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Abstract. The region of interest (RoI) identification has a significant potential 
for yielding information about relevant histological features and is imperative to 
improve the effectiveness of digital pathology in clinical practice. The typical 
RoI is the stratified squamous epithelium (SSE) that appears on relatively small 
image areas. Hence, taking the entire image for classification adds noise caused 
by irrelevant background, making classification networks biased towards the 
background fragments. This paper proposes a novel approach for epithelium RoI 
identification based on automatic bounding boxes (bb) construction and SSE ex-
traction and compares it with state-of-the-art histology RoI localization and de-
tection techniques. Further classification of the extracted epithelial fragments 
based on DenseNet made it possible to effectively identify the SSE RoI in cervi-
cal histology images (CHI). The design brings significant improvement to the 
identification of diagnostically significant regions. For this research, we created 
two CHI datasets, the CHI-I containing 171 color images of the cervical histology 
microscopy and CHI-II containing 1049 extracted fragments of microscopy, 
which are the most considerable publicly available SSE datasets.   
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1 Introduction 

Adoption of digital technology into histological practice increases the productivity and 
accuracy of the interpretation of the pathology slides [1], provides an objective quanti-
tative assessment of the microscopy images, reduces the variability of the diagnosis, 
and improves differential diagnosis [2, 3]. Meanwhile, accurate automatic interpreta-
tion of histopathological images comes up against the difficulty that we still do not have 
a principled approach for identifying areas of interest. The lack of a gold standard for 
automatic RoI identification is explained by the morphological diversity of histological 
images, a wide variety of shapes of epithelial regions, density and shape of cells in these 
regions, the presence of artefacts, e.g., blood, mucus, staining in the tissue samples, the 
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presence of columnar cellular regions and varying sizes of the RoI in images. For in-
stance, cervical digital histology images are widely used for early diagnosis to prevent 
malignancy but only a relatively small part of the image containing SSE can be seen as 
a diagnostic area (see Fig. 1). Hence, considering the entire image for segmentation 
would add noise caused by irrelevant portions in the background and lead to the seg-
mentation network being biased towards the background regions [4]. 

 

 
Fig. 1. An example of the CHI: (a) an initial image of 3288 × 4096 resolution at 40X magnifica-
tion, (b) background, SSE and stroma (the yellow SSE region corresponds to the RoI in cervical 
histology microscopy and green line is picked to basement membrane, which separates the epi-
thelium from the underlying stroma), (c) a zoomed-in view of the SSE 

One of the possible solutions to increase detection performances is using bounding 
boxes (bb) around SSE as a region of interests (RoI) and then relying on region-based 
features for class identification [5]. This idea is both self-contained and attractive, but 
due to the highly diverse directions of SSE in histology images, it is often hard to come 
up with accurate RoI to pair with all the objects in a cervical image by using RoI with 
limited directions. The fine-grained, accurate RoI that follow directions and scales of 
actual boundaries of SSE suffer from high computational complexity during region 
identification and localization phases. For these reasons, most research has been 
focused on the analysis of manually selected RoI, making it difficult to replicate results 
on new data and ignoring the localization problem, which involves identifying RoI in 
new images. Early CHI image classification studies mainly focused on the 
discriminating models from the raw color input images to identify diagnostic elements 
for cell segmentation and differentiate them as RoI [6] or histological primitives [7, 8]. 
Most of them aim to image processing and identify areas of interest at the tissue level 
using histological primitives at the cellular level [9, 10] for cancer diagnosis. A set of 
studies on histology image analysis [11, 12, 13] utilize feature extraction and different 
attention strategies without relying on the RoI. However, as mentioned in [12], hand-
crafted color and texture features are rarely sufficiently robust, and any unlabeled object 
without a corresponding bounding box can be the source of an incorrect learning signal 
[14]. Superior technical solutions for SSE identification can be found in [15, 16]; 
however, to some extent, they also rely on the annotated SSE Finally, for many reasons, 
including concerns over privacy and confidentiality, a sufficient number of medical 
datasets of cervical histology microscopy could not be found in the public domain. We 
solve the problem of automatic localization and identification of the SSE on a new 
histological image dataset and propose a new multi-stage approach involving automatic 
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bb extraction and subsequent classification with a deep neural network to form the RoI 
representing the SSE in CHI. We demonstrate that this approach provides precise SSE 
identification even for the small size of the SSE in CHI with an overlapping clump of 
cells or masking by artifacts. Our specific contributions include: 

• The  CHDM-I dataset containing 171 full-size color images of the cervical 
histology microscopy, and CHI-II dataset containing 1049 fragments of 
microscopy. Compared with [13, 15, 16, 25], the CHDM-I proposes the largest 
number of samples among known public datasets.  

• A method of automatic forming bb for RoI-based epithelium image segmentation. 
• RoI construction pipeline based on bb, which guarantees efficiency and low 

complexity during region identification and localization phases. 

• Assessment of the effectiveness of our approach through quantitative experiments 
with a validation of the findings by expert pathologists. Experiments also show 
that the proposed RoI identification approach can be used with other detector 
architectures providing significant improvements in the classification 
performance. 

This paper is organised as follows. Section 2 discusses the related works. In Section 
3, we present the pipeline for CHI processing and RoI identification. Section 4 de-
scribes experiments with presented datasets. Section 5 provides the conclusions.   

