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Abstract 

Microservices architecture has increasingly been adopted for building distributed and 
scalable applications. The premise is that microservices are designed as smaller software 
components which are easier to be preserved and which enable separation between 
different components. This paper proposes a new transaction platform for microservices 
architecture to manage processing of big data stored in a cluster of NoSQL databases. 
New asynchronous protocols are designed to execute database operations as transactions, 
and to maintain their correctness and consistency. A prototype system has been developed 
that simulates London bus service across bus routes. It is evaluated through simulation 
experiments using big data from ‘Transport for London’ data service in order to analyse 
effects of transaction processing on response time and throughput in microservices 
architecture. The transaction platform reliably processes database operations, and enables 
data availability and consistency in failure-free and failure-prone environments. 

Keywords: Microservices architecture, transaction management, big data, NoSQL 
database 

1. Introduction 

Microservices architecture has become a popular platform for developing data-driven 
applications [1] that run in a complex distributed setup such as cloud, IoT and big data 
systems. In microservices architecture, an application is implemented as a set of 
autonomous microservices that represent different business components (or 
functionalities) and that work together in order to achieve a desired output [2]. The aim is 
to provide high scalability, availability, maintainability and decentralization of 
applications and data storages. Microservices can be implemented in different languages 
and can access data from multiple types of databases including relational (SQL) databases 
and NoSQL databases. Relational databases require data to be structured in tabular 
(relational) form, enforce integrity constraints and relationships between tables. They also 
support transactions with ACID (Atomicity, Consistency, Isolation, Durability) 
properties in order to ensure strict consistency and allow concurrent executions of 
transactions. Nevertheless, NoSQL databases follow different data models and provide 
different level of consistency, availability and efficiency. They do not support 
transactions like relational databases. They are mainly designed to process large volume 
of data and generate results in real time such as analysis of millions of tweets or 
processing of live road traffic data.  

In existing literature, different techniques and models have been developed for managing 
transactions in microservices architecture. A Saga Pattern [3] approach is developed in 



order to manage local sequential transactions for updating microservices. It follows 
compensating actions approach that compensate or cancel completed actions in the case 
of failure. However, this approach does not consider read isolation wherein isolation 
anomalies can emerge [4]. Authors in [5] propose to improve Saga Pattern approach by 
setting a constraint that database commits at database layer only if all transactions are 
totally successful at the cache layer. Therefore, CRUD (Create, Read, Update, Delete) 
operations are first performed at memory (cache) level. If transactions are successful then 
effects of their operations are reflected at database level. In our previous work [6], we 
developed a framework for managing transactions that takes into account contextual 
information of users and a required level of big data consistency. We carried out a detailed 
analysis of impact of big data (and its characteristics) on maintaining data consistency.  

Transaction management in microservices architecture involves NoSQL big databases 
which can be deployed in a cloud and IoT setup. A transaction comprises a series of 
operations (e.g., read/write) that either successfully execute in full or not at all. If one 
operation fails, then all the operations must be rolled back to keep data in consistent state 
and maintain correctness of application. However, transaction management in 
microservices architecture and big databases brings in new challenges [7].  Transactions 
in a microservices architecture encompasses multiple databases – i.e., each database is 
associated with a specific microservice. Therefore, managing transactions and 
maintaining data consistency across multiple databases is a challenging task. In addition, 
other inherent characteristics (i.e., volume, velocity, variety) of big data complicate the 
process of managing transactions in microservices architecture. For instance, volume (or 
size) of data is large and data are generated and consumed at a high speed (velocity) as 
compared to traditional data. Big data also comes in various structures and formats unlike 
classical relational database which is well structured and normalized. In addition, NoSQL 
database technologies scarcely support transactions, and there is a lack of recovery 
mechanisms such as fallback or rollback. For instance, Redis implements the optimistic 
locking protocol and a script is considered as a transaction itself; meanwhile BigTable 
implements transactions at a row level; and Riak and Cassandra rely on conflict-
resolution mechanisms.   

