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Abstract: Pollination services, from both wild and managed populations of insect pollinators, have
degraded as a result of agricultural intensification. Whilst 75% of economically important crops
depend on insect pollinators for cultivation, 40% of insect pollinator species are threatened with
extinction. Pollination services must be preserved if there is to be enough food for a global population
whose demand is expected to double, if not triple, by 2050. Pollinator diversity and pollinator
efficiency have been found to increase as a result of wildlife-friendly farming practices (i.e., natural
chemicals and fertilizers and agroforestry). We evaluated the presence of insect pollinators in 42 coffee
home gardens in West Java, Indonesia. Via generalized linear mixed models, we found that number
of visitor species (β = 0.418 ± SE 0.194, p = 0.031) and visitation time (β = 0.845 ± SE 0.308, p = 0.006)
decreased as farms were more intensely managed, (i.e., used chemical pesticides), compared to fields
using organic practices. As knowledge of pollination services is widespread amongst smallholder
farmers in Indonesia and beyond due to the long-held tradition of beekeeping, these results will add
to their existing knowledge and empower farmers to enhance resources for pollinator species through
agroforestry and natural pest management. Although we found significant differences in pollination
services provided in intensely managed and wildlife-friendly farms, chemical use can affect farms
far beyond a particular area of production. Therefore, pollinator conservation must be applied at a
landscape level and involve all stakeholders, including farmers, when making effective policies.

Keywords: wildlife-friendly; pollination; climate change; butterflies; bees; syrphid flies; Indonesia;
ecosystem services; organic; agricultural intensification

1. Introduction

As of now, 75% of economically important food crops depend on insect pollinators
for reproduction purposes [1]. It is this dependence on insect pollinators that forms the
intrinsic link between ecosystem services and food security. As the human population is
set to increase to 10 billion by 2050, within this timeline, global food demand is expected
to at least double [1–4]. In order to ensure that enough food is produced for a growing
population, and produced equitably, over the last century there has been a global shift from
traditional, organic farming practices to intensive agriculture that maximizes production [5].
This intensification comprised the use of chemical pesticides, herbicides and fertilizers, the
creation of monocultures, and the management of pollination services [6]. Both wild and
managed pollinators have suffered throughout this transition to intensive agriculture, with
40% of invertebrate pollinators at risk of extinction [7].
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Pollinator species around the globe have become increasingly threatened by intensive
farming practices and climate change, with both directly affecting pollinator physiol-
ogy, phenology, and behavior, whilst also altering the ecosystems in which pollinators
reside [8–10]. Intensive farming threatens pollinators in two ways: (1) the prophylactic
use of broad-spectrum chemical pesticides; and (2) the destruction of pollinator habitat
for monocultures [11–14]. Chemical pesticides are commonly broad-spectrum, meaning
that they are toxic to a broad range of insect species, including pollinator species [15]. As a
result, it is common that non-target insect populations are also affected in myriad ways,
spanning direct physiological and behavioral implications and indirect stressors caused by
co-exposure [12,16–18]. In addition, although it is chemical pesticides that are primarily
harmful to insects, it is true that some biopesticides (i.e., naturally-derived pesticides), can
be broad-spectrum and, as a result, also damaging to non-target insect species [19–22]. Not
only do non-target insect species often provide pollination services, but they provide other
beneficial services, such as pest control by natural enemies [23,24]. The intensive nature of
monocultures, particularly for mass-flowering crops, can potentially encourage pollinator
visitation time, with pollinator efficiency sometimes being higher in monocultures than it
is in polycultures [25,26]. However, when land is cleared for monocultures, nesting, larval,
and floral resources for insect pollinator species are diminished [14]. Due to the lack of
resources found in monocultures, and the often insufficient resources surrounding them,
it is common for studies to observe reduced pollinator abundance and, in turn, fruit set
in monocultures [13,14]. This is in direct competition with the commonly perpetuated
idea that intensive farming methods are adopted to maximize productivity, leading to
widespread reluctance to adopt organic farming practices [27].

