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Abstract
Neural networks have proven to be very powerful at computer vision tasks. However, they 
often exhibit unexpected behaviors, acting against background knowledge about the prob-
lem at hand. This calls for models (i) able to learn from requirements expressing such back-
ground knowledge, and (ii) guaranteed to be compliant with the requirements themselves. 
Unfortunately, the development of such models is hampered by the lack of real-world data-
sets equipped with formally specified requirements. In this paper, we introduce the ROad 
event Awareness Dataset with logical Requirements (ROAD-R), the first publicly available 
dataset for autonomous driving with requirements expressed as logical constraints. Given 
ROAD-R, we show that current state-of-the-art models often violate its logical constraints, 
and that it is possible to exploit them to create models that (i) have a better performance, 
and (ii) are guaranteed to be compliant with the requirements themselves.

Keywords  Deep learning · Requirements · Logical constraints · Safety

1  Introduction

Neural networks have proven to be incredibly powerful at processing low-level inputs, and 
for this reason they have been extensively applied to computer vision tasks, such as image 
classification, object detection, and action detection. However, they can exhibit unexpected 
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behaviors, contradicting known requirements expressing background knowledge. This can 
have dramatic consequences, especially in safety-critical scenarios such as autonomous 
driving. To address the problem, models should (i) be able to learn from the requirements, 
and (ii) be guaranteed to be compliant with the requirements themselves. Indeed, as sug-
gested in Amodei et al. (2016), in such settings it is of primary importance to create mod-
els that are able to operate within boundaries specified by the requirements written by 
domain experts. Unfortunately, the development of such models is hampered by the lack 
of real-world datasets equipped with formally specified requirements. A notable exception 
is given by hierarchical multi-label classification (HMC) problems (see, e.g., (Vens et al. 
2008; Schietgat et al. 2010; Wehrmann et al. 2018)) in which datasets are provided with 
simple binary constraints of the form (A → B) stating that label B must be predicted when-
ever label A is predicted.

In this paper, we generalize HMC problems by introducing multi-label classification 
problems with (full) propositional logic requirements. Thus, given a multi-label classifica-
tion problem with labels A, B, and C, we can, for example, write the requirement:

stating that for each data point in the dataset either the label C is predicted, or B but not A 
are predicted. Then, we present the ROad event Awareness Dataset with logical Require-
ments (ROAD-R), the first publicly available dataset for autonomous driving with require-
ments expressed as logical constraints. ROAD-R extends the ROAD dataset (Singh et al. 
2022), which was built on top of the Oxford RobotCar Dataset (Maddern et al. 2017) and 
consists of 22 relatively long ( ∼8 minutes each) videos annotated with road events. A road 
event corresponds to a tube/tubelet, i.e., a sequence of frame-wise bounding boxes linked in 
time. Each bounding box is labeled with a subset of the 41 labels specified in Table 1. The 
goal is to predict the set of labels associated with each bounding box. We manually anno-
tated ROAD-R with 243 constraints expressing which combinations of labels are admis-
sible. We verified that the constraints hold for all bounding boxes’ ground truth annota-
tions appearing in the dataset using the SAT-solver MiniSat (Eén and Sörensoon 2004).1An 
example of a constraint is thus “a traffic light cannot be red and green at the same time”, 
while there are no constraints like “pedestrians should cross at crossings”, which should 
always be satisfied in theory, but which might not be in real-world scenarios.

Given ROAD-R, we considered 6 current state-of-the-art (SOTA) models, and we 
showed that they are not able to learn the requirements just from the data points, as more 

(¬A ∧ B) ∨ C,

Table 1   ROAD labels

Agents: Pedestrian, Car, Cyclist, Motorbike, Medium vehicle, Large vehicle, Bus, Emergency vehicle, 
Traffic light (TL), Other TL.

Actions: Move away, Move towards, Move, Brake, Stop, Indicating left, Indicating right, Hazards lights 
on, Turn left, Turn right, Overtake, Wait to cross, Cross from left, Cross from right, Cross-
ing, Push object, Red TL, Amber TL, Green TL.

Locations: AV lane, Outgoing lane, Outgoing cycle lane, Incoming lane, Incoming cycle lane, Pavement, 
Left pavement, Right pavement, Junction, Crossing location, Bus stop, Parking.

1  Link: http://​minis​at.​set. 

http://minisat.set
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than 90% of their predictions violate the constraints. Then, we faced the problem of how 
to leverage the additional knowledge provided by constraints with the goal of (i) improving 
their performance, measured by the frame mean average precision (f-mAP) at intersection 
over union (IoU) thresholds 0.5 and 0.75; see, e.g., (Kalogeiton et al. 2017; Li et al. 2018), 
and (ii) guaranteeing that they are compliant with the constraints. To achieve the above two 
goals, we propose the following new models: 

1.	 CL models, i.e., models with a constrained loss allowing them to learn from the require-
ments,

2.	 CO models, i.e, models with a constrained output enforcing the requirements on the 
output, and

3.	 CLCO models, i.e., models with both a constrained loss and a constrained output.

In particular, we consider three different ways to build CL (resp., CO, CLCO) models. 
More specifically, we run the 9 × 6 models obtained by equipping the 6 current SOTA 
models with a constrained loss and/or a constrained output, and we show that it is always 
possible to 

1.	 Improve the performance of each SOTA model, and
2.	 Be compliant with (i.e., strictly satisfy) the constraints.

Overall, the best performing model (for IoU = 0.5 and also IoU = 0.75) is CLCO-RCGRU, 
i.e., the SOTA model RCGRU equipped with both constrained loss and constrained output: 
CLCO-RCGRU (i) always satisfies the requirements and (ii) has f-mAP = 31.81 for IoU = 
0.5, and f-mAP = 17.27 for IoU = 0.75. On the other hand, the standard RCGRU model 
(i) produces predictions that violate the constraints at least 92% of the times, and (ii) has 
f-mAP = 30.78 for IoU = 0.5 and f-mAP = 15.98 for IoU = 0.75.

The main contributions of this paper are thus as follows: 

1.	 We introduce multi-label classification problems with propositional logic requirements,
2.	 We introduce ROAD-R, which is the first publicly available dataset whose requirements 

are expressed in full propositional logic,
3.	 We consider 6 SOTA models and show that on ROAD-R, they produce predictions 

violating the requirements more than ∼90% of the times,
4.	 We propose new models with a constrained loss and/or constrained output, and
5.	 We conduct an extensive experimental analysis and show that, with our new models, 

it is always possible to improve the performance of the SOTA models and satisfy the 
requirements.

