Sun et al., 2011; Ma et al., 2016; Javadiyan et al., 2017; Mohebi et al., 2017; Ma et al., 2018) and a fourth (p.(Gly94Arg)) in a proband with sclerocornea and lens abnormalities (Ma et al., 2018). Given the rarity of these variants, the identification of the same missense changes in unrelated affected individuals strongly
supports a causative relationship between these variants and eye developmental disorders. In particular, p.(Asp51Asn) had been reported as a de novo mutation in a patient with bilateral microphthalmia, congenital cataracts and sclerocornea (Ma et al., 2016). In the present study, the same variant was detected in two independent families with a similar phenotype, including microphthalmia, cataracts and other anterior chamber eye anomalies. This emerging genotype-phenotype correlation suggests that this amino acid substitution might have a severe effect on GJA8 function and supports the involvement of this protein in a broader range of eye developmental anomalies.

Our identification of the variant p.(Gly94Arg) in another patient also aids genotype-phenotype correlation for amino acid substitutions of this highly conserved residue. In our cohort, the change was identified in a case with bilateral corneal opacification, congenital aphakia and microphthalmia with iris and optic disc coloboma. The same variant has been previously reported as a de novo event in an individual diagnosed with bilateral corneal opacification, glaucoma, and rudimentary lenses (Ma et al., 2018). Interestingly, Ma et al. (2018) also described another variant affecting the same amino acid, p.(Gly94Glu), in a proband with total sclerocornea and cataractous disc-like lenses with microcornea. Mice models expressing heterozygous missense mutations (e.g. Cx50D47A, Cx50S50P, Cx50V64A and Cx50R205G) (Graw et al., 2001; Xia et al., 2006; Xia et al., 2012; Berthoud et al., 2013) or with complete Gja8 knockout (White et al., 1998; Rong et al., 2002) have shown that Gja8 is important for lens development. Therefore, the identification of glycine 94 mutations in three individuals with lens abnormalities supports the hypothesis that this amino acid is particularly important for GJA8 to perform this role in eye development. Interestingly, the phenotype of bilateral aphakia associated with sclerocornea overlaps with that of individuals with biallelic mutations in FOXE3 (Iseri et al., 2009). Therefore, when screening patients with this phenotype, it is important to screen for variants in both FOXE3 and GJA8.
Multiple sequence alignment indicated that all likely pathogenic sequence variants identified in our cohort affected conserved residues (Supplementary Fig. 1) and were located within the N-terminal region of the protein (Fig. 3). Our findings are consistent with previous studies, since mutations associated with cataracts tend to cluster between TM1 and TM2 (Yu et al., 2016). The transmembrane domains are thought to play an important role in oligomerisation and pore formation, while the ECL1 domain is important in the docking of two opposing HCs to form the GJCs. While these domains are evolutionarily conserved and present high homology among the members of the Cx family, the CT region is the most isotype-specific domain and contains motifs for regulatory kinases (Liu et al., 2011; Wang et al., 2013). In this region, we identified a novel missense change, p.(Leu292Gln), of unknown clinical significance. The variant was found in a proband (family 8) who also carried an insertion of 13bp in PAX2 (NM_003987.2:c.529_530ins13, p.(Ala177Glyfs*8)). Heterozygous variants of PAX2 (MIM 167409) are identified in approximately half of the cases presenting with renal coloboma syndrome (Bower et al., 2012), also known as papillorenal syndrome (OMIM 120330). Therefore, this novel PAX2 variant is likely to be responsible for optic nerve coloboma and kidney anomalies observed in the patient, but it is possible that the GJA8 variant might lead to a subtle effect on the protein function and contribute to his mild cataract phenotype.

By contrast, the three additional heterozygous variants p.(Leu7Met) (family 9), p.(Asn220Asp) (family 10) and p.(Gly333Arg) (family 11) were considered as likely benign. These were identified in individuals with AMC, but without cataracts, in unaffected parents either in this or previous studies (Ma et al., 2016; Kuo et al., 2017) and in controls (gnomAD).

