1	
2	Lyso-Phosphatidic Acid Acyl-Transferases: a link with intracellular protein trafficking
3	in Arabidopsis root cells?
4	
5	Valérie Wattelet-Boyer ¹ , Marina Le Guédard ^{1,2} , Franziska Dittrich-Domergue ¹ , Lilly Maneta-
6	Peyret ¹ , Verena Kriechbaumer ³ , Yohann Boutté ¹ , Jean-Jacques Bessoule ^{1,2} and Patrick
7	Moreau ^{1,4}
8	
9	¹ CNRS, University of Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33140
10	Villenave d'Ornon, France.
11	² LEB Aquitaine Transfert-ADERA, INRA Bordeaux Aquitaine, 33140 Villenave d'Ornon,
12	France.
13	³ Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford,
14	OX3 0BP, United Kingdom.
15	⁴ Bordeaux Imaging Center, UMS 3420 CNRS, US004 INSERM, University of Bordeaux,
16	33000 Bordeaux. France.
17	
18	
19	
20	Valérie Wattelet-Boyer: valerie.wattelet@u-bordeaux.fr
21	Marina Le Guédard: marina.le-guedard@u-bordeaux.fr
22	Franziska Dittrich-Domergue: franziska.dittrich-domergue@u-bordeaux.fr
23	Lilly Maneta-Peyret: Lilly.Maneta-Peyret@u-bordeaux.fr
24	Verena Kriechbaumer: <u>vkriechbaumer@brookes.ac.uk</u>
25	Yohann Boutté: <u>yohann.boutte@u-bordeaux.fr</u>
26	Jean-Jacques Bessoule: <u>Jean-Jacques.bessoule(@u-bordeaux.fr</u>
21	Patrick Moreau: <u>patrick.moreau(@u-bordeaux.ir</u> (ORCID : 0000-0001-9318-3464)
20 29	
30	Date of submission: 2021-06-08
31	
32	Number of Tables (0) and Figures (10)
33	
34	Word count: 6164
35	
36	Supplementary data: number of Supplementary Tables (1) and Supplementary Figures (13)
37	
38	Running title: AtLPAATs impact on intracellular protein trafficking
39	
40 41	
41 42	
T	

43 Highlight

- 44 Phosphatidic acid produced by Lyso-Phosphatidic Acid Acyl-Transferases has an impact on the
- 45 efficiency of the intracellular trafficking of some proteins in *Arabidopsis thaliana* root cells.
- 46

47 Abstract

48 Phosphatidic acid (PA) and Lysophosphatidic acid acyltransferases (LPAATs) might be critical 49 for the secretory pathway. Four extra-plastidial LPAATs (LPAAT2, 3, 4 and 5) were identified 50 in A. thaliana. These AtLPAATs, display a specific enzymatic activity converting 51 lysophosphatidic acid (LPA) to PA and are located in the endomembrane system. We 52 investigate a putative role of the AtLPAATs 3, 4 and 5 in the secretory pathway of root cells 53 through genetical (knock-out mutants), biochemical (activity inhibitor, lipid analyses) and 54 imaging (live and immuno-confocal microscopy) approaches. Treating a *lpaat4; lpaat5* double 55 mutant with the LPAAT inhibitor CI976 showed a significant decrease in primary root growth. 56 The trafficking of the auxin transporter PIN2 was disturbed in this *lpaat4*; *lpaat5* double mutant 57 treated with CI976, whereas trafficking of H⁺-ATPases was unaffected. The lpaat4; lpaat5 58 double mutant is sensitive to salt stress and the trafficking of the aquaporin PIP2;7 to the plasma 59 membrane in the lpaat4; lpaat5 double mutant treated with CI976 was reduced. We measured the amounts of neo-synthesized PA in roots, and found a decrease in PA only in the 60 lpaat4; lpaat5 double mutant treated with CI976, suggesting that the protein trafficking 61

62 impairment was due to a critical PA concentration threshold.

63

64 Keywords

Arabidopsis, roots, secretory pathway, Lysophosphatidic acid acyltransferases (LPAATs),
phosphatidic acid (PA), lysophosphatidic acid (LPA), PIN2, PIP2;7.

67

68 Introduction

- 69 Lipids are critical for organelle compartmentalization and membrane domain partition in all
- eukaryotic cells. In plant cells the involvement of lipids and their metabolism in the regulation
 of the plant secretory pathway is evident (Melser et al., 2011; Boutté and Moreau, 2014). It has
- been shown that all lipid families such as sterols (Laloi et al., 2007; Men et al., 2008; Boutté et
- 72 been shown that an lipid families such as sterois (Lafor et al., 2007, Men et al., 2008, Boute et al., 2010), sphingolipids (Melser et al., 2010; Markham et al., 2011; Wattelet-Boyer et al., 2016)
- 74 and glycerolipids (Pleskot et al., 2012; Boutté and Moreau, 2014) are involved in regulating the
- real and gryceron plas (rieskov et al., 2012, Boute and Woreda, 2017) are involved in regulating the secretory pathway. *In vivo* and *in vitro* studies in various eukaryotic models have shown that
- 76 lipids play critical roles in endomembrane morphodynamics regulation, organelle morphology,
- trafficking as well as vesicle formation and fusion (Yang et al., 2008, 2011; Ha et al., 2012;
- 78 Boutté and Moreau, 2014; Melero et al., 2018).
- A role for several enzymes in phospholipid metabolism such as phospholipases and lysophospholipid acyltransferases (LPATs) in the secretory/retrograde pathways has been
- 81 particularly highlighted in animal and yeast cells (Yang et al., 2008, 2011; Melero et al., 2018).
- 82 In plant cells, several phospholipases have been shown to be required for the functionality of
- the secretory pathway (Li et al., 2007; Lee et al., 2010; Li et al., 2011; Kim et al., 2011).
- 84 However, this is not the case for LPATs. Among LPATs, especially lysophosphatidic acid
- 85 (LPA) acyltransferases (LPAATs) may be crucial for the functionality of the secretory pathway
- 86 as, in animal cells, phosphatidic acid (PA) and its precursor LPA have been shown to have an

important impact on the functionality of the secretory pathway (Yang et al., 2008, 2011). 87

- 88 Therefore, PA and LPA, in addition to their role as precursors for de novo phospholipid 89 biosynthesis and their known involvement in many signalling pathways (Pokotylo et al., 2018; 90 Yao and Xue, 2018), are of interest for the secretory pathway in plant cells.
- 91 The amount of cellular PA is dependent on the *de novo* synthesis via the Kennedy pathway but
- 92 can be affected by the activity of multiple enzymes such as phospholipases D, diacylglycerol
- 93 kinases or LPAATs. In addition, the sequential action of phospholipase C and a diacylglycerol
- 94 kinase can increase the PA pool(s). In contrast, PA phosphatases or phospholipases A1/A2
- 95 cause a decrease in the amount of PA in the cells. A study carried out in Nicotiana tabacum
- 96 indicated that pharmacological inhibition of most of these enzymes leads to very different
- 97 effects on pollen tube growth (Pleskot et al., 2012), indicating that there could be different PA 98 pools related to different enzyme activities. At present, no studies have been conducted to
- 99 specifically investigate the putative role of LPAATs in the secretory pathway of plant cells. We
- hypothesize that LPAATs could, as shown for phospholipases, participate in the regulation of 100
- 101 membrane curvature by catalyzing PA production from LPA (two molecules with different
- 102 physicochemical properties) and therefore contribute to the regulation of membrane trafficking
- 103 (Yang et al., 2008, 2011; Boutté and Moreau, 2014).
- 104 In Arabidopsis thaliana, several membrane-bound LPAATs have been identified (Kim and Huang, 2004; Kim et al., 2005; Wang et al., 2013; Körbes et al., 2016; Angkawijaya et al., 105 106 2017; Angkawijaya et al., 2019). In higher eukaryotes, these enzymes are named LPAT or LPAAT but here we propose to use the name LPAAT to precisely highlight their 107
- 108 lysophosphatidic acid acyltransferase enzymatic activities. It is effectively inconsistent that the
- 109 first identified isoform was named "LPAAT1" whereas the following isoforms were reported
- 110 as "LPAT2-5" (Kim et al 2005). AtLPAAT1 has been suggested to be involved in the de novo 111 synthesis of PA in plastids (Kim and Huang, 2004; Yu et al., 2004). The ER-located AtLPAAT2
- 112 (LPAT2; Kim et al., 2005) has been shown to be critical for female gametophyte development
- 113 in Arabidopsis (Kim et al., 2005). In addition, the over-expression of AtLPAAT2, which
- 114 stimulates the *de novo* production of phospholipids, resulted in enhanced primary root growth 115 in phosphate-starved Arabidopsis seedlings (Angkawijaya et al., 2017). This suggests
- 116 AtLPAAT2 to be a primordial enzyme for the *de novo* synthesis of PA in the ER. Three other
- 117 potential LPAAT genes, AtLPAAT3, AtLPAAT4 and AtLPAAT5, have been identified. Recently,
- Angkawijaya et al. (2019) have shown that AtLPAAT4 and AtLPAAT5 can be involved in the 118
- 119 neo-synthesis of phospholipids and triglycerides in response to nitrogen starvation. Since
- AtLPAAT2 is probably the main source of PA for the de novo synthesis of phospholipids (Kim 120
- 121 et al., 2005; Angkawijaya et al., 2017), we have investigated whether other AtLPAATs can be
- 122 associated with a further role in membrane dynamics linked to the functionality of the secretory
- 123 pathway.
- 124 We first showed that these AtLPAATs have an enzymatic activity specific for producing PA
- 125 from LPA and that they are located in the endomembrane system (mainly the ER). Through
- 126 genetic, biochemical and imaging approaches, we show that a *lpaat4;lpaat5* double mutant is
- 127 sensitive to salt stress and is defective in primary root growth when treated with the LPAT
- 128 inhibitor CI976 (Brown et al., 2008; Schmidt and Brown, 2009; Yang et al., 2011). In addition,
- 129 the trafficking of the aquaporin PIP2;7 and the auxin carrier PIN2 is affected in these mutants.

