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Abstract

Neural networks have proven to be very powerful at computer vision tasks. However, they
often exhibit unexpected behaviors, acting against background knowledge about the prob-
lem at hand. This calls for models (i) able to learn from requirements expressing such back-
ground knowledge, and (ii) guaranteed to be compliant with the requirements themselves.
Unfortunately, the development of such models is hampered by the lack of real-world data-
sets equipped with formally specified requirements. In this paper, we introduce the ROad
event Awareness Dataset with logical Requirements (ROAD-R), the first publicly available
dataset for autonomous driving with requirements expressed as logical constraints. Given
ROAD-R, we show that current state-of-the-art models often violate its logical constraints,
and that it is possible to exploit them to create models that (i) have a better performance,
and (ii) are guaranteed to be compliant with the requirements themselves.

Keywords Deep learning - Requirements - Logical constraints - Safety

1 Introduction

Neural networks have proven to be incredibly powerful at processing low-level inputs, and
for this reason they have been extensively applied to computer vision tasks, such as image
classification, object detection, and action detection. However, they can exhibit unexpected
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Table 1 ROAD labels

Agents: Pedestrian, Car, Cyclist, Motorbike, Medium vehicle, Large vehicle, Bus, Emergency vehicle,
Traffic light (TL), Other TL.

Actions: Move away, Move towards, Move, Brake, Stop, Indicating left, Indicating right, Hazards lights
on, Turn left, Turn right, Overtake, Wait to cross, Cross from left, Cross from right, Cross-
ing, Push object, Red TL, Amber TL, Green TL.

Locations: AV lane, Outgoing lane, Outgoing cycle lane, Incoming lane, Incoming cycle lane, Pavement,
Left pavement, Right pavement, Junction, Crossing location, Bus stop, Parking.

behaviors, contradicting known requirements expressing background knowledge. This can
have dramatic consequences, especially in safety-critical scenarios such as autonomous
driving. To address the problem, models should (i) be able to learn from the requirements,
and (ii) be guaranteed to be compliant with the requirements themselves. Indeed, as sug-
gested in Amodei et al. (2016), in such settings it is of primary importance to create mod-
els that are able to operate within boundaries specified by the requirements written by
domain experts. Unfortunately, the development of such models is hampered by the lack
of real-world datasets equipped with formally specified requirements. A notable exception
is given by hierarchical multi-label classification (HMC) problems (see, e.g., (Vens et al.
2008; Schietgat et al. 2010; Wehrmann et al. 2018)) in which datasets are provided with
simple binary constraints of the form (A — B) stating that label B must be predicted when-
ever label A is predicted.

In this paper, we generalize HMC problems by introducing multi-label classification
problems with (full) propositional logic requirements. Thus, given a multi-label classifica-
tion problem with labels A, B, and C, we can, for example, write the requirement:

(mAAB)VC,

stating that for each data point in the dataset either the label C is predicted, or B but not A
are predicted. Then, we present the ROad event Awareness Dataset with logical Require-
ments (ROAD-R), the first publicly available dataset for autonomous driving with require-
ments expressed as logical constraints. ROAD-R extends the ROAD dataset (Singh et al.
2022), which was built on top of the Oxford RobotCar Dataset (Maddern et al. 2017) and
consists of 22 relatively long (~8 minutes each) videos annotated with road events. A road
event corresponds to a tube/tubelet, i.e., a sequence of frame-wise bounding boxes linked in
time. Each bounding box is labeled with a subset of the 41 labels specified in Table 1. The
goal is to predict the set of labels associated with each bounding box. We manually anno-
tated ROAD-R with 243 constraints expressing which combinations of labels are admis-
sible. We verified that the constraints hold for all bounding boxes’ ground truth annota-
tions appearing in the dataset using the SAT-solver MiniSat (Eén and Sorensoon 2004).' An
example of a constraint is thus “a traffic light cannot be red and green at the same time”,
while there are no constraints like “pedestrians should cross at crossings”, which should
always be satisfied in theory, but which might not be in real-world scenarios.

Given ROAD-R, we considered 6 current state-of-the-art (SOTA) models, and we
showed that they are not able to learn the requirements just from the data points, as more

! Link: http:/minisat.set.
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than 90% of their predictions violate the constraints. Then, we faced the problem of how
to leverage the additional knowledge provided by constraints with the goal of (i) improving
their performance, measured by the frame mean average precision (f-mAP) at intersection
over union (IoU) thresholds 0.5 and 0.75; see, e.g., (Kalogeiton et al. 2017; Li et al. 2018),
and (ii) guaranteeing that they are compliant with the constraints. To achieve the above two
goals, we propose the following new models:

1. CL models, i.e., models with a constrained loss allowing them to learn from the require-
ments,

2. CO models, i.e, models with a constrained output enforcing the requirements on the
output, and

3. CLCO models, i.e., models with both a constrained loss and a constrained output.

In particular, we consider three different ways to build CL (resp., CO, CLCO) models.
More specifically, we run the 9 X 6 models obtained by equipping the 6 current SOTA
models with a constrained loss and/or a constrained output, and we show that it is always
possible to

1. Improve the performance of each SOTA model, and
2. Be compliant with (i.e., strictly satisfy) the constraints.

Overall, the best performing model (for IoU = 0.5 and also IoU = 0.75) is CLCO-RCGRU,
i.e., the SOTA model RCGRU equipped with both constrained loss and constrained output:
CLCO-RCGRU (i) always satisfies the requirements and (ii) has f-mAP = 31.81 for IoU =
0.5, and f-mAP = 17.27 for IoU = 0.75. On the other hand, the standard RCGRU model
(i) produces predictions that violate the constraints at least 92% of the times, and (ii) has
f-mAP = 30.78 for IoU = 0.5 and f-mAP = 15.98 for IoU = 0.75.

The main contributions of this paper are thus as follows:

1. We introduce multi-label classification problems with propositional logic requirements,

2. We introduce ROAD-R, which is the first publicly available dataset whose requirements
are expressed in full propositional logic,

3. We consider 6 SOTA models and show that on ROAD-R, they produce predictions
violating the requirements more than ~90% of the times,

4. We propose new models with a constrained loss and/or constrained output, and

5. We conduct an extensive experimental analysis and show that, with our new models,
it is always possible to improve the performance of the SOTA models and satisfy the
requirements.