2 Related work  

Although RoI localization and identification is a well-known problem in analyzing his-
tological images, there is still no general approach to all kinds of histology images. 
Much recent progress on an interpretation of the histology slide images has benefited a 
lot from the deep learning modes [10, 15, 17, 18, 19, 20, 21], including adversarial 
neural networks [17], trained on labeled data for basal membrane segmentation to de-
tect cancer micro invasions; DenseNet [18] for tumor metastasis detection as the RoIs. 
The framework [18] comprises a patch-based classifier, an improved adaptive sampling 
method and a postprocessing filter on annotated data. A graph convolution network that 
admits a graph-based RoI representation [10] to incorporate local inter-patch context 
and, as in previous cases, RoI annotated data were used for RoI image classification. A 
comprehensive solution for identifying SSE as an area of interest is presented in [15].  
RoI were used for differential diagnosis of cervical intraepithelial neoplasia (CIN). The 
procedure for epithelium localization was discussed in more detail in [19]. The classi-
fication of areas of interest in accordance with the CIN degree class using the DeepCIN 
network was proposed in [20, 21]. RoI identification was focused on differentially in-
formative vertical segment regions [20]. Another group includes semi-supervised and 
weakly supervised techniques. A Multilayer Hidden Conditional Random Field frame-
work for the CHI classification is an example weakly-supervised approach proposed in 
[13], where the CHI are mixed with the complex nucleus, interstitial and tissue fluid. 
Here, an immunohistochemical stained CHI dataset was used to test the effectiveness 
of the proposed model for the CHI classification. The classification was carried out 
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without pre-processing in order to detect the area of interest. Early research on the anal-
ysis of digital slides of cervical SSE [22] considers the threshold-based semi-automatic 
segmentation approach for obtaining the contours of cervical cancer RoI. Finally, a 
large group of unsupervised techniques [9, 23, 24, 25] demonstrate promising results 
in RoI identification and feature extraction.  The detection framework using a bounding 
box to surround RoI for lung cancer images [9] offers fine-detailed, boundary-adherent 
super-pixel segmentation. This approach comprised super-pixel segmentation and su-
per-pixel classification for RoI identification. Another approach [23] utilizes image-to-
image translation for cancerous regions detection in histology images. It is based on 
training a model on tissues without pathological changes and then using it to detect 
visual abnormalities, which are cancerous tissue lesions. The paper [24] discusses RoI 
localization in whole slide images of breast biopsy slides based on understanding the 
visible patterns and predicting the diagnostically relevant areas. In [25], a region-based 
segmentation and grey-level co-occurrence matrix (GLCM) were applied for feature 
extraction and classification. It was noted that color and morphology of SSE show wide 
variability across different samples and even within the same image. Therefore, the 
simple segmentation approach demonstrates poor effectiveness for the SSE segmenta-
tion from cervical histological digital slides.  

3 Method 

In this section, we present the general pipeline of cervical digital histology image pro-
cessing and RoI identification enriched with a new procedure of automatic bb construc-
tion embedded in this process. We start with data processing of cervical slide images 
to achieve out edge of SSE. Then we introduce the procedure of automatic bb construc-
tion. Third stage includes bb decomposition on patches and classification. Finally, we 
perform epithelium RoI identification and assessment. An overview of the methodol-
ogy is shown in Fig. 2. Each stage consists of several procedures discussed below. 

3.1 Cervical slide image processing 

The process begins with traditional image processing  to form a curve that defines the 
lateral border (outer edge) of the tissue.  Tissue can be epithelium or not. To accomplish 
this, the following procedures are used: (a) converting the RGB color model to the 
grayscale model, (b) blurring the image according to Gaussian, (c) image binarization 
using thresholding function, (d) cervical contour detection. All procedures are applied 
to low-resolution 15% reduced images (initial image size is 4096 × 3288, reduced size 
is 614 × 493). Threshold, the length of the tangent, and the width and height of the 
bounding boxes are chosen empirically based on the low-resolution images. The grey-
scale value is computed as the weighted average of the RGB values as Greyscale = 
0.299R + 0.587G + 0.114B [26]. Then Gaussian blur is applied to reduce the high-
frequency components of the image [27]. Image thresholding converts a grayscale im-
ages to a black and white ones, where white pixels correspond to the background (no 
tissue), and the black pixels correspond to the tissue. The search for the contour of black 
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pixels leads to the selection of the contours of the tissue surface and image boundaries. 
Further, the contours coinciding with the borders of the image are removed, and thus 
only the curve remains, indicating the outer surface of the tissue. 

 
Fig. 2. An overview of proposed approach: (1) cervical slide image processing procedure, (2) bb 
construction presents piecewise curve and bb constraction (a, b, c, d shows bb constraction steps), 
(3) classification and (4) epithelium RoI identification.   

3.2 Bounding box (bb) construction procedure  

When plotting the contour of the tissue, the coordinates are stored in two arrays, the 
coordinates along the x-axis and the coordinates along the y-axis. Images have an origin 
in the upper left corner; thus, the y-axis is inverted. Since the number of points per 
tangent and the length / width of the bb values are indicated relative to the initial di-
mensions of the image, we reduce these values proportionally to the image reduction. 

𝑞𝑞′ = 𝑞𝑞 ⋅ �
𝑧𝑧

100
� , (1) 

where q denotes the initial value, z denotes the reduction percentage of the original 
image, and q' is the new value. Shaping bb involves shaping piecewise curves and 
shaping rectangles, which are the basis of bb. 

