
Automatically Classifying Requirements from
App Stores: A Preliminary Study

Roger Deocadez
School of Technology

Oxford Brookes University
Oxford OX33 1HX, UK

Email:roger.deocadez@brookes.ac.uk

Rachel Harrison
School of Technology

Oxford Brookes University
Oxford OX33 1HX, UK

Email: rachel.harrison@brookes.ac.uk

Daniel Rodriguez
Dept of Comp Science

University of Alcala
28871 Alcalá de Henares, Madrid, Spain

Email: daniel.rodriguezg@uah.es

Abstract—In this paper we apply self-labeling algorithms
as Semi-Supervised Classification (SSC) techniques in order
to automate the classification of functional and non-functional
requirements contained in reviews in the App Store. In this
domain, where it is easy collect a large number of review but
difficult to manually annotate then, we found that SSC techniques
can successfully perform this task and that only a small amount
of data is needed to achieve results similar to classical supervised
techniques. We also found that the models learned can properly
assign labels to the collected data and can classify unseen future
reviews. We believe SSC techniques can be of particular use
during requirements classification.

Keywords—Semi-supervised Learning, Self-labeling algo-
rithms, Mobile apps, Apps reviews

I. INTRODUCTION

There has been much work done on the automated ex-
traction of functional and nonfunctional requirements from
Software Requirements Specification (SRS) documents [1],
[2], [3], [4], [5]. In the context of mobile app development,
software developers have at their disposal a huge number
of reviews containing requirements that are available in app
stores [6], [7], [8]. Extracting requirements manually from
textual documents is a tedious and time consuming process [9].
However, requirements analysis is a crucial part of developing
better apps [10], [11] and thus this stage cannot be ignored.

In this study, we propose to automate the classification
of functional and non-functional requirements contained in
mobile apps reviews posted to app stores by applying semi-
supervised learning (SSL). Our research questions are:

• RQ1: Are semi-supervised learning techniques good for
classifying requirements found in App Store reviews?

• RQ2: How much data is needed for building a good
model?

We take advantage of the SSL approach because we only
need to label a small dataset which can then be used with a
huge number of unlabeled data items such as the one million
reviews we have collected from 40 apps in the app store.
We used the standard accuracy metric [12] to evaluate the
performances of the three semi-supervised learning algorithms
we selected.

The remainder of the paper is structured as follows: Sec-
tion II describes the experimental work carried out including

the dataset, preprocessing, algorithms and evaluation measures
used. Section III discusses the results. Section IV discusses
related work and Section V raises threats to validity. Finally,
Section VI concludes the paper and discusses future work.

II. EXPERIMENTAL METHOD

A. Dataset

We collected our dataset from the App Store during 2015.
The Apps fall into 10 categories (books, education, games,
health, lifestyle, navigation, news, productivity, travel and
utilities). We chose only the top paid and free apps, giving
us 40 apps with a total of 932,388 reviews. All the metadata
available was also collected such as current version, size, price,
rating and seller.

We perfomed stratified random sampling using the ratings
to select 300 reviews as our ground-truth set and manually
categorised these review into binary classes {functional, non-
functional} with 150 instances for each class. The labeling
used the FURPS (Functionality, Usability, Reliability, Per-
formance and Supportability) model [13] as the baseline for
categorizing the apps reviews.

Table I shows examples of some manually labeled apps
reviews. For our experiment we use plain text reviews as well
as the assigned class.

B. Data Analysis

We used Weka for the text mining processing and KEEL for
the data analysis as it will be explained in the next subsections.

C. Pre-proccessing

We applied standard text mining techniques to transform the
mobile app reviews using the Weka tool [14]. Table II shows
the “StringToWordVector” filter parameter specifications used
during the transformation. An additional attribute trimming
process was performed which involved removing numbers, 2-
letter words and other symbolic characters, resulting in a total
of 212 attributes (words representing features).