The rest of this paper is organized as follows. After the introduction to the problem, we
present ROAD-R (Sect. 3), followed by the evaluation of the SOTA models (Sect. 4) and of
the SOTA models incorporating the requirements (Sect. 5) on ROAD-R. We end the paper
with the related work (Sect. 6) and the summary and outlook (Sect. 7).
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Fig.1 Example of violation
of —RedTL Vv -GreenTL

2 Learning with requirements

In ROAD, the detection of road events requires the following tasks: (i) identify the bound-
ing boxes, (ii) associate with each bounding box a set of labels, and (iii) form a tube from
the identified bounding boxes with the same labels. Here, we focus on the second task, and
we formulate it as a multilabel classification problem with requirements.

A multi-label classification (MC) problem P = (C, X) consists of a finite set C of labels,
denoted by A,,A,, ..., and a finite set X" of pairs (x, ¥), where x € R? (D > 1) is a data
point, and y C C is the ground truth of x. The ground truth y associated with a data point x
characterizes both the positive and the negative labels associated with x, defined to be y and
{—=A : A € C\ y}, respectively. In ROAD-R, a data point corresponds to a bounding box,
and each box is labeled with the positive labels representing (i) the agent performing the
actions in the box, (ii) the actions being performed, and (iii) the locations where the actions
take place. See Appendix A for a detailed description of each label. Consider an MC prob-
lem P = (C, &). A prediction p is a set of positive and negative labels such that for each label
A € C, either A € por ~A € p. A model m for P is a function m(-, -) mapping every label A
and every data point x to [0, 1]. A data point x is predicted by a model m to have label A if
its output value m(A, x) is greater than a user-defined threshold 6 € [0, 1]. The prediction of
model m for data point x is the set{A : A € C,m(A,x) >0} U{-A : A€ (C,m(A,x)<0}of
positive and negative labels.

An MC problem with propositional logic requirements (P,II) consists of an MC prob-
lem P and a finite set IT of propositional logic constraints on the labels of PP. Consider an
MC problem with propositional logic requirements (P, IT). Each constraint in IT delimits
the set of predictions that can be associated with each data point by ruling out those that
violate it. A prediction p is admissible if each constraint r in I1 is satisfied by p. A model m
for P satisfies (resp., violates) the constraints on a data point x if the prediction of m for x is
(resp., is not) admissible.

Example 1 The requirement that a traffic light cannot be both red and green corresponds to
the constraint “RedTL V =GreenTL. Any prediction with {RedTL, GreenTL } is non-admis-
sible. An example of such predictions made by the SOTA models is shown in Fig. 1.

Given an MC problem with propositional logic requirements, it is possible to take

advantage of the constraints in two different ways: (i) they can be exploited during learning
to teach the model the background knowledge that they express, and (ii) they can be used
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as post-processing to turn a non-admissible prediction into an admissible one. Models in
the first and second category have a constrained loss (CL) and constrained output (CO),
respectively. Constrained loss models have the advantage that the constraints are deployed
during the training phase, and this should result in models (i) with a higher understanding
of the problem and a better performance, but still (ii) with no guarantee that no violations
will be committed. On the other hand, constrained output models (i) do not exploit the
additional knowledge during training, but (ii) are guaranteed to have no violations in the
final outputs. These two options are not mutually exclusive (i.e., can be used together), and
which one is to be deployed depends also on the extent to which a system is available. For
instance, there can be companies that already have their own models (which can be black
boxes) and want to make them compliant with a set of requirements without modifying the
model itself. On the other hand, the exploitation of the constraints in the learning phase
can be an attractive option for those who have a good knowledge of the model and want to
further improve it.

3 ROAD-R

ROAD-R extends the ROAD dataset’ (Singh et al. 2022) by introducing a set IT of 243 con-
straints that specify the space of admissible outputs.

In order to improve the usability of our dataset, we write each constraint as a disjunction
of positive and negative labels, i.e., as expressions having the form:

ll Vlzv"'vlna (1)

where n > 1, and each /; is either a negative label =A or a positive label A. Thus, IT can be
equivalently seen as a formula in conjunctive normal form (CNF), which is the standard
form used by propositional logic solvers. Notice that for any propositional formula there is
an equivalent one in CNF.

The requirements have been manually specified following three steps:

—

An initial set of constraints IT; was manually created,

2. A subset I, C II; was retained by eliminating all those constraints that were entailed
by the others,

3. The final subset IT C I1, was retained by keeping only those requirements that were

always satisfied by the ground-truth labels of the entire ROAD-R dataset.

Considering the above procedure, a few considerations are in order:

1. The requirement specification process (i) is a standard step in the development of any
software, necessary to characterize the expected behavior of the system and then verify
that the system functions as expected; and (ii) deeply involves the stakeholders/design-
ers of the system (see, e.g., (Sommerville 2011)). As a consequence, the set I1; is not
guaranteed to be complete from every possible point of view. Indeed, with a different
set of labels and/or in different contexts, other constraints may hold. For instance, some

2 Dataset and code are available at: https:/github.com/EGiunchiglia/ROAD-R.
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Table 2 Constraint statistics

Statistics

1Cl 41

[T | 243

avg,cr(l 7 1) 2.86

|[{AeC:3rellAer}| 41

|[{AeC:3rell-Aer}| 38

mingo(| {rell: {A,-A}nr#0} ) 2

avgee(| {rell: {A,-A}Nnr# 6} ) 16.95

max,eo(| {rell: {A,-A}nr#0} | 31
et sroreomrmmss " Tl swadrnl) e (r0C)
in [Twith| r |= n,i.e., withn
positive and negative labels. 2 215 1.995 0.005
C={-A:Ae() 3 5 1 2

7 1 1 6

8 6 1 7

9 6 1 8

10 1 0 10

12 1 1 11

14 1 0 14

15 7 1 14

Total 243 1.87 0.96

roads can be closed to “large vehicles" and in some countries it is possible to have traffic
lights with both the green and amber lights on;

2. The elimination of the constraints that are violated by the ground-truth labels of the
entire dataset—despite their validity—is a necessary step in order to maintain (i) consist-
ency between the knowledge provided by the constraints and by the data points, and (ii)
backward compatibility with the ROAD dataset. Indeed, some constraints in IT;, like “it
is not possible for an agent to both move towards and move away", have been discarded,
since they were not satisfied by all the data points because of errors in the ground-truth
labels;

3. Following the standard practice adopted in software development, the requirement speci-
fication process should come before the software development begins and before the
annotation of the dataset. Indeed, this would have allowed to (i) simplify the annotation
process, and then (ii) validate the annotated dataset.

Given the above, ROAD-R, along with the presented models, is a first step pushing in the
direction of having a new generation of machine learning models (i) whose design starts
with the specification of the requirements that it should satisfy, and (ii) able to learn from
and then obey to the constraints. This will help in the deployment of machine learning
models in all application domains, including safety-critical ones. Indeed, as stated in
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Amodei et al. (2016) and Hoernle et al. (2022), to be applied in such settings models need
to be guaranteed to be able to operate within boundaries specified by domain experts.