Human GJA8 maps to a structurally complex locus on chromosome 1q21.1-q21.2, with at least four large blocks of highly homologous SDs, which make it prone to nonallelic
homologous recombination (NAHR) (Mefford et al., 2008). As with other genomic loci subject to recurrent rearrangements (such as 15q11, 15q13, 16p11.2, 16p12.1, 16p13.11, 17q12, 22q11.2) (Girirajan and Eichler, 2010; Stankiewicz and Lupski, 2010), 1q21 CNVs have been associated with a wide range of phenotypes including dysmorphic features, developmental delay, neuropsychiatric disorders, and cardiac and eye anomalies. The reported eye anomalies include cataracts (Brunetti-Pierri et al., 2008; Mefford et al., 2008; Rosenfeld et al., 2012; Bernier et al., 2016; Ha et al., 2016) and in a minority of cases more severe defects such as microphthalmia (Mefford et al., 2008) and coloboma (Brunetti-Pierri et al., 2008).

The most common 1q21 CNVs occur between the breakpoints BP3 and BP4 (Fig. 2a), spanning \sim1.35 Mb (Mefford et al., 2008). This region contains only \sim800 kb of unique (i.e. nonduplicated) DNA sequence (Bernier et al., 2016) and includes at least 11 genes ($NBPF19$, $NBPF13P$, $PRKAB2$, $CHD1L$, $PDIA3P1$, $FMOS$, $LINC00624$, $BCL9$, $ACP6$, $GJA5$ and $GJA8$), which might contribute to different aspects of the disease manifestations observed. Alternatively, 1q21 CNVs can involve only the proximal region (BP2-BP3) or both the proximal and the distal region (BP1/BP2-BP4). Microdeletions of the proximal region have been reported to be a predisposing factor for Thrombocytopenia-absent radius (TAR) syndrome (Kloppoki et al., 2007), together with sequence variants in the $RBM8A$ gene. Within the distal region, a potential role in eye development has been shown for two of the genes, $GJA8$ and $BCL9$. A recent study has demonstrated that $Bcl9$ is a downstream effector of $Pax6$ during mouse lens development (Cantù et al., 2014). However, the role of $BCL9$ in human eye development has not yet been established. Given the involvement of $GJA8$ in both cataractogenesis and ocular growth, as previously described, this gene seems to be a good candidate for the ocular anomalies observed in some of the 1q21 CNV carriers.
In most cases, the 1q21 rearrangements are inherited. Their presence in unaffected parents has brought into question their pathogenic significance, but the analysis of large clinical and population cohorts has shown that 1q21 microdeletions/microduplications occur at significantly higher frequency in individuals with clinical diagnoses compared with controls (Brunetti-Pierri et al., 2008; Mefford et al., 2008; Rosenfeld et al., 2012; Bernier et al., 2016). In particular, the comparison of a large cohort of individuals with developmental delay, intellectual disability, dysmorphic features and congenital anomalies with previously published control cohorts showed that the frequency of BP2-BP4 deletions was 0.024% in cases (11/45744) versus 0.002% in controls (1/65927), whereas the frequency of BP3-BP4 deletions was 0.285% in cases (86/30215) versus 0.018% in controls (12/65282) (Rosenfeld et al., 2012). This enrichment suggests that these CNVs might increase susceptibility to developmental anomalies with variable expressivity and incomplete penetrance, although the factors underlying their heterogeneous phenotypes remain unexplained. In this study, we identified four microdeletions in five families, three overlapping with the microdeletions/microduplications recurrently found between breakpoints BP3 and BP4 and one larger BP2-BP4 microdeletion encompassing both the proximal and the distal region. Given the rarity of these rearrangements, the presence of 1q21 microdeletions in our AMC cohort, with a frequency of 2.13% in AMC cases for BP3-BP4 microdeletions (p=1.17 x 10^{-7}) and a frequency of 0.53% in AMC cases for BP2-BP4 microdeletions (p=0.0057), seems to support their role as a risk factor for developmental disorders, including eye anomalies. However, consistent with previous studies, the segregation pattern in families 13 and 15 indicates that other genetic and/or environmental modifiers are likely to be important for the phenotypic outcome. Therefore, the exact genotype-phenotype correlation remains to be established.
Mouse models have shown that *Gja8* copy number losses and point mutations act through different mechanisms and modes of inheritance. Deletions of the entire coding region of the gene cause cataracts and microphthalmia only when homozygous, indicating a recessive mode of inheritance (White et al., 1998; Rong et al., 2002). In contrast, mouse strains carrying pathogenic *Gja8* missense mutations develop microphthalmia and cataracts in a dominant or semi-dominant fashion (Steele et al., 1998; Graw et al., 2001; Chang et al., 2002; Liska et al., 2008; Xia et al., 2012). Since Cxs function in hexameric complexes which can be homo- or heteromeric, it is possible that the impact of single amino acid substitutions may be more severe than the loss of one functional allele. Mutant Cx subunits can interfere with correct formation of the oligomeric complexes in a dominant negative manner and, since GJCs can be formed by different types of Cx subunits, this effect can also extend to the function of other Cxs. Functional and cellular studies have shown that point mutations can alter the activity of the human GJA8 protein in various ways (Beyer et al., 2013). For instance, pathogenic variants can cause misfolding, improper oligomerisation and/or trafficking defects, leading to a reduced number of functional channels on the membrane. Alternatively, the pathogenic variants could alter some physiological properties of the channels, such as permeability or conductance, or lead to the formation of HCs with new and aberrant functions. Therefore, a single base mutation can affect several aspects of the Cx function. This complexity may explain the phenotypic heterogeneity observed among the carriers of *GJA8* variants, and also the difference in penetrance between sequence and copy number variations.