TABLE I
EXAMPLES OF MANUALLY LABELED APPS REVIEWS

Reviews Class

Great App before, BUT now getibg worse Se-
lecting incorrect Routes And some time stuck
in previous position. I hope you fixed this
things soon

functional

Can’t see traffic colors now With latest updates
I can’t see the traffic green/red/yellow - I have
to pull over and zoom in the map so that one
road fills the entire screen. Traffic checks are
(were) the only reason I use google maps!

functional

Lags Google maps lags sooo much now. I have
5c ios 7.1.1 iphone maps is superior. Sorry.
You lost me google.

non-functional

App crashes all the time I really liked this
app when I first started using it. The voice is
pleasant and it has more roads than the apple
map app. However, every time I’ve used it in
the past couple months to drive 1,000 mile
trips it crashes multiple times an hour. It’s a
real pain to be driving and have to re type the
address into the app constantly as it crashes so
much. Really wish they would fix this problem,
because otherwise it’s a really good app.

non-functional

TABLE II
WEKA StringToWordVector FILTER PARAMETERS

Parameters Values

Inverse Document Frequency (IDF) Transform True
Term Frequency (TF) Transform True
Lower case transformation True
Minimum term frequency 5
Stemmer Snowball
Number of words to keep 200

We further process our dataset by creating a stratified
kfold partition by using the 10-fold Distribution Optimally
Balance Stratified Cross Validation option available in the
KEEL toolkit [15]. Our model is built using a small sample
set and semi-supervised techniques, in particular self-labeling
algorithms.

D. SSC Algorithms: Parameters and Classifiers

For this experiment we used three standard semi-supervised
classification algorithms, all can be classified as self-labeling
approaches:

(i) Self-Training is a semi-supervised learning algorithm in
which the learning process uses its own prediction to
retrain itself. The technique is to initially train with
a supervised learner on the available labeled data and
to predict the unlabeled data. The subset with higher
confidence level of prediction is used to augment the
training data in each iteration [16].

(ii) RASCO (RAndom Subspace Method for Co-training) is
an SSL algorithm that utilizes a random subspace method
combined with Co-Training to generate random feature
splits instead of the entire set to train different classifiers.
The unlabeled datasets are labeled to augment the training
set [17]. In the standard co-training algorithm only two

TABLE III
PARAMETERS OF THE ALGORITHMS

Methods Parameters

Self-Training MAX ITER = 40
RASCO MAX ITER = 40, number of views/classifiers = 30
Rel-RASCO MAX ITER = 40, number of views/classifiers = 30

TABLE IV
PARAMETERS OF THE BASE ALGORITHMS

Algorithm Parameters

KNN Number of neighbors = 3, Euclidean distance
C4.5 Confidence level c = 0.25, Minimum number of

items per leaf: i = 2, Prune after the tree building
NB No parametes specified
SMO C = 1.0, tolerance parameter = 0.001, Epsilon =

1.0 x 10-12, Kernel type = polynomial, Polyno-
mial degree = 1, Fit logistic models = true

views are used, i.e., the attributes are divided into two
groups (views) that are used to learn two different classi-
fiers using the same dataset to improve the reliability of
their predictions.

(iii) Rel-RASCO (Relevant Random Subspace Co-training) is
a variation of RASCO that aims to select a random feature
subspace containing as many relevant feature subspaces
as possible instead of random ones, i.e., RASCO uses
a uniform distribution of features whilst Rel-RASCO
is utilizing probabilities proportional to relevance scores
when generating the feature subspace [18].

Each of these SSC algorithms was executed with four stan-
dard base algorithms, (i) k-NN [19], (ii) C4.5 [20], (iii) Naive
Bayes (NB) and (iv) Support Vector Machines (SVM) with the
Sequential Minimal Optimization (SMO) algorithm [21]. We
used the default configuration settings in the base algorithms
for all our experiments as in the original tool [22]. Table III
shows the algorithm parameters used in this experiment for the
self-labeled algorithms and Table IV for the base algorithms.

E. Evaluation Metrics

There are two types of learning that needs to be considered
with SSC:

• Inductive. It is concerned with predict the labels on future
test data, i.e., learning models are applied to future test
data (not available during training).

• Transductive. It is concerned with predicting the labels on
the unlabeled instances provided with the training sample.

We evaluate the performance of our selected methods and
algorithms using the standard accuracy metric [12]. Accuracy
is the number of correct predictions divided by the total
number of predictions. Transductive Accuracy is the accu-
racy performance of an algorithm when predicting unlabeled
instances in the training sample. Inductive Accuracy is the
accuracy performance of an algorithm when predicting unseen
test data. Although accuracy is not an appropriate metric when



Fig. 1. SSC Transductive Accuracy

the dataset is unbalanced, luckily we do not have extreme
imbalance in our dataset. Further analysis with other metrics
is part of our future work.