The rest of this paper is organized as follows. After the introduction to the problem, we 
present ROAD-R (Sect. 3), followed by the evaluation of the SOTA models (Sect. 4) and of 
the SOTA models incorporating the requirements (Sect. 5) on ROAD-R. We end the paper 
with the related work (Sect. 6) and the summary and outlook (Sect. 7).
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2 � Learning with requirements

In ROAD, the detection of road events requires the following tasks: (i) identify the bound-
ing boxes, (ii) associate with each bounding box a set of labels, and (iii) form a tube from 
the identified bounding boxes with the same labels. Here, we focus on the second task, and 
we formulate it as a multilabel classification problem with requirements.

A multi-label classification (MC) problem P= (C,X) consists of a finite set C of labels, 
denoted by A1,A2,… , and a finite set X  of pairs (x, y), where x ∈ ℝ

D (D ≥ 1) is a data 
point, and y ⊆ C is the ground truth of x. The ground truth y associated with a data point x 
characterizes both the positive and the negative labels associated with x, defined to be y and 
{¬A ∶ A ∈ C ⧵ y} , respectively. In ROAD-R, a data point corresponds to a bounding box, 
and each box is labeled with the positive labels representing (i) the agent performing the 
actions in the box, (ii) the actions being performed, and (iii) the locations where the actions 
take place. See Appendix A for a detailed description of each label. Consider an MC prob-
lem P = (C,X) . A prediction p is a set of positive and negative labels such that for each label 
A ∈ C , either A ∈ p or ¬A ∈ p . A model m for P is a function m(⋅, ⋅) mapping every label A 
and every data point x to [0, 1]. A data point x is predicted by a model m to have label A if 
its output value m(A, x) is greater than a user-defined threshold � ∈ [0, 1] . The prediction of 
model m for data point x is the set {A ∶ A ∈ C,m(A, x) > 𝜃} ∪ {¬A ∶ A ∈ C,m(A, x) ≤ 𝜃} of 
positive and negative labels.

An MC problem with propositional logic requirements (P,Π) consists of an MC prob-
lem P and a finite set Π of propositional logic constraints on the labels of P . Consider an 
MC problem with propositional logic requirements (P,Π) . Each constraint in Π delimits 
the set of predictions that can be associated with each data point by ruling out those that 
violate it. A prediction p is admissible if each constraint r in Π is satisfied by p. A model m 
for P satisfies (resp., violates) the constraints on a data point x if the prediction of m for x is 
(resp., is not) admissible.

Example 1  The requirement that a traffic light cannot be both red and green corresponds to 
the constraint ¬RedTL ∨ ¬GreenTL . Any prediction with {RedTL, GreenTL} is non-admis-
sible. An example of such predictions made by the SOTA models is shown in Fig. 1.

Given an MC problem with propositional logic requirements, it is possible to take 
advantage of the constraints in two different ways: (i) they can be exploited during learning 
to teach the model the background knowledge that they express, and (ii) they can be used 

Fig. 1   Example of violation 
of  ¬RedTL∨¬GreenTL
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as post-processing to turn a non-admissible prediction into an admissible one. Models in 
the first and second category have a constrained loss (CL) and constrained output (CO), 
respectively. Constrained loss models have the advantage that the constraints are deployed 
during the training phase, and this should result in models (i) with a higher understanding 
of the problem and a better performance, but still (ii) with no guarantee that no violations 
will be committed. On the other hand, constrained output models (i) do not exploit the 
additional knowledge during training, but (ii) are guaranteed to have no violations in the 
final outputs. These two options are not mutually exclusive (i.e., can be used together), and 
which one is to be deployed depends also on the extent to which a system is available. For 
instance, there can be companies that already have their own models (which can be black 
boxes) and want to make them compliant with a set of requirements without modifying the 
model itself. On the other hand, the exploitation of the constraints in the learning phase 
can be an attractive option for those who have a good knowledge of the model and want to 
further improve it.

3 � ROAD‑R

ROAD-R extends the ROAD dataset2 (Singh et al. 2022) by introducing a set Π of 243 con-
straints that specify the space of admissible outputs.

In order to improve the usability of our dataset, we write each constraint as a disjunction 
of positive and negative labels, i.e., as expressions having the form:

where n ≥ 1 , and each li is either a negative label ¬A or a positive label A. Thus, Π can be 
equivalently seen as a formula in conjunctive normal form (CNF), which is the standard 
form used by propositional logic solvers. Notice that for any propositional formula there is 
an equivalent one in CNF.

The requirements have been manually specified following three steps: 

1.	 An initial set of constraints Π1 was manually created,
2.	 A subset Π2 ⊂ Π1 was retained by eliminating all those constraints that were entailed 

by the others,
3.	 The final subset Π ⊂ Π2 was retained by keeping only those requirements that were 

always satisfied by the ground-truth labels of the entire ROAD-R dataset.

Considering the above procedure, a few considerations are in order: 

1.	 The requirement specification process (i) is a standard step in the development of any 
software, necessary to characterize the expected behavior of the system and then verify 
that the system functions as expected; and (ii) deeply involves the stakeholders/design-
ers of the system (see, e.g., (Sommerville 2011)). As a consequence, the set Π1 is not 
guaranteed to be complete from every possible point of view. Indeed, with a different 
set of labels and/or in different contexts, other constraints may hold. For instance, some 

(1)l1 ∨ l2 ∨⋯ ∨ ln,

2  Dataset and code are available at: https://​github.​com/​EGiun​chigl​ia/​ROAD-R.

https://github.com/EGiunchiglia/ROAD-R
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roads can be closed to “large vehicles" and in some countries it is possible to have traffic 
lights with both the green and amber lights on;

2.	 The elimination of the constraints that are violated by the ground-truth labels of the 
entire dataset—despite their validity—is a necessary step in order to maintain (i) consist-
ency between the knowledge provided by the constraints and by the data points, and (ii) 
backward compatibility with the ROAD dataset. Indeed, some constraints in Π1 , like “it 
is not possible for an agent to both move towards and move away", have been discarded, 
since they were not satisfied by all the data points because of errors in the ground-truth 
labels;

3.	 Following the standard practice adopted in software development, the requirement speci-
fication process should come before the software development begins and before the 
annotation of the dataset. Indeed, this would have allowed to (i) simplify the annotation 
process, and then (ii) validate the annotated dataset.