Tables 2 and 3 give a high-level description of the properties of the set IT of constraints.
Notice that, with a slight abuse of notation, in the tables, we use a set-based notation for
the requirements. Each requirement of the form (1) thus becomes {/,,[,, ..., [, }. Such nota-
tion allows us to express the properties of the requirements in a more succinct way. From
Table 2, we can see that:

e Aall the constraints have between 2 and 15 positive and negative labels, with an aver-
age of 2.86,
All the labels appear positively in I1.
Of the 41 labels, 38 appear negatively in I1, and
Each label appears either positively or negatively between 2 and 31 times in I1, with an
average of 16.95.

Table 3 gives a close-up view of structure of the constraints, showing the number of rules
having n positive and negative labels, together with the average number of negative and
positive labels in such rules. As witnessed by Table 3, in the 243 constraints, there are two
in which all the labels are positive (expressing that there must be at least one agent and
that every agent but traffic lights has at least one location), and 214 in which all the labels
are negative (expressing mutual exclusion between two labels). All the constraints with
more than two labels have at most one negative label, as they express a one-to-many rela-
tion between actions and agents (like “if something is crossing, then it is a pedestrian or a
cyclist”). Constraints like “pedestrians should cross at crossings”, which might not be satis-
fied in practice, are not included. The list with all the 243 requirements, with their natural
language explanations, is in Appendix D, Tables 9, 10, and 11. Overall, the 243 require-
ments restrict the number of admissible prediction to 4985868 ~ 5 x 106, thus ruling out
(2% — 4985868) ~ 10'2 non-admissible predictions.

4 ROAD-R and SOTA models

As a first step, we ran 6 SOTA temporal feature learning architectures as part of a 3D-Ret-
inaNet model (Singh et al. 2022) (with a 2D-ConvNet backbone made of Resnet50 (He
et al. 2016)) for event detection and evaluated to which extent constraints are violated. Each
SOTA model takes as input a sequence of frames, and it returns: (i) a set of bounding boxes
for each frame, and (ii) a vector v € [0, 1]/ for each bounding box. For each bounding box,
the final prediction is then the set of positive and negative labels obtained by thresholding v
as described in Sect. 2. We considered:

1. 2D-ConvNet (C2D) (Wang et al. 2018): a Resnet50-based architecture with an additional
temporal dimension for learning features from videos. The extension from 2D to 3D is
done by adding a pooling layer over time to combine the spatial features.

3 The number of admissible predictions has been computed with relsat: https:/github.com/roberto-bayardo/
relsat/.
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2. Inflated 3D-ConvNet (I3D) (Carreira and Zisserman 2017): a sequential learning archi-
tecture extendable to any SOTA image classification model (2D-ConvNet based), able
to learn continuous spatio-temporal features from the sequence of frames.

3. Recurrent Convolutional Network (RCN) (Singh and Cuzzolin 2019): a 3D-ConvNet
model that relies on recurrence for learning the spatio-temporal features at each network
level. During the feature extraction phase, RCNs exploit both 2D convolutions across
the spatial domain and 1D convolutions across the temporal domain.

4. Random Connectivity Long Short-Term Memory (RCLSTM) (Hua et al. 2018): an
updated version of LSTM in which the neurons are connected in a stochastic man-
ner, rather than fully connected. In our case, the LSTM cell is used as a bottleneck in
ResNet50 for learning the features sequentially.

5. Random Connectivity Gated Recurrent Unit (RCGRU) (Hua et al. 2018): an alternative
version of RCLSTM where the GRU cell is used instead of the LSTM one. GRU makes
the process more efficient with fewer parameters than the LSTM.

6. SlowFast (Feichtenhofer et al. 2019): a 3D-CNN architecture that contains both slow
and fast pathways for extracting the sequential features. A slow pathway computes the
spatial semantics at a low frame rate, while a fast pathway processes high frame rate for
capturing the motion features. Both the pathways are fused in a single architecture by
lateral connections.

We trained 3D-RetinaNet* using the same hyperparameter settings for all the models: (i)
batch size equal to 4, (ii) sequence length equal to 8, and (iii) image input size equal to
512 x 682. All the models were initialized with the Kinetics pre-trained weights. An SGD
optimizer (LeCun et al. 2012) with step learning rate was used. The initial learning rate was
set to 0.0041 for all the models except SlowFast, for which it was set to 0.0021 due to the
diverse nature of slow and fast pathways. All the models were trained for 30 epochs, and
the learning rate was made to drop by a factor of 10 after 18 and 25 epochs. The machine
used for the experiments has 64 CPUs (2.2 GHz each) and 4 Titan RTX GPUs having 24
GB of RAM each.

To measure the models’ performance, we used the frame mean average precision
(f-mAP), which is the standard metric used for action detection (see, e.g., (Kalogeiton et al.
2017; Li et al. 2018)) and is obtained by calculating for each class the mean average preci-
sion over all frames, averaging the final results as shown in Eq. (2). In our experiments,
we set IoU threshold equal to 0.5 and 0.75, indicated as f-mAP@0.5 and f-mAP@0.75,
respectively.

11w v
fmAP@r = & ; ]; AP, )
where F is the number of frames, and AP; is the average precision for class i at frame j
at IoU 7. The results for the SOTA models at IoU threshold 0.5 and 0.75 are reported in
Table 4, column “SOTA”.
To measure the extent to which each system violates the constraints, we used the follow-
ing metrics:

4 https://github.com/gurkirt/3D-RetinaNets.
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X
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% violated requirements
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90% == SLOWFAST - - SLOWFAST
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Threshold Threshold Threshold

(a) Percentage of predictions (b) Average number of vio- (c) Percentage of constraints
violating at least one con- lations committed per predic- violated at least once.
straint. tion.

Fig.2 ROAD-R and SOTA models. In the x-axis, there is the threshold 8 € [0.1,0.9], step 0.1

e The percentage of non-admissible predictions,
e The average number of violations committed per prediction, and
e The percentage of constraints violated at least once,

while varying the threshold 6 from 0.1 to 0.9 with step 0.1. The results are in Fig. 2, where
(to improve readability) we do not plot the values corresponding to 8 = 0.0 and 8 = 1.0.
For 68 = 0.0 (resp., 6 = 1.0), all the predictions are positive (resp., negative), and thus the
corresponding values are (in order) 100%, 214, and 214/243 (resp., 100%, 2, and 2/243).