- 130 By measuring the amounts of PA in the roots, we were able to link the disturbance of protein
- 131 trafficking to a critical PA concentration threshold.
- 132

133 Material and Methods

134 Arabidopsis material and growth conditions

- 135 The Arabidopsis thaliana ecotype Colombia-0 (Col-0) and the following mutants were used:
- 136 *lpaat3-1* (SALK_046680), *lpaat4-2* (GK_899A04) and *lpaat5-2* (SALK_020291). Double
- 137 mutants *lpaat3-1;lpaat3-1;lpaat5-2* and *lpaat4-2;lpaat5-2* were obtained crossing the
- previously listed lines. The triple mutant *lpaat3-1;lpaat4-2;lpaat5-2* was obtained crossing the
- 139 double mutant *lpaat4-2;lpaat5-2* and SALK_046680. The transgenic fluorescent protein
- marker line pPIN2::PIN2–GFP (in Col-0; Xu et al., 2005) was crossed with the double mutant *lpaat4-2;lpaat5-2*.
- 142 Seeds were sterilized by treatment with 95% (v/v) ethanol for 10 seconds, followed by a bleach
- 143 solution for 20 minutes, then repeatedly washed with sterile water. Seeds were then sown on
- 144 1/2 Murashige and Skoog (MS) agar medium plates (0.8% plant agar (Meridis #P1001,1000),
- 145 1% sucrose (Merck # 84100) and 2.5 mM morpholinoethanesulfonic acid (Euromedex #
- 146 EU0033) pH 5.8 with KOH) left at 4 $^{\circ}$ C for 2 days and then grown vertically in 16 h light/8 h
- 147 darkness for 5 days.
- 148

149Inhibitor treatment

- 150 CI976 was used as a LPAT inhibitor (Merck # C3743). A 10 mM CI976 stock solution was
- 151 prepared in dimethylsulfoxide (DMSO), stored at -20°C.. Seedlings were grown on 1/2 MS
- 152 plates containing 10 µM of the inhibitor for all experiments, except to determine the WT, double
- 153 mutant *lpaat4-2;lpaat5-2* and triple mutant *lpaat3-1;lpaat4-2;lpaat5-2* lines sensitivity to the
- 154 treatment, where 5 µM of inhibitor were also tested. In all experimental conditions, the final
- 155 DMSO concentration was the same for the controls without CI976 and at the different
- 156 concentration of CI976 used.
- 157

158 **Phenotypical characterization**

- 159 Seedlings were grown on 1/2 MS agar medium plate containing varying CI976 concentrations
- 160 $(0, 5 \text{ or } 10 \,\mu\text{M})$. Root length was measured 5 days after germination using the ImageJ software.
- 161 To compare experiments, all the measured values were standardized to the WT median value
- 162 in untreated condition for each experiment.
- 163 To assess the different lines sensitivity to salt stress, 50 mM NaCl (Euromedex # 1112) was
- 164 added to the 1/2 MS agar medium.
- 165

166 Plasmid preparation and transgenic plants

- 167 Sequence data of AtLPAATs can be found in the Arabidopsis Genome Initiative or 168 GenBank/EMBL databases under the following accession numbers: *AtLPAAT2*, At3g57650;
- 106 Gendank/EWIDL databases under the following accession numbers. AllFAAT2, A

169 AtLPAAT3, At1g51260; AtLPAAT4, At1g75020; AtLPAAT5, At3g18850. Coding sequence of 170 AtLPAAT2, AtLPAAT4 were amplified on leaves cDNA, while AtLPAAT3 and AtLPAAT5 were amplified on flowers cDNA. We used respectively the primer pairs P1531/P1533, 171 172 P1539/P1541, P1535/P1537 and P1543/P1545. To generate the following diK mutants: 173 AtLPAAT2 K387A/K389A, AtLPAAT4 K374A/K376A and AtLPAAT5 K371A/K375A the 174 following primer pairs containing the mutation were used: P5294/P5431, P2051/P2052 and 175 P5292/P5432. LPAAT3 diacidic mutant 1 (D74G/A75/E76G) and 2 (D293G/L294A/E295G) 176 obtained overlapping PCR using respectively were by primers 177 P2578/P2580/P2581/P2582/P66/P67 and P2578/P2580/P2585/P2586/P66/P67. Amplified 178 sequences were cloned by BR reactions in entry vectors pDONR[™]221 or pENTR-d-TOPO[™] 179 (Thermofisher Scientific) using Gateway[®] recombinational cloning technology (Thermofisher 180 Scientific). For expression in E.coli, entry vectors were cut by NcoI (Biolabs #R0193) and XhoI 181 (Biolabs #R0146) restriction endonucleases. The product was cloned into the pET-15b vector (Novagen). For expression in plant, AtLPAAT entry vectors and pK7WGF2 destination vectors 182 were combined by LR recombination using Gateway[®] recombinational cloning technology 183 184 (Thermofisher Scientific).

185 To complement the double mutant lpaat4-2;lpaat5-2 we generated the construct 186 pAtLPAAT4:tagRFP-AtLPAAT4g. For that, we amplified the AtLPAAT4 promoter sequence and 187 the AtLPAAT4 full length DNA genomic sequence using the primer pairs P5730/P5731 and P5736/5737. Each PCR product was purified and cloned respectively in pDONRTM P4-P1r 188 189 vector and pDONRTM P2r-P3 vector (Thermofisher Scientific). We used a third vector 190 containing tagRFP in pDONRTM221 backbone (Thermofisher Scientific) and generated the 191 final construct in the pH7m34GW destination vector using the Multisite Gateway® cloning 192 system (Thermofisher Scientific).

All PCR amplifications were performed using Q5TM High-Fidelity DNA polymerase at the annealing temperature and extension times recommended by the manufacturer (Biolabs #M04915). PCR fragments and plasmids were respectively purified with NucleoSpin[®] Gel and PCR cleanup (Macherey-nagel # 740609) and NucleoSpin[®] Plasmid (Macherey-Nagel #740499). All the entry vectors were sequenced, and sequences were analyzed with CLC Mainwork Bench 6. Primers used in this study are listed in Supplementary Table S1.

For transient expression in Arabidopsis cotyledons, seeds were sterilized as described above
and sown in 6-wells culture plates containing 4 ml 1/2 MS agar medium. Plates were left at
4 °C for 2 days and then grown in 16 h light/8 h darkness for 7 days.

202 Constructs were transferred into the Agrobacterium tumefaciens C58C1Rif^R strain harboring

203 the plasmid pMP90. 4 days after germination Agrobacterium tumefaciens suspension in MS-

204 Glu liquid medium (0.21% MS (w/v), 2% glucose (w/v), 0.39% MES (w/v), 0.05%Tween,

- 205 200mM acetosyringone, pH5.7) was used to transform transiently the cotyledons. For that,
- 206 seedlings were incubated 40 min at RT with suspension of Agrobacterium tumefaciens
- 207 expressing natives or mutant LPAATs and HDEL marker at 1 OD_{600nm} and 0.2 OD_{600nm}

- respectively. Suspension was then removed and plate were left in 16 h light/8 h darkness until
 the 7th day after germination.
- To study the effect of the double mutation *lpaat4-2;lpaat5-2* on PIN2-GFP subcellular localization at the plasma membrane, the double mutant *lpaat4-2;lpaat5-2* and the pPIN2::PIN2–GFP transgenic line (Xu *et al.*, 2005) were crossed. Primer pairs 1905/1906 (LP/RP SALK-020291), 5744/5745 (LP/RP GABI_899A04) and LBa1 were used for
- 214 genotyping on ammonium glufosinate (10 μ g/ml) resistant seedlings.
- 215

216 **RNA extraction, RT-PCR and qPCR**

- 217 Tissues were disrupted using stainless steel beads 5mm (Qiagen#69989) and Tissuelyser II
- 218 (Qiagen). Total RNA was extracted from roots 5 days after germination using the RNeasy[®]
- 219 Plant Mini kit (Qiagen #74904) according to the manufacturer's instructions. First strand cDNA
- 220 was synthesized using SuperScript[®] II Reverse Transcriptase (ThermoFisher # 18064014) and
- 221 OligodT. Then, mRNAs were treated with DNase I using DNa-*free*TM Kit (ThermoFisher #
- AM1906). Expression analysis of *AtLPAAT2, AtLPAAT3, AtLPAAT4* and *AtLPAAT5* by RT-
- 223 qPCRs were performed with the Bio-Rad CFX96 real-time system using GoTaq[®] qPCR Master
- 224 mix (Promega # A6002). The specific primer pairs used for *AtLPAAT2*, *AtLPAAT3*, *AtLPAAT4*,
- 225 AtLPAAT5, EF-1 α and At4g33380 were P5412/P5413, P5414/P5415, P5783/P5784,
- 226 P5418/P5419, P4833/P4834 and P4847/P4848, respectively.
- 227 The transcript abundance in samples was determined using a comparative cycle threshold (C_t)
- 228 method. The relative abundance of $EF-1\alpha$ and At4g33380 mRNAs (Czechowski et al. 2005)
- 229 in each sample was determined and used to normalize for differences of total RNA level as
- 230 described in Pascal et al. (2013). Semi-quantitative RT-PCR analysis of steady-state
- 231 AtLPAATs transcripts in roots from 5 days old plants was performed to compare all the
- mutant lines with WT plants. The $EF-1\alpha$ gene was used as a constitutively expressed control.
- 233 We used GoTaq® G2 DNA Polymerase (Promega). All primers are listed in Supplementary
- Table S1, the characterisation of *lpaat* insertion mutant lines and T-DNA positions is shown
- in Supplementary Fig. S1, and controls for *all the* mutant lines are shown in Supplementary
- 236 Fig. S2.
- 237

Immunocytochemistry, FM4-64 uptake, BFA treatment and confocal laser scanning microscopy

- 240 Whole-mount immunolabelling of Arabidopsis roots was performed as described in Boutté and
- 241 Grebe (2014). In brief, 5 day-old seedlings were fixed in 4% paraformaldehyde dissolved in
- 242 MTSB (50 mM PIPES, 5 mM EGTA, 5 mM MgSO₄ pH 7 with KOH) for one hour at room
- 243 temperature (RT) and washed three times with MTSB. Roots were cut on superfrost slides
- 244 (Menzel Gläser, Germany) and dried at RT. Roots were then permeabilized with 2% Driselase
- 245 (Merck #D9515), dissolved in MTSB for 30 min at RT, rinsed four times with MTSB and
- treated for one hour at RT with 10% DMSO + 3% Igepal CA-630 (Merck # I3021) dissolved

- in MTSB. Unspecific sites were blocked with 5% normal donkey serum (NDS, Merck # D9663)
- in MTSB for one hour at RT. Primary antibodies, in 5% NDS/MTSB, were incubated overnight
 at 4 °C and then washed four times with MTSB. Secondary antibodies, in 5% NDS/MTSB,
 were incubated one hour at RT and then washed four times with MTSB.
- 251 Primary antibodies were diluted as follows: rabbit anti-PIP2;7 1:400 (Agrisera, AS09469),
- rabbit anti-H⁺-ATPase 1:1000 (Agrisera AS07260), rabbit anti-echidna 1:600 (Gendre et al.,
 2011 and Boutté et al., 2013), rabbit anti-Membrine11 1:300 (Marais et al., 2015), rabbit anti-
- 253 2011 and Boutté et al., 2013), rabbit anti-Membrine11 1:300 (Marais et al., 2015), rabbit anti254 SAR1 1:250 (Agrisera AS08326) . Dilution of secondary antibody donkey anti-rabbit IgG
- AlexaFluor 488-coupled (Jackson Immunoresearch, 711-605-152) was 1:300.
- FM4-64 uptake was performed on 5 days old seedling that had grown on 1/2 MS agar media
- 257 containing 10 μ M of CI976. Seedlings were dark incubated in 5 μ M FM4-64 solution for 5 min.
- 258 Rapid wash in 1/2 MS solution containing 10 μ M of CI976 followed, and FM4-64 uptake was
- determined each minutes on root epidermal cells by confocal microscopy from 3 to 15 min after seedlings wash. For BFA treatment, 5 day-old seedlings grown on $\frac{1}{2}$ MS agar medium
- 260 seedlings wash. For BFA treatment, 5 day-old seedlings grown on $\frac{1}{2}$ MS agar medium 261 supplemented with 10 μ M CI976 were incubated in liquid $\frac{1}{2}$ MS medium with 10 μ M CI976
- and 50 μM Brefeldin A (BFA; Merck B7651). After 90 mins of incubation, PIN2 accumulation
- 263 in BFA bodies was determined in roots by confocal microscopy.
- 264 Confocal laser scanning microscopy was performed using Zeiss LSM880. For live-cell 265 imaging, seedlings were mounted with MS liquid medium. Laser excitation lines for the
- different fluorophores were 488 nm for GFP, AlexaFluor 488 and FM4-64, and 561 nm for
- 267 mCherry. Fluorescence emissions were detected at 490–570 nm for GFP and AlexaFluor 488,
- 268 620-695 nm for FM4-64 and 580–660 nm for mCherry. Scanning was performed with a pixel
- 269 dwell of 3 µs. In multi-labelling acquisitions, detection was in sequential line-scanning mode.
- 270 An oil-corrected × 63 objective, numerical aperture=1.4 (C Plan Apochromat 63.0x1.40 OIL
- 271 DIC UV VIS IR-M27) was used in immunolabelling and live-cell imaging experiments, except
- 272 for FM4-64 uptake where an oil-corrected × 40 objective, numerical aperture=1,3 (Plan
- 273 Apochromat 40.0x1.3 OIL DIC UV IR-M27) was used. Image analysis was performed using
- 274 ZEN lite 2.6 2018 (Zeiss) and ImageJ software.
- 275