Given the above, ROAD-R, along with the presented models, is a first step pushing in the 
direction of having a new generation of machine learning models (i) whose design starts 
with the specification of the requirements that it should satisfy, and (ii) able to learn from 
and then obey to the constraints. This will help in the deployment of machine learning 
models in all application domains, including safety-critical ones. Indeed, as stated in 

Table 2   Constraint statistics Statistics

∣ C ∣ 41
∣ Π ∣ 243
avg

r∈Π(∣ r ∣) 2.86
∣ {A ∈ C ∶ ∃r ∈ Π.A ∈ r} ∣ 41
∣ {A ∈ C ∶ ∃r ∈ Π.¬A ∈ r} ∣ 38
min

A∈C(∣ {r ∈ Π ∶ {A,¬A} ∩ r ≠ �} ∣) 2
avg

A∈C(∣ {r ∈ Π ∶ {A,¬A} ∩ r ≠ �} ∣) 16.95
max

A∈C(∣ {r ∈ Π ∶ {A,¬A} ∩ r ≠ �} ∣) 31

Table 3   Constraint statistics. 
Π

n
 is the set of constraints r 

in Π with ∣ r ∣= n , i.e., with n 
positive and negative labels. 
C = {¬A ∶ A ∈ C}

n ∣ Π
n
∣ avg

r∈Π
n

(∣ r ∩ C ∣) avg
r∈Π

n

(∣ r ∩ C ∣)

2 215 1.995 0.005
3 5 1 2
7 1 1 6
8 6 1 7
9 6 1 8
10 1 0 10
12 1 1 11
14 1 0 14
15 7 1 14
Total 243 1.87 0.96
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Amodei et al. (2016) and Hoernle et al. (2022), to be applied in such settings models need 
to be guaranteed to be able to operate within boundaries specified by domain experts.

Tables 2 and 3 give a high-level description of the properties of the set Π of constraints. 
Notice that, with a slight abuse of notation, in the tables, we use a set-based notation for 
the requirements. Each requirement of the form (1) thus becomes {l1, l2,… , ln} . Such nota-
tion allows us to express the properties of the requirements in a more succinct way. From 
Table 2, we can see that:

•	 Aall the constraints have between 2 and 15 positive and negative labels, with an aver-
age of 2.86,

•	 All the labels appear positively in Π.
•	 Of the 41 labels, 38 appear negatively in Π , and
•	 Each label appears either positively or negatively between 2 and 31 times in Π , with an 

average of 16.95.

Table 3 gives a close-up view of structure of the constraints, showing the number of rules 
having n positive and negative labels, together with the average number of negative and 
positive labels in such rules. As witnessed by Table 3, in the 243 constraints, there are two 
in which all the labels are positive (expressing that there must be at least one agent and 
that every agent but traffic lights has at least one location), and 214 in which all the labels 
are negative (expressing mutual exclusion between two labels). All the constraints with 
more than two labels have at most one negative label, as they express a one-to-many rela-
tion between actions and agents (like “if something is crossing, then it is a pedestrian or a 
cyclist”). Constraints like “pedestrians should cross at crossings”, which might not be satis-
fied in practice, are not included. The list with all the 243 requirements, with their natural 
language explanations, is in Appendix D, Tables 9, 10, and 11. Overall, the 243 require-
ments restrict the number of admissible prediction to 4985868 ∼ 5 × 106 , thus ruling out 
(241 − 4985868) ∼ 1012 non-admissible predictions.3

4 � ROAD‑R and SOTA models

As a first step, we ran 6 SOTA temporal feature learning architectures as part of a 3D-Ret-
inaNet model (Singh et  al. 2022) (with a 2D-ConvNet backbone made of Resnet50 (He 
et al. 2016)) for event detection and evaluated to which extent constraints are violated. Each 
SOTA model takes as input a sequence of frames, and it returns: (i) a set of bounding boxes 
for each frame, and (ii) a vector v ∈ [0, 1]∣C∣ for each bounding box. For each bounding box, 
the final prediction is then the set of positive and negative labels obtained by thresholding v 
as described in Sect. 2. We considered: 

1.	 2D-ConvNet (C2D) (Wang et al. 2018): a Resnet50-based architecture with an additional 
temporal dimension for learning features from videos. The extension from 2D to 3D is 
done by adding a pooling layer over time to combine the spatial features.

3  The number of admissible predictions has been computed with relsat: https://github.com/roberto-bayardo/
relsat/.
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2.	 Inflated 3D-ConvNet (I3D) (Carreira and Zisserman 2017): a sequential learning archi-
tecture extendable to any SOTA image classification model (2D-ConvNet based), able 
to learn continuous spatio-temporal features from the sequence of frames.

3.	 Recurrent Convolutional Network (RCN) (Singh and Cuzzolin 2019): a 3D-ConvNet 
model that relies on recurrence for learning the spatio-temporal features at each network 
level. During the feature extraction phase, RCNs exploit both 2D convolutions across 
the spatial domain and 1D convolutions across the temporal domain.

4.	 Random Connectivity Long Short-Term Memory (RCLSTM) (Hua et al. 2018): an 
updated version of LSTM in which the neurons are connected in a stochastic man-
ner, rather than fully connected. In our case, the LSTM cell is used as a bottleneck in 
ResNet50 for learning the features sequentially.

5.	 Random Connectivity Gated Recurrent Unit (RCGRU) (Hua et al. 2018): an alternative 
version of RCLSTM where the GRU cell is used instead of the LSTM one. GRU makes 
the process more efficient with fewer parameters than the LSTM.

6.	 SlowFast (Feichtenhofer et al. 2019): a 3D-CNN architecture that contains both slow 
and fast pathways for extracting the sequential features. A slow pathway computes the 
spatial semantics at a low frame rate, while a fast pathway processes high frame rate for 
capturing the motion features. Both the pathways are fused in a single architecture by 
lateral connections.

We trained 3D-RetinaNet4 using the same hyperparameter settings for all the models: (i) 
batch size equal to 4, (ii)  sequence length equal to 8, and (iii) image input size equal to 
512 × 682 . All the models were initialized with the Kinetics pre-trained weights. An SGD 
optimizer (LeCun et al. 2012) with step learning rate was used. The initial learning rate was 
set to 0.0041 for all the models except SlowFast, for which it was set to 0.0021 due to the 
diverse nature of slow and fast pathways. All the models were trained for 30 epochs, and 
the learning rate was made to drop by a factor of 10 after 18 and 25 epochs. The machine 
used for the experiments has 64 CPUs (2.2 GHz each) and 4 Titan RTX GPUs having 24 
GB of RAM each.

To measure the models’ performance, we used the frame mean average precision 
(f-mAP), which is the standard metric used for action detection (see, e.g., (Kalogeiton et al. 
2017; Li et al. 2018)) and is obtained by calculating for each class the mean average preci-
sion over all frames, averaging the final results as shown in Eq. (2). In our experiments, 
we set IoU threshold equal to 0.5 and 0.75, indicated as f-mAP@0.5 and f-mAP@0.75, 
respectively.

where F is the number of frames, and APij is the average precision for class i at frame j 
at IoU � . The results for the SOTA models at IoU threshold 0.5 and 0.75 are reported in 
Table 4, column “SOTA”.