III. RESULTS AND DISCUSSION

The dataset for our experiment consists of 300 expert-
labeled mobile app reviews with 50% classified as Functional
Requirements (FR) and 50% classified as Non-Functional
Requirements (NFR).

We evaluate the classification performances of the three SSC
methods and four base classifiers described above with four
different training ratios (10%, 30%, 50% and 70%).

Figures 1 and 2 show the accuracy graphs of the SSC trans-
ductive and inductive methods respectively with increasing
labeled ratios.

Table V (Transductive Accuracy) shows that the classi-
fication performance of the three selected algorithms (Self-
Training, RASCO and Rel-RASCO) with the base learners
(C4.5, SMO and NB) increases as the labeled ratio increases
from 10% to 30% after which point it becomes stable. The
Self-Training algorithm consistently increases its performance
accuracy as the labeled ratio increases regardless of the base
learner used.

In Table VI (Inductive Accuracy) we notice that there is a
consistent increase in performance accuracy for the labeled ra-
tios of 10% to 30% after which point (as with the transductive
setting) it becomes stable with the 50% labeled ratio.

The results imply that there are no large differences in
performances between the transductive and inductive settings
in SSC methods we used and that we only need to label a
small amount of data to achieve high accuracy.

We can answer RQ1 in the affirmative. In answer to RQ2,
we found very little data is needed.

Fig. 2. SSC Inductive Accuracy

TABLE V
TRANSDUCTIVE ACCURACY RESULTS WITH DIFFERENT RATIOS OF

LABELED DATA

Algorithm 10% 30% 50% 70%

Self-Training (kNN) 0.5639 0.57 0.5669 0.5939
Self-Training (C4.5) 0.5881 0.6374 0.675 0.7317
Self-Training (SMO) 0.6713 0.6779 0.6985 0.7463
Self-Training (NB) 0.5049 0.5421 0.5846 0.6634
RASCO (kNN) 0.5098 0.4937 0.4846 0.4244
RASCO (C4.5) 0.5492 0.5842 0.6015 0.6122
RASCO (SMO) 0.5119 0.5537 0.5757 0.622
RASCO (NB) 0.568 0.5932 0.65 0.7073
Rel-RASCO (kNN) 0.5 0.5437 0.5088 0.4646
Rel-RASCO (C4.5) 0.5156 0.5911 0.5816 0.6146
Rel-RASCO (SMO) 0.523 0.5932 0.5662 0.5963
Rel-RASCO (NB) 0.5578 0.6205 0.6404 0.6951

TABLE VI
INDUCTIVE ACCURACY RESULTS WITH DIFFERENT RATIOS OF LABELED

DATA

Algorithm 10% 30% 50% 70%

Self-Training (kNN) 0.5367 0.6167 0.5933 0.59
Self-Training (C4.5) 0.5833 0.67 0.6567 0.7067
Self-Training (SMO) 0.6667 0.6833 0.7267 0.7567
Self-Training (NB) 0.5067 0.5267 0.5967 0.6933
RASCO (kNN) 0.4867 0.5767 0.5967 0.5967
RASCO (C4.5) 0.54 0.62 0.65 0.6667
RASCO (SMO) 0.5567 0.6267 0.62 0.7133
RASCO (NB) 0.5667 0.5667 0.6633 0.7
Rel-RASCO (kNN) 0.5233 0.58 0.6133 0.6
Rel-RASCO (C4.5) 0.5467 0.6167 0.6667 0.66
Rel-RASCO (SMO) 0.5133 0.6467 0.6267 0.6833
Rel-RASCO (NB) 0.5567 0.5767 0.64 0.71



IV. RELATED WORK

Jindal et al [4] performed automated analysis of a number
of Software Requirements Specifications from the PROMISE
Software Engineering repository and introduced binary classi-
fication on different types of security requirements categories
using a single machine learning algorithm (the J48 decision
tree). The authors used preprocessing techniques such as
tokenization, stemming and stop word removal, and performed
feature selection using the Info-Gain measure and TF/IDF
(Term Frequency and Inverse Document Frequency).

In previous work, we explored the use of semi-supervised
learning techniques for App Store analysis [23]. In that work
we automatically classified app reviews as either bugs, features
or enhancement requests.

Almagheirbe and Roper [16] suggested that automating
software testing by classifying test runs as either pass or
fail using semi-supervised learning helps to avoid expensive
and error-prone manual activity and so is highly beneficial.
The results showed that in some test scenarios labeling 10%
of cases is sufficient for the classifier to classify test cases
correctly while in some test scenarios the classifier needs 30%
to 50% to acquire good accuracy results.

