
A Transaction Platform for Microservices-based Big Data Systems

María Teresa González-Aparicioa, Muhammad Younasb, Javier Tuyaa , Rubén Casadoc

a Polytechnic School of Engineering, University of Oviedo, 33204 Gijón, Spain
b School of Engineering, Computing and Mathematics, Oxford Brookes University,
Oxford OX33 1HX, UK
c Science and Technology Park, Accenture SL, 33203 Gijón, Spain

Abstract

Microservices architecture has increasingly been adopted for building distributed and
scalable applications. The premise is that microservices are designed as smaller software
components which are easier to be preserved and which enable separation between
different components. This paper proposes a new transaction platform for microservices
architecture to manage processing of big data stored in a cluster of NoSQL databases.
New asynchronous protocols are designed to execute database operations as transactions,
and to maintain their correctness and consistency. A prototype system has been developed
that simulates London bus service across bus routes. It is evaluated through simulation
experiments using big data from ‘Transport for London’ data service in order to analyse
effects of transaction processing on response time and throughput in microservices
architecture. The transaction platform reliably processes database operations, and enables
data availability and consistency in failure-free and failure-prone environments.

Keywords: Microservices architecture, transaction management, big data, NoSQL
database

1. Introduction

Microservices architecture has become a popular platform for developing data-driven
applications [1] that run in a complex distributed setup such as cloud, IoT and big data
systems. In microservices architecture, an application is implemented as a set of
autonomous microservices that represent different business components (or
functionalities) and that work together in order to achieve a desired output [2]. The aim is
to provide high scalability, availability, maintainability and decentralization of
applications and data storages. Microservices can be implemented in different languages
and can access data from multiple types of databases including relational (SQL) databases
and NoSQL databases. Relational databases require data to be structured in tabular
(relational) form, enforce integrity constraints and relationships between tables. They also
support transactions with ACID (Atomicity, Consistency, Isolation, Durability)
properties in order to ensure strict consistency and allow concurrent executions of
transactions. Nevertheless, NoSQL databases follow different data models and provide
different level of consistency, availability and efficiency. They do not support
transactions like relational databases. They are mainly designed to process large volume
of data and generate results in real time such as analysis of millions of tweets or
processing of live road traffic data.

In existing literature, different techniques and models have been developed for managing
transactions in microservices architecture. A Saga Pattern [3] approach is developed in

order to manage local sequential transactions for updating microservices. It follows
compensating actions approach that compensate or cancel completed actions in the case
of failure. However, this approach does not consider read isolation wherein isolation
anomalies can emerge [4]. Authors in [5] propose to improve Saga Pattern approach by
setting a constraint that database commits at database layer only if all transactions are
totally successful at the cache layer. Therefore, CRUD (Create, Read, Update, Delete)
operations are first performed at memory (cache) level. If transactions are successful then
effects of their operations are reflected at database level. In our previous work [6], we
developed a framework for managing transactions that takes into account contextual
information of users and a required level of big data consistency. We carried out a detailed
analysis of impact of big data (and its characteristics) on maintaining data consistency.

Transaction management in microservices architecture involves NoSQL big databases
which can be deployed in a cloud and IoT setup. A transaction comprises a series of
operations (e.g., read/write) that either successfully execute in full or not at all. If one
operation fails, then all the operations must be rolled back to keep data in consistent state
and maintain correctness of application. However, transaction management in
microservices architecture and big databases brings in new challenges [7]. Transactions
in a microservices architecture encompasses multiple databases – i.e., each database is
associated with a specific microservice. Therefore, managing transactions and
maintaining data consistency across multiple databases is a challenging task. In addition,
other inherent characteristics (i.e., volume, velocity, variety) of big data complicate the
process of managing transactions in microservices architecture. For instance, volume (or
size) of data is large and data are generated and consumed at a high speed (velocity) as
compared to traditional data. Big data also comes in various structures and formats unlike
classical relational database which is well structured and normalized. In addition, NoSQL
database technologies scarcely support transactions, and there is a lack of recovery
mechanisms such as fallback or rollback. For instance, Redis implements the optimistic
locking protocol and a script is considered as a transaction itself; meanwhile BigTable
implements transactions at a row level; and Riak and Cassandra rely on conflict-
resolution mechanisms.

In this paper, we design and simulate a new two-level transaction management platform
for microservices architecture that supports real-time processing of big data which is
stored in a cluster of NoSQL key/value databases. We design new asynchronous protocols
for executing database operations as transactions at data storage layer in order to maintain
consistency of big data. The platform is capable of processing transactional (write/read)
operations in a reliable and transparent manner. It handles transaction failure and provides
data availability and resilience in case of database failures.

A Docker containerized environment [8] and Redis NoSQL databases are used in the
design and simulation of the proposed two-level transaction management platform. Such
an environment is chosen as it is most widely used in microservice architecture [1]. The
transaction platform is evaluated using data from ‘Transport for London’ (TfL) data
service [9] and London Bus service as an application area. We conduct a series of
experiments by simulating London Bus service across bus routes. Specifically, the case
study provides a complex environment for developing a transaction platform that requires
modern technologies of NoSQL, cloud, IoT and microservices architecture. Experimental

results show that the transaction platform maintains consistency of big data and provides
a fair response time and throughput in both failure-free and failure-prone environments.

The work is focused on transaction management at the storage layer with microservices
to achieve a higher level of storage independence along multiple databases, and data are
continuously received from data sources such as sensors, buses, etc. This can be attributed
to data stream as in lambda architecture [10], which combines batch and online (stream)
processing on data platforms. The rationale for choosing London Bus service is twofold.
First, it provides an environment for developing a transaction platform that requires new
technologies (such as NoSQL, big data, cloud, IoT) and new architectural design (such
as microservices architecture). Second, it’s used as a practical application area for the
proposed transaction platform. Data can be consistently sent to passengers and other
stakeholders through various channels such as display screens at bus stops, on board
‘next-stop signage’ screen within the buses, websites and mobile apps. This would enable
passengers to better plan their travel routes and minimise waiting time at bus stops thus
saving millions of pounds every year [11].