276 Tobacco leaf infiltration and confocal microscopy

277 Nicotiana tabacum (SR1 cv Petit Havana) plants were grown in a greenhouse for transient 278 expression of fluorescent constructs according to Sparkes et al. (2006). In brief, each expression 279 vector was introduced into the Agrobacterium tumefaciens strain GV3101 by heat shock 280 transformation. Transformed colonies were inoculated into 5 ml of YEB medium (5 g/l beef 281 extract, 1 g/l yeast extract, 5 g/l sucrose and 0.5 g/l MgSO4·7H₂O) with 50 µg/ml spectinomycin 282 and rifampicin. The bacterial culture was incubated overnight in a shaker at 180 rpm 25 °C. 1 283 ml of the bacterial cultures was pelleted by centrifugation at 1800 g at room temperature for 5 284 minutes. Pellets were washed with infiltration buffer (5mg/ml glucose, 50mM MES, 2mM 285 Na₃PO₄·12H₂O and 0.1 mM acetosyringone) and then resuspended in infiltration buffer. The

- bacterial suspension was diluted in infiltration buffer to a final OD_{600} of 0.1 for each construct.
- 287 The bacterial solution was injected into the underside of the tobacco leaf using a 1ml syringe.
- 288 Infiltrated plants were incubated at 22°C for three days prior to imaging. Leaf epidermal
- 289 samples were imaged using a Zeiss PlanApo 100×/1.46 NA oil immersion objective on a Zeiss
- 290 LSM880 confocal equipped with an Airyscan detector. 512×512 pixel images were collected
- in 8-bit with 4-line averaging. For GFP excitation was set at 488 nm and emission at 495-550
- nm; for RFP at 561 nm and 570-615 nm, respectively.
- 293

294 AtLPAAT enzymatic activity

295 The ORF for AtLPAAT2-5 were amplified by PCR with respectively the sense/antisense primers 296 P1539/1541 and P1543/1545 containing the XhoI and NcoI restriction sites. The PCR products 297 were first subcloned in pGEM®-T Easy vector (Promega, Charbonnieres les Bains, France) 298 before being cloned into the XhoI/NcoI sites of the pET-15 vector (Novagen, Merck 299 Biosciences, Badsoden, Germany). C41 (DE3) E. coli bacteria (Avidis, Saint-Beauzire, France) 300 were then transformed with the obtained plasmids. Ectopic expression of the ORF AtLPAAT2-301 5 and E. coli membranes isolation were performed as described by Testet et al. (2005). 302 AtLPAAT2-5 were produced in membranes of E. coli C41 cell line that was specifically 303 designed for the production of membrane proteins (Miroux and Walker, 1996). 304 Lysophospholipid acyltransferase reactions were carried out in 100 µl of assay mixtures (50 305 mM Tris-HCl, pH 8) containing 1 nmol of LPA or the other lysophospholipids (either 306 lysophosphatidylcholine, lysophosphatidylethanolamine, lysophsphatidylglycerol, lysophosphatidylinositol or lysophosphatidylserine), 1 nmol of [¹⁴C]oleoyl-CoA and 50 µg of 307 308 membrane proteins. Reactions were incubated at 30°C and stopped at 30 min by adding 2 ml 309 of chloroform/methanol (2:1, v/v) and 500µl of water. After the isolation of the organic phase, 310 the aqueous phase was re-extracted with 2 ml of chloroform. The lipids were then purified by 311 HPTLC according to Testet et al. (2005) and Ayciriex et al. (2012). The radioactivity 312 incorporated into phospholipids was revealed using a STORM 860 PhosphorImager (GE 313 Healthcare, Waukesha, WI) and quantified with ImageQuant TL software.

LPAAT activities were measured as nmol phospholipids formed.mg proteins⁻¹.30 min⁻¹ and the values of the controls (corresponding to purified membranes from *E. coli* transformed with pET-15B empty vector) were normalized to 100 for each lysophospholipid and the corresponding activities for LPAAT2-5 were calculated accordingly for all the phospholipids. Values of the controls were normalized to 100 to take into account the variations observed in the activity levels between experiments, this allowed having the best conditions to compare data and to perform the statistical analysis.

321 14-C Acetate labeling and lipid analysis

322 For radiolabel feeding experiments, 20 roots of 5-day-old seedlings were cut with a razor blade

- 323 and placed in vials containing 2 mL MS. To start the reaction, 200 nmol (10 $\mu Ci)$ [1-14C]
- 324 acetate (Perkin Elmer Life Sciences) were added to each vial and the reaction was stopped after

- 325 4 h with 2 ml preheated isopropanol followed by 20 min incubation at 70°C. After transfer into 326 6 ml glass tubes, 2ml chloroform/methanol/hydrochloric acid (100:50:1; v/v/v) were added and 327 the mixture was incubated overnight on an orbital rotator (40 rpm) at room temperature. 328 Subsequently, each tube was centrifuged at 1000xg for 10 min. The organic phase was 329 collected in new tubes and the roots were re-extracted with 2 ml chloroform/methanol (2:1, 330 v/v) for 2h. After new centrifugation, the organic phases of each sample were combined, mixed 331 with 1.5 ml 0.9% NaCl and centrifuged at 1000g for 10 min. The organic phases were 332 evaporated to dryness, re-suspended in 40 µl chloroform/methanol (2:1, v/v) and stored at 333 -20 °C. Radiolabeled products were analyzed by thin-layer chromatography using HPTLC 334 Silica Gel 60 plates (Merck) and chloroform/methanol/water/acetic acid (30:17:2:1, v/v/v/v) as 335 solvent to separate phospholipids. They were identified by co-migration with unlabeled 336 standards, and quantification was done by autoradiography using a Storm 860 molecular imager 337 (GE Healthcare).
- 338

339 Statistical analysis

340 All data analysed were unpaired (samples independent from each other). Normal distribution 341 (Gaussian distribution) of the data set was tested using Shapiro-Wilk normality test. On data 342 normally distributed, sample homoscedasticity was assessed using a Bartlett test before 343 performing parametric tests. On data that were not normally distributed (or on data sets for 344 which n < 10, non-parametric tests were performed. To compare two data sets, Welch two 345 sample *t*-tests were performed on normally distributed data sets, whereas Mann–Whitney test 346 was used as non-parametric test. To compare multiple data sets, Kruskal-Wallis tests were used 347 as non-parametric test. Tukey's test was used as a single-step multiple comparison procedure 348 to find means significantly different from each other. All statistical tests were two-tailed (two-349 sided test). All statistical analyses were performed with the R i386 3.1.0 software. P-values were as follows: ^{NS}*P*-value>0.01 (not significant), *P<0.05, **P<0.01 and ***P<0.001. 350

- 351
- 352

353 Results

354 In-vitro AtLPAAT activities in E.coli C41 membranes

355 Supplementary Fig. S3 shows the alignment of the amino acid sequences of the AtLPAATs 2-356 5 from Arabidopsis with the sequence of the human LPAAT3 (Schmidt and Brown, 2009). The 357 boxes indicate conserved sequences which correspond to classical motifs of the LPAAT, 358 DHAPAT, and LPEAT acyltransferase families (Lewin et al., 1999), indicating that AtLPAATs 359 2-5 are clearly acyltransferases. In E.coli and yeast expression systems, AtLPAAT2 and 360 AtLPAAT3 showed lysophosphatidic acid acyltransferase activity but not for AtLPAAT4 and 361 AtLPAAT5 (Kim et al., 2005). Recently, Angkawijaya et al. (2019) showed lysophosphatidic 362 acid acyltransferase activity for AtLPAAT5 expressed in E.coli C41 cells but not for 363 AtLPAAT4 using this expression system. They identified AtLPAAT4 activity upon

overexpression in A. thaliana plants. However, it is still unknown whether these enzymes only 364 365 utilize LPA or whether they can also handle other lysophospholipids as substrates. To 366 investigate this, AtLPAAT2-5 were expressed in membranes of an E.coli C41 cell line 367 specifically designed for the production of membrane proteins (Miroux and Walker, 1996), and 368 activities were measured in vitro as described in the experimental section and according to 369 Testet et al. (2005). Purified membranes of E.coli C41 cells were incubated with LPA or the 370 (lysophosphatidylcholine, other lysophospholipids lysophosphatidylethanolamine, $ly sophosphatidy lg ly cerol, ly sophosphatidy linositol or ly sophosphatidy ls erine) and [^{14}C]ole ovl-linositol or ly s$ 371 372 CoA to measure either the formation of [¹⁴C]PA or that of the other potentially labeled phosphatidylethanolamine, 373 phospholipids (phosphatidylcholine, phsphatidylglycerol, 374 phosphatidylinositol or phosphatidylserine). Purified membranes from E. coli transformed with 375 a pET-15B empty vectorwere used as controls to measure *E.coli* endogenous activities. 376 Lysophospholipid acyltransferase activities were measured as nmol phospholipids formed.mg 377 proteins⁻¹.30 min⁻¹ and the values of the controls were normalized to 100 for each lysophospholipid, and the corresponding activities for AtLPAAT2-5 were calculated 378 379 accordingly for all the phospholipids.

- Fig. 1 shows the mean enzymatic activities of AtLPAAT2-5 from three independent experiments. Only LPA acyltransferase activities were detected for the AtLPAAT2-5 and no other lysophospholipid acyltransferase activity was observed, demonstrating that the four AtLPAATs are clearly strict lysophosphatidic acid acyltransferases. It was a very important point to determine in order to investigate the potential role of PA synthesized by these enzymes in the functionality of the secretory pathway.
- The activities of PA synthesis were calculated as 1.25 nmol PA.mg proteins⁻¹.30 min⁻¹ for AtLPAAT2, 1.08 nmol PA.mg proteins⁻¹.30 min⁻¹ for AtLPAAT3, 1.72 nmol PA.mg proteins⁻¹ 1.30 min⁻¹ for AtLPAAT4 and 1.75 nmol PA.mg proteins⁻¹.30 min⁻¹ for AtLPAAT5. This indicated similar levels of activities in *E. coli* C41 cell membranes, which does not necessarily reflect their level of activities *in planta*.
- 391

392 Subcellular localization of AtLPAATs in Arabidopsis

393 AtLPAAT2, 4 and 5 have previously been shown to be located in the ER (Kim et al., 2005; 394 Angkawijaya et al., 2019). However, the subcellular localization of the AtLPAAT3 has not 395 been determined. To investigate its membrane localization, roots of an Arabidopsis stable line 396 (5 days after germination) expressing both GFP-LPAAT3 and the ER marker mCherry-HDEL 397 were analysed using high-resolution confocal microscopy (Fig. 2). In contrast to AtLPAAT2, 398 4 and 5, GFP-AtLPAAT3 was not localized to the ER network but labelled round structures in 399 close proximity to the ER (Fig. 2A-F). We further investigated AtLPAAT3 localization using 400 a heterologous expression system in tobacco leaf epidermal cells in which the ER is more 401 dynamic and accessible than in root cells. Interestingly, here tagRFP-AtLPAAT3 and the ER-402 export sites (ERES) marker SAR1a-GFP colocalized (Fig. 2G-I). This indicates that AtLPAAT3 may localise to ERESalso in Arabidopsis roots. The AtLPAAT3 amino acid
sequence indeed features di-acidic motifs (D74-X-E76 and D293-X-E295) which could serve
as ER export signals and may explain the different localization compared to the other LPAATs.
Transient expression of GFP-LPAAT3 di-acidic mutants 1 (D74G/A75/E76G) and 2
(D293G/L294A/E295G) in Arabidopsis cotyledons together with the ER marker mCherryHDEL showed significant redistribution of both mutant AtLPAAT3 form to the ER network
(Fig. 3)indicating that these motifs may be functional.