Our experiment similarly focused on applying semi-
supervised learning algorithms and we similarly had to only
label a small dataset.

Singh et al [5] introduced a rule-based technique using
linguistic relations to classify non-functional requirements
from the PROMISE corpus. The authors performed text mining
preprocessing using tools such as ANNIE, Snowball, ANNIE
POS Tagger, MuNPEx and JAPE to extract thematic roles
automatically from the SRS documents.

The text mining techniques used during preprocessing are
interesting and bear relevance to our experiment. The authors
do not elaborate on the details of machine learning used in
the classification.

Cleland-Huang et al [3] introduced NFR-Classifier, an in-
formation retrieval method to find and identify non-functional
requirements using classification algorithms found by com-
puting a probability score. A library of distinct keywords or
“indicator terms” was manually built on each category type
and used by the NFR-Classifier to detect and classify the SRS
documents.

In this study, we used Naive Bayes (a probabilistic classifier)
as one of the four base classifiers and found its performance
to be good.

V. THREATS TO VALIDITY

We will consider three types of threats to validity: internal,
external and construct.

An obvious threat to internal validity arises because we
manually categorized the truth set. We mitigated this threat
by asking two of the authors to independently perform the
categorization and then resolved any differences.

The threats to external validity are mitigated somewhat
because of the large number of reviews (932,388) and our
quite large truth set (300 reviews). This reduces the external

validity threat to the results for the Apple App Store. However
differences in quality assurance standards between app stores
makes it difficult to generalize to other app stores. Also we
only analyzed reviews written in English and so we cannot
generalize our results to reviews written in other languages.

As far as construct validity is concerned, we took care to use
standard toolkits (Weka and KEEL), standard statistical tests
and well-known algorithms. We used the default parameters
for both the self-learning algorithms and the base classifiers.
We also applied standard text mining approaches to convert the
reviews into a features from which models can be built. All
these parameters and procedures can be further optimised and
the results are likely be improved. We also performed manual
checks on a sample of our results to verify their correctness.

VI. CONCLUSION AND FUTURE WORK

In this paper, we applied Semi-Supervised Classification
(SSC) techniques in order to automate the classification of
functional and non-functional requirements contained in re-
views within the App Store. Our findings show that SSC
techniques, in particular three self-labeling algorithms, have
potential for this task and that only a small amount of data
is needed to achieve results similar to classical supervised
techniques where all data is labeled. We found that the models
learned can properly assign labels to the collected unlabeled
and can also classify unseen future reviews.

In the future we will analyze other semi-supervised classi-
fication techniques, further evaluation measures and consider
whether our results can be generalized to other app stores. We
hope that our work will help in the requirements classification
stage of app development using information collected from the
reviews.

ACKNOWLEDGEMENTS

The authors thank Oxford Brookes University and the Uni-
versity of Alcala, as well as project BadgePeople (TIN2016-
76956-C3-3-R).

REFERENCES

[1] J. Slankas and L. Williams, “Automated extraction of non-functional
requirements in available documentation,” 2013 1st International Workshop
on Natural Language Analysis in Software Engineering (NaturaLiSE), San
Francisco, CA, 2013, pp. 9-16.

[2] J. Cleland-Huang, R. Settimi and X. Zou, “Automated classification
of non-functional requirements,” Requirements Engineering, vol. 12,
no. 2, pp. 103-120, 2007. [Online]. Available: http://dx.doi.org/doi:10.
1007/s00766-007-0045-1

[3] J. Cleland-Huang, R. Settimi, X. Zou and P. Solc, “The Detection and
Classification of Non-Functional Requirements with Application to Early
Aspects,” 14th IEEE International Requirements Engineering Conference
(RE’06), Minneapolis/St. Paul, MN, 2006, pp. 39-48.

[4] R. Jindal, R. Malhotra and A. Jain, “Automated classification of security
requirements,” 2016 International Conference on Advances in Computing,
Communications and Informatics (ICACCI), Jaipur, 2016, pp. 2027-2033.

[5] P. Singh, D. Singh and A. Sharma, “Classification of Non-functional
Requirements from SRS Documents Using Thematic Roles,” 2016 IEEE
International Symposium on Nanoelectronic and Information Systems
(iNIS), Gwalior, 2016, pp. 206-207.