Note that the main goal of transaction platform is to ensure application correctness and
consistency of data – that is, data remain consistent if written to databases under
transactional operations. Conversely, without transactions data can be inconsistent and
would have negative impact on applications and users. For instance, in London Bus case
study, information (sent to display panels at bus stops or to websites or mobile apps) could
be inconsistent due to the following factors such as the frequency of updating bus
timetable data, the existence of multi-version (old/new) data, etc. However, maintaining
consistency has impact on performance, response time and throughput. Thus, the
transaction platform is evaluated in terms of response time and throughput. Such
evaluation can be attributed to tradeoff between data consistency and (high) latency [12].

The remainder of this paper is structured as follows. Section 2 reviews and analyses
related work. Section 3 explains the design of the transaction-based microservice
architecture under study. Section 4 describes the implementation of the execution
protocol. Section 5 discusses the experiments in both synchronous and asynchronous
mode. Finally, conclusion is presented in section 6.

2. Related work
In microservices architecture, a transaction spans across several services and
heterogenous databases [13] that may have different underlying data models and
structures. In such an environment, managing transactions that guarantee data consistency
and correctness of operations involve more complex design than classical transactions
with homogenous single shared database.
Existing research design general models for distributed transactions in a microservices
architecture. In [14], authors build a transactional management layer which integrates
datatabases with multi-versioning features. Some researchers have developed blockchain
platforms [15] that can run smart contracts on separate actors (services) and execute
transactions independently. These platforms are claimed to be achieving a higher
scalability and throughput. Authors in [16] have developed a model named SagaMAS
where every transaction is created as a microservice. It follows a semi-orchestrated
asynchronous model where every agent can make a request without waiting for a
response. Transactions between microservices are performed through the coordination of

their agents. However, it is not clear whether the above approaches implement database
transaction models that ensure consistency of databases and correctness of applications.
Furthermore, various protocols have been developed for the execution of transactions.
Authors in [17] adopt the classical two-phase commit protocol (2PC) for managing
transactions in a microservice architecture. In this approach, a coordinator controls an
execution of a transaction in two phases. In the first phase, participants nodes are asked
if a transaction can be committed with a ‘yes’ or ‘no’ response. In the second phase, the
transaction commits if every node provides a ‘yes’ response. If any of the nodes provides
a ‘no’ response, then a rollback operation is executed to cancel the effects of completed
operations. However, the classical 2PC protocol is less efficient and is not appropriate for
large-scale and highly loaded systems [18]. 2PC protocol is also not suitable for big data
and NoSQL databases that need high efficiency and scalability.
The work presented in [4] and [13] introduce SAGA pattern to enhance 2PC protocol and
related communication between component systems. This work is based on a
conventional SAGA project [19] which was proposed to generate software development
systems automatically. Transactions based on SAGA pattern are used to update data in
different services in a microservice architecture. However, SAGA pattern transactions
only satisfy ACD (atomicity, consistency, durability) properties, but not ACID
(atomicity, consistency, isolation, durability) [3]. This model allows to read and write data
in partially completed transactions. The lack of read-isolation is solved in [5], when a
transaction only commits if it has been completed successfully. Another, issue with
SAGA pattern is the coordination and maintenance of transactions which work with
multiple microservices. The work in [20] proposed a SAGA-based Pilot-Job with several
types of applications to be used over a wide range of heterogeneous distributed
infrastructures, such as Clouds and traditional Grids/Clusters.
Furthermore, authors in [21] have developed a model for long-lived transactions. This
model is called saga transaction model where long transactions are split into a series of
sub-transactions that confit in sequence. But the constraint is that all sub-transactions
must be successfully completed. If any of them fails the completed sub-transactions need
to be rolled back through the execution of compensation transactions (or actions). This
model was developed for classical (relational) databases and it may not work for NoSQL
big data systems which have different characteristics from classical databases.

3. The transaction platform

This section presents the proposed transaction platform for microservices-based big data
systems. First, it presents the overall architecture and main components of the transaction
platform. It then illustrates different aspects of the design of storage layer with big
databases.

3.1. The architecture
The architecture of the proposed transaction platform is shown in Fig. 1. It comprises
different layers which include: client layer, application layer, storage layer and data
source layer. It is based on our previous work [6]. Here, we extend that architecture by
managing data at data storage layer using transactions and microservices. Moreover, data
need to be adapted before their storage in a specific NoSQL (key/value) database such as

Redis, etc. The goal is to manage a polyglot of databases in order to support a wider
variety of data storage needs.

a) Client Layer: This layer serves as an interaction between client and application layer.
It includes a client manager which receives and sends client’s requests to the
Application Layer. It also gives a response to the client whenever the Application
Layer sends back the requested results.

b) Application Layer (AL): This layer comprises the following components:
• Client Interface API: It receives requests from the Client Layer and sends to the

Application Layer. It also provides responses from the Application Layer which
are to be sent to the Client Layer.

• µService Application Coordinator: This module receives and executes client’s
requests. For every request, it sets an execution context (Context API), whenever
an operation is to be executed as a transactional (Transaction API) or non-
transactional (Operation API). It will then be run according to its (consistency)

Figure 1. A transaction management system.

µService Load Data

Data: buses, sensors, etc Data
Source
Layer

Storage
Layer

Context
Model

Data
Model

Client
 layer

Client Manager

µService
Operation

Application
layer

µService
Context

µService
Transaction

µService Application
Coordinator

Context
API

Transaction
API

Operation
 API

Client Interface API

…

Client 1

D1 D2 D1 D2 D1 D2

Client 2 Client n

Filesystem
Adapter

Redis
Adapter

Riak
Adapter

µService Transaction Coordinator

Storage Coordinator API

Native API

Filesystem

Redis

Native API

Riak

Native API

… … …

µService Read Data

requirements. During this process, a client’s request could access any NoSQL
database using the Storage Coordinator API from the Storage Layer.

• µService Context (Dependencies and Semantic Rules): It receives, analyses
and stores different semantic needs associated with client’s requests.

• µService Operation: It receives, executes and control the execution of a non-
transactional client’s requests.

• µService Transaction: It receives, executes and control the execution of a
transactional client’s requests.

c) Storage Layer: It applies transaction management techniques at data source’s side at
the storage layer. Therefore, CRUD operations for the data to be stored or the ones
that come from data sources (sensors, buses, web, etc.) are managed according to
transactional criteria.