In this paper, we design and simulate a new two-level transaction management platform 
for microservices architecture that supports real-time processing of big data which is 
stored in a cluster of NoSQL key/value databases. We design new asynchronous protocols 
for executing database operations as transactions at data storage layer in order to maintain 
consistency of big data. The platform is capable of processing transactional (write/read) 
operations in a reliable and transparent manner. It handles transaction failure and provides 
data availability and resilience in case of database failures. 

A Docker containerized environment [8] and Redis NoSQL databases are used in the 
design and simulation of the proposed two-level transaction management platform. Such 
an environment is chosen as it is most widely used in microservice architecture [1]. The 
transaction platform is evaluated using data from ‘Transport for London’ (TfL) data 
service [9] and London Bus service as an application area. We conduct a series of 
experiments by simulating London Bus service across bus routes. Specifically, the case 
study provides a complex environment for developing a transaction platform that requires 
modern technologies of NoSQL, cloud, IoT and microservices architecture. Experimental 



results show that the transaction platform maintains consistency of big data and provides 
a fair response time and throughput in both failure-free and failure-prone environments.  

The work is focused on transaction management at the storage layer with microservices 
to achieve a higher level of storage independence along multiple databases, and data are 
continuously received from data sources such as sensors, buses, etc. This can be attributed 
to data stream as in lambda architecture [10], which combines batch and online (stream) 
processing on data platforms. The rationale for choosing London Bus service is twofold. 
First, it provides an environment for developing a transaction platform that requires new 
technologies (such as NoSQL, big data, cloud, IoT) and new architectural design (such 
as microservices architecture). Second, it’s used as a practical application area for the 
proposed transaction platform. Data can be consistently sent to passengers and other 
stakeholders through various channels such as display screens at bus stops, on board 
‘next-stop signage’ screen within the buses, websites and mobile apps. This would enable 
passengers to better plan their travel routes and minimise waiting time at bus stops thus 
saving millions of pounds every year [11]. 

Note that the main goal of transaction platform is to ensure application correctness and 
consistency of data – that is, data remain consistent if written to databases under 
transactional operations. Conversely, without transactions data can be inconsistent and 
would have negative impact on applications and users. For instance, in London Bus case 
study, information (sent to display panels at bus stops or to websites or mobile apps) could 
be inconsistent due to the following factors such as the frequency of updating bus 
timetable data, the existence of multi-version (old/new) data, etc. However, maintaining 
consistency has impact on performance, response time and throughput. Thus, the 
transaction platform is evaluated in terms of response time and throughput. Such 
evaluation can be attributed to tradeoff between data consistency and (high) latency [12]. 

The remainder of this paper is structured as follows. Section 2 reviews and analyses 
related work. Section 3 explains the design of the transaction-based microservice 
architecture under study. Section 4 describes the implementation of the execution 
protocol. Section 5 discusses the experiments in both synchronous and asynchronous 
mode. Finally, conclusion is presented in section 6.  

2. Related work 
In microservices architecture, a transaction spans across several services and 
heterogenous databases [13] that may have different underlying data models and 
structures. In such an environment, managing transactions that guarantee data consistency 
and correctness of operations involve more complex design than classical transactions 
with homogenous single shared database.  
Existing research design general models for distributed transactions in a microservices 
architecture. In [14], authors build a transactional management layer which integrates 
datatabases with multi-versioning features. Some researchers have developed blockchain 
platforms [15] that can run smart contracts on separate actors (services) and execute 
transactions independently. These platforms are claimed to be achieving a higher 
scalability and throughput. Authors in [16] have developed a model named SagaMAS 
where every transaction is created as a microservice. It follows a semi-orchestrated 
asynchronous model where every agent can make a request without waiting for a 
response. Transactions between microservices are performed through the coordination of 