410

411 AtLPAAT2, AtLPAAT4 and AtLPAAT5 do not cycle between the ER and the Golgi

412 As shown in Supplementary Fig. S3, AtLPAAT2, AtLPAAT4 and AtLPAAT5, but not 413 AtLPAAT3, feature potential di-lysine motifs at their C-termini (KXK, KXKXX and KXXXK

- 414 motifs, respectively). Although these motifs are not very typical di-lysine motifs, they may 415 indicate that the enzymes could potentially cycle between the ER and Golgi/post-ER
- 416 compartments. To investigate this possibility, we mutated the potential cycling motifs (GFP-
- 417 LPAAT2 K387A/K389A, GFP-LPAAT4 K374A/K376A and GFP-LPAAT5 K371A/K375A) and
- 418 expressed these mutant fluorescent constructs in Arabidopsis cotyledons together with the ER
- 419 marker mCherry-HDEL. As shown in Fig. 4, all the mutated versions of the AtLPAAT2,
- 420 AtLPAAT4, and AtLPAAT5 were still located in the ER and did not label any round structures
- 421 which could correspond to Golgi/post-ER compartments. Therefore, removing the C-terminal
- 422 di-lysine motifs did not affect protein localization, indicating that these enzymes do not cycle
- 423 between the ER and the Golgi or post-ER compartments, excluding any role of these proteins
- 424 at the level of the Golgi membranes.

425 Since AtLPAAT2 is most likely the main enzyme responsible for *de novo* synthesis of 426 phospholipids in the ER (Kim et al., 2005; Angkawijaya et al., 2017), AtLPAAT3, 4 and 5 were 427 investigated for involvement in the ER trafficking machinery and their importance for the 428 secretory pathway. Since AtLPAAT3-5 are expressed at similar levels in roots (Supplementary 429 Fig. S4), we chose primary root growth as a phenotypic readout for the functionality of the 430 secretory pathway.

431

432 Primary root growth phenotype and sensitivity to CI976 of *lpaat* mutants

433 Since an AtLPAAT2 KO mutant is lethal (Kim et al., 2005), we first looked at the primary root 434 growth of the single KO mutants lpaat3-1 (Angkawijaya et al., 2017), lpaat4-2 and lpaat5-2 435 (different alleles from those used by Angkawijaya et al., 2019) 5 days after germination. The 436 characterisation of *lpaat* insertion mutant lines and T-DNA positions is shown in 437 Supplementary Fig. S1. As shown in Fig. 5A, none of these mutants had a decrease in their 438 primary root growth which could be due to complementation by other AtLPAAT proteins 439 (representative images of seedlings are shown in Supplementary Fig. S5). Therefore, we 440 produced the three double mutants *lpaat3-1;lpaat4-2, lpaat3-1;lpaat5-2 and lpaat4-2;lpaat5-2* 441 and analysed the primary root length 5 days after germination (Fig. 5B). A significant but weak

442 root length phenotype was observed for all the double mutants (see also Supplementary Fig. S5 443 for representative images). As a consequence, we decided to produce the triple mutant *lpaat3*-444 1;lpaat4-2;lpaat5-2 and analysed again the primary root length in these mutant plants. 445 Surprisingly, primary growth was not inhibited but stimulated in the triple mutant 446 (Supplementary Fig. S6). Since the over-expression of AtLPAAT2 stimulates the de novo 447 synthesis of phospholipids, resulting in an enhanced primary root growth in phosphate-starved Arabidopsis seedlings (Angkawijaya et al., 2017), we wondered whether the expression of 448 449 AtLPAAT2 was increased in the triple mutant lpaat3-1;lpaat4-2;lpaat5-2. To check this 450 hypothesis, semi-quantitative RT-PCR and real-time RT-PCR analyses of AtLPAAT2 451 transcripts were performed in roots 5 days after germination (Supplementary Fig. S7). In 452 comparison to WT plants, the transcription of AtLPAAT2 was indeed increased in the triple 453 mutant lpaat3-1;lpaat4-2;lpaat5-2 but not in the double mutant lpaat4-2;lpaat5-2. This 454 indicates that AtLPAAT2 is over-expressed in the triple mutant lpaat3-1; lpaat4-2; lpaat5-2, and 455 could compensate for the absence of the three other AtLPAATs resulting in an increase in 456 primary root growth. The triple mutant also contained the same level of PA as WT plants 457 Fig.7A). We attempted an inducible RNAi approach to knock-down the expression of LPAAT2 458 in the triple mutant background to check whether this could restore the phenotype to the 459 *lpaat4/5* double mutant. Unfortunately, either the drop in the expression was too low to observe 460 a phenotype, or a lethal phenotype was observed, and no lines were obtained with intermediary 461 conditions for such an approach to be possible.

462 This raises the question how to investigate a putative role for AtLPAATs in the secretory 463 pathway with double mutants showing only a weak growth-inhibition phenotype and a triple 464 mutant showing even an increase in primary root growth? To address this, we took advantage 465 of our experience in combining genetic and biochemical approaches used in investigating the 466 role of sphingolipids in protein trafficking at the Golgi body (Melser et al., 2010; Wattelet-467 Boyer et al., 2016). CI976 is an inhibitor of LPAT enzyme activities that interferes with both 468 COPII- and COPI-dependent membrane traffic processes (Brown et al., 2008; Schmidt and 469 Brown, 2009; Yang et al., 2011). The effects of this inhibitor on primary root growth were 470 analysed in the double mutant *lpaat4-2;lpaat5-2* (with no increase in the transcription of 471 AtLPAAT2) and the triple mutant *lpaat3;lpaat4;lpaat5*. The double mutant *lpaat4-2;lpaat5-2* 472 was chosen for this study as both AtLPAAT4 and AtLPAAT5 localize to the ER and therefore 473 the inhibitor would affect the ERES-localised AtLPAAT3 . A small but statistically not 474 significant decrease in primary root growth was observed in WT plants. The triple mutant 475 lpaat3-1;lpaat4-2;lpaat5- was not affected by the inhibitor which was expected due to 476 overexpression of AtLPAAT2. A significant decrease in primary root growth was observed in 477 the double mutant lpaat4-2; lpaat5-2 treated with 10 µM of CI976 (Fig. 6; representative images 478 of seedlings shown in Supplementary Fig. S5). Higher concentrations of CI976 induced a 479 decrease in primary root growth in WT and mutant lines, justifying 10 µM as the functional 480 concentration of the inhibitor CI976 for these assays. We also checked whether the inhibitor

- 481 could enhance the transcription of *AtLPAAT2*. Here transcription was similarly increased in the
- 482 WT and in the double mutant *lpaat4-2;lpaat5-2* but to a much lesser extent than in the triple
- 483 mutant *lpaat3-1;lpaat4-2;lpaat5-2* (Supplementary Fig. S7). Therefore, treating the double
- 484 mutant *lpaat4-2;lpaat5-2* with 10 µM of CI976 permitted to establish primary root growth
- 485 phenotypic conditions and allowed investigating the efficiency of protein trafficking.
- 486

487 PA biosynthesis in Arabidopsis roots is only affected in the double mutant treated with 488 CI976

- 489 Since disturbing AtLPAAT activities led to a decrease in primary root growth, the amount of 490 neo-synthesized PA in Arabidopsis roots of the WT, the double mutant *lpaat4-2;lpaat5-2* and
- 491 the triple mutant *lpaat3-1;lpaat4-2;lpaat5-2* with or without CI976 treatment was quantified.
- 492 As shown in Fig. 7A (black columns), in the absence of CI976 the amount of neo-synthesized
- 493 PA in the double mutant *lpaat4-2;lpaat5-2* was reduced to 60% of that of the WT and the triple
- 494 mutant *lpaat3-1;lpaat4-2;lpaat5-2*. This was correlated only to a weak primary root growth
- 495 phenotype as mentioned before (Fig. 5). Treatment of the WT and the triple mutant *lpaat3*-
- 496 *1;lpaat4-2;lpaat5-2* with 10μM CI976 (Fig. 7A, red columns) decreased neo-synthesized PA
- 497 by 60%, reaching a level of neo-synthesized PA similar to that found in the double mutant
- 498 *lpaat4-2;lpaat5-2* (Fig. 7A, black column). Treating the *lpaat4;lpaat5* double mutant with 10
- 500 30-35% of WT and triple mutant *lpaat3-1;lpaat4-2;lpaat5-2* levels (Fig. 7A, black columns).
- 501 In these conditions, we observed a stronger primary root growth phenotype (Fig. 6). This may
- 502 indicate a concentration threshold for PA with no clear or very weak phenotype at
- 503 concentrations above this level and a clear primary root growth phenotype at concentrations
- 504 below (Fig. 6).
- 505 A small decrease in the amount of phospholipids was observed in the double mutant *lpat4*-
- 506 *1;lpat5-1* in the study of Angkawijaya et al. (2019). Therefore, an additional question was to 507 determine whether the primary root growth phenotype observed in the CI976-treated double
- 508 mutant *lpaat4-2;lpaat5-2* was only due to a decrease in the neo-synthesis of PA or whether the
- 509 neo-synthesis of the major phospholipids was also affected by the CI976 treatment and could
- 510 contribute to the primary root growth phenotype. For this, we measured the level of the neo-
- 511 synthesis of the two major phospholipids phosphatidylcholine (PC) and
- 512 phosphatidylethanolamine (PE) from [¹⁴C] acetate in WT roots, the double mutant *lpaat4*-
- 513 2; lpaat5-2 and the triple mutant lpaat3-1; lpaat4-2; lpaat5-2 treated with CI976. Beside the
- 514 significant decrease in labeled PA in the CI976-treated double mutant *lpaat4-2;lpaat5-2*
- 515 compared to the WT and the triple mutant *lpaat3-1;lpaat4-2;lpaat5-2* (Fig. 7A, red columns),
- 516 we did not observe any significant decrease in the amounts of labeled PC and PE (Fig. 7B).
- 517 This indicates that the synthesis capability of these major phospholipids is similar in the CI976-
- 518 treated double mutant *lpaat4-2;lpaat5-2* compared to the CI976-treated WT and triple mutant
- 519 *lpaat3-1;lpaat4-2;lpaat5-2*. Therefore, the primary root growth phenotype observed in the

- 520 CI976-treated double mutant lpaat4-2; lpaat5-2 (Fig. 6) can be mainly attributed to the
- 521 disturbance of PA metabolism unrelated to the neo-synthesis of the major phospholipids. By
- 522 combining genetic and pharmacological approaches, we determined the best conditions, i.e. the
- 523 *lpaat4;lpaat5* double mutant treated with 10 μM CI976, to investigate the potential role of these
- 524 LPAATs in the functioning of the secretory pathway.
- 525