Consider the results in Table 4, column “SOTA”, and in Fig. 2. First, note that the
performances are not an indicator of the ability of the model to satisfy the constraints.
Indeed, higher f-mAPs do not correspond to lower trends in the plots of Fig. 2b. For
example, RCGRU performs better than C2D for both IoU = 0.5 and IoU = 0.75, how-
ever, its curve is above C2D’s in both Fig. 2a and b. Then, note that the percentage
of non-admissible predictions is always very high for every model: at its minimum,
for 8 = 0.1, more than 90% of the predictions are non-admissible, and this percentage
reaches 99% for 6 = 0.9 (see Fig. 2a). In addition, most predictions violate roughly two
constraints, as shown by Fig. 2b. Considering that we are in an autonomous vehicle
setting, such results are critical: one of the constraints that is violated by all the base-
line models is {~RedTL, -GreenTL}, corresponding to predictions stating that there is
a traffic light with both the red and the green lights on. Figure 1 shows an image where
such a prediction is made by C2D. Appendix C contains images with all the models
making predictions violating { -RedTL, =GreenTL} and other constraints.

5 ROAD-R and CL, CO, and CLCO models

We now show how it is possible to build CL, CO, and CLCO models. In particular,
we show how to equip the 6 considered SOTA models with a constrained loss and/
or a constrained output. As anticipated in the introduction, we introduce (i) three dif-
ferent methods to build the constrained loss, (ii) three different methods to obtain the
constrained output, and (iii) three combinations of constrained loss and constrained
output. Thus, we get 9 models for each SOTA model, for a total of 54. In order to get
an overall view of the performance gains produced by each method, we also report
the average ranking of the 9 proposed methods and SOTA (Demsar 2006), computed
as follows: (i) for each row in Table 4, we rank the performances of the 9 CL, CO,
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Fig.3 Comparison of the behaviour of RCLSTM and CL-RCLSTM (with Product, Godel and Lukasiewicz
loss) with respect to the requirements. In the x-axis, there is the threshold 8 € [0.1,0.9], step 0.1

and CLCO models and of the SOTA model separately: the best performing model
gets the rank 1, the second best gets rank 2, etc., and in case of ties, the rank is split
(e.g., the assigned rank is 1.5 if two models have the best performance), and (ii) for
each column, we take the average of the rankings computed in step 1. See Table 4 for
f-mAP@0.5, f-mAP@0.75 and average rankings, where, for each row the best results
are in bold. The details of the implemented models with constrained loss, constrained
output, and both constrained loss and constrained output is given in the three subsec-
tions below.

5.1 Constrained loss

To constrain the loss, we take inspiration from the approaches proposed in Diligenti et al.
(2017a, 2017b), and we train the models using the standard localization and classification
losses, to which we add a regularization term. This last term represents the degree of satis-
faction of the constraints in IT and has the form:

Ly=a 2'2'1(1 —1(ry),

where r; represents the ith constraint in I, #(r;) represents the fuzzy logic relaxation of r;,
and a is a hyperparameter ruling the weight of the regularization term (the higher a is, the
more relevant the term corresponding to the constraints becomes, up to the limit case in
which @ — oo, and the constraints become hard (Diligenti et al. 2017b)). We considered
a € {1,10,100} and the three fundamental t-norms: (i) Product t-norm, (ii) Godel t-norm,
and (iii) Lukasiewicz t-norm as fuzzy logic relaxations (Hajek 1998). The best results for
f-mAP@0.5 and f-mAP@0.75 while varying « are in Table 4, columns Product, Godel,
and Lukasiewicz. As can be seen, SOTA never achieves the best average ranking, even
when compared with only the three CL methods. Of these, Lukasiewicz (for IoU = 0.5)
and Product (for IoU = 0.75) have the best ranking, though for some model and IoU, the
best performances are obtained with Godel. In only one case (for RCLSTM at IoU = 0.75),
the SOTA model performs better than the CL models. Furthermore, we measure the extent
to which the CL models violate the constraints using the metrics introduced in the previous
section, and we never get any significant reduction in the number of predictions violating
the constraints. As example, we plot the resulting charts in Fig. 3 for the SOTA model
RCLSTM and the CL-RCLSTM models with Product, Gddel and f.ukasiewicz loss. As it
can be seen from Fig. 3a, the CL models’ predictions also violate the constraints at least
90% of the times.
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5.2 Constrained output

We now consider the problem of how to correct a prediction p whose admissibility is
evaluated at a given threshold 6. The first observation is that determining the existence
of an admissible prediction is an intractable problem: indeed, this is just a reformulation
of the satisfiability problem in propositional logic, which is well known to be NP-com-
plete. Despite this, we want to correct any non-admissable prediction p in such a way
that (i) the final prediction is admissible, and (ii) the performance of the final model
either improves or remains unaltered.

In order to achieve the above, we first test the policy of trying to correct as few labels
as possible. More precisely, for each prediction ¢, (p \ ¢) is the set of positive and nega-
tive predictions on which ¢ differs from p. Then, we can compute the admissible predic-
tion ¢ with the minimum number of differences, i.e., such that | p \ ¢ | is minimal. We
call such policy Minimal Distance (MD). Unfortunately, no polynomial time algorithm
is known to solve this problem.

Theorem 1 Let (P,I1) be an MC problem with requirements. Let p be a prediction. For
each positive d, determining the existence of an admissible prediction q such that| p\q |< d
is an NP-complete problem.

The theorem is an easy consequence of Proposition 1 in Bailleux and Marquis
(2006). In order to be able to solve the problem in practice, we formulate the problem of
finding an admissible prediction with minimal | p \ g | as a weighted partial maximum
satisfiability (PMaxSAT) problem of a set of clauses (see, e.g., (Li and Manya 2009)) in
which

1. Each constraint in IT corresponds to a clause marked as hard, and
2. Each positive and negative prediction in p corresponds to a unit clause marked as soft
with unitary weight.