their agents. However, it is not clear whether the above approaches implement database 
transaction models that ensure consistency of databases and correctness of applications. 
Furthermore, various protocols have been developed for the execution of transactions. 
Authors in [17] adopt the classical two-phase commit protocol (2PC) for managing 
transactions in a microservice architecture. In this approach, a coordinator controls an 
execution of a transaction in two phases. In the first phase, participants nodes are asked 
if a transaction can be committed with a ‘yes’ or ‘no’ response. In the second phase, the 
transaction commits if every node provides a ‘yes’ response. If any of the nodes provides 
a ‘no’ response, then a rollback operation is executed to cancel the effects of completed 
operations. However, the classical 2PC protocol is less efficient and is not appropriate for 
large-scale and highly loaded systems [18]. 2PC protocol is also not suitable for big data 
and NoSQL databases that need high efficiency and scalability. 
The work presented in [4] and [13] introduce SAGA pattern to enhance 2PC protocol and 
related communication between component systems. This work is based on a 
conventional SAGA project [19] which was proposed to generate software development 
systems automatically. Transactions based on SAGA pattern are used to update data in 
different services in a microservice architecture. However, SAGA pattern transactions 
only satisfy ACD (atomicity, consistency, durability) properties, but not ACID 
(atomicity, consistency, isolation, durability) [3]. This model allows to read and write data 
in partially completed transactions. The lack of read-isolation is solved in [5], when a 
transaction only commits if it has been completed successfully. Another, issue with 
SAGA pattern is the coordination and maintenance of transactions which work with 
multiple microservices. The work in [20] proposed a SAGA-based Pilot-Job with several 
types of applications to be used over a wide range of heterogeneous distributed 
infrastructures, such as Clouds and traditional Grids/Clusters. 
Furthermore, authors in [21] have developed a model for long-lived transactions. This 
model is called saga transaction model where long transactions are split into a series of 
sub-transactions that confit in sequence. But the constraint is that all sub-transactions 
must be successfully completed. If any of them fails the completed sub-transactions need 
to be rolled back through the execution of compensation transactions (or actions). This 
model was developed for classical (relational) databases and it may not work for NoSQL 
big data systems which have different characteristics from classical databases.  
 
3. The transaction platform 

This section presents the proposed transaction platform for microservices-based big data 
systems. First, it presents the overall architecture and main components of the transaction 
platform. It then illustrates different aspects of the design of storage layer with big 
databases. 

3.1. The architecture 
The architecture of the proposed transaction platform is shown in Fig. 1. It comprises 
different layers which include: client layer, application layer, storage layer and data 
source layer. It is based on our previous work [6]. Here, we extend that architecture by 
managing data at data storage layer using transactions and microservices. Moreover, data 
need to be adapted before their storage in a specific NoSQL (key/value) database such as 



Redis, etc. The goal is to manage a polyglot of databases in order to support a wider 
variety of data storage needs. 
 

 

a) Client Layer: This layer serves as an interaction between client and application layer. 
It includes a client manager which receives and sends client’s requests to the 
Application Layer. It also gives a response to the client whenever the Application 
Layer sends back the requested results. 

b) Application Layer (AL): This layer comprises the following components: 
• Client Interface API: It receives requests from the Client Layer and sends to the 

Application Layer. It also provides responses from the Application Layer which 
are to be sent to the Client Layer.    

• µService Application Coordinator: This module receives and executes client’s 
requests. For every request, it sets an execution context (Context API), whenever 
an operation is to be executed as a transactional (Transaction API) or non-
transactional (Operation API). It will then be run according to its (consistency) 

 

Figure 1. A transaction management system. 
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requirements. During this process, a client’s request could access any NoSQL 
database using the Storage Coordinator API from the Storage Layer. 

• µService Context (Dependencies and Semantic Rules): It receives, analyses 
and stores different semantic needs associated with client’s requests. 

• µService Operation: It receives, executes and control the execution of a non-
transactional client’s requests. 

• µService Transaction: It receives, executes and control the execution of a 
transactional client’s requests. 

c) Storage Layer: It applies transaction management techniques at data source’s side at 
the storage layer. Therefore, CRUD operations for the data to be stored or the ones 
that come from data sources (sensors, buses, web, etc.) are managed according to 
transactional criteria.  