Data storage deals with databases and stores data that come from Application Layer
(i.e., data from user’s requests) and Data Source Layer (i.e., data from sensors, buses,
web, etc). A data system is considered more reliable and trustful as it stores one or
more instances of the same database type which coexist in case of database failures.
Moreover, several copies of the same data will be recorded along different instances
or nodes. The purpose is to provide a high data availability and consistency. This
process involves several components, each with different roles.

• Storage Coordinator API: It provides a communication interface between
the µService Load Data and the Application Layer with the µService Storage
Transaction Coordinator.

• Storage User Transaction Coordinator: It controls the storage of data
along one or more database instances at once. In general, data are copied
along instances (or nodes) of the same database type (e.g., Redis). But data
can also be copied along different (polyglot of) databases (e.g., Redis, Riak,
etc). One of the main features of this module is the creation of a transaction
in charge of managing and guaranteeing the entire storage process of data.

• SQL/NoSQL DataBase Adapter: It adapts source data to the requirements
of a database where data are stored. Data adaptation is needed as there are
differences in datatypes, schemas, etc., between different databases.
Therefore, it is highly likely that source data suffers from different structure
alterations (reorganization, modification, deletion, or datatype changes)
depending on the type of databases where data are stored. Moreover, context
information could be crucial in some client’s requests execution
environments, i.e., semantic data information (ranges, relationships,
conditions, etc). In consequence, it is necessary to deal with information in
relation to data type fields and context. The interaction with a specific
database is carried out through its own Native API.

d) Data Source Layer: It represents different sources of data (e.g., sensors, buses, etc.)
from where data (with high velocity) are received. Raw data from external sources
are read with a µService Read Data, which are then sent to Storage Layer through
µService Load Data.

3.2. Design of a storage layer

The main components of storage layer and their inter-communication flow are
represented in Fig. 2. It follows most common model of microservices [22], in which
interaction is carried out through REST requests. Data are sent to or read from the service
(Controller/Service). When data are sent (post), a write operation is performed in more
than one database thus creating multiple copies of the same data. The purpose is to
increase system resilience and data availability. Nevertheless, every database works
autonomously, i.e., it does not depend on others. Therefore, the goal is to design a model
to be in charge of performing write/read operations as part of a transaction. It is made of
a coordination process (Cluster Model) to control all database outcomes and to provide a
unique response to the user (via Transaction Manager). Every database status and
response are controlled with another model (Server Model).

Figure 2. Communication between modules at the storage layer.

3.3. Coordination in a cluster of databases

In the storage layer, a set of databases (N) are grouped in a cluster, which is coordinated
according to a cluster’s databases model (Fig. 3). Read and write operations are executed
as a transaction. For instance, if a write operation writes data to a database, then the same
data should be written to every database in the cluster. This is to ensure consistency of
data and correction of an application. If failure occurs, then partially completed operations
are managed as described in the following sub-sections of fallback and rollback.
Coordination among a cluster of databases applies a quorum policy to ensure a consistent
view of data. Indeed, many consistency protocols use a quorum-based principle based on
the intersection property [23]. NoSQL databases such as Dynamo, Cassandra, Voldemort
and Riak also follow this technique. In our work, the consistency is guaranteed by
applying the majority quorum protocol [24] which is explained as follows.

(i) Write operation (denoted w) is used to write data to a database in a cluster. A
write operation (w) is considered successful if consistency can be guaranteed
under a quorum policy, i.e., data have been written to at least half of the
databases that belong to a cluster.

(ii) If N (number of databases) is odd, then a quorum is considered as (N/2)+1.
Otherwise, it is considered as N/2. The strongest consistency is reached when
data are written to the whole cluster (i.e., w = N). For instance, if N=3 then a
quorum is achieved when a write operation is performed in 2 (3/2+1) out of 3
databases, and the strongest consistency is guaranteed when data are written in
the three databases (w = 3).

(iii) In relation to a successful execution of a write operation and maintenance of
consistency, quorum policy defines three different scenarios. If a write
operation is fully completed (i.e., w=N), then it is considered as totally
successful (OK_Full_Cluster). If a write operation is executed such that only a
quorum is achieved (as above), then it is partially successful
(OK_Cluster_Dirty). If quorum cannot be achieved, then it is considered as not
successful (Error_Cluster_Dirty).

Figure 3. Cluster’s databases model.

Steps involved in Fig. 3 are represent in Algorithm 1.

Algorithm 1. Algorithm for cluster’s databases coordination.

//Receiving data from a REST request
//Setting parameters
data = {Set of data from a data source or user’s request}
status = Start
DBi = Database [i = 1 … N]
num_responses = 0
quorum = N / 2

//data semantically not correct
if ¬ [data semantically correct]

then
status = Error;

Send an error; Exit.
endif

//data semantically correct
data = [semantically correct]
status = WaitCluster
for i = 1 … N
 Send data to DBi (∈ cluster)
 Wait (get response from DBi)
 num_responses = num_responses + 1
endfor
//Request totally successful
if num_responses = N

then status = OK_Full_Cluster; Send OK; exit
endif

//Request partially successful
if ((num_responses >= quorum) and (num_responses < N))

then start a Fallback process for each failure DB
 status = OK_Cluster_Dirty
 Wait until all Fallback processes respond OK
 status = OK_Full_Cluster; send OK; exit

endif

//Request not successful
if (num_responses < quorum)
then start a Rollback process for each successful DB
 status = Error_Cluster_Dirty
 Wait until all Rollback processes respond OK
 status = OK_Full_Cluster; send OK; exit
endif

3.4. Write/Read Operations

The write/read operations on each database are performed according to Server Model
which is depicted in Fig. 4.

Figure 4. Database model.

Data are written to or read from each database. If a database is unavailable for
writing/reading data, a poll mechanism is sparked. Under the poll mechanism, write/read
operation is re-executed for a specific interval of time and for a maximum number of
attempts. If a maximum number is reached, the write/read operation is considered as
temporarily failed. Steps involved in Fig. 4 are represented in Algorithm 2.

Algorithm 2. Server Model algorithm.