Intra-familial phenotypic variability was also observed for the sequence variant identified in family 1 (p.(Thr39Arg)) possibly related to mosaicism. While the proband carrying the heterozygous change presented with bilateral cataracts and microphthalmia, his mother, who was 25% mosaic for this variant, had a milder phenotype of early onset cataracts. Therefore,
we hypothesize that the somatic mosaicism detected in the mother may explain her milder phenotype and that lower doses of aberrant GJA8 protein during eye development might be responsible for less severe phenotypic outcomes. In support of this, a recent study has reported a correlation between the severity of developmental eye abnormalities and somatic mosaicisms of Pax6 mutations in CRISPR/Cas9 genome-edited mouse embryos (Yasue et al., 2017).

In conclusion, this study expands our knowledge of the role of GJA8 in eye development, highlighting how genetic alterations of this gene are likely to give rise not only to early onset cataracts, but also to other developmental eye anomalies. The screening of GJA8 in 426 individuals with AMC resulted in the identification of six likely pathogenic variants in seven families. In the six families where segregation analysis was possible, the variants co-segregated with both early onset cataracts and microphthalmia. In one singleton case with aphakia and corneal opacification where no segregation analysis was possible, we identified the variant p.(Gly94Arg). This finding, in combination with two previously reported patients with lens development abnormalities and with variants affecting the same amino acid, highlights the importance of this specific residue in the function of GJA8 and suggests that GJA8 mutations can be responsible for phenotypes often associated with FOXE3 variants.

The role of GJA8 microdeletions in AMC remains uncertain: the enrichment of rare 1q21 microdeletions in our cohort seems to support their role as risk factors for developmental eye disorders. However, the incomplete segregation and the phenotypic variability of these variants indicate that other genetic and/or environmental factors might be of importance. In summary, these data expand the spectrum of human phenotypes associated with GJA8 variants and the identification of specific mutations contributes to our understanding of their genotype-phenotype correlation. Therefore, this study demonstrates the importance of screening GJA8 in individuals with developmental eye anomalies.
Conflict of Interest: On behalf of all authors, the corresponding author states that there is no conflict of interest.
REFERENCES