In our setting, a clause is a disjunction of literals, and a literal is either a positive label or
its negation, representing the corresponding negative label. A clause is unit if it consists of
a single literal. This allows us to use the very efficient solvers publicly available for PMax-
Sat problems. In particular, in our experiments, we used MaxHS (Hickey and Bacchus
2019), and running times were in the order of 10~%s at most. As intended, since we assign
all labels unitary weight, MaxHS returns the admissible prediction g with as few as pos-
sible labels flipped. Notice that flipping the ith label amounts to changing its output value
o0, from a value below the threshold to another value f(o;) above the threshold or vice versa.
In all our experiments, we considered (i) f(o;) =0 + ¢, if 0; < 6, and (ii) f(0;) = 0 — €,
otherwise (¢ = 1073). In this way, assuming o; < @ (i.e., the label is negatively predicted
and then flipped positive), we expect f(o;) to be lower (but still higher than ) than the out-
put values of the non-flipped, positively predicted labels. It is done analogously for the case
0; > 0. We tested this approach with all the thresholds 8 from 0.1 to 0.9 with step 0.1, and
the resulting f-mAP@0.5 and f-mAP@0.75 for the best threshold are reported in Table 4,
column MD. As we can see from the table, despite the fact that we are minimizing the
number of corrections, the results obtained by the CO-MD model are always worse than
the ones obtained by the SOTA models. We can hence conclude that adding such post-
processing has a detrimental effect on the models’ performance.
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Thus, we need alternative policies to correct a non-admissible prediction p. We gen-
eralize the problem by assigning a positive weight w; (representing the cost of correct-
in{,{ the ith label in p) and then computing the admissible prediction g that minimizes
Ziill w;. More precisely, for every prediction g, cost(p,q) = Y,,.;w;,  being the set of
indexes of the labels in (p \ ¢). Then, we can compute the admissible prediction g such
that cost(p, g) is minimal. As it is a generalization of the problem above, no polynomial-
time algorithm is known to solve this problem.

Theorem 2 Let (P,I1) be an MC problem with requirements. Let p be a prediction, and let
w; be the cost of correcting the ith label in p. For each positive d, determining the existence
of an admissible prediction q such that cost(p, q) < d is an NP-complete problem.

This is an easy consequence of Theorem 1. We can again formulate the problem as a
PMaxSAT problem in which:

1. Each constraint in IT corresponds to a clause marked as hard, and
2. Foreachi(l <i <|C ), the prediction in p for the ith label corresponds to a unit clause
having weight w;.

Given the above formulation, we tested two different policies for choosing the weight asso-
ciated to each label:

1. Average Precision-based (AP), in which each w; is equal to the average precision AP; of
the ith label, and

2. Average Precision and Output-based (APXO), in which each w; = AP; X c;, where ¢; is
equal to (i) the output o, of the model for the ith label if 0; > 6, and (ii) (1 — o;), other-
wise.

Differently from the MD policy, in order to take a decision, these policies take into account
the reliability of the output o; for the ith label. We again tested the two policies with all the
thresholds € from 0.1 to 0.9 with step 0.1, and the resulting f-mAP@0.5 and f-mAP@0.75
for the best threshold are reported in Table 4, columns AP, and APXO. Comparing the
predictions of the SOTA models with the CO-AP and the CO-APXO models, we can see
that flipping the variables taking into account the average precision (i) never leads to worse
performances than the ones of the SOTA models, and (ii) for IoU = 0.75, correcting the
output of RCLSTM with AP and APXO gives the best and second best performance in the
row. Notice that the differences in the performances between AP and APXO are negligible,
APXxO being better than AP more often. The average rankings are in line with the above
statements.

5.3 Constrained loss and output

Given the results presented in the previous paragraph, of the 9 possible combinations of a
constrained loss and a constrained output, we consider only the ones with APXO as con-
strained output. The results are shown in Table 4, last three columns. Given the constant
improvement produced by the constrained output APXO over the SOTA models discussed
in the previous paragraph, the results of the CLCO models are not surprising: post-pro-
cessing the output with APXO policy produces again relatively small but almost always
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constant improvements over the corresponding CL models. The average rankings are in
line with the above statements.
Considering the results in Table 4 all together, we see that

1. Constraining the output alone guarantees the compliance with the constraints, but
improvements in the performances are constant but limited,

2. Constraining the loss alone does not guarantee the satisfaction of the requirements but
can lead to non marginal improvements in the performances,

3. The best performances (the numbers in bold) are always obtained by constraining the
output, and thus it is always possible to (i) improve the performance of each SOTA
model, and (ii) guarantee to be compliant with the requirements,

4. On average, the best performances are obtained by CLCO models, as witnessed by the
average rankings,

5. The best performing model is CLCO-RCGRU, i.e., RCGRU with Lukasiewicz con-
strained loss and APXO constrained output: such model (i) is compliant with the con-
straints by construction, and (ii) has f-mAP = 31.81 for [oU = 0.5, and f-mAP = 17.27
for IoU = 0.75. RCGRU (without CL and CO) (i) produces predictions that violate the
constraints at least 92% of the times, and (ii) has f-mAP = 30.78 for IoU = 0.5, and
f-mAP = 15.98 for [oU =0.75.

6 Related work

The approach proposed in this paper generalizes HMC problems, in which requirements
are binary and have the form (A — B), corresponding to our (—A V B). Many models have
been developed for HMC; see, e.g., (Vens et al. 2008; Wehrmann et al. 2018; Giunchiglia
and Lukasiewicz 2020).

Interestingly, when dealing with more complex logical requirements on the output
space, in the past, researchers have mostly focused on exploiting the background knowl-
edge that they express to improve performance and/or to deal with data scarcity, curiously
neglecting the problem of guaranteeing their satisfaction. Many works go in this direction,
such as Hu et al. (2016a, 2016b), where an iterative method to embed structured logical
information into the neural networks’ weights is introduced: at each step, the authors con-
sider a teacher network based on the set of logical rules to train a student network to fit
both supervisions and logic rules. Another neural model is considered in Li and Srikumar
(2019), in which some neurons are associated with logical predicates, and their activation
is modified on the ground of the activation of the neurons corresponding to predicates that
co-occur in the same rules. An entire line of research is dedicated to embedding logical
constraints into loss functions; see, e.g., (Diligenti et al. 2017b; Donadello et al. 2017; Xu
et al. 2018). These works consider a fuzzy relaxation of FOL formulas to get a differenti-
able loss function that can be minimized by gradient descent. However, in all the above
methods, there is no guarantee that the constraints will be actually satisfied. Recently, this
problem has gained more relevance, and few works now propose novel ways of addressing
the problem. One of such works is (Giunchiglia and Lukasiewicz 2021), which presents a
novel neural model called coherent-by-construction network (CCN). CCN not only exploits
the knowledge expressed by the constraints, but is also able to guarantee the constraints’
satisfaction. However, that model is able to guarantee the satisfaction of constraints writ-
ten as normal logic rules with at least one positive label, and thus is not able to deal with
all the ROAD-R’s requirements. Another work that goes in this direction is (Dragone et al.
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2021), in which NESTER is proposed. In this case, the constraints are not mapped into the
last layer of the network (like CCN), but they are enforced by passing the outputs of the
neural network to a constraint program, which enforces the constraints. The most recent
work is given by Hoernle et al. (2022), where the authors propose MultiPlexNet. Multi-
plexNet can impose constraints consisting of any quantifier-free linear arithmetic formula
over the rationals (thus, involving “+", “>", “=", “A", and “V"). In order to train the model
with such constraints, the formulas are firstly expressed in disjunctive normal form (DNF),
and then the output layer of the network is augmented to include a separate transformation
for each term in the DNF formula. Thus, the network’s output layer can be viewed as a
multiplexor in a logical circuit that permits for a branching of logic. For a general overview
of deep learning with logical constraints, see the survey (Giunchiglia et al. 2022).