//Receiving data from the Cluster Model
//Writing/Reading data in a specific database DBi = Database [i = 1 … N] (∈ cluster)

//Setting parameters
status = Start
max = Maximum number of attempts for writing/reading data
#attempts = 0
pollInterval = Specific number of seconds

//Sending process
Write to/Read from DBi
status = Wait
Wait for a response

//No response
if ¬ [DBi respond] and (#attempts = 0)
 then Start a poll to check DBi availability
endif
while ¬ [DBi available] and (#attempts < max) do
 status = WaitPoll
 Wait pollInterval seconds
 Write to/Read from DBi
 #attempts = #attempts +1
 status = Wait
endwhile

//DBi is available or #attempts is over
Stop poll
if DBi available
 then status = OK
 return OK
 else status = Error
 return Error
endif

3.5. Fallback model

A fallback model is designed to cater for situation when a quorum is achieved but some
databases are still unavailable. Then, a write/read operation keeps trying to be completed
until unavailable database becomes available or active. For this reason, a poll mechanism
starts in order not to limit the number of attempts to execute write/read operations. This
is based on the assumption that an unavailable database is failed temporarily and would
eventually recover and become active. The model is represented in Fig. 5.

Figure 5. Fallback state transition model.

Steps involved in Fig. 5 are represented in Algorithm 3.

Algorithm 3. Fallback algorithm.

//Receiving data from the Cluster Model
//Writing/Reading data in a specific database DBi = Database [i = 1 … N] (∈ cluster)

//Setting parameters
status = Start
pollInterval = Specific number of seconds

//Sending process
Write to/Read from DBi
status = Wait
Wait for a response

//No response
if ¬ [DBi respond]
 then Start a poll to check the availability of DBi
endif
while ¬ [DBi available] do
 status = WaitPoll
 Wait pollInterval seconds
 Write to/Read from DBi
 status = Wait
endwhile

//DBi is available
Stop poll
status = OK
return OK

3.6. Rollback model

A rollback model deals with a situation when a quorum is not achieved. In this case, a
write/read operation on a cluster of databases is cancelled. If a write operation is already
performed on a specific database, then a rollback process is activated which cancels the

effects of completed operation in order to bring back that database to a previous state (as
a compensation mechanism). If a read operation is executed, then the operation is omitted.
This model also considers the possibility that a database becomes unavailable before a
cancellation process starts. Therefore, a poll mechanism is sparked with a limitless
number of attempts (as in fallback model). This model is depicted in Fig. 6.

Figure 6. Rollback state transition model.

Steps involved in Fig. 6 are represented in Algorithm 4.

Algorithm 4. Rollback algorithm.

//Receiving data from the Cluster Model
//Removing data from a specific database DBi = Database [i = 1 … N] (∈ cluster)

//Setting parameters
status = Start
pollInterval = Specific number of seconds

//Sending process
Remove data from DBi
status = Wait
Wait for a response

//No response
if ¬ [DBi respond]
 then Start a poll to check the availability of DBi
endif
while ¬ [DBi available] do
 status = WaitPoll
 Wait pollInterval seconds
 Remove data from DBi
 status = Wait
endwhile

//DBi is available
Stop poll
status = OK
return OK

4. Execution protocol

This section describes an overall execution protocol for different scenarios explained in
section 3. Fig. 7. depicts the main steps of the execution protocol. When a new request
arrives, it is managed by Transaction Manager (TM). TM creates a general transaction
context (Cluster Model (CM)), and a general Cluster Model Transaction (CMT) linked to
it. Each main transaction is comprised of several subtransactions, each of which is
associated with a database. Thus, a new subtransaction context (Server Model (SM)) is
created for each database service that belongs to a cluster, and a subtransaction Server
Model Transaction (SMT) linked to it. Subtransaction’s contexts are included as part of
the main or general transaction context CM. Therefore, we define a Cluster Model
Transaction (CMT) that consists of a set of subtransactions called Service Model
Transaction (SMT). That is, CMT = (SMT1, SMT2, …, SMTN), where N is the number
of databases which are part of the cluster. Every SMTi (1 ≤ i ≤ N) can perform a write/read
operation in a specific key/value NoSQL database i.

Figure 7. Execution protocol.

Then, the general context CM is sent to TM and is stored in a queue which is dedicated
to saving transaction contexts. Finally, the system waits for a response from TM. CM
sends a request to every SM, which provides a response to CM after a read/write operation
is executed. A final result is then read from CM and is sent to TM. It has to be noted that
every SM works autonomously and asynchronously in relation to others. Indeed, every
database service has a process linked to it, which knows the state of the database through
periodical checks, i.e., every ‘x’ seconds. When a SM receives a request, the state of the
database is read first into a corresponding process. If it is not active, a negative response
is sent immediately to the CM. Otherwise data is sent to the database. This event prevents
write operations from being performed in a specific database service in case of temporary
unavailability. However, if data could be stored, a positive response (OK) is sent to CM.
Otherwise, a response is resent every ‘z’ seconds for a maximum of ‘max’ attempts. In
final scenario, if data could not be stored, then a ‘not Ok’ response is sent and a
fallback/rollback process is created and stored in a specific queue.

Initially, every database service has two queues linked to it, one for storing fallback
processes and another for storing rollback processes. So, every time a CM starts an
asynchronous Fallback or Rollback process for every SM which could not store data, it is
stored in a corresponding queue. The type of context to be created depends on the number
of positive responses, as explained in Section 3.4. At the end, a final response from every
database is registered in the general transaction context, CM.

The implementation of a fallback queue process is represented in Fig. 8 This process is
applicable to every unavailable database service. An automatic process checks every ‘y’
seconds if a database service is available, and if there are SM’s in the list of fallbacks. If
the response is positive, then the list is locked to avoid new SM’s from being entered into
the list. Every data in the SM list is then sent to the database to be stored. If data could be
stored, then SM is removed from the list, otherwise it will remain in the list. This process
keeps processing elements from the list until it is fully completed.

 Figure 8. Fallback queue process.

The implementation of a rollback queue process is represented in Fig. 9. This is applied
to every available database service. It follows the same procedure as that of the fallback
queue. However, in rollback process data are deleted from a database.

 Figure 9. Rollback queue process.

5. Simulation-based evaluation

This section presents simulation-based evaluation of the transaction platform. It describes
a set of simulation experiments in order to evaluate performance, response time, and
consistency of the storage layer.
The experiments have been carried out using a machine with the hardware/software
specifications, shown in Table 1.