Data storage deals with databases and stores data that come from Application Layer 
(i.e., data from user’s requests) and Data Source Layer (i.e., data from sensors, buses, 
web, etc).  A data system is considered more reliable and trustful as it stores one or 
more instances of the same database type which coexist in case of database failures. 
Moreover, several copies of the same data will be recorded along different instances 
or nodes. The purpose is to provide a high data availability and consistency. This 
process involves several components, each with different roles. 

• Storage Coordinator API: It provides a communication interface between 
the µService Load Data and the Application Layer with the µService Storage 
Transaction Coordinator.  

• Storage User Transaction Coordinator: It controls the storage of data 
along one or more database instances at once. In general, data are copied 
along instances (or nodes) of the same database type (e.g., Redis). But data 
can also be copied along different (polyglot of) databases (e.g., Redis, Riak, 
etc). One of the main features of this module is the creation of a transaction 
in charge of managing and guaranteeing the entire storage process of data.  

• SQL/NoSQL DataBase Adapter: It adapts source data to the requirements 
of a database where data are stored. Data adaptation is needed as there are 
differences in datatypes, schemas, etc., between different databases. 
Therefore, it is highly likely that source data suffers from different structure 
alterations (reorganization, modification, deletion, or datatype changes) 
depending on the type of databases where data are stored. Moreover, context 
information could be crucial in some client’s requests execution 
environments, i.e., semantic data information (ranges, relationships, 
conditions, etc). In consequence, it is necessary to deal with information in 
relation to data type fields and context. The interaction with a specific 
database is carried out through its own Native API. 

d) Data Source Layer: It represents different sources of data (e.g., sensors, buses, etc.) 
from where data (with high velocity) are received. Raw data from external sources 
are read with a µService Read Data, which are then sent to Storage Layer through 
µService Load Data. 
 

3.2.  Design of a storage layer 
 



The main components of storage layer and their inter-communication flow are 
represented in Fig. 2. It follows most common model of microservices [22], in which  
interaction is carried out through REST requests. Data are sent to or read from the service 
(Controller/Service). When data are sent (post), a write operation is performed in more 
than one database thus creating multiple copies of the same data. The purpose is to 
increase system resilience and data availability. Nevertheless, every database works 
autonomously, i.e., it does not depend on others. Therefore, the goal is to design a model 
to be in charge of performing write/read operations as part of a transaction. It is made of 
a coordination process (Cluster Model) to control all database outcomes and to provide a 
unique response to the user (via Transaction Manager). Every database status and 
response are controlled with another model (Server Model). 

 

 
Figure 2. Communication between modules at the storage layer. 

3.3. Coordination in a cluster of databases 

In the storage layer, a set of databases (N) are grouped in a cluster, which is coordinated 
according to a cluster’s databases model (Fig. 3). Read and write operations are executed 
as a transaction. For instance, if a write operation writes data to a database, then the same 
data should be written to every database in the cluster. This is to ensure consistency of 
data and correction of an application. If failure occurs, then partially completed operations 
are managed as described in the following sub-sections of fallback and rollback. 
Coordination among a cluster of databases applies a quorum policy to ensure a consistent 
view of data. Indeed, many consistency protocols use a quorum-based principle based on 
the intersection property [23]. NoSQL databases such as Dynamo, Cassandra, Voldemort 
and Riak also follow this technique. In our work, the consistency is guaranteed by 
applying the majority quorum protocol [24]  which is explained as follows. 

(i) Write operation (denoted w) is used to write data to a database in a cluster. A 
write operation (w) is considered successful if consistency can be guaranteed 
under a quorum policy, i.e., data have been written to at least half of the 
databases that belong to a cluster. 



(ii) If N (number of databases) is odd, then a quorum is considered as (N/2)+1. 
Otherwise, it is considered as N/2. The strongest consistency is reached when 
data are written to the whole cluster (i.e., w = N). For instance, if N=3 then a 
quorum is achieved when a write operation is performed in 2 (3/2+1) out of 3 
databases, and the strongest consistency is guaranteed when data are written in 
the three databases (w = 3).  