In the video understanding field, some recent works have started to argue the impor-
tance of being able to extract structured information from videos and to incorporate back-
ground knowledge in the models. For example, (Curtis et al. 2020) propose a challenge
to test the models’ ability of extracting knowledge graphs from videos. In Mahon et al.
(2020), the authors develop a model that is able to exploit the knowledge expressed in logi-
cal rules to extract knowledge graphs from videos. However, ROAD-R is the first dataset
which proposes the incorporation of logical constraints into deep learning models for vid-
eos, and thus represents a truly novel challenge.

7 Summary and outlook

In this paper, we proposed a new learning framework, called learning with requirements, and
a new dataset for this task, called ROAD-R. We showed that SOTA models most of the times
violate the requirements, and how it is possible to exploit the requirements to create models that
are compliant with (i.e., strictly satisfy) the requirements while improving their performance.

ROAD-R opens up a number of research possibilities. The most straightforward open
problem is how to create neural-based models that are compliant by design with the given
requirements, i.e., without the need of any post-processing steps. However, other directions
are also possible. For example, it is an open question whether the annotated constraints can
help in alleviating the data greediness characteristic of the large deep learning models usu-
ally deployed in the autonomous driving setting. Indeed, we can now use the requirements
to train models on both labelled and unlabelled data. Another open question is whether
neural models, in addition to bounding boxes and labels, can also learn the requirements
that we annotated. In this case, the annotated requirements could be used to measure the
coverage of the learned ones.

Finally, in the future, we will further extend ROAD-R. In particular, we plan to annotate
ROAD with temporal constraints stating facts like “a traffic light becomes red after being
green”, and with soft constraints stating likely facts like “pedestrians should cross at crossings”.

Appendix A: ROAD labels

Here, we provide a detailed description of the meaning of each of the 41 labels. In particu-
lar, we describe (i) the labels associated with agents in Table 5, (ii) the labels associated
with actions in Table 6, and (iii) the labels associated with locations in Table 7. In the last
column of each table, we also report the abbreviations used in our implementation and
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Table 5 Agent labels with descriptions and abbreviations Singh et al. (2022)

Label name Description Abbrv.
Pedestrian A person including children Ped
Car A car up to the size of a multi-purpose vehicle Car
Cyclist A person is riding a push/electric bicycle Cyc
Motorbike Motorbike, dirt bike, scooter with 2/3 wheels Mobike
Medium vehicle Vehicle larger than a car, such as van MedVeh
Large vehicle Vehicle larger than a van, such as a lorry LarVeh
Bus A single or double-decker bus or coach Bus
Emergency vehicle Ambulance, police car, fire engine, etc EmVeh
AV traffic light Traffic light related to the AV lane TL
Other traffic light Traffic light not related to the AV lane OthTL

associated with each label. Such abbreviations were taken from https://github.com/gurki
rt/3D-RetinaNet, and allowed a seamless integration of our code with the SOTA models’
code. The abbreviations are used in Tables 9, 10, and 11 to write the requirements using
the set-based notation.
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Appendix B: Experimental setup

In Table 8, we report the values of # and « used in our experimental analysis.

Table8 Values of @, 6 and both a and 6 for CL, CO, and CLCO models, respectively (values for
f-mAP@0.5 above and for f-mAP@0.75 below)

Model CL CcO CLCO
P G L MD AP APxO (P, APXO) (G, APx0O) (L, APxO)

C2D 1 1 10 0.4 0.9 0.9 (1,0.7) (1,0.8) (10,0.9)
13D 10 10 10 0.4 0.5 0.5 (10,0.9) (10,0.7) (10, 0.6)
RCGRU 10 1 10 0.4 0.5 0.7 (10, 0.6) (1,09 (10, 0.5)
RCLSTM 10 1 10 0.4 0.7 0.7 (10, 0.5) (1,0.8) (10,0.9)
RCN 10 10 10 0.4 0.5 0.5 (10, 0.6) (10, 0.8) (10, 0.5)
SlowFast 10 1 10 0.5 0.9 0.9 (10,0.9) (1,0.5) (10, 0.7)
C2D 1 1 10 0.4 0.9 0.9 (1,0.8) (1,0.8) (10,0.9)
13D 10 10 10 0.5 0.8 0.8 (10, 0.6) (10, 0.6) (10, 0.6)
RCGRU 10 1 10 0.4 0.5 0.5 (10, 0.6) (10,0.9) (10, 0.6)
RCLSTM 10 1 10 0.4 0.5 0.7 (10,0.7) (10,0.8) (10, 0.8)
RCN 10 10 10 0.4 0.8 0.5 (10, 0.5) (10,0.9) (10,0.9)
SlowFast 10 1 10 0.5 0.9 0.9 (10,0.9) (10, 0.5) (10, 0.7)

Appendix C: Visual examples of violations

In this section, we give some visual examples of violations. In order to show differ-
ent situations in which a non-admissible prediction occurs, we consider various require-
ments, and (for each of them) we display a non-admissible prediction made by each
SOTA model. For all examples, we pick the threshold 8 = 0.5, as it is the most intuitive

(d) RCLSTM

() RCN

Fig.4 Examples of violations of {7RedTL, ~GreenTL}

(f) SlowFast
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1200 600 800 1000 1200 800 1000 1200

(d) RCLSTM (e) RCN (f) RCN

Fig.5 Examples of violations of {Ped, Car, Cyc, Mobike, MedVeh, LarVeh, Bus, EmVeh, TL, OthTL}

400 600 800 1000 1200

(a) I3D

(d) RCLSTM (e) RCN (f) SlowFast
Fig.6 Examples of violations of {Ped, Car, Cyc, Mobike, MedVeh, LarVeh, Bus, EmVeh, “-MovAway }
and used threshold in multi-label classification problems. In particular, we show the
violations for:
1. {-RedTL,-~GreenTL} in Fig. 4,

2. {Ped, Car, Cyc, Mobike, MedVeh, LarVeh, Bus, EmVeh, TL, OthTL} in Fig. 5,
3. {Ped, Car, Cyc, Mobike, MedVeh, LarVeh, Bus, EmVeh, “MovAway } in Fig. 6.
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In the above list, there is at least one requirement with (i) all negative labels, (ii) all
positive labels, and (iii) at least one positive and one negative label.