The contour processing. The entire length of the contour is computed iteratively 
until all points of the contour have been achieved. During each iteration, a separate 
fragment of the contour is processed, and its length depends on the number of points 
included in the fragment. In addition, each iteration is accompanied by a search for a 
tangent of indefinite length by fitting a polynomial using the least squares method [28]. 
For each fragment of the contour, the average value of the coordinates along the x-axis 
is calculated. Resulting value is compared with the coordinates of each point along the 
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x-axis. The point with the least difference is used to draw a tangent of fixed length. 
Constructing a fixed-length tangent involves finding two points that define the 

tangent's boundaries. The input data are the length of the tangent, the slope of the 
tangent, and starting point from which two vectors are constructed in opposite 
directions. The ends of the constructed vectors define the tangent boundaries. If the 
slope of the tangent is zero, then the coordinates (x, y) along the x-axis and y-axis for 
two points a and b that define the boundaries of the tangent are calculated as follows 

𝑎𝑎(𝑥𝑥,𝑦𝑦) = �𝑥𝑥𝑎𝑎 = 𝑥𝑥𝑠𝑠 − 𝑙𝑙/2,
𝑦𝑦𝑎𝑎 = 𝑦𝑦𝑠𝑠,             𝑏𝑏(𝑥𝑥,𝑦𝑦) = �𝑥𝑥𝑏𝑏 = 𝑥𝑥𝑠𝑠 + 𝑙𝑙/2,

𝑦𝑦𝑏𝑏 = 𝑦𝑦𝑠𝑠,                              (2) 

where x and y define the coordinates of points along the x-axis and y-axis, respectively, 
a and b are the points that define the tangent line, s is the starting point, l is the length 
of the tangent.  

If the slope of the tangent does not exist, that is, when the tangent line is parallel to 
the y-axis, and the slope is taken to be infinity, then the coordinates of the points are 
calculated using Eq. (3) 

𝑎𝑎(𝑥𝑥,𝑦𝑦) = �
𝑥𝑥𝑎𝑎 = 𝑥𝑥𝑠𝑠,

𝑦𝑦𝑎𝑎 = 𝑦𝑦𝑠𝑠 −  𝑙𝑙/2,                       𝑏𝑏(𝑥𝑥,𝑦𝑦) = �
𝑥𝑥𝑏𝑏 = 𝑥𝑥𝑠𝑠,

𝑦𝑦𝑏𝑏 = 𝑦𝑦𝑠𝑠 + 𝑙𝑙/2.             (3) 
If the slope does not meet the above conditions, then the tangent line coordinates are 

calculated as follows. First, the change in coordinates ∆x along the x-axis and ∆x along 
the y-axis is calculated:  

Δ𝑥𝑥 =
𝑙𝑙
2

√1 + 𝑚𝑚2
,                                 Δ𝑦𝑦 = Δ𝑥𝑥 ∙ 𝑚𝑚,                                (4) 

where m is the slope. Then, the coordinates of the points of the tangent line are 
calculated using Eq. (5)  
 

𝑎𝑎(𝑥𝑥,𝑦𝑦) = �𝑥𝑥𝑎𝑎 = 𝑥𝑥𝑠𝑠 − Δ𝑥𝑥,
𝑦𝑦𝑎𝑎 = 𝑦𝑦𝑠𝑠 −  Δ𝑦𝑦,                       𝑏𝑏(𝑥𝑥,𝑦𝑦) = �𝑥𝑥𝑏𝑏 = 𝑥𝑥𝑠𝑠 + Δ𝑥𝑥,

𝑦𝑦𝑏𝑏 = 𝑦𝑦𝑠𝑠 + Δ𝑦𝑦.              (5) 

 
Owing this, the contiguous straight applied lengths are realized, making up a piece-

wise-specified curve, most closely corresponding to one obtained at the previous stage. 
As a result, it generates n-dimensional continuous piecewise linear function 𝑓𝑓:ℝ𝑛𝑛 →
ℝ, where ℝ is the set of points after processing stage, pointing to the tissue, and ℝ𝑛𝑛 is 
the set of points of the piecewise linear straight lines that best fits the original curve. 

The bb building and extraction. The bbs are constructed through the forward and 
backward vectors. The coordinates of tangent line of a certain length are used to achieve 
the coordinates of the direction vector v(x, y). Then, v is turned to the normalized 
direction vector n(x, y). First, the scalar e of the space of v is calculated as it is presented 
in Algorithm 1, and used to achieve coordinates of n. Then n is rotated 90° to obtain a 
new normalized vector r(x, y) which is used to form the sides of the rectangle that is 
the basis of the bb. Next, c(x, y) and d(x, y) the coordinates of the two unknown vertices 
of the bb are calculated. Thus, having a and b, the known vertices of the bb rectangle, 
h is the height of the rectangle, and r is the normalized vector rotated by 90°, c and d, 
the unknown vertices of the rectangle are computed using Algorithm 1. The obtained 
coordinates of all four vertices are used for bb βi construction and visualization.  
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Algorithm 1: Bounding box construction 
Input: 𝑓𝑓:ℝ𝑛𝑛 → ℝ 
Parameter: a, b, h 
Result: 𝛽𝛽𝑖𝑖(𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑)𝜖𝜖𝜖𝜖 
Get the direction vector for given points a,b 