Table 1. Hardware/software features.
Hardware/software specification

CPU core 2.4 GHz Intel(R) Core(TM) i7-5500

Operating system Windows 10 Pro 64 bits

IDE Eclipse 2020-06

Programming language Oracle Java 7

Database NoSQL key/value, Redis 6.2.3

Containerization technology Docker Engine v20.10.10

Experiments simulate a scenario of data processing using London Bus service as a case
study. The simulation data (in JSON format) come from Open Data source that the
Council of London provides from a large public transport fleet. We choose the London
Bus service and such data in our experimentation for the following reasons. There are
more than 9000 buses which operate across more than 600 routes. Such buses generate a
large volume of data [25] which arrive at the system in real time at different intervals of
time, different speed and with different data structure. In addition, it also justifies the
practical application of the transaction platform. For example, data can be consistently
sent to passengers and other stakeholders through various channels such as display
screens at bus stops, on board ‘next-stop signage’ screen within the buses, websites and
mobile apps. This would enable passengers to better plan their travel routes and minimise
waiting time at bus stops thus saving millions of pounds every year [11].

5.1. Data representation and storage
The “Transport for London” (TfL) [9] provides information in relation to arrival
prediction times for different bus lines which follow a bus spider maps [26]. Fig. 10 shows
a data record with different fields and a response sample.

[{ "id": "string",
 "operationType": 0,
 "vehicleId": "string",
 "naptanId": "string",
 "stationName": "string",
 "lineId": "string",
 "lineName": "string",
 "platformName": "string",
 "direction": "string",
 "bearing": "string",
 "destinationNaptanId": "string",
 "destinationName": "string",
 "timestamp": "2022-07-14T16:27:17.473Z",
 "timeToStation": 0,
 "currentLocation": "string",
 "towards": "string",
 "expectedArrival": "2022-07-14T16:27:17.473Z",
 "timeToLive": "2022-07-14T16:27:17.473Z",
 "modeName": "string",
 "timing": {
 "countdownServerAdjustment": "string",
 "source": "2022-07-14T16:27:17.473Z",
 "insert": "2022-07-14T16:27:17.473Z",
 "read": "2022-07-14T16:27:17.473Z",
 "sent": "2022-07-14T16:27:17.473Z",
 "received": "2022-07-14T16:27:17.473Z" } }]

Figure 10. A response sample for arrival times in a specific line.

A subset of data from arrival prediction record was taken as a reference for experimental
purposes. Moreover, a bus line is covered with more than one vehicle (bus). Fig. 11
represents a generic bus line with ‘m’ bus stops, and ‘n’ buses travelling through the same
line in both directions, ‘inbound’ and ‘outbound’.

Figure 11. A generic bus line.

In our experiments, every bus is associated with the following data, which is a simpler
and cleaner version from the one used in TfL: a bus identifier (‘vehicleId’); origin station
from where a bus departs at a specific instant of time, the direction (‘direction’), and the
position from the last origin station (‘currentLocation’) according to the direction
(inbound or outbound).

Bus data are stored in a cluster made of three containers, with a Redis NoSQL key/value
database per container. Therefore, data need to be adapted to a key/value format. Indeed,
for every bus i (1 ≤ i ≤ n) and every movement j (1 ≤ j), a key is built up as “Bus”+i+”-
M”+j, in order to be unique at every stage of its journey. Secondly, value linked to the
key and the bus i, is built up as a union of three data: origin, direction and location of the
bus i at a requested instant. Such data are a reduced version of the overall data.

Both write/read operations are performed with a transaction protocol as it is explained in
section 4. Then, a Cluster Model Transaction (CMT) and a set of Service Model
Transactions (SMT) are created. That is, CMT = (SMT1, SMT2, …, SMTN), where N is
the number of databases which are part of the cluster. According to our software
specification, every SMTi (1 ≤ i ≤ N) refers to a write/read operation in a specific Redis
NoSQL database i. For instance, a write operation can write data in order to update the
current location of a bus on a spider map, or read the database to find out the arrival time
of a bus to a bus stop.

5.2. Simulation of the communication process

A general communication process is represented in Fig. 12. It involves (i) sending a
request to the service at the storage layer (interval [1, 2]), (ii) processing of request by the
microservice (interval [2, 3]), and (iii) sending a response back to the user (interval [3,
4]). When the request arrives at microservice, then a read or write operation has to be
performed in the respective databases. If the microservice is fully active, then the
operation is executed successfully, and a positive response is returned. Nevertheless, if
the microservice is not working properly at full capacity, the microservice needs to be
aware of the new faulty situation, acts accordingly, and keeps the user informed with a
negative response.

We devise the metrics to empirically evaluate the transaction platform with respect to the
response time (i.e., response to Application/Data Source Layer) and throughput under
different scenarios such as normal, fallback and rollback. Response time of storage
coordinator (denoted RSC) (interval [1, 4]) is calculated using parameters such as Time
of Data Request (denoted TDR) (interval [1, 2]), Time of a Write/Read operation in a
database (denoted TWR) (interval [2, 3]), Time of a database in a Failure state (denoted
TF) (interval [2, 3]), and the Time of a Request Response (denoted TRR) (interval [3, 4]).

Figure 12. A sequence diagram for a request.

This study is focused on how the storage layer manages requests and database failures
(interval [2, 3]). This fact establishes how good the quality of the response from the
transaction microservice-based architecture is at this level. Therefore, this process has an
impact on the response of the storage coordinator, i.e., the total amount of time spent to
give back a response to a client at the storage layer since a request is sent (interval [1, 4]).

Note that the main goal of transaction platform is to ensure application correctness and
consistency of data – that is, data remain consistent if written to databases under
transactional operations. Conversely, without transactions data can be inconsistent and
would have negative impact on applications and users. For instance, in London Bus case
study, information (sent to display panels at bus stops or to websites or mobile apps) could
be inconsistent due to the following factors such as the frequency of updating bus
timetable data, the existence of multi-version (old/new) data, etc. However, maintaining
consistency has impact on performance, response time and throughput. Thus, the
transaction platform is evaluated in terms of response time and throughput. Such
evaluation can be attributed to tradeoff between data consistency and (high) latency [12].

5.2.1. Metrics for a normal scenario

It considers a scenario where every write/read request is sent to every database in a
sequential order, and the cluster is made of ‘p’ databases. RSC is calculated as follows.

 RSCnormal = TDR +∑ 𝐓𝐖𝐑𝑖
𝑝
𝑖=1 + TRR (1)

TDR is time taken to communicate a request from Application Layer/Data Source Layer
to Storage layer. TWRi is time to send data to a database ‘i’ and do write/read operation.
TRR is time taken to send a response to a request.