To measure the extent to which each system violates the constraints, we used the follow-
ing metrics:

(2)f-mAP@� =
1

|C|
1

F

|C|∑

i=1

F∑

j=1

APij,

4  https://github.com/gurkirt/3D-RetinaNets.
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•	 The percentage of non-admissible predictions,
•	 The average number of violations committed per prediction, and
•	 The percentage of constraints violated at least once,

while varying the threshold � from 0.1 to 0.9 with step 0.1. The results are in Fig. 2, where 
(to improve readability) we do not plot the values corresponding to � = 0.0 and � = 1.0 . 
For � = 0.0 (resp., � = 1.0 ), all the predictions are positive (resp., negative), and thus the 
corresponding values are (in order) 100%, 214, and 214/243 (resp., 100%, 2, and 2/243).

Consider the results in Table 4, column “SOTA”, and in Fig. 2. First, note that the 
performances are not an indicator of the ability of the model to satisfy the constraints. 
Indeed, higher f-mAPs do not correspond to lower trends in the plots of Fig. 2b. For 
example, RCGRU performs better than C2D for both IoU = 0.5 and IoU = 0.75, how-
ever, its curve is above C2D’s in both Fig.  2a and  b. Then, note that the percentage 
of non-admissible predictions is always very high for every model: at its minimum, 
for � = 0.1 , more than 90% of the predictions are non-admissible, and this percentage 
reaches 99% for � = 0.9 (see Fig. 2a). In addition, most predictions violate roughly two 
constraints, as shown by Fig.  2b. Considering that we are in an autonomous vehicle 
setting, such results are critical: one of the constraints that is violated by all the base-
line models is {¬RedTL,¬GreenTL} , corresponding to predictions stating that there is 
a traffic light with both the red and the green lights on. Figure 1 shows an image where 
such a prediction is made by C2D. Appendix C contains images with all the models 
making predictions violating {¬RedTL,¬GreenTL} and other constraints.

5 � ROAD‑R and CL, CO, and CLCO models

We now show how it is possible to build CL, CO, and CLCO models. In particular, 
we show how to equip the 6 considered SOTA models with a constrained loss and/
or a constrained output. As anticipated in the introduction, we introduce (i) three dif-
ferent methods to build the constrained loss, (ii) three different methods to obtain the 
constrained output, and (iii) three combinations of constrained loss and constrained 
output. Thus, we get 9 models for each SOTA model, for a total of 54. In order to get 
an overall view of the performance gains produced by each method, we also report 
the average ranking of the 9 proposed methods and SOTA (Demsar 2006), computed 
as follows: (i) for each row in Table  4, we rank the performances of the 9 CL, CO, 

Fig. 2   ROAD-R and SOTA models. In the x-axis, there is the threshold � ∈ [0.1, 0.9] , step 0.1
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and CLCO models and of the SOTA model separately: the best performing model 
gets the rank 1, the second best gets rank 2, etc., and in case of ties, the rank is split 
(e.g., the assigned rank is 1.5 if two models have the best performance), and (ii) for 
each column, we take the average of the rankings computed in step 1. See Table 4 for 
f-mAP@0.5, f-mAP@0.75 and average rankings, where, for each row the best results 
are in bold. The details of the implemented models with constrained loss, constrained 
output, and both constrained loss and constrained output is given in the three subsec-
tions below.

5.1 � Constrained loss

To constrain the loss, we take inspiration from the approaches proposed in Diligenti et al. 
(2017a, 2017b), and we train the models using the standard localization and classification 
losses, to which we add a regularization term. This last term represents the degree of satis-
faction of the constraints in Π and has the form:

where ri represents the ith constraint in Π , t(ri) represents the fuzzy logic relaxation of ri , 
and � is a hyperparameter ruling the weight of the regularization term (the higher � is, the 
more relevant the term corresponding to the constraints becomes, up to the limit case in 
which � → ∞ , and the constraints become hard (Diligenti et al. 2017b)). We considered 
� ∈ {1, 10, 100} and the three fundamental t-norms: (i) Product t-norm, (ii) Gödel t-norm, 
and (iii) Łukasiewicz t-norm as fuzzy logic relaxations (Hájek 1998). The best results for 
f-mAP@0.5 and f-mAP@0.75 while varying � are in Table 4, columns Product, Gödel, 
and Łukasiewicz. As can be seen, SOTA never achieves the best average ranking, even 
when compared with only the three CL methods. Of these, Łukasiewicz (for IoU = 0.5) 
and Product (for IoU = 0.75) have the best ranking, though for some model and IoU, the 
best performances are obtained with Gödel. In only one case (for RCLSTM at IoU = 0.75), 
the SOTA model performs better than the CL models. Furthermore, we measure the extent 
to which the CL models violate the constraints using the metrics introduced in the previous 
section, and we never get any significant reduction in the number of predictions violating 
the constraints. As example, we plot the resulting charts in Fig.  3 for the SOTA model 
RCLSTM and the CL-RCLSTM models with Product, Gödel and Łukasiewicz loss. As it 
can be seen from Fig. 3a, the CL models’ predictions also violate the constraints at least 
90% of the times.

LΠ = �
∑∣Π∣

i=1
(1 − t(ri)),

Fig. 3   Comparison of the behaviour of RCLSTM and CL-RCLSTM (with Product, Gödel and Łukasiewicz 
loss) with respect to the requirements. In the x-axis, there is the threshold � ∈ [0.1, 0.9] , step 0.1
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5.2 � Constrained output

We now consider the problem of how to correct a prediction p whose admissibility is 
evaluated at a given threshold � . The first observation is that determining the existence 
of an admissible prediction is an intractable problem: indeed, this is just a reformulation 
of the satisfiability problem in propositional logic, which is well known to be NP-com-
plete. Despite this, we want to correct any non-admissable prediction p in such a way 
that (i) the final prediction is admissible, and (ii) the performance of the final model 
either improves or remains unaltered.

In order to achieve the above, we first test the policy of trying to correct as few labels 
as possible. More precisely, for each prediction q, (p ⧵ q) is the set of positive and nega-
tive predictions on which q differs from p. Then, we can compute the admissible predic-
tion q with the minimum number of differences, i.e., such that ∣ p ⧵ q ∣ is minimal. We 
call such policy Minimal Distance (MD). Unfortunately, no polynomial time algorithm 
is known to solve this problem.

Theorem  1  Let (P,Π) be an MC problem with requirements. Let p be a prediction. For 
each positive d, determining the existence of an admissible prediction q such that ∣ p⧵q ∣≤ d 
is an NP-complete problem.

The theorem is an easy consequence of Proposition 1 in Bailleux and Marquis 
(2006). In order to be able to solve the problem in practice, we formulate the problem of 
finding an admissible prediction with minimal ∣ p ⧵ q ∣ as a weighted partial maximum 
satisfiability (PMaxSAT) problem of a set of clauses (see, e.g., (Li and Manyà 2009)) in 
which 

1.	 Each constraint in Π corresponds to a clause marked as hard, and
2.	 Each positive and negative prediction in p corresponds to a unit clause marked as soft 

with unitary weight.