𝐯𝐯(𝑥𝑥, 𝑦𝑦) = �
𝑥𝑥𝐯𝐯 = 𝑥𝑥𝑏𝑏 − 𝑥𝑥𝑎𝑎
𝑦𝑦𝐯𝐯 = 𝑦𝑦𝑏𝑏 − 𝑦𝑦𝑎𝑎 

Normalize the vector v 
𝑒𝑒 = �𝑥𝑥𝐯𝐯2 + 𝑦𝑦𝐯𝐯2  

𝐧𝐧(𝑥𝑥,𝑦𝑦) = �
𝑥𝑥𝐧𝐧 =

𝑥𝑥𝐯𝐯
𝑒𝑒

𝑦𝑦𝐧𝐧 =
𝑦𝑦𝐯𝐯
𝑒𝑒

 

Rotate the vector 90 degrees by swapping x and y, and 
inverting one of them 

𝐫𝐫(𝑥𝑥,𝑦𝑦) =  �𝑥𝑥𝐫𝐫 = 0 − 𝑦𝑦𝐧𝐧
𝑦𝑦𝐫𝐫 = 𝑥𝑥𝐧𝐧

 

Create a new line at b pointing in the direction of v 

с (𝑥𝑥, 𝑦𝑦) = �𝑥𝑥𝑐𝑐 = 𝑥𝑥𝑏𝑏 + 𝑥𝑥𝐫𝐫 ∗ ℎ
𝑦𝑦𝑐𝑐 = 𝑦𝑦𝑏𝑏 + 𝑦𝑦𝐫𝐫 ∗ ℎ

 

Create a new line at a pointing in the direction of v 

𝑑𝑑 (𝑥𝑥, 𝑦𝑦) = �𝑥𝑥𝑑𝑑 = 𝑥𝑥𝑎𝑎 + 𝑥𝑥𝐫𝐫 ∗ ℎ
𝑦𝑦𝑑𝑑 = 𝑦𝑦𝑎𝑎 + 𝑦𝑦𝐫𝐫 ∗ ℎ

 

 
The generated bbs provide necessary fragments from the original full-size image, 

and coordinates of the bb vertices correspond to the reduced version of the image. For 
this reason, additional calculations of the bb vertex coordinates are required for the full-
size image: 

𝑎𝑎(𝑥𝑥,𝑦𝑦) = �𝑥𝑥𝑎𝑎 = 100 ∙ 𝑥𝑥𝑎𝑎/𝑧𝑧
𝑦𝑦𝑎𝑎 = 100 ∙ 𝑦𝑦𝑎𝑎/𝑧𝑧 ,      𝑏𝑏(𝑥𝑥,𝑦𝑦) = �𝑥𝑥𝑏𝑏 = 100 ∙ 𝑥𝑥𝑏𝑏/𝑧𝑧

𝑦𝑦𝑏𝑏 = 100 ∙ 𝑦𝑦𝑏𝑏/𝑧𝑧,

(6)

𝑐𝑐(𝑥𝑥,𝑦𝑦) = �𝑥𝑥𝑐𝑐 = 100 ∙ 𝑥𝑥𝑐𝑐/𝑧𝑧
𝑦𝑦𝑐𝑐 = 100 ∙ 𝑦𝑦𝑐𝑐/𝑧𝑧 ,       𝑑𝑑(𝑥𝑥,𝑦𝑦) = �𝑥𝑥𝑑𝑑 = 100 ∙ 𝑥𝑥𝑑𝑑/𝑧𝑧

𝑦𝑦𝑑𝑑 = 100 ∙ 𝑦𝑦𝑑𝑑/𝑧𝑧 ,

 

where a, b, c, and d are the vertices of the rectangle and z is the reduction percentage 
of the original image. 

Next, the coordinates of the supplementary rectangle are determined, which has 
identical dimensions, but does not have a slope and is located at one of the vertices at 
the point of origin. The coordinates of the outlined rectangle are defined as 

𝑎𝑎′(𝑥𝑥,𝑦𝑦) = �
𝑥𝑥𝑎𝑎′ = 0
𝑦𝑦𝑎𝑎′ = 0  ,     𝑏𝑏′(𝑥𝑥,𝑦𝑦) = �

𝑥𝑥𝑏𝑏′ = 𝑤𝑤
𝑦𝑦𝑏𝑏′ = 0  ,

(7)

𝑐𝑐′(𝑥𝑥,𝑦𝑦) = �
𝑥𝑥𝑐𝑐′ = 𝑤𝑤
𝑦𝑦𝑐𝑐′ = ℎ  ,   𝑑𝑑′(𝑥𝑥,𝑦𝑦) = �𝑥𝑥𝑑𝑑′ = 0

𝑦𝑦𝑑𝑑′ = ℎ   ,

 

where a’, b’, c’ and d’ are the vertices of the construction rectangle, and w and h are 
the width and height of bb. 

The coordinates of the vertices of the construction rectangle and the bb, give the 
perspective transformation matrix, which is used to extract a fragment of an image from 
a full-size image by deforming the rotated bb to obtain a straightened rectangle. 
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3.3 Extracted bb classification 

After bb extraction, a new dataset of histological image fragments is generated. 
Depending upon the presence or absence of SSE, all extracted fragments are marked 
with a positive class label in there any SSE, and a negative class label in the absence of 
SSE in the bb. The resulting dataset is used to train the neural network model. 