In addition to monocultures and chemical pesticides, climate change poses huge
risks to pollinator phenology [28,29]. West Java, Indonesia has been identified as one of
the areas in Southeast Asia that is most vulnerable to climate change, causing rains to
become more unpredictable and, in recent years, leading to extended dry periods and
droughts [30–32]. Mean temperature in this area has also increased, something which has
been further exacerbated by deforestation [33]. In Java, Indonesia, the most commonly
managed species of bee is Apis mellifera, the western honey bee, as the island’s flowering
calendar previously fell in line with that of A. mellifera [34,35]. However, A. mellifera has
not been able to adapt to changing climatic conditions, as temperature increases brought
on by climate change have caused phenological changes in plant-pollinator interactions,
causing mismatches in blooming and insect emergence [28,29,34,35]. Whilst A. mellifera
populations are being threatened by climate change, A. mellifera can also stifle the diversity
of wild pollinators present in a particular area [36]. A. mellifera live in large colonies, giving
them a competitive advantage over other species of stingless and solitary bees due to their
ability to recruit colony members to foraging resources [36]. Considering the increasing
difficulty to manage A. mellifera for pollination purposes, and the potential for A. mellifera to
further threaten wild bee populations, there is an urgent requirement to preserve pollinator
diversity, as phenological synchrony is more likely to be achieved through species comple-
mentarity [37,38]. Species complementarity is defined as the presence of several species
residing in separate functional niches combining to provide a superior overall service, such
as pollination [38,39].

Pollinator conservation will depend largely on landscape arrangement, farming inten-
sity and climate. However, organic, wildlife-friendly farming practices (i.e., no chemicals,
low intensity, shade cover, and tree diversity) have been proven to preserve pollinator
abundance, diversity, visitation time, and fruit set across many environments [2,14,39–41].
In West Java, Indonesia, due to historic success with implementing wildlife-friendly farm-
ing methods, such as the use of biopesticides (i.e., naturally derived pesticides), there is
already a culture of using traditional farming practices in smallholder farms. Integrated
pest management (IPM), a global initiative that began in the 1970s to address pesticide re-
sistance and the deleterious effects of chemical pesticides through the integration of holistic,
naturally-derived farming practices, was particularly successful in Indonesia [5,42,43]. One



Agronomy 2022, 12, 509 3 of 14

possible reason for its success in Indonesia may be the presence of farming cooperatives,
groups of farmers in close communities that aid the dissemination of information, tools
and funding [44]. In some areas of Indonesia, chemical pesticide usage declined by 96% [5].
However, in 1999, IPM in Indonesia formally ended, and therefore companies were able to
start selling and subsidizing chemical pesticides once again.

Indonesia is the fourth largest producer of coffee (Coffea spp.) in the world, with 96%
of this coffee coming from smallholder farms [45]. At our study site in West Java, Indonesia,
Arabica coffee (Coffea arabica) is the most commonly cultivated crop. Coffee farms exist
within an agroforest matrix, meaning that the natural forest, to a varying extent, is present
within and around these farms [44]. Around the world, coffee is often shade-grown to
protect crops from the sun. However, shade cover and shade tree diversity have been found
to positively influence the provision of ecosystem services, such as pest control by natural
enemies and pollination [39]. Although chemical pesticide usage has increased due to their
price and ease of accessibility in comparison to biopesticides following the end of IPM,
traditional farming practices, such as non-chemical fertilizers/pesticides, have persisted.
As a result, within our study site, there is variation in chemical use, producing a varied
landscape with regard to farm management intensity [44].

Prioritizing the conservation of pollinator species and preserving pollination provision
is particularly critical if we are to ensure food for all in a planet with a growing popula-
tion [1–4]. In West Java, coffee is grown alongside other economically important crops, such
as cabbage (Brassica oleracea) and chayote (Sechium edule) [44]. Therefore, organic practices
that are encouraged for coffee certifications, such as Wildlife Friendly™ and Organic™, are
also positively influencing the provision of ecosystem services for the other crops in these
farms. In addition, although coffee cannot be used as a food source, demand for coffee is
growing and demand is unlikely to wane in coming years. Additionally, considering it is
one of the most economically important crops for Indonesian farmers, coffee farming may
not be providing sustenance but it is providing an income for 25 million farmers across the
world [44–46].

In this study, we assessed pollinator diversity and pollinator visitation time in coffee
farms of varying management intensities in an agroforest ecosystem in West Java, Indone-
sia. Our aim was to investigate the effect of management intensity (i.e., chemical usage,
shade cover and shade tree diversity, and temperature) on the provision and reception
of pollinator services. Due to the widely documented impacts of chemical usage on pol-
linator physiology and behavior discussed previously, we expected pollinator diversity
and pollinator visitation time to decrease with increased chemical usage. Conversely, we
expected pollinator diversity and visitation time to increase with increased shade cover
and shade tree diversity. Finally, we expected pollination visitation time to increase with
increasing temperature, in line with Arroyo et al.’s [47] finding that pollinator activity
reduced at lower temperatures. However, we do expect that pollinator visitation time
would decrease with extreme temperatures. With our results, we hope to empower farmers
with the information necessary to make environmentally conscious decisions with regards
to the preservation of pollination services. Additionally, we hope to better understand the
effect of climate change on pollination services, thus helping farmers to adapt to increasing
temperatures and the potential ramifications for their crops.