FIGURE LEGENDS

Fig. 1 *GJA8* likely pathogenic sequence variants identified in 7 unrelated families with AMC.

a. Pedigree of family 1. Sanger sequencing results showing the segregation of the missense variant p.(Thr39Arg) are presented. The chromatogram of individual II:2 is suggestive of mosaicism.

b. Photographs of the affected individuals of family 1 showing intra-familial phenotypic variability. The mother (II:2, top) presented with a milder phenotype, which included right exotropia and normal sized eyes with bilateral pseudophakia. The proband (III:1, bottom) presented with right microphthalmia and complete corneal opacification on the left.

c. Absolute quantification of the allele abundance for the variant c.116C>G; p.(Thr39Arg) in family 1. Digital Droplet PCR (ddPCR) assays were performed using a Taqman FAM-labeled probe for genotyping the mutant allele and a VIC-labeled probe to detect the wild-type allele. On the left, 1-D fluorescence amplitude plot of droplets shows mutant allele detection in the FAM channel for the heterozygous carrier (III:1), the putative mosaic mother (II:2), a wild-type homozygous carrier (I:2) and no template control (NTC). FAM-positive droplets (blue), containing the mutant allele, exhibit increased fluorescence compared to negative droplets (grey). On the right, the fractional abundance of the mutated allele, represented in percentage, was calculated for the FAM-positive droplets versus VIC-positive droplets (wild type allele), confirming the mosaicism of this variant in individual II:2.

d. Pedigree of family 2. On the left, a representative sequence chromatogram shows the heterozygous missense variant p.(Trp45Leu). The genotype of the six individuals tested for the variant is indicated below each symbol.

e-f. Pedigree of families 3 and 4, both carrying the missense variant p.(Asp51Asn). The sequence chromatograms show that the variant occurred *de novo* in family 3. N/A, genotype not available. In family 4, representative sequence chromatogram showing the p.(Asp51Asn) and pedigree indicating the inheritance of affected status and of the variant. For family 4, fully filled symbols
represent individuals affected with congenital cataracts and microphthalmia, but without glaucoma, quarter filled symbols represent individuals with congenital glaucoma. g. Pedigree of family 5 and sequence chromatograms showing the missense variant p.(Phe70Leu). h. Pedigree of family 6. The adopted child carries the missense variant p.(Gly94Arg). i. Pedigree of family 7. Sanger sequencing results show that the missense variant p.(Val97Gly) arose de novo in the child II:1

Fig. 2 GJA8 structural variants identified in 5 unrelated families with AMC. a. Modified schematic from the UCSC Genome Browser (NCBI Build GRCh37/hg19). Partial ideogram of the chromosome bands 1q21.1-q21.2 and the multiple blocks of highly homologous segmental duplications (SD) present in this region are shown. SD, reported under the UCSC track 'Duplications of >1000 Bases of Non-RepeatMasked Sequence', are stretches of DNA of at least 1 kb in length, sharing a sequence identity of at least 90% with another genomic region on the same or on a different chromosome (inter- or intra-chromosomal SD). The colours indicate different levels of similarity between duplications (grey: 90-98% similarity, yellow: 98-99% similarity, orange: greater than 99% similarity). The breakpoint regions (BP2, BP3 and BP4) overlapping with these SD clusters are represented by green bars. The genomic locations of the 1q21 deletions identified in this study are represented by red bars and indicated with family identifiers. RefSeq Genes are indicated by dark-blue rectangular bars. For genes with multiple isoforms, the bars represent the coordinates of the maximal region among the isoforms. b. Pedigrees of the families carrying heterozygous 1q21 deletions

Fig. 3 GJA8 mutation spectrum. Schematic of GJA8 showing the protein domains according to UniProt (entry ID: P48165). Above: previously published mutations are shown. Below: the missense variants identified in our cohort are indicated: red indicates likely pathogenic, blue, likely benign and grey, unknown clinical significance. NT, N-terminal
domain; TM, transmembrane domain; ECL, extracellular loop; ICL, cytoplasmic loop; CT, C-terminal domain