526 Efficiency of protein secretion in the CI976 treated double mutant *lpaat4-2;lpaat5-2*

- 527 To investigate the efficiency of protein trafficking in the CI976 treated double mutant *lpaat4*-
- 528 *2;lpaat5-2*, we decided to look *in situ* at several plasma membrane markers (H⁺-ATPases, PIN2
- and PIP2,7) with already characterized trafficking to the plasma membrane (Melser et al., 2010;
- 530 Wattelet-Boyer et al., 2016; Hachez et al., 2014).
- 531 We first investigated the trafficking of H⁺-ATPases to the plasma membrane using an
- 532 immunocytochemistry approach. Supplementary Fig. S8 shows that the trafficking to the
- 533 plasma membrane of H⁺-ATPases was not affected in the CI976-treated double mutant *lpaat4*-
- 534 2; *lpaat5-2* compared to the WT. As a consequence, the trafficking to the plasma membrane of
- 535 H⁺-ATPases did not seem to require the LPAAT-dependent production of PA.
- 536 To investigate the impact of LPAATs on PIN2 trafficking to the plasma membrane, we crossed 537 the stable line pPIN2::PIN2–GFP (Xu and Scheres, 2005) with the WT and the double mutant
- *lpaat4-2;lpaat5-2* line. Roots were grown with or without 10 μM CI976. Upon CI976 treatment,
- 539 we observed an increase in intracellular PIN2 in the double mutant (Fig. 8), indicating that the
- 540 trafficking of PIN2 was disturbed. We also observed that the polarity index of PIN2 was 541 affected with a value of 2.1 for the double mutant compared to 4.3 for the WT (P-value < 0.001).
- 542 As a consequence, we also tested the effect on gravitropism but could not find a significant
- 543 effect which could be related to compensation by other factors.
- 544 As an approach to try identifying the compartment(s) where PIN2 was retained, we used an
- 545 immunostaining strategy using antibodies raised against various compartments of the secretory
 546 pathway, Echidna (ECH, marker of the SYP61 compartment, Gendre et al., 2011; Boutté et al.,
- 547 2013), SAR1 (an ERES marker, Hanton et al., 2007) and Membrine11 (Memb11, a *cis*-Golgi
- 548 marker, Marais et al., 2015). Immunostaining upon CI976 treatment of the double mutant
- 549 *lpaat4-2;lpaat5-2* expressing PIN2-GFP was performed (Supplementary Fig. S9A-J). A
- 550 significant co-localization was observed with ECH but not with SAR1 and Memb11
- 551 (Supplementary Fig. S9K) indicating that PIN2 was mainly retained at the level of the TGN.
- 552 We also carried out BFA treatment on both CI976-treated WT and *lpaat4;lpaat5* double mutant
- 553 plants, and observed the same BFA bodies (Supplementary Fig. S10) with a higher labeling in
- the case of the double mutant, and without other intracellular structures labeled. This confirmed
- that PIN2 was effectively present in TGN-derived structures in the *lpaat4;lpaat5* double mutant
- 556 treated by BFA.
- 557 To investigate the impact of AtLPAATs on PIP2;7 trafficking to the plasma membrane, the
- subcellular location of PIP2;7 in the WT, the double mutant *lpaat4; lpaat5* and the triple mutant
- 559 lpaat3-1;lpaat4-2;lpaat5-2 treated with 10 μM CI976 was analysed. For this, an

560 immunocytochemistry approach to reveal the in situ localization of PIP2;7 was used. Whole-561 mount immunolabelling of Arabidopsis roots was performed as described previously (Boutté 562 and Grebe, 2014). As shown in Fig. 9, a decrease in the mean fluorescence ratio of plasma 563 membrane to cytoplasm was observed for the double mutant *lpaat4-2;lpaat5-2* compared to the 564 WT and the triple mutant lpaat3-1; lpaat4-2; lpaat5-2 which corresponded to both a decrease in 565 PIP2;7 in the plasma membrane and an increase in the protein amount in the cytoplasm. It was 566 reported that PIP2;7 is highly upregulated under salt stress (Pou et al., 2016) which also 567 increases AtLPAAT4 gene transcription in roots (Supplementary Fig. S11). We first checked for 568 a sensitivity of the double mutant lpaat4-2; lpaat5-2 to salt stress. The double mutant lpaat4-2:lpaat5-2 was effectively more sensitive to salt stress than the WT and the triple mutant lpaat3-569 570 1;lpaat4-2;lpaat5-2 at 50 mM NaCl (Fig. 10). Higher salt concentrations up to 150 mM resulted 571 in stronger phenotypes but without significant differences between the WT plants and the 572 mutant lines. Interestingly, looking at the sensitivity of the different lines to salt stress in the 573 presence of CI976 (Fig. 10), we observed that the double mutant *lpaat4-2;lpaat5-2* became less sensitive in the presence of the drug, and reached the value observed with the WT and the triple 574 575 mutant lpaat3-1;lpaat4-2;lpaat5-2 (Fig. 10). This is most likely due to less PIP2;7 localizing 576 to the plasma membrane in double mutant lpaat4-2; lpaat5-2 root cells under CI976 treatment 577 than in WT and triple mutant lpaat3-1;lpaat4-2;lpaat5-2 (Fig. 9). Complementation of the 578 double mutant lpaat4-2; lpaat5-2 by overexpression of AtLPAAT4 (AtLPAAT4 relative 579 transcript abundance in the double mutant *lpaat4-2;lpaat5-2* is shown in the Supplementary 580 Fig. S12), resulted in a partial restoration of the localization of PIP2;7 at the plasma membrane (Fig.9). These results together with the fact that salt stress increases AtLPAAT4 gene 581 582 transcription in roots (Pou et al., 2016) suggest that PA formed by some LPAATs is involved 583 in both the correct functionality of the secretory pathway and lipid signaling processes.

584 The increase in the amounts of PIP2;7 and PIN2 in intracellular membranes was interpreted as 585 a consequence of a decrease in the trafficking of these proteins to the plasma membrane. 586 However, the same result could have been the consequence of an increase in their 587 internalization. To test whether this might have been the case, we measured endocytosis of the 588 marker FM4-64 in both WT and double mutant *lpaat4-2; lpaat5-2* lines treated with CI976. As 589 shown in the Supplementary Fig. S13, it was found that the internalization of the marker FM4-590 64 did not increase but was rather slightly decreased. As a consequence, it is unlikely that the 591 increase of PIP2;7 and PIN2 was due to an increase in endocytosis. Therefore, our results 592 strongly argue that a decrease in the trafficking efficiency of PIP2;7 and PIN2 to the plasma 593 membrane explains the increase of these protein amounts in intracellular compartments.

In addition, our results show that the disruption of the AtLPAAT activities affects to some extent the efficiency of the secretory pathway followed by PIP2;7 and PIN2 but not H⁺-ATPases, suggesting either different sensitivities to PA for their trafficking process or different requirements for it.

598

599 **Discussion**

600 PA is a central phospholipid metabolic intermediate and essential for the *de novo* synthesis of 601 membrane lipids. It is also a key second messenger and source of other signalling lipids for 602 numerous signalling pathways activated during stress conditions (Pokotylo et al., 2018; Yao 603 and Xue, 2018). PA, like phosphoinositide and phosphatidylserine, is involved in the 604 differentiation of various electrostatic compartments in the cell (Platre et al., 2018) and has been 605 shown to interact more or less specifically with numerous proteins involved in a large variety 606 of cell functions (Pokotylo et al., 2018). PA may also contribute to the function of the plant 607 secretory pathway through its physico-chemical properties (Furt and Moreau, 2009; Boutté and 608 Moreau, 2014). From a mechanical point of view, PA is a cone-shaped lipid favouring negative 609 membrane curvature, and its precursor lysophosphatidic acid has the tendency to favour 610 positive membrane curvature due to its inverted cone-shape. Both of these lipids can stimulate 611 physico-chemical mechanisms linked to membrane morphodynamics depending on the 612 membrane leaflet they are produced on (Boutté and Moreau, 2014). Yang et al. (2011) have 613 demonstrated the interplay between phospholipase A2 and LPAAT in regulating COPI vesicles 614 versus tubule formation from Golgi membranes in mammalian reconstituted systems. More 615 recently, lysophospholipids have been shown to be critical in the formation of COPII vesicles 616 by inducing the required membrane deformation (Melero et al., 2018). Lysophospholipids are 617 also involved in PIN intracellular trafficking (Lee et al., 2010) as well as pollen germination 618 and development (Kim et al., 2011). In addition to enzymes such as phospholipases which have 619 been shown to be involved in membrane trafficking in plant cells (Li et al., 2007; Lee et al., 620 2010; Li et al., 2011; Kim et al., 2011), acyltransferases which are potentially involved in lipid 621 metabolism in the Land's cycle may have an impact on membrane morphodynamics in plant 622 cells (Boutté and Moreau, 2014).

- 623 Interestingly, Pleskot et al. (2012) have shown different roles for PA produced by either 624 phospholipases D or diacylglycerol kinases in pollen tube growth. Their results strongly suggest 625 that several pools of PA may exist according to the biosynthetic pathway followed by PA and 626 the cellular process concerned. Similarly, different LPAATs could produce different pools of 627 PA linked to various cellular processes (*de novo* lipid synthesis for membrane formation, lipid 628 synthesis for stress-related responses, lipid synthesis for mechanical processes in membrane 629 trafficking etc...). The aim of this study was therefore to investigate the possibility that some 630 LPAATs might have a role in the secretory pathway through PA neo-synthesis not related to 631 the bulk neo-synthesis of membrane phospholipids.
- 632 First, we determined that the four extra-plastidial AtLPAAT proteins (AtLPAAT2-5) are strict
- 633 LPA acyltransferases which was a prerequisite for such a study. Then, we confirmed that 634 AtLPAAT2, 4 and 5 are ER-localised and that they do not cycle between the ER and Golgi
- bodies. The localization of AtLPAAT3 was unknown but we showed that AtLPAAT3 is located
- 636 in round structures corresponding to ERES.

637 Since AtLPAAT2 is likely the primary enzyme for the *de novo* synthesis of PA sustaining the 638 overall de novo synthesis of phospholipids in the ER (Angkawijaya et al., 2017), we focused 639 our attention to AtLPAAT3-5. Given the results obtained on root growth phenotypes with the 640 single, double and triple mutants, the strategy was to create a combined genetic and biochemical 641 approach as already managed successfully for the study of sphingolipids in the plant secretory 642 pathway (Melser et al., 2010; Wattelet-Boyer et al., 2016). Treating the double mutant *lpaat4*-643 2; lpaat5-2 with the LPAT inhibitor CI976 (Brown et al., 2008; Schmidt and Brown, 2009; Yang 644 et al., 2011) defined experimental conditions in which a significant decrease in neo-synthesized 645 PA without any decrease in the neo-synthesis of the major phospholipids PC and PE was 646 obtained.

647 This suggests that under these experimental conditions other types of LPAT (LPCAT and 648 synthesize new PC and PE from lysophosphatidylcholine and LPEAT which 649 lysophosphatidylethanolamine), that are present in all lines (double mutant *lpaat4-2;lpaat5-2* 650 as well as the WT and the triple mutant *lpaat3-1;lpaat4-2;lpaat5-2*), are not greatly affected. 651 The effect of the drug was therefore likely related to its action on the LPAATs. Since the major 652 phospholipids PC and PE were not decreased, it is likely that the amount of PA synthesized was 653 still sufficient for sustaining phospholipid synthesis but not sufficient for its role related to the 654 trafficking of PIP2;7 and PIN2. Therefore, the effects observed on primary root growth and 655 protein trafficking could likely be attributed to the inhibition of "specific" pool(s) of PA and 656 that a threshold concentration of PA was required for the trafficking of some proteins.