2. Materials and Methods
2.1. Study Site

We collected data from 42 coffee home gardens in the municipalities of Cipaganti
and Pangauban, Garut Regency, West Java, Indonesia (7.2786◦ S, 107.7577◦ E). These
home gardens, further referred to as farms, are smallholder owned and exist within an
agroforest matrix (i.e., the natural habitat is maintained within and around farms and crops
are rotated annually) [44,48]. Farmers plant coffee in tandem with other economically
important crops, such as cabbage, chilli (Capsicum frutescens), cassava (Manihot esculenta) or
underneath chayote [44]. Farms are situated between 1105 and 2105 m above sea level, with
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a maximum distance of 1805 m and a minimum distance of 15 m away from each other [49].
West Java does not experience strict seasons. However, heavier rainfall is observed between
December and April, although this is changing year on year due to climate change [49].
Coffee plants bloom twice a year (i.e., April and November), with the bloom in November
producing a smaller fruit set.

2.2. Data Collection

We collected data in coffee fields when the majority of coffee plants were blooming
(i.e., >50% of the total plants in the field are blooming, and when each plant that has flowers
is covered by more than 50% by blooming flowers). Since the blooming period is very
narrow for coffee plants, we managed to collect data once on 42 fields over 4 blooming
periods (July–August 2019, 2020; November–December 2020, 2021). During the blooming
period, and when not raining, a team composed of one researcher (N.A. or E.A.) surveyed
all of the fields between 8:00 and 13:00 h in search for fields where the majority of coffee
plants were blooming. It took four blooming periods to complete all of the 42 fields. When
we encountered a suitable field, the researcher started the data collection by selecting five
random plants in the field. The researcher than started collecting data for 10 min in each
plant, totaling 50 min of observation in each field [50]. Before the data collection period, we
identified and catalogued the species of butterflies, bees, wasps, and syrphid flies present
in the area based on inventories regularly carried out by the Little Fireface Project between
2012 and 2019. We created a list of species with images to allow quick identification. For
new species missing from the list, we described a morphospecies and took a picture for
further identification. During the data collection time, we also used HOBO temperature
logger and the app HOBOmobile to record temperature and humidity every minute during
the 10-min sampling period. We than calculated an average temperature and humidity for
each field.

In each field, we estimated the shade cover via Canopeo App that calculates the
proportion of area shaded from pictures [49,51] (Figure 1). We also collected information
on the richness (i.e., total number of species) of shade trees. We estimated the use of
agrochemicals (i.e., fertilizers urea and NPK and pesticide Endosulfan) by farmers via
interviews. We categorized the use of agrochemicals as: (1) no chemicals used; (2) chemical
fertilizers and pesticides mixed with organic products; and (3) intensive use of chemical
fertilizers and pesticides, no organic materials used. More details on the data collection can
be found in Campera et al. [49].
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2.3. Data Analysis

We tested whether number of visitor species and pollinator visitation time (i.e., pro-
portion of time when the flowers were visited by pollinators/total observation time) were
influenced by use of chemicals, humidity, temperature, shade cover, and shade tree richness
via generalized linear mixed models. We used the “glmmTMB” function in the “glmmTMB”
package as this function includes several fit families that are suitable to deal with counts
and proportions [52]. We tested different fit functions (the ones that are included in the
package) and included or excluded a zero-inflation term based on the QQ plot residuals
and residual vs predicted plot from the package “DHARMa” [53]. The selected fit functions
were genpois for the number of visitor species and zero inflated beta for pollinator visitation
time. We included the data collection period (i.e., the four blooming periods) as a random
effect in the model. We ran pairwise contrasts using a Bonferroni-Holm post hoc correction
via the function “emmeans” in the package “emmeans”. We considered p = 0.05 as level of
significance. We ran all of the analyses with R v 4.1.0.