(iii) In relation to a successful execution of a write operation and maintenance of 
consistency, quorum policy defines three different scenarios. If a write 
operation is fully completed (i.e., w=N), then it is considered as totally 
successful (OK_Full_Cluster). If a write operation is executed such that only a 
quorum is achieved (as above), then it is partially successful 
(OK_Cluster_Dirty). If quorum cannot be achieved, then it is considered as not 
successful (Error_Cluster_Dirty).  

 
Figure 3. Cluster’s databases model. 

Steps involved in Fig. 3 are represent in Algorithm 1. 

Algorithm 1. Algorithm for cluster’s databases coordination. 

//Receiving data from a REST request 
//Setting parameters 
data = {Set of data from a data source or user’s request} 
status = Start 
DBi = Database [i = 1 … N] 
num_responses = 0 
quorum = N / 2 
  
//data semantically not correct 
if ¬ [data semantically correct] 

then  
status = Error;  



Send an error; Exit. 
endif 
  
//data semantically correct 
data = [semantically correct] 
status = WaitCluster 
for i = 1 … N 
   Send data to DBi (∈ cluster) 
   Wait (get response from DBi) 
    num_responses = num_responses + 1 
endfor 
//Request totally successful 
if num_responses = N 

then status = OK_Full_Cluster; Send OK; exit 
endif 
  
//Request partially successful 
if ((num_responses >= quorum) and (num_responses < N))  

then start a Fallback process for each failure DB 
        status = OK_Cluster_Dirty  
        Wait until all Fallback processes respond OK 
        status = OK_Full_Cluster; send OK; exit  

endif 
  
//Request not successful 
if (num_responses < quorum)  
then start a Rollback process for each successful DB 
             status = Error_Cluster_Dirty 
             Wait until all Rollback processes respond OK 
             status = OK_Full_Cluster; send OK; exit 
endif 

3.4. Write/Read Operations 

The write/read operations on each database are performed according to Server Model 
which is depicted in Fig. 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Database model. 



Data are written to or read from each database. If a database is unavailable for 
writing/reading data, a poll mechanism is sparked. Under the poll mechanism, write/read 
operation is re-executed for a specific interval of time and for a maximum number of 
attempts. If a maximum number is reached, the write/read operation is considered as 
temporarily failed. Steps involved in Fig. 4 are represented in Algorithm 2. 
 
Algorithm 2. Server Model algorithm. 

//Receiving data from the Cluster Model 
//Writing/Reading data in a specific database DBi = Database [i = 1 … N] (∈ cluster) 
  
//Setting parameters 
status = Start 
max = Maximum number of attempts for writing/reading data  
#attempts = 0 
pollInterval = Specific number of seconds 
  
//Sending process 
Write to/Read from DBi 
status = Wait 
Wait for a response 
  
//No response 
if ¬ [DBi respond] and (#attempts = 0)  
     then Start a poll to check DBi availability  
endif 
while ¬ [DBi available] and (#attempts < max) do 
            status = WaitPoll 
           Wait pollInterval seconds 
           Write to/Read from DBi 
           #attempts = #attempts +1 
           status = Wait 
endwhile 
  
//DBi is available or #attempts is over 
Stop poll 
if DBi available 
     then status = OK 
             return OK 
     else status = Error 
             return Error 
endif       

3.5. Fallback model 

A fallback model is designed to cater for situation when a quorum is achieved but some 
databases are still unavailable. Then, a write/read operation keeps trying to be completed 
until unavailable database becomes available or active. For this reason, a poll mechanism 
starts in order not to limit the number of attempts to execute write/read operations. This 
is based on the assumption that an unavailable database is failed temporarily and would 
eventually recover and become active. The model is represented in Fig. 5.  



 
Figure 5. Fallback state transition model. 

Steps involved in Fig. 5 are represented in Algorithm 3.  

Algorithm 3. Fallback algorithm. 