In case of database failures, if ‘q’ out of ‘p’ is the number of databases which are not
available, then RSC is calculated as follows.

RSCfailure = TDR + ∑ 𝐓𝐖𝐑𝑖
𝑝−𝑞
𝑖=1 + Δt1 + TRR (2)

Where Δt1 is the time to manage ‘q’ databases which are unavailable.

 Δt1 = ∑ 𝐓𝐅𝑖
𝑞
𝑖=1 (3)

TFi is the time taken in re-executing write/read operations, i.e., to keep trying to write/read
data every ‘z’ seconds for a maximum of ‘max’ attempts in database, i.

 TFi = ∑ (𝐳  +  𝐓𝐖𝐑i)
𝑚𝑎𝑥
𝑗=1 (4)

5.2.2. Metrics for a fallback scenario

In the case of fallback scenario, the time for a write/read operation is calculated as
follows.

 RSCfallback = RSCfailure + Δt2 (5)

Where Δt2 is the time taken to provide a positive response when unavailable (failed)
databases recover. If ‘q’ is the number of unavailable databases then time taken to recover
such databases (in sequence) is calculate as follows.

 Δt2 = ∑ 𝐓𝐅𝐅𝑖
𝑞
𝑖=1 (6)

TFFi is the Time that a failed database remains in a Fallback process. Suppose, that a
database ‘i’ becomes active after ‘r’ intervals, with a gap of ‘y’ seconds between each
interval. If a fallback queue contains ‘s’ requests, then TFFi is calculated as follows.

 TFFi = ∑ 𝐲𝑟
𝑗=1   +   ∑ 𝐓𝐖𝐑𝑖

𝑠
𝑗=1 (7)

5.2.3. Metrics for a rollback scenario

If the case of a rollback procedure, the time taken to complete a ‘cancel’ (or delete)
operation is calculated as follows.

 RSCfallback = RSCfailure + Δt3 (8)

Where Δt3 is the time taken to provide a positive response when ‘q’ databases recover.

 Δt3 = ∑ 𝐓𝐅𝐑𝑖
𝑞
𝑖=1 (9)

TFRi is the time that a failed database remains in a Rollback process. Suppose that a
database ‘i’ becomes active after ‘r’ intervals, with a gap of ‘y’ seconds between each
interval. If a fallback queue contains ‘s’ requests, then TFRi is calculated as follows.

 TFRi = ∑ 𝐲𝑟
𝑗=1    +   ∑ 𝐓𝐃𝑖

𝑠
𝑗=1 (10)

TDi is the time to send a delete request to a database ‘i’ in order to remove a request
located in position ‘j’ in a queue.

5.2.4. Metrics for throughput

The throughput of storage coordinator, ThSC, is the number of requests per second which
are processed by the storage layer. However, if requests are sent in sequential order, it
considers the instant of time taken to send a request (denoted TRS). If there are ‘n’
requests, then ThSC is calculated as follows.

ThSC = n / (TRSn – TRS1) (11)

5.3. Simulation process

The aim of every experiment is to measure the load of the system under two perspectives,
both response time and throughput of the storage layer. Therefore, the system is tested
with different number of buses. Specifically, the number varies at the power of two (1, 2,
4, 8, …, 512). Table 2 represents a set of parameters used during the experiments.

Table 2. A set of experimental parameters.

Parameters Meaning
NUMBER_BUSES Number of buses
NUMBER_STATIONS Number of bus stops
DISTANCE_BETWEEN_STATIONS Distance between bus stops
LENGTH_ROUTE Length of the route
INTERVAL_BETWEEN_BUSES Distance between buses along the journey
NUMBER_OF_MOVEMENTS Total number of times that buses are

moving along the bus line
DISTANCE_PER_SECOND Number of metres a bus moves per second
TIME_TO_MOVE_FORWARD Time a bus spends moving every time is

ordered to move
PERIOD_LAUNCH Interval of time during which all buses

have to be moved

During experimentation, the simulation of NUMBER_BUSES movements is performed.
A journey takes place along the same bus line from an origin to a destination and vice a
versa. Every second all buses data are sent to the system evenly distributed in time, i.e.,
each bus data are sent every PERIOD_LAUNCH / NUMBER_BUSES seconds.
Therefore, a new location for every bus is calculated every second. So, the corresponding
set of pairs (key, value) are built up, and sent to the system to be stored in the cluster.
Experiments consider two modes of sending requests; sequential and parallel. A study on
both modes has been analysed under three scenarios per mode: no database failures,
fallback, and rollback.

5.4. Experimentations of sequential order

In this mode, buses’ data are sent in sequential order. Therefore, the interval between
requests is the sum of two values, i.e., system response time per bus data and the gap time
until the next bus data are sent (PERIOD_LAUNCH / NUMBER_BUSES). Nevertheless,
this fact implies that the bus rate per PERIOD_LAUNCH is lower, because it depends on
the response time of the storage layer per bus. For instance, if it is required to send 4 buses
per second, but the storage layer response time per bus is 0.5 seconds, then the bus data
rate is 2 buses data per second instead of 4.

5.4.1. Normal scenario

It considers a failure free scenario where a cluster of NoSQL key/value databases is
working in a normal state. Fig. 13 shows mean response time of the storage coordinator,
i.e., the time it takes to send a response to the Application/Data Source Layer when data
are written to the databases. It can be observed from the experiments that response time
is not severely affected with an increase in a workload (number of buses/sec). In other
words, it provides a good response time as well as data consistency using transactional
(read/write) operations. Fig. 13 shows that response time fluctuates between 0.04 and
0.08 sec with a mean of 0.051 sec approximately. However, when the system enters into
a stable stage (i.e., 32 requests per second and onwards) then the response time remains
stable around 0.04 sec.

The throughput is graphically represented in Fig. 14. It shows percentage of how many
bus requests the storage layer is capable to manage per second. The graph shows a steady
level of throughput with respect to an increase in the workload (i.e., number of buses/sec).
If the workload is high the throughput is reduced, possibly, due to communication and
processing overhead of data sources (buses, sensors, etc), and configuration parameters
in both, NoSQL databases and microservices. But with higher workload, the time interval
between requests is reduced to a negligible level.

Figure 13. RSC in Normal scenario. Figure 14. ThSC in Normal scenario.