In our setting, a clause is a disjunction of literals, and a literal is either a positive label or 
its negation, representing the corresponding negative label. A clause is unit if it consists of 
a single literal. This allows us to use the very efficient solvers publicly available for PMax-
Sat problems. In particular, in our experiments, we used MaxHS (Hickey and Bacchus 
2019), and running times were in the order of 10−3 s at most. As intended, since we assign 
all labels unitary weight, MaxHS returns the admissible prediction q with as few as pos-
sible labels flipped. Notice that flipping the ith label amounts to changing its output value 
oi from a value below the threshold to another value f (oi) above the threshold or vice versa. 
In all our experiments, we considered (i) f (oi) = � + � , if oi < 𝜃 , and (ii) f (oi) = � − � , 
otherwise ( � = 10−3 ). In this way, assuming oi ≤ � (i.e., the label is negatively predicted 
and then flipped positive), we expect f (oi) to be lower (but still higher than � ) than the out-
put values of the non-flipped, positively predicted labels. It is done analogously for the case 
oi > 𝜃 . We tested this approach with all the thresholds � from 0.1 to 0.9 with step 0.1, and 
the resulting f-mAP@0.5 and f-mAP@0.75 for the best threshold are reported in Table 4, 
column MD. As we can see from the table, despite the fact that we are minimizing the 
number of corrections, the results obtained by the CO-MD model are always worse than 
the ones obtained by the SOTA models. We can hence conclude that adding such post-
processing has a detrimental effect on the models’ performance.
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Thus, we need alternative policies to correct a non-admissible prediction p. We gen-
eralize the problem by assigning a positive weight wi (representing the cost of correct-
ing the ith label in p) and then computing the admissible prediction q that minimizes ∑�C�

i=1
wi . More precisely, for every prediction q, cost(p, q) =

∑
i∈I wi , I  being the set of 

indexes of the labels in (p ⧵ q) . Then, we can compute the admissible prediction q such 
that cost(p, q) is minimal. As it is a generalization of the problem above, no polynomial-
time algorithm is known to solve this problem.

Theorem 2  Let (P,Π) be an MC problem with requirements. Let p be a prediction, and let 
wi be the cost of correcting the ith label in p. For each positive d, determining the existence 
of an admissible prediction q such that cost(p, q) ≤ d is an NP-complete problem.

This is an easy consequence of Theorem 1. We can again formulate the problem as a 
PMaxSAT problem in which: 

1.	 Each constraint in Π corresponds to a clause marked as hard, and
2.	 For each i ( 1 ≤ i ≤∣ C ∣ ), the prediction in p for the ith label corresponds to a unit clause 

having weight wi.

Given the above formulation, we tested two different policies for choosing the weight asso-
ciated to each label: 

1.	 Average Precision-based (AP), in which each wi is equal to the average precision APi of 
the ith label, and

2.	 Average Precision and Output-based (AP×O), in which each wi = APi × ci , where ci is 
equal to (i) the output oi of the model for the ith label if oi > 𝜃 , and (ii) (1 − oi) , other-
wise.

Differently from the MD policy, in order to take a decision, these policies take into account 
the reliability of the output oi for the ith label. We again tested the two policies with all the 
thresholds � from 0.1 to 0.9 with step 0.1, and the resulting f-mAP@0.5 and f-mAP@0.75 
for the best threshold are reported in Table  4, columns AP, and AP× O. Comparing the 
predictions of the SOTA models with the CO-AP and the CO-AP× O models, we can see 
that flipping the variables taking into account the average precision (i) never leads to worse 
performances than the ones of the SOTA models, and (ii) for IoU = 0.75, correcting the 
output of RCLSTM with AP and AP× O gives the best and second best performance in the 
row. Notice that the differences in the performances between AP and AP× O are negligible, 
AP× O being better than AP more often. The average rankings are in line with the above 
statements.

5.3 � Constrained loss and output

Given the results presented in the previous paragraph, of the 9 possible combinations of a 
constrained loss and a constrained output, we consider only the ones with AP× O as con-
strained output. The results are shown in Table 4, last three columns. Given the constant 
improvement produced by the constrained output AP× O over the SOTA models discussed 
in the previous paragraph, the results of the CLCO models are not surprising: post-pro-
cessing the output with AP× O policy produces again relatively small but almost always 
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constant improvements over the corresponding CL models. The average rankings are in 
line with the above statements.

Considering the results in Table 4 all together, we see that 

1.	 Constraining the output alone guarantees the compliance with the constraints, but 
improvements in the performances are constant but limited,

2.	 Constraining the loss alone does not guarantee the satisfaction of the requirements but 
can lead to non marginal improvements in the performances,

3.	 The best performances (the numbers in bold) are always obtained by constraining the 
output, and thus it is always possible to (i) improve the performance of each SOTA 
model, and (ii) guarantee to be compliant with the requirements,

4.	 On average, the best performances are obtained by CLCO models, as witnessed by the 
average rankings,

5.	 The best performing model is CLCO-RCGRU, i.e., RCGRU with Łukasiewicz con-
strained loss and AP× O constrained output: such model (i) is compliant with the con-
straints by construction, and (ii) has f-mAP = 31.81 for IoU = 0.5, and f-mAP = 17.27 
for IoU = 0.75. RCGRU (without CL and CO) (i) produces predictions that violate the 
constraints at least 92% of the times, and (ii) has f-mAP = 30.78 for IoU = 0.5, and 
f-mAP = 15.98 for IoU = 0.75.

6 � Related work

The approach proposed in this paper generalizes HMC problems, in which requirements 
are binary and have the form (A → B) , corresponding to our (¬A ∨ B) . Many models have 
been developed for HMC; see, e.g., (Vens et al. 2008; Wehrmann et al. 2018; Giunchiglia 
and Lukasiewicz 2020).