//Receiving data from the Cluster Model 
//Writing/Reading data in a specific database DBi = Database [i = 1 … N] (∈ cluster) 
  
//Setting parameters 
status = Start 
pollInterval = Specific number of seconds 
  
//Sending process 
Write to/Read from DBi 
status = Wait 
Wait for a response 
  
//No response 
if ¬ [DBi respond] 
     then Start a poll to check the availability of DBi 
endif 
while ¬ [DBi available] do 
            status = WaitPoll 
           Wait pollInterval seconds 
           Write to/Read from DBi 
           status = Wait 
endwhile 
  
//DBi is available  
Stop poll 
status = OK 
return OK 

3.6. Rollback model 

A rollback model deals with a situation when a quorum is not achieved. In this case, a 
write/read operation on a cluster of databases is cancelled. If a write operation is already 
performed on a specific database, then a rollback process is activated which cancels the 



effects of completed operation in order to bring back that database to a previous state (as 
a compensation mechanism). If a read operation is executed, then the operation is omitted. 
This model also considers the possibility that a database becomes unavailable before a 
cancellation process starts. Therefore, a poll mechanism is sparked with a limitless 
number of attempts (as in fallback model). This model is depicted in Fig. 6. 

 
Figure 6. Rollback state transition model. 

Steps involved in Fig. 6 are represented in Algorithm 4. 

Algorithm 4. Rollback algorithm. 

//Receiving data from the Cluster Model 
//Removing data from a specific database DBi = Database [i = 1 … N] (∈ cluster) 
  
//Setting parameters 
status = Start 
pollInterval = Specific number of seconds 
  
//Sending process 
Remove data from DBi 
status = Wait 
Wait for a response 
  
//No response 
if ¬ [DBi respond]  
     then Start a poll to check the availability of DBi 
endif 
while ¬ [DBi available] do 
            status = WaitPoll 
           Wait pollInterval seconds 
           Remove data from DBi 
           status = Wait 
endwhile 
  
//DBi is available  
Stop poll 
status = OK 
return OK 



4. Execution protocol 

This section describes an overall execution protocol for different scenarios explained in 
section 3.  Fig. 7. depicts the main steps of the execution protocol. When a new request 
arrives, it is managed by Transaction Manager (TM). TM creates a general transaction 
context (Cluster Model (CM)), and a general Cluster Model Transaction (CMT) linked to 
it. Each main transaction is comprised of several subtransactions, each of which is 
associated with a database. Thus, a new subtransaction context (Server Model (SM)) is 
created for each database service that belongs to a cluster, and a subtransaction Server 
Model Transaction (SMT) linked to it. Subtransaction’s contexts are included as part of 
the main or general transaction context CM. Therefore, we define a Cluster Model 
Transaction (CMT) that consists of a set of subtransactions called Service Model 
Transaction (SMT). That is, CMT = (SMT1, SMT2, …, SMTN), where N is the number 
of databases which are part of the cluster. Every SMTi (1 ≤ i ≤ N) can perform a write/read 
operation in a specific key/value NoSQL database i.  

Figure 7. Execution protocol. 

Then, the general context CM is sent to TM and is stored in a queue which is dedicated 
to saving transaction contexts. Finally, the system waits for a response from TM. CM 
sends a request to every SM, which provides a response to CM after a read/write operation 
is executed. A final result is then read from CM and is sent to TM. It has to be noted that 
every SM works autonomously and asynchronously in relation to others. Indeed, every 
database service has a process linked to it, which knows the state of the database through 
periodical checks, i.e., every ‘x’ seconds. When a SM receives a request, the state of the 
database is read first into a corresponding process. If it is not active, a negative response 
is sent immediately to the CM. Otherwise data is sent to the database. This event prevents 
write operations from being performed in a specific database service in case of temporary 
unavailability. However, if data could be stored, a positive response (OK) is sent to CM. 
Otherwise, a response is resent every ‘z’ seconds for a maximum of ‘max’ attempts. In 
final scenario, if data could not be stored, then a ‘not Ok’ response is sent and a 
fallback/rollback process is created and stored in a specific queue.  