3. Results

A total of 29 visitor species were observed to pollinator coffee plants, totaling 5016 s of
pollination (~4% of the total observation time). Lepidoptera were the most frequent visitor
with a total of 2264 s of pollinator visitation time, followed by Hymenoptera (1547 s) and
Diptera (1205 s) (Table 1). The number of visitor species was higher in organic fields (mean:
4.04 species per field; 95% CI: 3.34–4.89 species per field) than in fields with intensive
chemical use (mean: 2.66 species per field; 95% CI: 2.17–3.27 species per field) (Figure 2;
Table 2). Pollinator visitation time was also significantly higher in organic fields (mean:
3.7% of time; 95% CI: 2.6–5.2% of time) than in fields with intensive chemical use (mean:
1.6% of time; 95% CI: 1.1–2.4% of time) (Figure 3; Table 2).

Pollinator visitation time was also influenced by the mean temperature during the data
collection, with a positive influence of increased temperature on the pollinator visitation
time in coffee plants (Figure 4; Table 2). The other predictors did not influence the response
variables, only influencing a trend towards a significance positive relationship between
humidity and pollinator visitation time (Table 2).

Table 1. Number of pollinator species identified in 42 coffee fields in Cipaganti and Pangauban,
West Java. Total observation time was 35 h during four blooming seasons (July–August 2019, 2020;
November–December 2020, 2021).

Order Family N Species Pollinator Visitation Time (s)

Lepidoptera Nymphalidae 5 1636
Papilionidae 5 560
Pieridae 1 65
Lycaenidae 1 3

Hymenoptera Apidae 8 1336
Vespidae 2 211

Diptera Syrphidae 5 1194
Drosophilidae 2 11

Total 29 5016
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Table 2. Results of the generalized linear mixed models with number of visitor species and pollinator
visitation time in coffee plants as response variables. Data are collected on 42 fields in the municipali-
ties of Cipaganti and Pangauban (West Java) during four blooming seasons (July–August 2019, 2020;
November–December 2020, 2021).

Response Predictor Estimate St. Error Z-Value p-Value

Number of visitor species a Intercept 0.366 1.225 0.299 0.765
Chemicals: mixed c 0.129 0.192 0.672 0.501
Chemicals: organic c 0.418 0.194 2.152 * 0.031
Humidity (%) 0.004 0.006 0.567 0.571
Shade cover (%) 0.001 0.005 0.112 0.911
Shade tree richness 0.029 0.046 0.619 0.536
Temperature (◦C) 0.011 0.039 0.293 0.769

Pollinator visitation time b Intercept −8.905 1.754 −5.077 * <0.001
Chemicals: mixed c 0.580 0.266 2.183 * 0.029
Chemicals: organic c 0.845 0.308 2.745 * 0.006
Humidity (%) 0.015 0.008 1.900 0.057
Shade cover (%) 0.003 0.007 0.486 0.627
Shade tree richness −0.002 0.070 −0.034 0.973
Temperature (◦C) 0.152 0.056 2.709 * 0.007

a family fit, genpois; b family fit, zero inflated beta; c reference category, intensive; * p < 0.05.
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4. Discussion

We found that pollinator visitation time was significantly affected by farming intensity,
with decreased pollinator visitation times in farms that used a mix of chemicals and organic
practices and further decreased pollinator visitation times in farms that used exclusively
chemicals. Increased pollinator visitation time has been found to be significant when
measuring the efficiency of pollination attempts (i.e., pollination receipt) [54]. Although
we define “farming intensity” in terms of chemical usage, studies often contribute to
the definition of this term by measuring the complexity of farms and surrounding land
(i.e., landscape heterogeneity) [8,55]. It is widely documented that farms that are more in-
tensely managed, with regards to landscape heterogeneity, experience reduced pollination
services [8,41,55,56]. Although, Andersson et al. [55] state that for studies that use both
chemical usage and landscape heterogeneity to define farming intensity, it is difficult to
disentangle whether chemical usage or landscape heterogeneity affect pollinator visitation
more. In our study, shade cover and shade tree diversity did not affect pollinator visitation
time, yet we found that chemical usage did. Therefore, our study is a useful contribution
to the body of literature documenting the effects of varying farming practices on pollina-
tor visitation and will help to disentangle what practices are most damaging to certain
ecosystem services.