657 The fact that PIN2 was partially retained at the TGN but not significantly at the ERES is 658 intriguing compared to the potential localization of AtLPAAT3. A first possibility could be that 659 some of these AtLPAATs are present in the TGN but at a concentration that was not 660 detected/detectable in our approach. In addition, AtLPAAT3 localization seemed to depend on 661 active ER export motifs supporting its presence in a post-ER compartment. However, none of 662 the AtLPAAT2-5 have so far been identified in Golgi body/TGN proteomes (Drakakaki et al., 663 2012; Parsons et al., 2012; Groen et al., 2014; Heard et al., 2015). Another possibility would be 664 that ER-TGN connections may support the feeding of PA to the TGN but no clear relationship 665 has been demonstrated between these two compartments in plant cells as shown in mammalian 666 cells (Mesmin et al., 2017). In addition, Li and Xue (2007) have shown that PA (produced by 667 PLD ζ 2) is required for the normal cycling of PIN2-containing vesicles and stimulates the 668 gravitropic response. In our conditions, the gravitopic response was not significantly affected. 669 Moreover, Li and Xue (2007) have observed that, in $pld\zeta^2$ and PLD ζ^2 -deficient plants, 670 endocytosis in root cells was strongly decreased, leading to smaller BFA compartments. This 671 was likely due to a decrease in the formation of PA at the plasma membrane. In our case, 672 endocytosis was not significantly reduced, and therefore, BFA compartments could still be

673

alimented by both reduced exocytosis at the TGN and endocytosis. Therefore, the effects of PA 674 decrease did not have the same consequences when comparing PLDZ2 -deficient plants and the

675 CI976-treated *lpaat4; lpaat5* double mutant plants, suggesting that different PA pools are used. 676 Since PIN2 labeling was high in the *lpaat4; lpaat5* double mutant treated with CI976 and BFA 677 (Supplementary Fig. S10) with similar BFA bodies as compared to the WT, it is likely that PA 678 decrease through inhibition of ER LPAAT activities resulted in a disturbance of ER-Golgi-679 TGN trafficking of PIN2 to the plasma membrane, and we do not exclude that PIN2 recycling 680 back to the plasma membrane could have also been affected. As shown in Fig. 9, the potential 681 impact of LPAATs on PIP2;7 trafficking to the plasma membrane was evidenced through both 682 a decrease in PIP2;7 on the plasma membrane and its increase in the cytoplasm. With PIP2;7 683 being highly regulated under salt stress (Pou et al., 2016) and AtLPAAT4 gene transcription 684 being enhanced in roots under these conditions (Supplementary Fig. S11), we could perform 685 critical experiments supporting our conclusion that PIP2;7 trafficking to the plasma membrane 686 is linked to LPAAT activities: (i) the double mutant lpaat4-2;lpaat5-2 was more sensitive to 687 salt stress than the WT and the triple mutant *lpaat3-1;lpaat4-2;lpaat5-2* (Fig. 10), (ii) the double 688 mutant *lpaat4-2; lpaat5-2* became less sensitive to salt stress in the presence of CI976 (Fig. 10), 689 (iii) PIP2;7 localized less to the plasma membrane of double mutant *lpaat4-2; lpaat5-2* root cells 690 under CI976 treatment (Fig. 9), (iv) complementation of the CI976-treated double mutant 691 *lpaat4-2; lpaat5-2* by overexpression of AtLPAAT4 partially restored the localization of PIP2;7 692 at the plasma membrane (Fig.9). Therefore, we were able to correlate the efficiency of PIP2;7 693 trafficking to the plasma membrane with the functionality of LPAATs. By using a PA-specific 694 optogenetic biosensor which determines the precise spatio-temporal dynamics of PA at the 695 plasma membrane, Li et al. (2019) showed that salt stress triggers an accumulation of PA via 696 the activity of a phospholipase $D\alpha 1$ (PLD $\alpha 1$). Investigating a pld $\alpha 1$ mutant indicated that PA 697 signalling integrates with cellular pH dynamics to mediate plant responses to salt stress (Li et 698 al., 2019). Therefore, it is likely that PA is involved in both signalling and mechanistic 699 processes in regulating various fundamental biological functions in plants.

700 Unfortunately, because the immunostaining strategy was not possible with PIP2;7 (primary 701 antibodies being from rabbit as those used for the markers), we could not address the question 702 of the nature of the compartments where PIP2;7 was retained. Hachez et al. (2014) found that 703 PIP2;7 interacts with the SNAREs SYP61 and SYP121 to reach the plasma membrane, and we 704 determined that the sorting of PIN2 at the TGN occurs at a SYP61 TGN sub-domain (Wattelet-705 Boyer et al., 2016) where PIN2 was partially retained. We may hypothesize that PIP2;7 was to 706 some extent retained in the same compartment as PIN2. In addition, it has been shown that 707 under salt stress, loss of phospholipase D (PLD) function impairs auxin redistribution and this 708 resulted in decreased primary root growth (Wang et al., 2019). Therefore, these plasma 709 membrane proteins may have similar dependencies on some aspects of the trafficking 710 machinery, and may also be similarly dependent on a specific formation of PA. Moreover, the 711 data of Wang et al. (2019) indicate a role of PA in coupling extracellular salt signaling to PA-712 regulated PINOID kinase dependent PIN2 phosphorylation and polar auxin transport. In 713 conclusion, PA produced by different enzymes (PLDs, LPAATs...) at different intracellular aspects of protein trafficking, dynamics and lipid signaling functions. The recent implication of

- AtLPAAT4 and AtLPAAT5 in nitrogen-starvation response (Angkawijaya et al., 2019) also illustrates how the same lipid metabolizing enzymes can be engaged in multiple different
- 718 cellular functions (Pokotylo et al., 2018).
- 719 Phospholipases and therefore lysophospholipids are involved in membrane trafficking in roots 720 and pollen (Lee et al., 2010; Kim et al., 2011). and AtLPAATs have a role in the trafficking of 721 PIP2;7 and PIN2 and primary root growth. Hence an interplay between phospholipases and 722 LPAATs is likely to occur in plant cells as already demonstrated in mammalian cells (Yang et 723 al., 2011). Pagliuso et al. (2016) identified a key component (CtBP1-S/BARS) of a protein 724 complex that is required for fission of several endomembranes in mammalian cells which binds 725 to and activates a trans-Golgi LPAAT protein. This interaction is essential for fission of 726 transport vesicles. Interconversion of LPA and PA probably facilitates the fission process either 727 directly or indirectly (through binding of protein(s) of the machinery to PA). In addition, the 728 production of PA by phospholipase(s) D can also be critical for membrane trafficking in plant 729 cells (Pleskot et al., 2012) as evidenced in mammalian cells for vesicle fission (Yang et al., 730 2011), suggesting that PA produced by different enzymes (phospholipase D, LPAATs) can be 731 involved at different steps or pathways. We must also consider another potential complexity 732 since some enzymes (cytosolic or membranous) may be active both as phospholipase
- 733 (producing lysophospholipids from phospholipids) and acyltransferase (to reform a
- phospholipid) in order to contribute to membrane deformation/re-arrangements involved in the
- 735 fusion/fission processes via lipid remodeling (Ghosh et al., 2009; Jasieniecka-Gazarkiewicz et
- 736 al., 2016).
- 737 In addition, since the trafficking of H^+ -ATPases to the plasma membrane was not affected, this
- 738 suggests either different sensitivities of the trafficking process of different proteins to PA
- 739 concentration or different molecular requirements for their trafficking. Such a difference could
- 740 be related to what has been-observed in the role of PA in pollen tube growth (Pleskot et al.,
- 741 2012). Hence several different mechanisms/pathways need to be considered in the complexity
- 742 of the regulation of protein trafficking.
- Finally, since other lipid families (sterols, sphingolipids...) are also critical in the functioning
- and regulation of the plant secretory pathway (Laloi et al., 2007; Men et al., 2008; Boutté et al.,
- 745 2010; Melser et al., 2010; Markham et al., 2011; Wattelet-Boyer et al., 2016), we must consider
- that a huge interplay between lipids, lipid-synthesizing/modifying enzymes and lipid-binding
- 747 proteins is at work to govern and regulate the plant secretory pathway.
- 748 In conclusion, we have designed an experimental set up which allowed investigating the
- 749 potential involvement of AtLPAATs and PA in the functioning of the plant root secretory
- pathway. The double mutant *lpaat4-2;lpaat5-2* treated with the LPAT inhibitor CI976 was
- significantly affected in primary root growth and the trafficking of PIP2;7 and PIN2 was found
- 752 to be disturbed. Our results support a critical PA concentration threshold involved in the
- 753 trafficking of some proteins through the plant root secretory pathway. Since phospholipases

- and therefore lysophospholipids are involved in protein membrane trafficking in roots (Lee et
- al., 2010), the implication of AtLPAATs in the trafficking of PIP2;7 and PIN2 in roots also
- suggests an interplay between phospholipases and LPAATs in root cells as shown in
- 757 mammalian cells (Yang et al., 2011).
- 758
- 759 Supplementary data
- 760 Supplementary Table 1. Primers used in the study
- 761 Supplementary Fig. S1 Caracterization of *lpaat* insertion mutant lines and T-DNA positions
- 762 Supplementary Fig. S2 AtLPAAT3, AtLPAAT4 and AtLPAAT5 expression levels in the
- 763 different mutant genetic backgrounds
- 764 Supplementary Fig. S3
- Alignment of the Human LPAAT3 with the AtLPAATs 2-5 from Arabidopsis
- 766 Supplementary Fig. S4 *AtLPAAT3*, *AtLPAAT4* and *AtLPAAT5* are expressed at similar levels
- 767 in *Arabidospis* roots
- 768 **Supplementary Fig. S5** Images of seedlings from the different lines
- 769 **Supplementary Fig. S6** Primary root length of the triple mutant *lpaat3-1;lpaat4-2;lpaat5-2* is
- 770 stimulated
- 771 Supplementary Fig. S7 *AtLPAAT2* expression level in primary roots
- 772 Supplementary Fig. S8 Trafficking of PM H⁺ATPases is not altered upon CI976 treatment
- 773 Supplementary Fig. S9 PIN2-GFP accumulates in punctuated structures that colocalise with a
- TGN marker in CI976-treated *lpaat4-2,lpaat5-2* mutant
- 775 Supplementary Fig. S10 Effect of BFA treatment on CI976-treated seedlings
- 776 Supplementary Fig. S11 Salt stress (NaCl 150 mM) impact on LPAAT4 gene expression in
- 777 roots
- 778 Supplementary Fig. S12 Expression of AtLPAAT4 in 5-days old Arabidopsis roots
- 779 Supplementary Fig. S13 Endocytosis is not accelerated in the double mutant *lpaat4-2;lpaat5-*
- 780 2 line treated with 10µM of CI-976
- 781

782 Acknowledgements

- This work was supported by the CNRS (Centre National de la Recherche Scientifique) and the
 University of Bordeaux. We thank the Bordeaux Imaging Center, part of the National
 Infrastructure France-BioImaging supported by the French National Research Agency (ANR-
- 785 Infrastructure France-BioImaging supported by the French National Research Agency 786 10-INBS-04).
 - 787

788 Author contributions

- 789 V.W-B., M.L.G., Y.B., J-J.B and P.M. conceived the different parts of the study; V.W-B.
- performed most of the experiments; M.L.G. performed the *in vitro* LPAAT activities in *E.coli*;
- 791 F.D-D. and L.M-P. performed the assays on the effect of CI976 on phospholipid *de-novo*
- synthesis; V.K. performed the colocalization of LPAAT3 with SAR1. V.W-B., Y.B. and P.M.
- analyzed the microscopy data; V.W-B., J-J.B and P.M. analyzed all the data and P.M.

- supervised the experiments; P.M. wrote the article with contributions of all the authors; P.M. is
- the author responsible for contact and ensures communication.
- 796

797 Data availability statement

- 798 The data supporting the findings of this study are available within the paper and within its
- supplementary data.