Initially, every database service has two queues linked to it, one for storing fallback 
processes and another for storing rollback processes. So, every time a CM starts an 
asynchronous Fallback or Rollback process for every SM which could not store data, it is 
stored in a corresponding queue. The type of context to be created depends on the number 
of positive responses, as explained in Section 3.4. At the end, a final response from every 
database is registered in the general transaction context, CM.  

The implementation of a fallback queue process is represented in Fig. 8 This process is 
applicable to every unavailable database service. An automatic process checks every ‘y’ 
seconds if a database service is available, and if there are SM’s in the list of fallbacks. If 
the response is positive, then the list is locked to avoid new SM’s from being entered into 
the list. Every data in the SM list is then sent to the database to be stored. If data could be 
stored, then SM is removed from the list, otherwise it will remain in the list. This process 
keeps processing elements from the list until it is fully completed.  

                                                                

     
                                            Figure 8. Fallback queue process. 

The implementation of a rollback queue process is represented in Fig. 9. This is applied 
to every available database service. It follows the same procedure as that of the fallback 
queue. However, in rollback process data are deleted from a database.   

                                             

     
                                                    Figure 9. Rollback queue process. 

5. Simulation-based evaluation 

This section presents simulation-based evaluation of the transaction platform. It describes 
a set of simulation experiments in order to evaluate performance, response time, and 
consistency of the storage layer.  
The experiments have been carried out using a machine with the hardware/software 
specifications, shown in Table 1. 
 
 
 
 
 
 



Table 1. Hardware/software features. 
Hardware/software specification 

CPU core 2.4 GHz Intel(R) Core(TM) i7-5500 

Operating system Windows 10 Pro 64 bits 

IDE Eclipse 2020-06 

Programming language Oracle Java 7 

Database NoSQL key/value, Redis 6.2.3 

Containerization technology Docker Engine v20.10.10 

Experiments simulate a scenario of data processing using London Bus service as a case 
study. The simulation data (in JSON format) come from Open Data source that the 
Council of London provides from a large public transport fleet. We choose the London 
Bus service and such data in our experimentation for the following reasons. There are 
more than 9000 buses which operate across more than 600 routes.  Such buses generate a 
large volume of data [25] which arrive at the system in real time at different intervals of 
time, different speed and with different data structure. In addition, it also justifies the 
practical application of the transaction platform. For example, data can be consistently 
sent to passengers and other stakeholders through various channels such as display 
screens at bus stops, on board ‘next-stop signage’ screen within the buses, websites and 
mobile apps. This would enable passengers to better plan their travel routes and minimise 
waiting time at bus stops thus saving millions of pounds every year [11]. 

5.1. Data representation and storage 
The “Transport for London” (TfL) [9] provides information in relation to arrival 
prediction times for different bus lines which follow a bus spider maps [26]. Fig. 10 shows 
a data record with different fields and a response sample.  
 

[ { "id": "string", 
    "operationType": 0, 
    "vehicleId": "string", 
    "naptanId": "string", 
    "stationName": "string", 
    "lineId": "string", 
    "lineName": "string", 
    "platformName": "string", 
    "direction": "string", 
    "bearing": "string", 
    "destinationNaptanId": "string", 
    "destinationName": "string", 
    "timestamp": "2022-07-14T16:27:17.473Z", 
    "timeToStation": 0, 
    "currentLocation": "string", 
    "towards": "string", 
    "expectedArrival": "2022-07-14T16:27:17.473Z", 
    "timeToLive": "2022-07-14T16:27:17.473Z", 
    "modeName": "string", 
    "timing": { 
      "countdownServerAdjustment": "string", 
      "source": "2022-07-14T16:27:17.473Z", 
      "insert": "2022-07-14T16:27:17.473Z", 
      "read": "2022-07-14T16:27:17.473Z", 
      "sent": "2022-07-14T16:27:17.473Z", 
      "received": "2022-07-14T16:27:17.473Z"  }  } ] 

Figure 10. A response sample for arrival times in a specific line. 



 

A subset of data from arrival prediction record was taken as a reference for experimental 
purposes. Moreover, a bus line is covered with more than one vehicle (bus). Fig. 11 
represents a generic bus line with ‘m’ bus stops, and ‘n’ buses travelling through the same 
line in both directions, ‘inbound’ and ‘outbound’.  
 