Furthermore, we found that there was lower pollinator diversity in farms that were
more intensely managed (i.e., used exclusively chemicals or used some chemicals to farm).
Our finding is in line with existing studies that have found that intensive farming practices
in general, not only chemical usage, contribute to lower pollinator diversity, particularly in
tropical environments [11,56–59]. High pollinator diversity has been shown to improve crop
productivity in smallholder farms, increase coffee fruit set and improve the amount and
frequency of pollination services [50,60–62]. Consequently, preserving pollinator diversity
is essential if we are to address global food insecurities, reverse global pollinator decline
and re-establish degraded ecosystem service provision [2,63].

In addition to farming intensity, pollination services were also found to be signifi-
cantly affected by temperature, with pollinator visitation time increasing with increased
temperature. In theory, and as we can see from our results, temperature increase often
positively influences pollination services in the short-term by increasing pollinator visita-
tion time [64]. However, the optimal temperature for pollination changes dependent on
other environmental variables, particularly altitude [47,65]. Furthermore, we found a linear
relationship between temperature and pollinator visitation time up to 31 ◦C, with only
one point above 29 ◦C. But with regards to extreme temperature above 30 ◦C, we would
expect a decrease in pollinator visitation time. In addition to the threat of extreme tempera-
tures, it is the effect of climate change on pollinator phenology that will also significantly
disturb plant-pollinator interactions [28,29]. Increased pollinator diversity, and ensuring
species complementarity, will reduce the likelihood of phenological asynchronies and will
bolster an ecosystem against the deleterious effects of climate change on pollination [37,38].
Furthermore, in future studies, temperature should be measured in relation to altitude to
establish optimal pollination conditions for farms at varying elevations due to the increased
importance of Lepidopterans and Dipterans at higher elevations [65]. Smallholder farmers
in tropical countries are forecast to be one of the worst hit demographics in terms of climate
change [32]. With this in mind, it is important that the long-term effects of temperature
increase are monitored, in line with pollinator species emergence, to be able to inform
smallholder farmers of potential changes to ecosystem services.

Shade cover and shade tree richness did not significantly affect pollinator visitation
time or pollinator diversity within farms. On one hand, shade cover within agroforest
ecosystems has been praised within the literature as providing an environment that sus-
tains and encourages biodiversity, with regards to both pollinator and non-pollinator
species [49,66,67]. However, there has been discussion as to whether shade tree richness
can negatively impact pollination services due to crop plants having to compete with
flowering shade trees for pollinator visitation [25,68,69]. In addition, increased shade tree
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richness can encourage pollinators to diversify the species they visit, meaning that pollen
deposits in agroforest ecosystems can be less than what is observed in [25]. Prado et al. [69]
found that for coffee in particular, shade trees did not detract from pollinator visitation
and furthermore, in line with our results, found that the presence of shade trees was
insignificant when determining pollinator visitation. Additionally, social bee pollinator
species of the family Apidae (Hymenoptera: Apidae), comprising honey bees, bumblebees,
and carpenter bees (Xylocopa sp.) made up the majority of species visiting coffee farms.
Hennig [68] found that when crop plants relied on social bee species for the majority of
their pollination services their pollination was less affected by co-occurring plant species.

It is clear from our results that farming intensity is a major determinant of the provision
of pollination services, the duration of pollination and the diversity of pollinators present,
all of which are negatively influenced by the use of chemicals. Wildlife-friendly farming
methods have the potential to reduce negative impacts of farming on pollinator populations
and pollination provision, both directly and indirectly, with biodiversity itself proven to
enhance plant-pollinator interactions [37,50,55,56,70]. This is shown aptly by Klein [71]
who found that pollinator richness was higher in agroforest environments than within
closed forest, showing that wildlife-friendly farming practices are capable of hosting
higher than expected pollinator diversity. Whilst Hardman et al. [70] found that some
ecosystem services were compromised when pollination provision is prioritized (e.g., lower
crop yields in wildlife-friendly, organic systems), Pywell et al. [72] found that crop yields
increased following the creation of habitat to enhance pollination services. Differences
in how wildlife-friendly farming affects crop yields depends largely on the crop being
harvested. In our case, and in the case of the Pywell et al. [72] study, farmers use a system
of land-sharing (i.e., agroforestry), as opposed to land-sparing which intensifies farming
in one area whilst sparing other areas for entirely conservation purposes [73]. It could be
extrapolated that for areas in which land-sharing is not an option, crop yields may suffer
as a result of implementing wildlife-friendly practices to preserve pollination services,
such as what is observed in Hardman et al.’s [62] study. However, whilst crop yields may
decline as a result of implementing wildlife-friendly farming practices in few cases, it
could be argued that this effect is diminished due to increased pollinator diversity and
complementarity providing greater ecosystem resilience and thus, greater security with
regard to food production and farmer income [37,38].