References

Angkawijaya AE, Nguyen VC, Nakamura Y. 2017. Enhanced primary root growth in phosphate-starved Arabidopsis by stimulating de novo phospholipid biosynthesis through the over-expression of LYSOPHOSPHATIDIC ACID ACYLTRANSFERASE 2 (LPAT2). Plant, Cell & Environment 40, 1807-1818

Angkawijaya AE, Nguyen VC, Nakamura Y. 2019. LYSOPHOSPHATIDIC ACID ACYLTRANSFERASES 4 and 5 are involved in glycerolipid metabolism and nitrogen starvation response in Arabidopsis. New Phytologist **224**, 336-351

Ayciriex S, Le Guédard M, Camougrand N, Velours G, Schoene M, Leone S, Wattelet-Boyer V, Dupuy JW, Shevchenko A, Schmitter JM, Lessire R, Bessoule JJ, Testet E. 2012. YPR139c/LOA1 encodes a novel lysophosphatidic acid acyltransferase associated with lipid droplets and involved in TAG homeostasis. Molecular Biology of the Cell **23**, 233-246

Boutté Y, Frescatada-Rosa M, Men S, Chow CM, Ebine K, Gustavsson A, Johansson L, Ueda T, Moore I, Jürgens G, Grebe M. 2010. Endocytosis restricts Arabidopsis KNOLLE syntaxin to the cell division plane during late cytokinesis. The EMBO Journal **29**, 546-558

Boutté Y, Grebe M. 2014. Immunocytochemical fluorescent in situ visualization of proteins in Arabidopsis. Methods in Molecular Biology **1062**, 453-472

Boutté Y, Jonsson K, McFarlane HE, Johnson E, Gendre D, Swarup R, Friml J, Samuels L, Robert S, Bhalerao RP. 2013. ECHIDNA-mediated post-Golgi trafficking of auxin carriers for differential cell elongation. Proc Natl Acad Sci U S A 110, 16259-6264

Boutté Y, Moreau P. 2014. Modulation of endomembranes morphodynamics in the secretory/retrograde pathways depends on lipid diversity. Curr Op Plant Biol: **22**, 22-29

Brown WJ, Plutner H, Drecktrah D, Judson BL, Balch WE. 2008. The Lysophospholipid Acyltransferase Antagonist CI976 Inhibits a Late Step in COPII Vesicle Budding. Traffic **9**, 786-797

Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR. 2005. Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis. Plant Physiology 139, 5-17

Drakakaki G, van de Ven W, Pan S, Miao Y, Wang J, Keinath NF, Weatherly B, Jiang L, Schumacher K, Hicks G, Raikhel N. 2012. Isolation and proteomic analysis of the SYP61 compartment reveal its role in exocytic trafficking in Arabidopsis. Cell Research 22, 413-424

Furt F, Moreau P. 2009. Importance of lipid metabolism for intracellular and mitochondrial membrane fusion/fission processes. Int J Biochem Cell Biol **41**, 1828-1836

Gendre D, Oh J, Boutté Y, Best JG, Samuels L, Nilsson R, Uemura T, Marchant A, Bennett MJ, Grebe M, Bhalerao RP. (2011). Conserved *Arabidopsis* ECHIDNA protein mediates *trans*-Golginetwork trafficking and cell elongation. Proc Natl Acad Sci U S A **19** 8048-8053

Ghosh AK, Chauhan N, Rajakumari S, Daum G, Rajasekharan R. 2009. At4g24160, a Soluble Acyl-Coenzyme A-Dependent Lysophosphatidic Acid Acyltransferase. Plant Physiology **151**, 869-881

Groen AJ, Sancho-Andrés G, Breckels LM, Gatto L, Aniento F, Lilley KS. 2014. Identification of trans-golgi network proteins in Arabidopsis thaliana root tissue. Journal of Proteome Research 13, 763-776

Ha KD, Clarke BA, Brown WJ. 2012. Regulation of the Golgi complex by phospholipid remodeling enzymes. Biochimica Biophysica Acta 1821, 1078-1088

Hachez C, Laloux T, Reinhardt H, Cavez D, Degand H, Grefen C, De Rycke R, Inzé D, Blatt MR, Russinova E, Chaumont F. 2014. Arabidopsis SNAREs SYP61 and SYP121 coordinate the trafficking of plasma membrane aquaporin PIP2;7 to modulate the cell membrane water permeability. The Plant Cell **26**, 3132-3147

Hanton SL, Chatre L, Renna L, Matheson LA, Brandizzi F. 2007. De novo formation of plant endoplasmic reticulum export sites is membrane cargo induced and signal mediated. Plant Physiology 143, 1640-1650

Heard W, Sklenář J, Tomé DF, Robatzek S, Jones AM. 2015. Identification of Regulatory and Cargo Proteins of Endosomal and Secretory Pathways in Arabidopsis thaliana by Proteomic Dissection. Molecular Cell Proteomics 14, 1796-1813

Jasieniecka-Gazarkiewicz K, Demski K, Lager I, Stymne S, Banaś A. 2016. Possible Role of Different Yeast and Plant Lysophospholipid:Acyl-CoA Acyltransferases (LPLATs) in Acyl Remodelling of Phospholipids. Lipids **51**, 15-23

Kim HU, Huang AH. 2004. Plastid lysophosphatidyl acyltransferase is essential for embryo development in Arabidopsis. Plant Physiology **134**, 1206-1216

Kim HJ, Ok SH, Bahn SC, Jang J, Oh SA, Park SK, Twell D, Ryu SB, Shin JS. 2011. Endoplasmic reticulum- and Golgi-localized phospholipase A2 plays critical roles in Arabidopsis pollen development and germination. The Plant Cell **23**, 94-110 **Kim HU, Li Y, Huang AHC.** 2005. Ubiquitous and Endoplasmic Reticulum-Located Lysophosphatidyl Acyltransferase, LPAT2, Is Essential for Female but Not Male Gametophyte Development in Arabidopsis. The Plant Cell **17**, 1073-1089

Körbes AP, Kulcheski FR, Margis R, Margis-Pinheiro M, Turchetto-Zolet AC. 2016. Molecular evolution of the lysophosphatidic acid acyltransferase (LPAAT) gene family. Molecular Phylogenetics and Evolution 96, 55-69

Laloi M, Perret AM, Chatre L, Melser S, Cantrel C, Vaultier MN, Zachowski A, Bathany K, Schmitter JM, Vallet M, Lessire R, Hartmann MA, Moreau P. 2007. Insights into the role of specific lipids in the formation and delivery of lipid microdomains to the plasma membrane of plant cells. Plant Physiology 143, 461-472

Lee OR, Kim SJ, Kim HJ, Hong JK, Ryu SB, Lee SH, Ganguly A, Cho HT. 2010. Phospholipase A₂ is required for PIN-FORMED protein trafficking to the plasma membrane in the Arabidopsis root. The Plant Cell **22**, 1812-1825.

Lewin TM, Wang P,Coleman RA. 1999. Analysis of Amino Acid Motifs Diagnostic for the sn-Glycerol-3-phosphate Acyltransferase Reaction. Biochemistry **38**, 5764-5771

Li G, Xue HW. 2007. Arabidopsis PLDζ2 regulates vesicle trafficking and is required for auxin response. The Plant Cell **19**, 281-295

Li M, Bahn SC, Guo L, Musgrave W, Berg H, Welti R, Wang X. 2011. Patatin-related phospholipase pPLAIIIβ-induced changes in lipid metabolism alter cellulose content and cell elongation in Arabidopsis. The Plant Cell 23, 1107-1123

Li W, Song T, Wallrad L, Kudla J, Wang X, Zhang W. 2019. Tissue-specific accumulation of pH-sensing phosphatidic acid determines plant stress tolerance. Nature Plants 5, 1012-1021

Marais C, Boyer-Wattelet V, Bouyssou G, Hocquellet A, Dupuy JW, Batailler B, Brocard L, Boutté Y, Maneta-Peyret L, Moreau P. 2015. The Qb-SNARE Memb11 interacts specifically with Arf1 in the Golgi apparatus of *Arabidopsis thaliana*. Journal of Experimental Botany **66**, 6665-6678

Markham JE, Molino D, Gissot L, Bellec Y, Hématy K, Marion J, Belcram K, Palauqui JC, Satiat-Jeunemaître B, Faure JD. 2011. Sphingolipids containing very-long-chain fatty acids define a secretory pathway for specific polar plasma membrane protein targeting in Arabidopsis. The Plant Cell 23, 2362-2378

Melero A, Chiaruttini N, Karashima T, Riezman I, Funato K, Barlowe C, Riezman H, Roux A. 2018. Lysophospholipids Facilitate COPII Vesicle Formation. Current Biology 28, 1950-1958 Melser S, Batailler B, Peypelut M, Poujol C, Bellec Y, Wattelet-Boyer V, Maneta-Peyret L, Faure JD, Moreau P. 2010. Glucosylceramide Biosynthesis Is Involved in Golgi Morphology and Protein Secretion in Plant Cells. Traffic 11, 479-490

Melser S, Molino D, Batailler B, Peypelut M, Laloi M, Wattelet-Boyer V, Bellec Y, Faure JD, Moreau P. 2011. Links between lipid homeostasis, organelle morphodynamics and protein trafficking in eukaryotic and plant secretory pathways. Plant Cell Reports **30**, 177-193

Men S, Boutté Y, Ikeda Y, Li X, Palme K, Stierhof YD, Hartmann MA, Moritz T, Grebe M. 2008. Sterol-dependent endocytosis mediates post-cytokinetic acquisition of PIN2 auxin efflux carrier polarity. Nature Cell Biology 10, 237-244

Mesmin B, Bigay J, Polidori J, Jamecna D, Lacas-Gervais S, Antonny B. 2017. Sterol transfer, PI4P consumption, and control of membrane lipid order by endogenous OSBP. The EMBO Journal **36**, 3156-3174

Miroux B, Walker JE. 1996. Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. Journal of Molecular Biology **260**, 289-298

Pagliuso A, Valentel C, Giordano LL, Filograna A, Li G, Circolo D, Turacchio G, Marzullo VM, Mandrich L, Zhukovsky MA, Formiggini F, Polishchuk RS, Corda D, Luini A. 2016. Golgi membrane fission requires the CtBP1-S/BARS-induced activation of lysophosphatidic acid acyltransferase δ. Nature Communications 7, 12148

Parsons HT, Christiansen K, Knierim B, Carroll A, Ito J, Batth TS, Smith-Moritz AM, Morrison S, McInerney P, Hadi MZ, Auer M, Mukhopadhyay A, Petzold CJ, Scheller HV, Loqué D, Heazlewood JL. 2012. Isolation and proteomic characterization of the Arabidopsis Golgi defines functional and novel components involved in plant cell wall biosynthesis. Plant Physiology 159, 12-26

Pascal S, Bernard A, Sorel M, Pervent M, Vile D, Haslam RP, Napier JA, Lessire R, Domergue F, Joubès J. 2013. The *Arabidopsis Cer26* Mutant, like the *Cer2* Mutant, Is Specifically Affected in the Very Long Chain Fatty Acid Elongation Process. The Plant Journal 73, 733-746.