Appendix D: Requirements

In Tables 9, 10, and 11, we report the list of all the 243 requirements together with their
natural language explanations.
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Table 10 Requirements tables

Requirements

Natural language explanations

{not MedVeh, not Bus}
{not Car, not Xing}

{not Mobike, not OthTL}
{not Car, not PushObj }
{not MedVeh, not EmVeh}
{not Mobike, not Red}
{not LarVeh, not Bus}
{not Brake, not Cyc}

{not MedVeh, not TL}
{not Mobike, not Amber}
{not LarVeh, not EmVeh}
{not Mobike, not Green}
{not MedVeh, not OthTL}
{not HazLit, not Cyc}
{not MedVeh, not Red}
{not LarVeh, not TL}

{not Car, not Ped}

{not Mobike, not TL}
{not Bus, not EmVeh}
{not MedVeh, not Amber}
{not LarVeh, not OthTL}
{not MedVeh, not Green}
{not Bus, not TL}

{not LarVeh, not Red}
{not Bus, not OthTL}
{not LarVeh, notAmber}
{not Cyc, not PushObj}
{not EmVeh, not TL}

{not LarVeh, not Green}
{not Bus, not Red}

{not EmVeh, not OthTL}
{not Bus, not Amber}
{not EmVeh, not Red}
{not Mobike, not Wait2X}
{not Bus, not Green}

{not TL, not OthTL}

{not EmVeh, not Amber}
{not Mobike, not Xing}
{not Cyc, not Ped}

{Ped, Cyc, not Xing}

{not Mobike, not PushObj}
{not EmVeh, not Green}
{not MedVeh, not Wait2X}
{not TL, not MovAway }

A medium vehicle cannot be a bus

A car cannot be crossing

A motorbike cannot be an other traffic light

A car cannot push objects

A medium vehicle cannot be an emergency one

A motorbike cannot be a red traffic light

A large vehicle cannot be a bus

A cyclist cannot brake

A traffic light cannot be a medium vehicle

A motorbike cannot be an amber traffic light

A large vehicle cannot be an emergency vehicle
A motorbike cannot be a green traffic light

A medium vehicle cannot be an other traffic light
A cyclist cannot have the hazard lights on

A medium vehicle cannot be a red traffic light

A large vehicle cannot be a traffic light

A car cannot be a pedestrian

A motorbike cannot be a traffic light

A bus cannot be an emergency vehicle

A medium vechile cannot be an amber traffic light
A large vehicle cannot be a other traffic light

A medium vehicle cannot be a green traffic light
A bus cannot be a traffic light

A large vehicle cannot be a red traffic light

A bus cannot be a other traffic light

A large vehicle cannot be a amber traffic light

A cyclist cannot push an object

An emergency vehicle cannot be a traffic light

A large vehicle cannot be a green traffic light

A bus cannot be a red traffic light

An emergency vehicle cannot be a other traffic light
A bus cannot be an amber traffic light

A emergency vehicle cannot be a red traffic light
A motorbike cannot wait to cross

A bus cannot be a green traffic light

A traffic light cannot be a other traffic light

A emergency vehicle cannot be a amber traffic light
A motorbike cannot be crossing

A cyclist cannot be a pedestrian

If an agent is crossing it is either a pedestrian or a cyclist
A motorbike cannot push objects

An emergency vehicle cannot be a green traffic light
A medium vehicle cannot wait to cross

A traffic light cannot move away
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Table 10 (continued)

Requirements

Natural language explanations

not MedVeh, not Xing}
not Red, not Amber}

not MedVeh, not PushObj }
not MovTow, not TL}

{not OthTL, not MovAway }
{not LarVeh, not Wait2X}
{not TL, not Mov }

{not Red, not Green}

not TL, not XingFmRht}
not Amber, not IncatRht}
not Red, not TurLft}

not MovTow, not Mov}
{not TL, not Xing}

{not OthTL, not Wait2X}
{not Green, not IncatLeft}
{not Red, not TurRht}

{not Amber, not HazLit}
{not TL, not PushObj}

{not OthTL, not XingFmLft}
{not Green, not IncatRht}
{not Red, not Ovtak}

{not Amber, not TurLft}
{not OthTL, not XingFmRht}
not Red, not Wait2X}

{
{
{
{

{
{
{
{

{
{not Green, not HazLit}

{not Amber, not TurRht}
{not OthTL, not Xing}

{not Bus, not Ped}

{not Red, not XingFmLft}
{not OthTL, not PushObj}
{not Green, not TurLft}

{not Amber, not Ovtak}

{not Mov, not Stop}

{not Red, not XingFmRht}
{not Amber, not Wait2X}
{not Green, not TurRht}

{not Red, not Xing}

{not Amber, not XingFmLft}
{not Green, not Ovtak}

{not Amber, not XingFmRht}
{not EmVeh, not Ped}

{not Green, not Wait2X}
{not Amber, not Xing}

{not Green, not XingFmLft}

A medium vehicle cannot be crossing

A red traffic light cannot be amber

A medium vehicle cannot push objects

A traffic light cannot move towards

A other traffic light cannot move away

A large vehicle cannot wait to cross

A traffic light cannot move

A red traffic light cannot be green

A traffic light cannot be crossing from right

An agent cannot indicate right and signal amber
An agent cannot turn left and signal red

An agent cannot move towards and move

A traffic light cannot cross

A other traffic light cannot wait to cross

An agent cannot indicate left and signal green
An agent cannot turn right and signal red

An agent cannot have the hazard lights on and signal amber
A traffic light cannot push objects

A other traffic light cannot cross from left

An agent cannot signal green and indicate right
An agent cannot signal red and overtake

An agent cannot signal amber and turn left

A other traffic light cannot cross from right

An agent cannot signal red and wait to cross

An agent cannot signal green and have the hazard lights on
An agent cannot signal amber and turn right

A other traffic light cannot cross

A bus cannot be a pedestrian

An agent cannot signal red and cross from left
A other traffic light cannot push an object

An agent cannot signal green and turn left

An agent cannot signal amber and overtake

An agent cannot move and stop

An agent cannot signal red and cross from right
An agent cannot signal amber and wait to cross
An agent cannot signal green and turn right

An agent cannot signal and cross

An agent cannot signal amber and cross from left
An agent cannot signal green and overtake

An agent cannot signal amber and cross from right
An emergency vehicle cannot be a pedestrian
An agent cannot signal green and wait to cross
An agent cannot signal amber and cross

An agent cannot signal green and cross from left
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Table 10 (continued)