5.4.2. Fallback scenario

In this scenario, the system starts its execution in a normal state. After a certain period of
time, one database stops working. This then triggers fallback process to start executing,
which runs for a period of 60 sec (approx). After such period (of fallback), the database
starts working again. The different phases are represented in Fig. 15.

In a fallback period, when the cluster identifies a database failure, then it keeps in memory
those keys which could not be saved totally. It waits for an answer from two (working)
databases. Fig. 16 shows that the response time in fallback scenario. It moves from almost
0.09 to 0.05 lower or equal to 1.0 request per second. However, it stabilises from 32
requests/sec and onwards. In relation, workload and throughput, fallback scenario is in
line with the normal scenario. As discussed, for the reasons stated above, throughput goes
down when workload goes high.

Figure 16. RSC in Fallback scenario. Figure 17. ThSC in Fallback scenario.

5.4.3. Rollback scenario

In this scenario, the system starts its execution in a normal state, but after a certain period
of time, two databases stop working one after another. Therefore, a fallback process starts
when one database stops, and a rollback process starts when second database stops. After
a duration of 60 sec (approx), both databases are restarted in sequential order. A fallback
process comes up again after one database gets restarted. Finally, the system recovers to
its normal state when the second database is recovered. The different phases are
represented in Fig. 18.

Cluster
fully active

A container
stops

Two
containers

stop

A container
stops

Cluster fully
active

Normal PreFallback Rollback PostFallback Normal

Figure 18. Stages in a Rollback scenario.

Cluster fully active A database stops Cluster fully active

Normal Fallback Normal

Figure 15. Stages in a fallback scenario.

Fig. 19 represents the response time in rollback scenario. However, in rollback, response
time fluctuates more as compared to the previous scenarios. This could be linked to the
time taken in recovering two databases instead of one. In relation to throughput, rollback
states seem to follow the same pattern as in previous scenarios. As the workload (16
requests/sec and onwards) increases, the percentage drops substantially.

Figure 19. RSC in Rollback scenario. Figure 20. ThSC in Rollback scenario.

5.5. Experimentation of parallel order

In this mode, buses data are sent to the system in parallel order. It generally provides a
better response time but may result in race conditions, wherein data (write) operations
compete for accessing the same database in order to write or update data.

5.5.1. Normal scenario

Throughput of normal scenario in asynchronous mode is shown in Fig. 22. It shows that
the throughput of the system tends to be steady with workload (up to 16 requests/sec). It
then starts plummeting with workload (32 requests/sec and onwards). Therefore, the
system achieves its maximum capacity between 16 and 32 requests. However, in
synchronous mode, the system seems to lose capacity at a constant pace as the number of
requests increases. Those numbers are correlated with the time system response (RSC)
(Fig. 21). In synchronous mode, it behaves at constant rate always below 0.1 seconds in
comparison to the asynchronous mode, where the delay starts increasing exponentially
from 32 requests and onwards, and the system seems to be overloaded. Further
observation is that RSC tends to be higher in asynchronous mode, as parallel requests are
competing for same databases.

Figure 21. RSC in normal scenario. Figure 22. ThSC in normal scenario.

5.5.2. Fallback scenario

As described above, failure of one database triggers fallback process, which runs for a
period of 60 sec (approx). After recovery, the failed database starts working again. In this
scenario, the RSC tends to be below 0.1 seconds when workload range is between 1-64
requests/sec approximately. Nevertheless, the system starts being overloaded when
workload goes higher, i.e., 128 requests/sec and onwards, where the RSC is above 0.3
seconds (Fig. 23). This fact is also reflected in the throughput (Fig. 24). The percentage
of requests per second is above 50% from 1 to 64, and below 20% from 128 and onwards.

Figure 23. RSC in Fallback scenario. Figure 24. ThSC in Fallback scenario.

5.5.3. Rollback scenario

The execution of rollback scenario follows the same steps as described above. However,
response time in rollback of asynchronous mode tends to be more unstable and fluctuates
sharply.

In the rollback state, data are written to only active database. During this phase, the system
seems to be affected by the increase in the number of requests (due to parallel execution).
At the beginning, with workload (e.g. 2 requests/sec) is very low, and the system can
manage it without incurring extra overhead. However, it can be observed that as the

number of requests increases the system spends more time in providing a response (Fig.
25). Indeed, the system starts being overloaded from 64 requests per second with a
throughput below 50% (Fig. 26).

Figure 25. RSC in Rollback scenario.

Figure 26. ThSC in Rollback scenario.

6. Conclusion

This paper has designed and developed a new transaction platform and protocols for
NoSQL big databases that adopt microservices architecture. The transaction platform
manages processing of big data stored in a cluster of NoSQL databases. It is evaluated
through the prototype system that simulates London bus service across bus routes. The
platform is evaluated through a number of simulated experiments with data from
‘Transport for London’ data service. Experiments are mainly conducted to evaluate and
analyse the response time and throughput when database (write/read) operations are
executed as transactions. The transaction platform reliabily processes database operations
and enables data availability and consistency in failure-free and failure-prone
environment. Thus data (e.g. bus time, location) can be consistently sent to passengers
and other stakeholders through various channels such as display screens at bus stops, on
board ‘next-stop signage’ screen within the buses, websites and mobile apps.

Our main objective was that the proposed transaction platform ensures data consistency
and application correctness in a complex distributed system using modern technologies
such as big data, NoSQL databases and microservices architecture and that it works in a
(real) application setup, e.g., London bus service. Moreover, the proposed transaction
platform may not be efficient in terms of response time and throughput while using
transactions and maintaining data consistency and application correctness. Various
factors contribute to the performance of transactions such as underlying network,
(NoSQL) databases, transactions delay (write/read operations), and other aspects such as
microservices architecture and technology. For instance, using microservices architecture
has undeniable advantages, but it has performance implication in the proposed transaction
platform. When a monolithic transaction platform or architecture is refactored into
microservices architecture then high latency is inevitable.

Acknowledgements

We would like to express our gratitude to the University of Oviedo, Spain, Oxford
Brookes University, UK, and the financial sponsor from the Spanish Government,
Projects I+D+i 2019 supported by the Ministry of Science, Innovation and Universities
(PID2019-105455GB-C32).