3.4 Epithelium RoI identification 

The microscopic image M includes a certain amount of bbs β which depends on 
settings of contour processing stage and number of obtained tangents. We model the 
microscopy image M as a set of k extracted bb β: М = {𝛽𝛽1,𝛽𝛽2, . . . ,𝛽𝛽𝑘𝑘},  where each bb 
𝛽𝛽𝑖𝑖 = {𝑡𝑡1, 𝑡𝑡2, . . . , 𝑡𝑡𝑢𝑢} is represented by a set of u patches ti. Each patch is represented by 
the following expression  𝑡𝑡𝑖𝑖 = (𝑃𝑃𝑖𝑖𝑂𝑂),1 ≤ 𝑖𝑖 ≤ 𝑢𝑢. For the i-th patch ti,  𝑃𝑃𝑖𝑖𝑂𝑂   is a set of 
values of the probabilities of belonging of the patch to the labels of the classes of the 
set of labels O. The set of labels of the classes O in the proposed approach is represented 
as  𝑂𝑂𝑘𝑘 = �𝑜𝑜𝑘𝑘

𝑛𝑛𝑛𝑛𝑛𝑛, 𝑜𝑜𝑘𝑘
𝑝𝑝𝑝𝑝𝑠𝑠�, 1 ≤ 𝑘𝑘 ≤ 𝑢𝑢, where 𝑜𝑜𝑘𝑘

𝑛𝑛𝑛𝑛𝑛𝑛is the class label of the k-th patch ti 
indicating the absence of SSE in the patch, and 𝑜𝑜𝑘𝑘

𝑝𝑝𝑝𝑝𝑠𝑠is the class label of the k-th patch 
ti indicating the presence of SSE in the patch. Based on this, we describe 𝑃𝑃𝑖𝑖𝑂𝑂as follows: 
𝑃𝑃𝑖𝑖 = �𝑝𝑝𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛,𝑝𝑝𝑖𝑖
𝑝𝑝𝑝𝑝𝑠𝑠�, 0 ≤ 𝑝𝑝 ≤ 1. Since each selected bb may contain or may not contain 

SSE of cervical microscopy, they are defined as significant or insignificant, depending 
on the patch class labels obtained as a result of the classification and the probabilities 
of this class 𝛽𝛽𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑎𝑎𝑥𝑥

𝑖𝑖∈[𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑝𝑝𝑛𝑛𝑛𝑛𝑛𝑛] 
 {𝑡𝑡𝑖𝑖}.  If a majority of the opos patch class positive labels 

are associated with presence of SSE, the βi bb is defined as significant; otherwise, βi bb 
is qualified as insignificant, i.e. 𝛽𝛽𝑖𝑖′ = ∅. Hence, each image M can contain combined 
sets of two types of bb, Bin and  Bsign, where Bin is a set of insignificant bb and Bsign 
denotes the dataset of significant bb containing SSE In these ways, the image defined 
as 𝜖𝜖 = 𝐵𝐵𝑖𝑖𝑛𝑛 ∪ 𝐵𝐵𝑠𝑠𝑖𝑖𝑛𝑛𝑛𝑛,𝐵𝐵𝑖𝑖𝑛𝑛 ∩ 𝐵𝐵𝑠𝑠𝑖𝑖𝑛𝑛𝑛𝑛 = ∅,  where insignificant set of bb Bin represents an 
empty set of objects 𝐵𝐵𝑖𝑖𝑛𝑛 = ∅ subject to 𝛽𝛽𝑖𝑖′ = ∅ and 1 ≤ 𝑖𝑖 ≤ 𝑗𝑗 and significant set of bb 
Bsign  represents a set of patches labeled with class opos with a probability value р 
=argmaxi{Pi}. Thus, we get Bsign for 𝛽𝛽𝑖𝑖′ subject to  𝛽𝛽𝑖𝑖′ ≠ ∅ and 1 ≤ 𝑖𝑖 ≤ 𝑓𝑓. As a result, 
RoIi of the i-th microscopic image Mi with SSE is defined as RoIi = Bsign. 

4 Experiments 

The experiments were conducted on cervical histology images datasets CHI-I and CH-
II developed with the assistance of medical professionals and expert pathologists 
and use of the proposed method for constructing bb and SSE RoI identification. The 
software implementation was carried out using the Python programming language [29] 
and the OpenCV library [30]. The consultations of medical experts was provided at the 
processing stage to determine the parameters of the SSE: (1) the threshold value that 
cuts off image fragments without a tissue site; (2) the size of the bounding box based 
on the height of the epithelium. Consultations with medical experts were carried out at 
the stage of training the model to annotate the obtained fragments and when testing the 
proposed approach for validating the obtained fragments for the presence of SSE. 
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4.1 Dataset 

For this research, we created two CHI datasets captured during the years 2018, 2019 
and 2020 and provided by the Department of Pathology at the Municipal Institution 
"Severodonetsk City Multidisciplinary Hospital", Severodonetsk, Ukraine. 
Histological slides were made by freezing and paraffin wire methods, stained by 
hematoxylin and eosin staining. The thickness of the sections and the degree of 
coloration vary. Data are fully anonymized. Written informed consent was obtained 
from all subjects (patients) in this study.  Digital slides were acquired at 10× objective 
magnification using Carl Zeiss Primo Star, SIGETA UCMOS camera and archived in 
24-bit color JPEG format. Acquisition software is NIS-Elements F 3.2. The images 
have a resolution of 4096 × 3288 pixels. 