Interestingly, when dealing with more complex logical requirements on the output 
space, in the past, researchers have mostly focused on exploiting the background knowl-
edge that they express to improve performance and/or to deal with data scarcity, curiously 
neglecting the problem of guaranteeing their satisfaction. Many works go in this direction, 
such as Hu et al. (2016a, 2016b), where an iterative method to embed structured logical 
information into the neural networks’ weights is introduced: at each step, the authors con-
sider a teacher network based on the set of logical rules to train a student network to fit 
both supervisions and logic rules. Another neural model is considered in Li and Srikumar 
(2019), in which some neurons are associated with logical predicates, and their activation 
is modified on the ground of the activation of the neurons corresponding to predicates that 
co-occur in the same rules. An entire line of research is dedicated to embedding logical 
constraints into loss functions; see, e.g., (Diligenti et al. 2017b; Donadello et al. 2017; Xu 
et al. 2018). These works consider a fuzzy relaxation of FOL formulas to get a differenti-
able loss function that can be minimized by gradient descent. However, in all the above 
methods, there is no guarantee that the constraints will be actually satisfied. Recently, this 
problem has gained more relevance, and few works now propose novel ways of addressing 
the problem. One of such works is (Giunchiglia and Lukasiewicz 2021), which presents a 
novel neural model called coherent-by-construction network (CCN). CCN not only exploits 
the knowledge expressed by the constraints, but is also able to guarantee the constraints’ 
satisfaction. However, that model is able to guarantee the satisfaction of constraints writ-
ten as normal logic rules with at least one positive label, and thus is not able to deal with 
all the ROAD-R’s requirements. Another work that goes in this direction is (Dragone et al. 
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2021), in which NESTER is proposed. In this case, the constraints are not mapped into the 
last layer of the network (like CCN), but they are enforced by passing the outputs of the 
neural network to a constraint program, which enforces the constraints. The most recent 
work is given by Hoernle et  al. (2022), where the authors propose MultiPlexNet. Multi-
plexNet can impose constraints consisting of any quantifier-free linear arithmetic formula 
over the rationals (thus, involving “ + ", “ ≥ ", “ ¬ ", “ ∧ ", and “ ∨"). In order to train the model 
with such constraints, the formulas are firstly expressed in disjunctive normal form (DNF), 
and then the output layer of the network is augmented to include a separate transformation 
for each term in the DNF formula. Thus, the network’s output layer can be viewed as a 
multiplexor in a logical circuit that permits for a branching of logic. For a general overview 
of deep learning with logical constraints, see the survey (Giunchiglia et al. 2022).

In the video understanding field, some recent works have started to argue the impor-
tance of being able to extract structured information from videos and to incorporate back-
ground knowledge in the models. For example, (Curtis et  al. 2020) propose a challenge 
to test the models’ ability of extracting knowledge graphs from videos. In Mahon et  al. 
(2020), the authors develop a model that is able to exploit the knowledge expressed in logi-
cal rules to extract knowledge graphs from videos. However, ROAD-R is the first dataset 
which proposes the incorporation of logical constraints into deep learning models for vid-
eos, and thus represents a truly novel challenge.

7 � Summary and outlook

In this paper, we proposed a new learning framework, called learning with requirements, and 
a new dataset for this task, called ROAD-R. We showed that SOTA models most of the times 
violate the requirements, and how it is possible to exploit the requirements to create models that 
are compliant with (i.e., strictly satisfy) the requirements while improving their performance.

ROAD-R opens up a number of research possibilities. The most straightforward open 
problem is how to create neural-based models that are compliant by design with the given 
requirements, i.e., without the need of any post-processing steps. However, other directions 
are also possible. For example, it is an open question whether the annotated constraints can 
help in alleviating the data greediness characteristic of the large deep learning models usu-
ally deployed in the autonomous driving setting. Indeed, we can now use the requirements 
to train models on both labelled and unlabelled data. Another open question is whether 
neural models, in addition to bounding boxes and labels, can also learn the requirements 
that we annotated. In this case, the annotated requirements could be used to measure the 
coverage of the learned ones.

Finally, in the future, we will further extend ROAD-R. In particular, we plan to annotate 
ROAD with temporal constraints stating facts like “a traffic light becomes red after being 
green”, and with soft constraints stating likely facts like “pedestrians should cross at crossings”.

Appendix A: ROAD labels

Here, we provide a detailed description of the meaning of each of the 41 labels. In particu-
lar, we describe (i) the labels associated with agents in Table 5, (ii) the labels associated 
with actions in Table 6, and (iii) the labels associated with locations in Table 7. In the last 
column of each table, we also report the abbreviations used in our implementation and 
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associated with each label. Such abbreviations were taken from https://​github.​com/​gurki​
rt/​3D-​Retin​aNet, and allowed a seamless integration of our code with the SOTA models’ 
code. The abbreviations are used in Tables 9, 10, and 11 to write the requirements using 
the set-based notation.

Table 5   Agent labels with descriptions and abbreviations Singh et al. (2022)

Label name Description Abbrv.

Pedestrian A person including children Ped
Car A car up to the size of a multi-purpose vehicle Car
Cyclist A person is riding a push/electric bicycle Cyc
Motorbike Motorbike, dirt bike, scooter with 2/3 wheels Mobike
Medium vehicle Vehicle larger than a car, such as van MedVeh
Large vehicle Vehicle larger than a van, such as a lorry LarVeh
Bus A single or double-decker bus or coach Bus
Emergency vehicle Ambulance, police car, fire engine, etc EmVeh
AV traffic light Traffic light related to the AV lane TL
Other traffic light Traffic light not related to the AV lane OthTL

https://github.com/gurkirt/3D-RetinaNet
https://github.com/gurkirt/3D-RetinaNet
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Appendix B: Experimental setup

In Table 8, we report the values of � and � used in our experimental analysis.

Appendix C: Visual examples of violations

In this section, we give some visual examples of violations. In order to show differ-
ent situations in which a non-admissible prediction occurs, we consider various require-
ments, and (for each of them) we display a non-admissible prediction made by each 
SOTA model. For all examples, we pick the threshold � = 0.5 , as it is the most intuitive 

Table 8   Values of � , � and both � and � for CL, CO, and CLCO models, respectively (values for 
f-mAP@0.5 above and for f-mAP@0.75 below)

Model CL CO CLCO

P G L MD AP AP×O (P, AP×O) (G, AP×O) (L, AP×O)

C2D 1 1 10 0.4 0.9 0.9 (1, 0.7) (1, 0.8) (10, 0.9)
I3D 10 10 10 0.4 0.5 0.5 (10, 0.9) (10, 0.7) (10, 0.6)
RCGRU​ 10 1 10 0.4 0.5 0.7 (10, 0.6) (1, 0.9) (10, 0.5)
RCLSTM 10 1 10 0.4 0.7 0.7 (10, 0.5) (1, 0.8) (10, 0.9)
RCN 10 10 10 0.4 0.5 0.5 (10, 0.6) (10, 0.8) (10, 0.5)
SlowFast 10 1 10 0.5 0.9 0.9 (10, 0.9) (1, 0.5) (10, 0.7)

C2D 1 1 10 0.4 0.9 0.9 (1, 0.8) (1, 0.8) (10, 0.9)
I3D 10 10 10 0.5 0.8 0.8 (10, 0.6) (10, 0.6) (10, 0.6)
RCGRU​ 10 1 10 0.4 0.5 0.5 (10, 0.6) (10, 0.9) (10, 0.6)
RCLSTM 10 1 10 0.4 0.5 0.7 (10, 0.7) (10,0.8) (10, 0.8)
RCN 10 10 10 0.4 0.8 0.5 (10, 0.5) (10, 0.9) (10, 0.9)
SlowFast 10 1 10 0.5 0.9 0.9 (10, 0.9) (10, 0.5) (10, 0.7)

Fig. 4   Examples of violations of {¬RedTL,¬GreenTL}
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and used threshold in multi-label classification problems. In particular, we show the 
violations for: 

1.	 {¬RedTL,¬GreenTL} in Fig. 4,
2.	 {Ped, Car, Cyc, Mobike, MedVeh, LarVeh, Bus, EmVeh, TL, OthTL} in Fig. 5,
3.	 {Ped, Car, Cyc, Mobike, MedVeh, LarVeh, Bus, EmVeh, ¬MovAway } in Fig. 6.