Platre MP, Noack LC, Doumane M, Bayle V, Simon MLA, Maneta-Peyret L, Fouillen L, Stanislas T, Armengot L, Pejchar P, Caillaud MC, Potocký M, Čopič A, Moreau P, Jaillais Y. 2018. A combinatorial lipid code shapes the electrostatic landscape of plant endomembranes. Developmental Cell **45**, 465-480

Pleskot R, Pejchar P, Bezvoda R, Lichtscheidl IK, Wolters-Arts M, Marc J, Zárský V, Potocký M. 2012. Turnover of Phosphatidic Acid through Distinct Signaling Pathways Affects Multiple Aspects of Pollen Tube Growth in Tobacco. Frontiers in Plant Science 3, 54

Pokotylo I, Kravets V, Martinec J, Ruelland E. 2018. The phosphatidic acid paradox: Too many actions for one molecule class? Lessons from plants. Progress in Lipid Research **71**, 43-53

Pou A, Jeanguenin L, Milhiet T, Batoko H, Chaumont F, Hachez C. 2016. Salinitymediated transcriptional and post-translational regulation of the Arabidopsis aquaporin PIP2;7. Plant Molecular Biology **92**, 731-744

Schmidt JA, Brown WJ. 2009. Lysophosphatidic Acid Acyltransferase 3 Regulates Golgi Complex Structure and Function. Journal of Cell Biology **186**, 211-218

Testet E, Laroche-Traineau J, Noubhani A, Coulon D, Bunoust O, Camougrand N, Manon S, Lessire R, Bessoule JJ. 2005. Ypr140wp, 'the yeast tafazzin', displays a mitochondrial lysophosphatidylcholine (lyso-PC) acyltransferase activity related to triacylglycerol and mitochondrial lipid synthesis. Biochemical Journal **387**, 617-626

Toufighi K, Brady SM, Austin R, Ly E, Provart NJ. 2005. The Botany Array Resource: e-Northerns, Expression Angling, and promoter analyses. The Plant Journal 43, 153-163

Wang P, Shen L, Guo J, Jing W, Qu Y, Li W, Bi R, Xuan W, Zhang Q, Zhang W. 2019. Phosphatidic Acid Directly Regulates PINOID-Dependent Phosphorylation and Activation of the PIN-FORMED2 Auxin Efflux Transporter in Response to Salt Stress. The Plant Cell **31**, 250-271

Wang P, Wang Z, Dou Y, Zhang X, Wang M, Tian X. 2013. Genome-wide identification and analysis of membrane-bound O-acyltransferase (MBOAT) gene family in plants. Planta 238, 907-922

Wattelet-Boyer V, Brocard B, Jonsson K, Esnay N, Joubès J, Domergue F, Mongrand S, Raikhel N, Bhalerao RP, Moreau P, Boutté Y. 2016. Enrichment of Hydroxylated C24- and C26-Acyl-Chain Sphingolipids Mediates PIN2 Apical Sorting at Trans-Golgi Network Subdomains. Nature Communications 7, 12788

Xu J, Scheres B. 2005. Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR 1 function in epidermal cell polarity. The Plant Cell **17**, 525-536

Yang JS, Gas H, Lee SY, Mironov A, Zhang L, beznoussenko GV, Valente C, Turacchio G, Bonsra AN, Du G, Baldanzi G, Graziani A, Bourgoin S, Frohman MA, Luini A, Hsu VW. 2008. A role for phosphatidic acid in COPI vesicle fission yields insights into Golgi maintenance. Nature Cell Biology 10, 1146-1153

Yang JS, Valente C, Polishchuk RS, Turacchio G, Layre E, Moody DB, Leslie CC, Gelb MH, Brown WJ, Corda D, Luini A, Hsu VW. 2011. COPI acts in both vesicular and tubular transport. Nature Cell Biology 13, 996-1003

Yao HY, Xue HW. 2018. Phosphatidic Acid Plays Key Roles in Regulating Plant Development and Stress Responses. Journal of Integrative Plant Biology **60**, 851-863

Yu B, Wakao S, Fan J, Benning C. 2004. Loss of plastidic lysophosphatidic acid acyltransferase causes embryo-lethality in *Arabidopsis*. Plant and Cell Physiology 45, 503-510

Figure legends

Fig. 1 In-vitro AtLPAAT2-5 LPA acyltransferase activities in E.coli C41 membranes

AtLPAAT2-5 were produced in membranes of *E. coli* C41 cell line that was specifically designed for the production of membrane proteins (Miroux and Walker, 1996), and activities were measured *in vitro* as described in the experimental section and according to Testet et al. (2005). Activities were tested with lysophosphatidic acid (LPA) and the other lysophospholipids (LPL: either lysophosphatidylcholine, lysophosphatidylethanolamine, lysophsphatidylglycerol, lysophosphatidylinositol or lysophosphatidylserine). Lysophospholipid acyltransferase activities were measured as nmol phospholipids formed/mg proteins/30min and the values of the controls (corresponding to purified membranes from *E.coli* transformed with pET-15B empty vector) were normalized to 100 for each lysophospholipid and the corresponding activities for AtLPAAT2-5 were calculated accordingly for all the phospholipids. Only LPA acyltransferase activities were detected for the AtLPAAT2-5 and no other lysophospholipid acyltransferases.

Fig. 2 Subcellular localization of AtLPAAT3 in various plant models

Roots, 5 days after germination, of an Arabidopsis stable line expressing both GFP-LPAAT3 (a,d) and the ER marker mCherry-HDEL (b,e). AtLPAAT3 was found in punctate structures in close proximity to the ER (c,f).

A transient expression of tagRFP-LPAAT3 (g) and the ERES marker SAR1a-GFP (h)in *Nicotiana tabacum* leaf epidermis cells suggested that the punctate structures observed for AtLPAAT3 in roots could potentially correspond to ERES (i).Scale bars 1µm.

Fig. 3 Subcellular localization of AtLPAAT3 depends on active ER export motifs

Transient expression of LPAAT3 GFP fused native forms (a), GFP-LPAAT3 di-acidic mutant 1 (d), GFP-LPAAT3 di-acidic mutant 2 (g) and the ER marker mCherry-HDEL (b,e,h) in Arabidopsis cotyledons. The mutation of each diacidic motif induces redistribution of LPAAT3 into the ER network (f,i). Scale bars 5μ m.

Fig. 4 AtLPAAT2, AtLPAAT4 and AtLPAAT5 do not cycle between the ER and the Golgi

Transient expression of GFP-LPAAT2 diK mutant (b), GFP-LPAAT4 diK mutant (f), GFP-LPAAT5 diK mutant (j) and the ER marker mCherry-HDEL (c,g,k) in Arabidopsis cotyledons. Results are compared to transient co-expression of GFP-fused native forms of AtLPAAT2 (a), AtLPAAT4 (e) and AtLPAAT5 (i) with the ER marker mCherry-HDEL.

Mutations of AtLPAAT2, AtLPAAT4 and AtLPAAT5 diK motifs do not impact their location to the ER network (d,h,l). Scale bars 5µm.

Fig. 5 Primary root growth of *lpaat* KO mutants (A) is not impaired and that of *lpaat* KO double mutants (B) is significantly but only slightly impaired

Primary root length was measured 5 days after germination. Data are mean values \pm SE, n = 40 (*lpaat* KO mutants), n = 80 (*lpaat* KO double mutants). Statistics were done by Kruskal-Wallis rank sum test, NS = not significant, **P-value <0.01, ***P-value < 0.001.

Fig. 6 Sensitivity of WT, double mutant *lpaat4-2;lpaat5-2* and triple mutant *lpaat3-1;lpaat4-2;lpaat5-2* lines to CI976 treatment

Seedlings were grown on MS agar medium plates containing different concentrations of CI976 (0, 5, 10 μ M). Primary root length was measured 5 days after germination and standardized to the untreated condition for each line. Data are mean values \pm SE from three biological replicates, n = 60. The asterisks indicate significant difference between untreated condition (black bar) and CI976 treated conditions (red bars). Statistics were done by non-parametric Kruskal-Wallis rank sum test, ****P*-value < 0.001, NS = not significant.

Fig. 7 CI976 treatment affects the neo-synthesis of PA but not that of the major phospholipids in Arabidopsis roots

Seedlings were grown on MS agar medium plates or MS agar medium plates complemented with 10 μ M CI976 or not. Primary roots from 20 seedlings were collected 5 days after germination for both conditions and incubated 4 hours with [14C] acetate +/- 10 μ MCI976. Lipids were extracted and separated by HPTLC.

A. Amounts of neo-synthesized [14C] PA, [14C] PC and [14C] PE were quantified for the WT line and the mutant lines *lpaat4-2;lpaat5-2* and *lpaat3-1;lpaat4-2;lpaat5-2*. The amounts of [14C] PA, produced were calculated for each line without treatment (black bar) or under treatment (red bar) by taking as 100 the amounts of [14C] PA produced in the WT line without treatment. Data are mean values \pm SD from three biological replicates. Statistics were carried

out using the non-parametric Kruskal-Wallis test, similar letters above bars indicate that dataset are not significantly different, b/a and c/b: P-values < 0.001.

B. [14C] PC and [14C] PE produced were quantified in the WT line, the double mutant line *lpaat4-2;lpaat5-2* and the triple mutant line *lpaat3-1;lpaat4-2;lpaat5-2* upon CI976 treatment, and compared to the amounts measured for each line without treatment. The % of labeling of PC and PE in the presence of CI976 was expressed as compared to the untreated conditions taken as equal to 100. Data are mean values \pm SD from three biological replicates. Statistical analysis used the non-parametric Kruskal-Wallis test and the p values for PC (0.393) and PE (0.288) show no significant differences.

Fig. 8 Auxin carrier PIN2-GFP trafficking is altered in double mutant *lpaat4-2;lpaat5-2* upon CI976 treatment

Localization of PIN2-GFP in WT (a) and *lpaat4-2,lpaat5-2* (b) background upon 10 μ M CI976 treatment. Sum of fluorescense intensity per μ m² was calculated in the cytoplasm for each line upon inhibitor treatment. The intracellular increase in PIN2-GFP in *lpaat4-2,lpaat5-2* upon CI976 treatment is shown (c) (n=27 cells quantified over 8 independent roots). All the data were represented for each line (black dots) with the median of each dataset (red bar). Statistics were done by non-parametric Kruskal-Wallis rank sum test, ***P-value < 0.001.

Fig. 9 Double mutant *lpaat4-2;lpaat5-2* is highly sensitive to salt stress as compared to WT, and triple mutant *lpaat3-1;lpaat4-2;lpaat5-2*

Seedlings were grown on MS agar medium plates supplemented or not with NaCl 50 mM. The same experiment was performed with (a) or without (b) CI976 treatment. Primary root length was measured 5 days after germination. Values were standardized to WT for each condition. Results indicate a higher sensitivity from the double mutant *lpaat4-2;lpaat5-2* to salt stress in comparison to the WT and triple mutant *lpaat3-1;lpaat4-2;lpaat5-2* lines (a), while this sensitivity is lost upon CI976 treatment (b).

Data are mean values \pm SE from three biological replicates (n = 150). Statistics were done by non-parametric Kruskal-Wallis rank sum test, ****P*-value < 0.001.

Fig. 10 Aquaporin PIP2;7 trafficking is altered in double mutant *lpaat4-2;lpaat5-2* upon CI976 treatment

Immunolocalization of the Aquaporin PIP2;7 in root epithelial cells from *Arabidopsis* WT (a), double mutant *lpaat4-2,lpaat5-2* (b), *triple mutant lpaat3-1;lpaat4-2,lpaat5-2* (c) and double mutant *lpaat4-2,lpaat5-2* over-expressing LPAAT4 (d) lines upon CI976 treatment. Scale bar represents 5µm. Mean fluorescence intensity was measured at the plasma membrane and in the cytosol for each line upon treatment. The ratio of fluorescence intensity between the plasma membrane and the cytosol was calculated. (e) All the ratios were represented for each line

(black dots) with the median of each dataset (red bar). Statistics were done by non-parametric Kruskal-Wallis rank sum test, ***P-value <0.001, NS: not significant.