The CHI-I dataset contains 171 color images of the cervical histology microscopy, 
135 samples of cervix connective tissue with SSE and 36 samples without SSE CHI-I 
has two identifiers: (1) Image ID, the number of the histological specimen. One patient 
and, therefore, one diagnosis may correspond to several specimens belonging to one 
diagnostic case (visit); (2) Visit ID, the unique identifier for one diagnostic case (visit). 

The CHI-II dataset contains 1049 fragments of microscopy, 644 bbs of positive 
class (contain SSE) and 405 bbs of negative class (background and/or artifacts without 
SSE). All extracted bbs inherit the visit ID from CHI-I. The set descriptions also specify 
the hyperparameters of the bb that make up the CHDM-II dataset: threshold lower limit, 
bb width and bb height. RoIs from CHI-II were annotated by expert pathologists. 

4.2 Procedure 

The cervical image processing stage forms an outer edge curve of tissue. To process 
the image, the following parameters were used: Gaussian Kernel Size for Gaussian Blur 
function (25,25), threshold value = 230, number of points in one curve section = 1500. 
To avoid issues relating to edge detection, initial images must be set up horizontally so 
that the outer surface of SSE is directed to the right or upward, possibly at an angle. 

Piecewise curves are formed iteratively until all points of the contour obtained at the 
previous stage have been processed. During each iteration, a separate contour fragment 
is processed, and its length depends on the set number of points included in the 
fragment. Each iteration is accompanied by the search and construction of a tangent of 
indefinite length. Further, for each fragment of the contour, the average value of the 
coordinates of the points along the x-axis is calculated. The obtained value is compared 
with the coordinates of each point of the fragment along the x-axis. The point with the 
least difference is determined by the original one and will be used to construct a tangent 
of fixed length. Finally, the coordinates of the starting points are used to calculate the 
angle of inclination of the straight line and form a rectangle. To obtain the rectangles 
(bb), the following parameters were used: bounding box width = 2250, bounding box 
height = 1500. 

Bringing the reverse scaling of the resulting rectangles to the original image, we get 
bb - highlighted in green in the original image in Fig. 3a and in the form of separate 
highlighted fragments in Fig. 3b. The following image scaling options are used holds 
the percentage by which image has to be scaled = 0.15. Depending on the specimen 
under study, the extracted fragments may not contain stratified squamous epithelium.  
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Fig. 3. Result of shaping and extracting bb. 

The extracted fragments were annotated by experts and formed the CHDM-II 
dataset. The fragment class was annotated as positive only if the extracted patch 
contains an SSE fragment image in height, i.e., from the basement membrane to the 
outer layer. The negative class includes microscopic fragments that do not contain an 
SSE, a background without tissue. Patches containing SSE, but not meeting the 
requirements of the positive class, were not included in the set - Single segments which 
are given "0". The number of fragments labeled with the positive class was 644 
samples, the negative class 405 samples. 

The fragments presented in the CHDM-II dataset are used to train the model. As was 
mentioned in [15, 24], the main challenges in this domain are the limited availability of 
annotated data, and images of varying sizes. To overcome these issues at the fragment 
classification stage, each of the extracted fragments was divided into 1000 overlapping 
patches with a patch stride s and fed to the network input. The total of 1,049,000 
labelled image patches were generated, with 90% of the data used for training and 10% 
of data used for testing. The fragment class label is assigned according to the class of 
most patches.  

The DenseNet [31] is trained for 100 epochs with an Adam optimizer with a learning 
rate of 0.0001 under early stopping conditions. Training parameters: batch size = 128, 
patch size = 224. Weights are used to balance the simulation results to obtain a correct 
model. The model is run on PyTorch platform [32] using nVidia GeForce RTX 2060 
Super with 8GB of memory. Model training completed under 5 h. 

4.3 Assessment 

To evaluate the model, we used a test set consisting of 54 images, 28 images of the 
negative class and 28 images of the positive class. We evaluate the DenseNet network 
for classification as s.s.e/non-SSE RoIs. The scoring metrics include accuracy (ACC), 
precision (PRC), recall (𝑅𝑅𝑅𝑅), F1-score (𝐹𝐹1) [33]. The overall classification accuracy 
for both classes is 98%. We have used additional classification metrics, such as 
Fowlkes–Mallows index (FM), Matthews correlation coefficient (MCC). These metrics 
are more correctly reflected the quality of the prediction. With the test data we obtain 
FM=1 and MCC=0.959. Maximum possible value of these metrics is 1, which 
corresponds to the best classification possible, where all the elements have been 
perfectly classified. The proposed approach was validated using images that were not 
involved in training and testing. The following parameters were used for validation: 
kSize = (25,25), threshold value = 240, one curve points = 1500, bb width = 1600, bb 



11 

height = 1000, scale percent = 0.15. For model validation, we took several tough cases, 
e.g., SSE is highly compressed and skewed with respect to connective tissue, SSE 
boundaries and edges do not have a clear color delimitation with the fabric image. The 
selected fragments are classified using the trained model and analyzed by medical 
experts.  

4.4 Comparison with State-of-the-arts 

We compare our method to epithelium RoI identification with state-of-the-art 
histology slides RoI localization and detection. In the proposed approach the classifier 
is jointly trained on positive and negative image fragments. Table 1 summarizes the 
accuracy results of the current research. It shows the highest results achieved in the 
studies reviewed. The results show that the use of the proposed approach made it 
possible to achieve a higher classification accuracy compared to the breast cancer RoI 
allocation study by 18.4% and 19.44% than in studies [20] and [10], respectively.  