Fig. 5   Examples of violations of {Ped, Car, Cyc, Mobike, MedVeh, LarVeh, Bus, EmVeh, TL, OthTL}

Fig. 6   Examples of violations of {Ped, Car, Cyc, Mobike, MedVeh, LarVeh, Bus, EmVeh, ¬MovAway}
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In the above list, there is at least one requirement with (i) all negative labels, (ii) all 
positive labels, and (iii) at least one positive and one negative label.

Appendix D: Requirements

In Tables 9, 10, and 11, we report the list of all the 243 requirements together with their 
natural language explanations.
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Table 10   Requirements tables

Requirements Natural language explanations

{not MedVeh, not Bus} A medium vehicle cannot be a bus
{not Car, not Xing} A car cannot be crossing
{not Mobike, not OthTL} A motorbike cannot be an other traffic light
{not Car, not PushObj} A car cannot push objects
{not MedVeh, not EmVeh} A medium vehicle cannot be an emergency one
{not Mobike, not Red} A motorbike cannot be a red traffic light
{not LarVeh, not Bus} A large vehicle cannot be a bus
{not Brake, not Cyc} A cyclist cannot brake
{not MedVeh, not TL} A traffic light cannot be a medium vehicle
{not Mobike, not Amber} A motorbike cannot be an amber traffic light
{not LarVeh, not EmVeh} A large vehicle cannot be an emergency vehicle
{not Mobike, not Green} A motorbike cannot be a green traffic light
{not MedVeh, not OthTL} A medium vehicle cannot be an other traffic light
{not HazLit, not Cyc} A cyclist cannot have the hazard lights on
{not MedVeh, not Red} A medium vehicle cannot be a red traffic light
{not LarVeh, not TL} A large vehicle cannot be a traffic light
{not Car, not Ped} A car cannot be a pedestrian
{not Mobike, not TL} A motorbike cannot be a traffic light
{not Bus, not EmVeh} A bus cannot be an emergency vehicle
{not MedVeh, not Amber} A medium vechile cannot be an amber traffic light
{not LarVeh, not OthTL} A large vehicle cannot be a other traffic light
{not MedVeh, not Green} A medium vehicle cannot be a green traffic light
{not Bus, not TL} A bus cannot be a traffic light
{not LarVeh, not Red} A large vehicle cannot be a red traffic light
{not Bus, not OthTL} A bus cannot be a other traffic light
{not LarVeh, notAmber} A large vehicle cannot be a amber traffic light
{not Cyc, not PushObj} A cyclist cannot push an object
{not EmVeh, not TL} An emergency vehicle cannot be a traffic light
{not LarVeh, not Green} A large vehicle cannot be a green traffic light
{not Bus, not Red} A bus cannot be a red traffic light
{not EmVeh, not OthTL} An emergency vehicle cannot be a other traffic light
{not Bus, not Amber} A bus cannot be an amber traffic light
{not EmVeh, not Red} A emergency vehicle cannot be a red traffic light
{not Mobike, not Wait2X} A motorbike cannot wait to cross
{not Bus, not Green} A bus cannot be a green traffic light
{not TL, not OthTL} A traffic light cannot be a other traffic light
{not EmVeh, not Amber} A emergency vehicle cannot be a amber traffic light
{not Mobike, not Xing} A motorbike cannot be crossing
{not Cyc, not Ped} A cyclist cannot be a pedestrian
{Ped, Cyc, not Xing} If an agent is crossing it is either a pedestrian or a cyclist
{not Mobike, not PushObj} A motorbike cannot push objects
{not EmVeh, not Green} An emergency vehicle cannot be a green traffic light
{not MedVeh, not Wait2X} A medium vehicle cannot wait to cross
{not TL, not MovAway} A traffic light cannot move away
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Table 10   (continued)

Requirements Natural language explanations

{not MedVeh, not Xing} A medium vehicle cannot be crossing
{not Red, not Amber} A red traffic light cannot be amber
{not MedVeh, not PushObj} A medium vehicle cannot push objects
{not MovTow, not TL} A traffic light cannot move towards
{not OthTL, not MovAway} A other traffic light cannot move away
{not LarVeh, not Wait2X} A large vehicle cannot wait to cross
{not TL, not Mov} A traffic light cannot move
{not Red, not Green} A red traffic light cannot be green
{not TL, not XingFmRht} A traffic light cannot be crossing from right
{not Amber, not IncatRht} An agent cannot indicate right and signal amber
{not Red, not TurLft} An agent cannot turn left and signal red
{not MovTow, not Mov} An agent cannot move towards and move
{not TL, not Xing} A traffic light cannot cross
{not OthTL, not Wait2X} A other traffic light cannot wait to cross
{not Green, not IncatLeft} An agent cannot indicate left and signal green
{not Red, not TurRht} An agent cannot turn right and signal red
{not Amber, not HazLit} An agent cannot have the hazard lights on and signal amber
{not TL, not PushObj} A traffic light cannot push objects
{not OthTL, not XingFmLft} A other traffic light cannot cross from left
{not Green, not IncatRht} An agent cannot signal green and indicate right
{not Red, not Ovtak} An agent cannot signal red and overtake
{not Amber, not TurLft} An agent cannot signal amber and turn left
{not OthTL, not XingFmRht} A other traffic light cannot cross from right
{not Red, not Wait2X} An agent cannot signal red and wait to cross
{not Green, not HazLit} An agent cannot signal green and have the hazard lights on
{not Amber, not TurRht} An agent cannot signal amber and turn right
{not OthTL, not Xing} A other traffic light cannot cross
{not Bus, not Ped} A bus cannot be a pedestrian
{not Red, not XingFmLft} An agent cannot signal red and cross from left
{not OthTL, not PushObj} A other traffic light cannot push an object
{not Green, not TurLft} An agent cannot signal green and turn left
{not Amber, not Ovtak} An agent cannot signal amber and overtake
{not Mov, not Stop} An agent cannot move and stop
{not Red, not XingFmRht} An agent cannot signal red and cross from right
{not Amber, not Wait2X} An agent cannot signal amber and wait to cross
{not Green, not TurRht} An agent cannot signal green and turn right
{not Red, not Xing} An agent cannot signal and cross
{not Amber, not XingFmLft} An agent cannot signal amber and cross from left
{not Green, not Ovtak} An agent cannot signal green and overtake
{not Amber, not XingFmRht} An agent cannot signal amber and cross from right
{not EmVeh, not Ped} An emergency vehicle cannot be a pedestrian
{not Green, not Wait2X} An agent cannot signal green and wait to cross
{not Amber, not Xing} An agent cannot signal amber and cross
{not Green, not XingFmLft} An agent cannot signal green and cross from left
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Table 10   (continued)