[6] A. Finkelstein, M. Harman, Y. Jia, W. Martin, F. Sarro and Y. Zhang,
“App store analysis: Mining app stores for relationships between customer,
business and technical characteristics,” RN, , 2014, pp. 10.



[7] P. M. Vu, H. V. Pham, T. T. Nguyen and T. T. Nguyen, “Tool Support
for Analyzing Mobile App Reviews,” 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), Lincoln, NE,
2015, pp. 789-794.

[8] E. Guzman, M. El-Haliby and B. Bruegge, “Ensemble Methods for App
Review Classification: An Approach for Software Evolution,” 2015 30th
IEEE/ACM International Conference on Automated Software Engineering
(ASE), Lincoln, NE, 2015, pp. 771-776.

[9] M. Nagappan and E. Shihab, “Future Trends in Software Engineering
Research for Mobile Apps,” 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), Suita, 2016,
pp. 21-32.

[10] B. Nuseibeh and S. Easterbrook, “Requirements engineering: a
roadmap,” In Proceedings of the Conference on the Future of Software
Engineering, Suita, 2000, pp. 35-46.

[11] P. Jakkaew and T. Hongthong, “Requirements elicitation to develop
mobile application for elderly,” 2017 International Conference on Digital
Arts, Media and Technology (ICDAMT), Chiang Mai, 2017, pp. 464-467.

[12] Y. Yang, “An evaluation of statistical approaches to text categorization,”
Information Retrieval, Hingham, MA, USA: Kluwer Academic Publish-
ers, 1999, vol. 1, no. (1-2), pp. 69-90.

[13] ISO/IEC, “ISO/IEC 9126 Software engineering – Product quality,”,
ISO/IEC, 2001.

[14] I. Witten, E. Frank, M. Hall, and C. Pal, “Data Mining, Practical
Machine Learning Tools and Techniques (4th Edition)”, Morgan
Kaufmann, 2016.

[15] J. Alcála-Fdez, L. Sánchez, S. Garcı́a, M.J. del Jesus, S. Ventura, J.M.
Garrell, J. Otero, C. Romero, J. Bacardit, V.M. Rivas, J. C. Fernández,
and F. Herrera, “KEEL: a software tool to assess evolutionary algorithms
for data mining problems,” Soft Computing, vol. 13, no. 3, pp. 245-284,

2009. [Online]. Available: http://dx.doi.org/10.1007/s00500-008-0323-y
[16] R. Almaghairbe and M. Roper, “Automatically Classifying Test Results

by Semi-Supervised Learning,” 2016 IEEE 27th International Symposium
on Software Reliability Engineering (ISSRE), Ottawa, ON, 2016, pp.
116-126.

[17] J. Wang, S. wei Luo, and X. hua Zeng, “A random subspace method
for co-training,” in 2008 IEEE International Joint Conference on Neural
Networks (IEEE World Congress on Computational Intelligence), June
2008, pp. 195-200.

[18] Y. Yaslan and Z. Cataltepe, “Co-training with relevant random sub-
spaces,” Neurocomputing, vol. 73, no. 10-12, pp. 1652-1661, 2010,
subspace Learning / Selected papers from the European Symposium on
Time Series Prediction.

[19] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based learning
algorithms,” Machine Learning, vol. 6, no. 1, pp. 37-66, 1991. [Online].
Available: http://dx.doi.org/10.1007/BF00153759

[20] J. R. Quinlan, C4.5: Programs for Machine Learning. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1993.

[21] J. C. Platt, “Advances in kernel methods,” B. Schölkopf, C. J. C.
Burges, and A. J. Smola, Eds. Cambridge, MA, USA: MIT Press, 1999,
ch. Fast Training of Support Vector Machines Using Sequential Minimal
Optimization, pp. 185-208.

[22] I. Triguero, S. Garcı́a, and F. Herrera, “Self-labeled techniques for semi-
supervised learning: taxonomy, software and empirical study,” Knowledge
and Information Systems, vol. 42, no. 2, pp. 245-284, 2015. [Online].
Available: http://dx.doi.org/10.1007/s10115-013-0706-y

[23] R. Deocadez, R. Harrison and D. Rodriguez, “Preliminary Study on Ap-
plying Semi-Supervised Learning to App Store Analysis,” The Evaluation
and Assessment in Software Engineering Conference (EASE), Karlskrona,
Sweden, 2017, pp. 320-323.