Table 1. Quantitative comparisons with the state-of-the-art methods for RoI identification based 
on classification accuracy rates (%) 

Histology RoI ACC PRC RR F1 
breast cancer [24] 79.60 – – – 
breast cancer[10] 78.56 – – – 
lung cancer [9] – 71.27 73.33 – 
anomaly (cancerous) [23]  – – – 92 
basal membrane [17]  – 61.2 63.6 62.4 
cervical intraepitelial neoplasia [20]  88.5 – – 88.0 
cervical cancer [13]  – 93.75 100 91.43 
cervical SSE [15] 97.8 – – 95.6 
cervical SSE, Ours 98 96 100 98 

The results show that the proposed approach to identifying epithelium RoI allows 
achieving more accurate classification results than the classification results in current 
research aimed at histology slides RoI detection. 

5 Conclusion 

In this paper, we presented an approach to identifying epithelium RoI in cervical 
digital slides. To implement the proposed approach, we have created a cervical digital 
slides dataset. We used a processing step that included color model transformation, 
image blurring, image binarization and edge detection to highlight the curve indicating 
the outer edge of the cervical tissue. We proposed a new method for bb building and 
extraction, which allows isolating fragments of SSE from cervical digital slides, thus, 
creating a dataset of patches containing epithelium and not containing epithelium for 
further training of the classification model. The results demonstrate that the proposed 
approach made it possible to achieve classification accuracy up to 98% which is higher 
compared to the related works. Also, we have proposed a new method for identifying 
epithelium RoI in cervical digital slides. The proposed technique is also applicable in 
other histology images where the lateral border of epithelium should be seen as RoI. 
The CHI-I and CHI-II datasets, models, and code can be accessed on the CHI GitHub 
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page. We hope that the proposed approach for epithelium RoI identification in cervical 
digital slides will allow conducting more comprehensive studies to analyze the 
diagnostic patterns of cervical diseases in histopathology. 

References 

[1] Ho, J., Ahlers, S.M., Stratman, C., Aridor, O., Pantanowitz, L., Fine, J.L., Kuzmishin, J.A., 
Montalto, M.C., Parwani, A.V.: Can digital pathology result in cost savings? A financial 
projection for digital pathology implementation at a large integrated health care 
organization. Journal of pathology informatics, 5(1):33 (2004). 

[2] Gurcan, M.N., Boucheron, L.E., Can, A., Madabhushi, A., Rajpoot, N.M., Yener, B.: 
Histopathological image analysis: A review. In: IEEE Reviews in Biomedical Engineering, 
2: 147–171 (2009). 

[3] Jaume, G., et al.:  Quantifying Explainers of Graph Neural Networks in Computational 
Pathology. In CVPR, pp. 8106-8116 (2021). 

[4] Zamzmi, G., Sachdev, V., Antani S.: Trilateral Attention Network for Real-time medical 
image segmentation. arXiv preprint arXiv:2106.09201 (2021). 

[5] Ding, J., Xue, N., Long, Y., Xia, G.-S., Lu, Q.: Learning RoI Transformer for Oriented 
Object Detection in Aerial Images. In CVPR, pp. 2849–2858 (2019). 

[6] Chen, K., Zhang, N., Powers, L., Roveda, J.: Cell nuclei detection and segmentation for 
computational pathology using deep learning. In Spring Simulation Conference 
(SpringSim), pp.1–5 (2019). 

[7] Ginley, B., Jen, K-Y., Rosenberg, A., Yen, F., Jain, S., Fogo, A., Sarder, P.: Neural network 
segmentation of interstitial fibrosis, tubular atrophy, and glomerulosclerosis in renal 
biopsies. arXiv preprint arXiv:2002.12868 (2020). 

[8] Hermsen, M., de Bel, T., den Boer, M., Steenbergen, E.J., Kers, J., Elorquin, S., Roelofs, 
J.J.T.H., Stegall, M.D., Mariam P Alexander, Byron H Smith, Bart Smeets, Luuk B 
Hilbrands, Jeroen A W M van der Laak. Deep learning-based histopathologic assessment of 
kidney tissue. Journal of the American Society of Nephrology, 30:1968–1979 (2019). 

[9] Junzhou, H., Li., R.: Fast regions-of-interest detection in whole slide histopathology 
images. Histopathology and Liquid Biopsy. IntechOpen, vol. 67 (2020).  

[10] Aygüneş, B., Aksoy, S., Gökberk Cinbiş, R., Kösemehmetoğlu, K., Önder, S., Üner, A.: 
Graph convolutional networks for region of interest classification in breast histopathology. 
In Medical Imaging 2020: Digital Pathology, pages 113200K (2020).  

[11] Gu, J., Fu, C.Y., Ng, B.K., Liu, L.B., Lim-Tan, S.K., Lee, C.G.L.: Enhancement of early 
cervical cancer diagnosis with epithelial layer analysis of fluorescence lifetime images. 
PLoS One, 10(5):e0125706 (2015). 

[12] Xia Li, Zhenhao Xu, Xi Shen, Yongxia Zhou, Binggang Xiao, Tie-Qiang Li. Detection of 
Cervical Cancer Cells in Whole Slide Images Using Deformable and Global Context Aware 
Faster RCNN-FPN. Current Oncology, 28(5):3585-3601 (2021). 