Although our study reinforces the use of wildlife-friendly farming practices and
their positive effects on pollinator activity, other studies have found that wildlife-friendly
farming practices are not without their disadvantages. Biopesticides are naturally-derived
alternatives to broad-spectrum chemical pesticides and use either plants, fungi or hormones
to target pest species [19,20]. Amongst their many benefits, perhaps the most significant
justification for their use is the fact that the user can target a particular pest species rather
than endangering insects in general, including pollinators. As biopesticides increase in
popularity, there will inevitably be opportunities to cut corners. Some biopesticides have
been used for broad-spectrum applications, an example of which is Spinosad, a pesticide
derived from a soil bacterium toxic to insects. Although it is naturally derived, its toxicity
is widespread and it has been found to negatively affect the behavior and physiology
of pollinators [21,22]. Therefore, whilst the use of wildlife-friendly farming practices,
such as biopesticides, is essential for the preservation of biodiversity, pollinator diversity
particularly, farming practices should be proven to be species specific with the safety of
pollinators prioritized.

The results of this study will help to communicate the importance of wildlife, and the
ecosystem services they provide, to farmers, empowering them to continue using wildlife-
friendly farming practices. Globally, there is a general reluctance to adopt organic methods
due to expense, misinformation regarding productivity and extra labor [27]. Monocultures
have been shown and publicized to be more productive, in all environments, with land
clearing and chemical input being used in combination to increase short-term profits [74,75].
We have shown the importance of wildlife-friendly practices in attracting pollinators, but
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it is important that we can also prove the importance of pollinators for coffee fruit set,
inevitably one of the priorities of smallholder farmers. Moving forward, we will continue to
assess the presence and diversity of pollinators within coffee farms and how this, alongside
the use of wildlife-friendly farming practices, influences the productivity of coffee plants
and income of farmers.

Finally, although we observed large variation in pollinator diversity and visitation time
between farms that used chemicals and those that practiced organic methods, pollinator
conservation has to be applied at a landscape-scale if it is to protect pollinator species in
the long-term [40,58]. Pollinators can be affected by chemical pesticides used in areas that
far exceed a particular area of production, both spatially and temporally. Krupke et al. [17]
explained these interactions in both temporal and spatial terms. With regards to distance,
pesticides can prevail in technically untreated areas due to the movement of treated soil
and seed and soil dust following largescale planting. Furthermore, this can be soil and dust
that has not been recently treated, due to the ability of chemical pesticides to prevail within
an environment long after its application [17]. Knowledge of the preservation of pollinator
nesting sites and floral resources is relatively well known globally, particularly within small-
holder farming communities that had previously relied on traditional farming practices,
such as beekeeping [40]. However, the adoption of wildlife-friendly practices is in direct
conflict with the current trend of simplification in farming, with accessibility, price and time
all contributing to the farming practices that farmers must use [40]. Therefore, whilst we
must translate existing knowledge of smallholder farming communities to effective policies,
the culture and behavior surrounding farming, and the rhetoric around intensification for
optimum production, must change in order for new policies to be successful.

5. Conclusions

In our study, we found that pollinator diversity and pollinator visitation time declined
with increasing chemical usage in coffee farms of varying management intensity in West
Java, Indonesia. Farms that used wildlife-friendly methods, such as natural pesticides and
fertilizers, observed significantly higher pollinator diversity and visitation time, indicating
that wildlife-friendly methods preserve ecosystem services. By preserving the provision
of ecosystem services, such as pollination, farmers are able to ensure the long-term sus-
tainability of their crops, thus removing their reliance on managed populations of bees. In
addition, we found that pollinator visitation time increased with increasing temperature,
helping to further demonstrate how climate change is affecting the behaviors of pollina-
tors. With increasing temperature, plant-pollinator interactions are expected to degrade
as a result of changes in pollinator and plant phenology, rendering the use of managed,
non-native bee populations less feasible. The dissemination of our results to smallholder
coffee cooperatives in our study area will build on existing knowledge of plant-pollinator
interactions, further empowering farmers to invest in wildlife-friendly farming practices.
We hope to encourage collaboration between farming cooperatives and local government
organizations to promote the benefits of wildlife-friendly farming practices for biodiversity,
for farmers and for the security of generations to come.
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