Requirements

Natural language explanations

not Green, not XingFmRht}
not Green, not Xing}

not TL, not Ped}

not IncatLeft, not IncatRht}
not OthTL, not Ped}

not Brake, not Wait2X}
{not Red, not Ped}

{not Xing, not Brake}

{not Wait2X, not IncatLeft}
{not Brake, not PushObj }
{
{

—_— -

not Amber, not Ped}

not Wait2X, not IncatRht}
{not Green, not Ped}
{not Wait2X, not Ovtak}
{not Wait2X, not XingFmLft}
{not Wait2X, not XingFmRht}

An agent cannot signal green and cross from right
An agent cannot signal green and cross

A traffic light cannot be a pedestrian

An agent cannot indicate left and right

A other traffic light cannot be a pedestrian

An agent cannot brake and wait to cross

A pedestrian cannot signal red

An agent cannot cross and brake

An agent cannot wait to cross and indicate left

An agent cannot brake and push an object

A pedestrian cannot signal amber

An agent cannot wait to cross and indicate right
A pedestrian cannot signal green

An agent cannot wait to cross and overtake

An agent cannot wait to cross and cross from left
An agent cannot wait to cross and cross from right

Table 11 Requirements tables

Requirements

Natural language explanations

{not Wait2X, not Xing}

{not Brake, not Ped}

{not Ped, not IncatLeft}

{not Ped, not IncatRht}

{not HazLit, not Ped}

{not Cyc, not Green}

{not OutgoLane, not OutgoCycLane}
{not Ped, not Ovtak}

{not VehLane, not IncomCycLane}
{not OutgoLane, not IncomCycLane}
{not IncomLane, not OutgoCycLane}
{not OutgoLane, not Pav}

{not IncomCycLane, not OutgoCycLane}

{not OutgoLane, not RhtPav}

{not IncomCycLane, not Pav}

{not XingLoc, not OutgoLane}
{not VehLane, not Parking}

{not BusStop, not OutgoLane}
{not OutgoLane, not Parking}

not BusStop, not OutgoCycLane}
not Parking, not OutgoCycLane}
not XingLoc, not IncomCycLane}

{
{
{
{not LftPav, not RhtPav}

An agent cannot wait to cross and cross

A pedestrian cannot brake

A pedestrian cannot indicate left

A pedestrian cannot indicate right

A pedestrian cannot have the hazard lights on

A cyclist cannot signal green

An outgoing lane cannot be an outgoing cycle lane
A pedestrian cannot overtake

The vehicle lane cannot be an incoming cycle lane
An incoming cycle lane cannot be a outgoing lane
An outgoing cycle lane cannot be an incoming lane
An outgoing lane cannot be a pavement

An incoming cycle lane cannot be an outgoing cycle lane
An outgoing lane cannot be a right pavement

An incoming cycle lane cannot be a pavement

A crossing cannot be an outgoing lane

A vehicle lane cannot be a parking

A bus stop cannot be a outgoing lane

An outgoing lane cannot be a parking

A bus stop cannot be a outgoing cycle lane

A parking cannot be a outgoing cycle lane

A crossing cannot be an incoming cycle lane

A pavement is either on the left or on the right
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Table 11 (continued)

Requirements

Natural language explanations

{not IncomLane, not Parking }
{not IncomCycLane, not BusStop}
{not IncomCycLane, not Parking}
{not Pav, not Parking}

{not LftPav, not Parking}
{not RhtPav, not Parking}
{not Jun, not Parking}

{not XingLoc, not BusStop}
{not XingLoc, not Parking}
{not BusStop, not Parking}
{not Mobike, not Ped }

{not MovTow, not OthTL}
{not TL, not Brake}

{not Red, not MovAway }
{not Amber, not Green}
{not LarVeh, not Xing}
{not OthTL, not Mov}

{not Stop, not TL}

{not LarVeh, not PushObj}
{not Red, not MovTow}
{not Amber, not MovAway }
{not Bus, not Wait2X}

{not TL, not IncatLeft}

{not OthTL, not Brake}
{not Red, not Mov}

{not TL, not IncatRht}

{not Stop, not OthTL}

{not Amber, not MovTow }
{not Green, not MovAway }
{not TL, not HazL.it}

{not Red, not Brake}

{not Bus, not Xing}

{not OthTL, not IncatLeft}
{not MedVeh, not Ped}

{not Amber, not Mov}

{not Bus, not PushObj}
{not EmVeh, not Wait2X}
{not TL, not Ovtak}

not Amber, not Stop}

not EmVeh, not Xing}

not OthTL, not TurLft}
not Red, not IncatRht}
{not TL, not Wait2X}

{not Green, not Brake}

—_—— — —

{not MovAway, not Mov }

An incoming lane cannot be a parking

An incoming cycle lane cannot be a bus stop
An incoming cycle lane cannot be a parking
A pavement cannot be a parking

A left pavement cannot be a parking

A right pavements cannot be a parking

A junction cannot be a parking

A crossing cannot be a bus stop

A crossing cannot be a parking

A bus stop cannot be a parking

A motorbike cannot be a pedestrian

A other traffic light cannot move towards
A traffic light cannot brake

A red traffic light cannot move away

An amber traffic light cannot be green

A large vehicle cannot cross

A other traffic light cannot move

A traffic light cannot stop

A large vehicle cannot push objects

A red traffic light cannot move towards

A amber traffic light cannot move away

A bus cannot wait to cross

A traffic light cannot idicate left

A other traffic light cannot brake

A red traffic light cannot move

A traffic light cannot indicate right

A other traffic light cannot stop

A amber traffic light cannot move towards
A green traffic light cannot move away

A traffic light cannot have the hazard lights on
A red traffic light cannot brake

A bus cannot be crossing

A other traffic light cannot indicate left

A medium vehicle cannot be a pedestrian
A amber traffic light cannot move

A bus cannot push objects

A emergency vehicle cannot wait to cross
A traffic light cannot overtake

A amber traffic light cannot stop

An emergency vehicle cannot be crossing
A other traffic light cannot turn left

A red traffic light cannot indicate right

A traffic light cannot wait to cross

A green traffic light cannot be green and break

An agentcannot move perpendicularly to and away from the AV
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Table 11 (continued)

Requirements Natural language explanations

{not EmVeh, not PushObj} An emergency vehicle cannot push an object

{not TurRht, not OthTL} A other traffic light cannot turn right

{not Amber, not IncatLeft} An amber traffic light cannot indicate left

{not TL, not XingFmLft} An traffic light cannot be crossing from the left
{not Red, not HazLit} A red traffic light cannot have the hazard lights on
{not Green, not Stop} A green traffic light cannot stop

{not LarVeh, not Ped} A large vehicle cannot be a pedestrian

{not OthTL, not Ovtak} A other traffic light cannot overtake
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