[13] Li, C. et al. Cervical Histopathology Image Classification Using Multilayer Hidden 
Conditional Random Fields and Weakly Supervised Learning. IEEE Access, 7:90378-90397 
(2019). 

[14] Yang, Y., Liang, K.J., Carin, L. Object Detection as a Positive-Unlabeled Problem. arXiv 
preprint arXiv. 20202002.04672 (2020). 

[15] Sornapudi, S., et al. Cervical Whole Slide Histology Image Analysis Toolbox. medRxiv 
2020.07.22.20160366 (2020). 

[16] Gallwas, J., Jalilova, A., Ladurner, R., Kolben, T.M., Kolben, T., Ditsch, N., Homann, C., 
Lankenau, E., Dannecker, C. Detection of cervical intraepithelial neoplasia by using optical 
coherence tomography in combination with microscopy. Journal of Biomedical Optics, 
22(1):16013, 2017. 



13 

[17] Wang, D., Gu, C., Wu, K., Guan, X.: Adversarial neural networks for basal membrane 
segmentation of microinvasive cervix carcinoma in histopathology images. In 2017 
International Conference on Machine Learning and Cybernetics (ICMLC), pp. 385-389, 
(2017). 

[18] Ruan, J., Zhu, Z., Wu, C., Ye, G., Zhou, J., Yue, J.. A fast and effective detection framework 
for whole-slide histopathology image analysis. PlosOne, 16(5):e0251521, (2021). 

[19] Sudhir Sornapudi, Jason Hagerty, R. Joe Stanley, William V. Stoecker, Rodney Long, 
Sameer Antani, George Thoma, Rosemary Zuna, Shellaine R. Frazier. EpithNet: Deep 
Regression for Epithelium Segmentation in Cervical Histology Images. Journal of 
Pathology Informatics, 11:10, (2020). 

[20] Sudhir Sornapudi, R. Joe Stanley, William V. Stoecker, Rodney Long, Zhiyun Xue, 
Rosemary Zuna, Shellaine R. Frazier, Sameer Antani. DeepCIN: Attention-based cervical 
histology image classification with sequential feature modeling for pathologist-level 
accuracy. Journal of Pathology Informatics, 11:40, (2020). 

[21] Sudhir Sornapudi, R. Joe Stanley, William V. Stoecker, Rodney Long, Zhiyun Xue, 
Rosemary Zuna, Shelliane R. Frazier, Sameer Antani Feature based Sequential Classifier 
with Attention Mechanism. arXiv preprint arXiv:2007.11392, (2020). 

[22] B Weyn, W.A.A Tjalma, P Vermeylen, A van Daele, E Van Marck, W Jacob. Determination 
of tumour prognosis based on angiogenesis-related vascular patterns measured by fractal 
and syntactic structure analysis. Clinical Oncology, 16(4):307-316, (2004). 

[23] Dejan Stepec, Danijel Skocaj. Unsupervised Detection of Cancerous Regions in Histology 
Imagery using Image-to-Image Translation. In Proceedings of the IEEE / CVF Conference 
on Computer Vision and Pattern Recognition, pages 3785-3792, (2021). 

[24] Mercan, E., Aksoy, S., Shapiro, L.G., Weaver, D.L., Brunyé, T.T., Elmore, J.G. 
Localization of Diagnostically Relevant Regions of Interest in Whole Slide Images: a 
Comparative Study. Journal of Digital Imaging, 29(4):496-506 (2016). 

[25] Wang, Y., Crookes, D., Osama Sharaf Eldin, Shilan Wang, Peter Hamilton, Jim Diamond. 
Assisted diagnosis of cervical intraepithelial neoplasia (CIN). IEEE Journal of Selected 
Topics in Signal Processing, 3(1):112-121, (2009). 

[26] Bovik, A.C. (ed.). The essential guide to image processing. Academic Press, (2009).  
[27] Nixon, M., Aguado A. Feature extraction and image processing for computer vision. 

Academic press, (2019).  
[28] Simanca S.R., Sutherland, S. Mathematical problem solving with computers. The University 

at Stony Brook, (2002). 
[29] Van Rossum, G.: Python Programming Language. In USENIX annual technical conference, 

41:36 (2007). 
[30] Bradski, G., Kaehler, A. OpenCV. Dr. Dobb’s journal of software tools, 3 (2000). 
[31] Huang G., Liu Z., van der Maaten L., Weinberger, K.Q. Densely connected convolutional 

networks. In Proceedings of the IEEE conference on computer vision and pattern 
recognition, pp. 4700-4708 (2017). 

[32] Paszke A., et al. Automatic Differentiation in Pytorch (2017). 
[33] Pal A., et al. Deep Metric Learning for Cervical Image Classification, in IEEE Access, vol. 

9, pp. 53266-53275 (2021). 
[34] CHI. https://github.com/beloborodova-t/CHI/tree/main/Data 


	1 Introduction
	2 Related work
	3 Method
	3.1 Cervical slide image processing
	3.2 Bounding box (bb) construction procedure
	3.3 Extracted bb classification
	3.4 Epithelium RoI identification

	4 Experiments
	4.1 Dataset
	4.2 Procedure
	4.3 Assessment
	4.4 Comparison with State-of-the-arts

	5 Conclusion
	References