Requirements Natural language explanations

{not Green, not XingFmRht} An agent cannot signal green and cross from right
{not Green, not Xing} An agent cannot signal green and cross
{not TL, not Ped} A traffic light cannot be a pedestrian
{not IncatLeft, not IncatRht} An agent cannot indicate left and right
{not OthTL, not Ped} A other traffic light cannot be a pedestrian
{not Brake, not Wait2X} An agent cannot brake and wait to cross
{not Red, not Ped} A pedestrian cannot signal red
{not Xing, not Brake} An agent cannot cross and brake
{not Wait2X, not IncatLeft} An agent cannot wait to cross and indicate left
{not Brake, not PushObj} An agent cannot brake and push an object
{not Amber, not Ped} A pedestrian cannot signal amber
{not Wait2X, not IncatRht} An agent cannot wait to cross and indicate right
{not Green, not Ped} A pedestrian cannot signal green
{not Wait2X, not Ovtak} An agent cannot wait to cross and overtake
{not Wait2X, not XingFmLft} An agent cannot wait to cross and cross from left
{not Wait2X, not XingFmRht} An agent cannot wait to cross and cross from right

Table 11   Requirements tables

Requirements Natural language explanations

{not Wait2X, not Xing} An agent cannot wait to cross and cross
{not Brake, not Ped} A pedestrian cannot brake
{not Ped, not IncatLeft} A pedestrian cannot indicate left
{not Ped, not IncatRht} A pedestrian cannot indicate right
{not HazLit, not Ped} A pedestrian cannot have the hazard lights on
{not Cyc, not Green} A cyclist cannot signal green
{not OutgoLane, not OutgoCycLane} An outgoing lane cannot be an outgoing cycle lane
{not Ped, not Ovtak} A pedestrian cannot overtake
{not VehLane, not IncomCycLane} The vehicle lane cannot be an incoming cycle lane
{not OutgoLane, not IncomCycLane} An incoming cycle lane cannot be a outgoing lane
{not IncomLane, not OutgoCycLane} An outgoing cycle lane cannot be an incoming lane
{not OutgoLane, not Pav} An outgoing lane cannot be a pavement
{not IncomCycLane, not OutgoCycLane} An incoming cycle lane cannot be an outgoing cycle lane
{not OutgoLane, not RhtPav} An outgoing lane cannot be a right pavement
{not IncomCycLane, not Pav} An incoming cycle lane cannot be a pavement
{not XingLoc, not OutgoLane} A crossing cannot be an outgoing lane
{not VehLane, not Parking} A vehicle lane cannot be a parking
{not BusStop, not OutgoLane} A bus stop cannot be a outgoing lane
{not OutgoLane, not Parking} An outgoing lane cannot be a parking
{not BusStop, not OutgoCycLane} A bus stop cannot be a outgoing cycle lane
{not Parking, not OutgoCycLane} A parking cannot be a outgoing cycle lane
{not XingLoc, not IncomCycLane} A crossing cannot be an incoming cycle lane
{not LftPav, not RhtPav} A pavement is either on the left or on the right
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Table 11   (continued)

Requirements Natural language explanations

{not IncomLane, not Parking} An incoming lane cannot be a parking
{not IncomCycLane, not BusStop} An incoming cycle lane cannot be a bus stop
{not IncomCycLane, not Parking} An incoming cycle lane cannot be a parking
{not Pav, not Parking} A pavement cannot be a parking
{not LftPav, not Parking} A left pavement cannot be a parking
{not RhtPav, not Parking} A right pavements cannot be a parking
{not Jun, not Parking} A junction cannot be a parking
{not XingLoc, not BusStop} A crossing cannot be a bus stop
{not XingLoc, not Parking} A crossing cannot be a parking
{not BusStop, not Parking} A bus stop cannot be a parking
{not Mobike, not Ped } A motorbike cannot be a pedestrian
{not MovTow, not OthTL} A other traffic light cannot move towards
{not TL, not Brake} A traffic light cannot brake
{not Red, not MovAway} A red traffic light cannot move away
{not Amber, not Green} An amber traffic light cannot be green
{not LarVeh, not Xing} A large vehicle cannot cross
{not OthTL, not Mov} A other traffic light cannot move
{not Stop, not TL} A traffic light cannot stop
{not LarVeh, not PushObj} A large vehicle cannot push objects
{not Red, not MovTow} A red traffic light cannot move towards
{not Amber, not MovAway} A amber traffic light cannot move away
{not Bus, not Wait2X} A bus cannot wait to cross
{not TL, not IncatLeft} A traffic light cannot idicate left
{not OthTL, not Brake} A other traffic light cannot brake
{not Red, not Mov} A red traffic light cannot move
{not TL, not IncatRht} A traffic light cannot indicate right
{not Stop, not OthTL} A other traffic light cannot stop
{not Amber, not MovTow} A amber traffic light cannot move towards
{not Green, not MovAway} A green traffic light cannot move away
{not TL, not HazLit} A traffic light cannot have the hazard lights on
{not Red, not Brake} A red traffic light cannot brake
{not Bus, not Xing} A bus cannot be crossing
{not OthTL, not IncatLeft} A other traffic light cannot indicate left
{not MedVeh, not Ped} A medium vehicle cannot be a pedestrian
{not Amber, not Mov} A amber traffic light cannot move
{not Bus, not PushObj} A bus cannot push objects
{not EmVeh, not Wait2X} A emergency vehicle cannot wait to cross
{not TL, not Ovtak} A traffic light cannot overtake
{not Amber, not Stop} A amber traffic light cannot stop
{not EmVeh, not Xing} An emergency vehicle cannot be crossing
{not OthTL, not TurLft} A other traffic light cannot turn left
{not Red, not IncatRht} A red traffic light cannot indicate right
{not TL, not Wait2X} A traffic light cannot wait to cross
{not Green, not Brake} A green traffic light cannot be green and break
{not MovAway, not Mov} An agentcannot move perpendicularly to and away from the AV
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Requirements Natural language explanations

{not EmVeh, not PushObj} An emergency vehicle cannot push an object
{not TurRht, not OthTL} A other traffic light cannot turn right
{not Amber, not IncatLeft} An amber traffic light cannot indicate left
{not TL, not XingFmLft} An traffic light cannot be crossing from the left
{not Red, not HazLit} A red traffic light cannot have the hazard lights on
{not Green, not Stop} A green traffic light cannot stop
{not LarVeh, not Ped} A large vehicle cannot be a pedestrian
{not OthTL, not Ovtak} A other traffic light cannot overtake

Table 11   (continued)
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