References

[1] R. Laigner, Y. Zhou, M. A. V. Salles, Y. Liu, and M. Kalinowski, Data management in
microservices: State of the practice, challenges, and research directions, arXiv preprint
arXiv:2103.00170, 2021, https://doi.org/10.48550/arXiv.2103.00170.

[2] S. Sharma, Mastering Microservices with Java 9: Build domain-driven microservice-based
applications with Spring, Spring Cloud, and Angular. Packt Publishing Ltd, 2017.

[3] M. Štefanko, O. Chaloupka, B. Rossi, M. van Sinderen, and L. Maciaszek, The saga
pattern in a reactive microservices environment, in Proc. 14th Int. Conf. Softw.
Technologies (ICSOFT 2019), pp. 483–490, 2019,
https://doi.org/10.5220/0007918704830490.

[4] K. S. Ahluwalia and A. Jain, High availability design patterns, in Proceedings of the 2006
conference on Pattern languages of programs, pp. 1–9, 2006,
https://doi.org/10.1145/1415472.1415494.

[5] E. Daraghmi, C.-P. Zhang, and S.-M. Yuan, Enhancing Saga Pattern for Distributed
Transactions within a Microservices Architecture, Applied Sciences, vol. 12, no. 12, p.
6242, 2022, https://doi.org/10.3390/app12126242.

[6] M. T. González-Aparicio, M. Younas, J. Tuya, and R. Casado, Testing of transactional
services in NoSQL key-value databases, Future Generation Computer Systems, vol. 80,
2018, https://doi.org/ 10.1016/j.future.2017.07.004.

[7] G. Zhang, K. Ren, J.-S. Ahn, and S. Ben-Romdhane, GRIT: consistent distributed
transactions across polyglot microservices with multiple databases, in 2019 IEEE 35th
International Conference on Data Engineering (ICDE), pp. 2024–2027, 2019,
https://doi.org/10.1109/ICDE.2019.00230.

[8] M. Amaral, J. Polo, D. Carrera, I. Mohomed, M. Unuvar, and M. Steinder, Performance
evaluation of microservices architectures using containers, in 2015 IEEE 14th
International Symposium on Network Computing and Applications, pp. 27–34, 2015,
https://doi.org/10.1109/NCA.2015.49.

[9] Transport of London - Unified API, https://tfl.gov.uk/info-for/open-data-users/unified-
api#on-this-page-0 (accessed 14th July 2022).

[10] M. Kiran, P. Murphy, I. Monga, J. Dugan, and S. S. Baveja, Lambda architecture for cost-
effective batch and speed big data processing, in 2015 IEEE International Conference on
Big Data (Big Data), pp. 2785–2792, 2015,
https://doi.org/10.1109/BigData.2015.7364082.

[11] M. Stone and E. Aravopoulou, Improving journeys by opening data: The case of Transport
for London (TfL), The Bottom Line, vol. 31, no. 1, pp. 2-15, 2018,
https://doi.org/10.1108/BL-12-2017-0035.

[12] D. Abadi, Consistency tradeoffs in modern distributed database system design: CAP is
only part of the story, Computer, vol. 45, no. 2, pp. 37–42, 2012,
https://doi.org/10.1109/MC.2012.33.

[13] P. J. Sadalage and M. Fowler, NoSQL distilled: a brief guide to the emerging world of
polyglot persistence, Pearson Education, 2013.

[14] R. Jiménez Peris, M. Patiño Martínez, I. Brondino, and V. Vianello, Transaction
management across data stores, International Journal of High Performance Computing and
Networking, pp. 0–10, 2017, https://doi.org/10.1504/IJHPCN.2018.096709.

[15] N. Ranasinghe, K. De Zoysa, and W. K. Ng, SaaS-Microservices-Based Scalable Smart
Contract Architecture, in Security in Computing and Communications: 8th International
Symposium, SSCC 2020, Chennai, India, October 14--17, 2020, Revised Selected Papers,
vol. 1364, p. 228, 2021, https://doi.org/10.1007/978-981-16-0422-5_16.

[16] X. Limón, A. Guerra-Hernández, A. J. Sánchez-García, and J. C. P. Arriaga, SagaMAS: a
software framework for distributed transactions in the microservice architecture, in 2018
6th International Conference in Software Engineering Research and Innovation
(CONISOFT), pp. 50–58, 2018, https://doi.org/10.1109/CONISOFT.2018.8645853.

[17] H. Uyanik and T. Ovatman, Enhancing Two Phase-Commit Protocol for Replicated State
Machines, in 2020 28th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP), pp. 118–121, 2020,
https://doi.org/10.1109/PDP50117.2020.00024.

[18] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J. Abadi, Calvin: fast
distributed transactions for partitioned database systems, in Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data, pp. 1–12, 2012,
https://doi.org/10.1145/2213836.2213838.

[19] R. H. Campbell and P. G. Richards, SAGA: A system to automate the management of
software production, in Proceedings of the May 4-7, 1981, national computer conference,
pp. 231–234, 1981, https://doi.org/10.1145/1500412.1500445.

[20] A. Luckow, L. Lacinski, and S. Jha, Saga bigjob: An extensible and interoperable pilot-
job abstraction for distributed applications and systems, in 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing, pp. 135–144, 2010,
https://doi.org/10.1109/CCGRID.2010.91.

[21] H. Garcia-Molina and K. Salem, Sagas, ACM Sigmod Record, vol. 16, no. 3, pp. 249–
259, 1987, https://doi.org/10.1145/38714.38742.

[22] N. M. Josuttis, SOA in practice: the art of distributed system design, O’Reilly Media, Inc.,
2007.

[23] S. P. Kumar, S. Lefebvre, R. Chiky, and O. Hermant, “Consistency-Latency Trade-Off of
the LibRe Protocol: A Detailed Study,” in Advances in Knowledge Discovery and
Management, Springer, pp. 83–108, 2018, https://doi.org/10.1007/978-3-319-65406-5_4.

[24] R. H. Thomas, “A majority consensus approach to concurrency control for multiple copy
databases,” ACM Trans. Database Syst., vol. 4, no. 2, pp. 180–209, 1979,
https://doi.org/10.1145/320071.320076.

[25] London Buses, https://tfl.gov.uk/corporate/about-tfl/what-we-do (accessed 21st July
2022).

https://doi.org/10.1145/320071.320076

[26] Bus spider maps, https://tfl.gov.uk/maps_/bus-spider-maps (accessed 14th July 2022).