Figure 11. A generic bus line. 

In our experiments, every bus is associated with the following data, which is a simpler 
and cleaner version from the one used in TfL: a bus identifier (‘vehicleId’); origin station 
from where a bus departs at a specific instant of time, the direction (‘direction’), and the 
position from the last origin station (‘currentLocation’) according to the direction 
(inbound or outbound). 

Bus data are stored in a cluster made of three containers, with a Redis NoSQL key/value 
database per container. Therefore, data need to be adapted to a key/value format. Indeed, 
for every bus i (1 ≤ i ≤ n) and every movement j (1 ≤ j), a key is built up as “Bus”+i+”-
M”+j, in order to be unique at every stage of its journey. Secondly, value linked to the 
key and the bus i, is built up as a union of three data: origin, direction and location of the 
bus i at a requested instant. Such data are a reduced version of the overall data. 

Both write/read operations are performed with a transaction protocol as it is explained in 
section 4. Then, a Cluster Model Transaction (CMT) and a set of Service Model 
Transactions (SMT) are created. That is, CMT = (SMT1, SMT2, …, SMTN), where N is 
the number of databases which are part of the cluster. According to our software 
specification, every SMTi (1 ≤ i ≤ N) refers to a write/read operation in a specific Redis 
NoSQL database i. For instance, a write operation can write data in order to update the 
current location of a bus on a spider map, or read the database to find out the arrival time 
of a bus to a bus stop. 

5.2. Simulation of the communication process 

A general communication process is represented in Fig. 12. It involves (i) sending a 
request to the service at the storage layer (interval [1, 2]), (ii) processing of request by the 
microservice (interval [2, 3]), and (iii) sending a response back to the user (interval [3, 
4]). When the request arrives at microservice, then a read or write operation has to be 
performed in the respective databases. If the microservice is fully active, then the 
operation is executed successfully, and a positive response is returned. Nevertheless, if 
the microservice is not working properly at full capacity, the microservice needs to be 
aware of the new faulty situation, acts accordingly, and keeps the user informed with a 
negative response.   



We devise the metrics to empirically evaluate the transaction platform with respect to the 
response time (i.e., response to Application/Data Source Layer) and throughput under 
different scenarios such as normal, fallback and rollback. Response time of storage 
coordinator (denoted RSC) (interval [1, 4]) is calculated using parameters such as Time 
of Data Request (denoted TDR) (interval [1, 2]), Time of a Write/Read operation in a 
database (denoted TWR) (interval [2, 3]), Time of a database in a Failure state (denoted 
TF) (interval [2, 3]), and the Time of a Request Response (denoted TRR) (interval [3, 4]). 

 

 
Figure 12. A sequence diagram for a request. 

 

This study is focused on how the storage layer manages requests and database failures 
(interval [2, 3]). This fact establishes how good the quality of the response from the 
transaction microservice-based architecture is at this level. Therefore, this process has an 
impact on the response of the storage coordinator, i.e., the total amount of time spent to 
give back a response to a client at the storage layer since a request is sent (interval [1, 4]).  

Note that the main goal of transaction platform is to ensure application correctness and 
consistency of data – that is, data remain consistent if written to databases under 
transactional operations. Conversely, without transactions data can be inconsistent and 
would have negative impact on applications and users. For instance, in London Bus case 
study, information (sent to display panels at bus stops or to websites or mobile apps) could 
be inconsistent due to the following factors such as the frequency of updating bus 
timetable data, the existence of multi-version (old/new) data, etc. However, maintaining 
consistency has impact on performance, response time and throughput. Thus, the 
transaction platform is evaluated in terms of response time and throughput. Such 
evaluation can be attributed to tradeoff between data consistency and (high) latency [12]. 

5.2.1. Metrics for a normal scenario 

It considers a scenario where every write/read request is sent to every database in a 
sequential order, and the cluster is made of ‘p’ databases. RSC is calculated as follows. 

               RSCnormal = TDR +∑ 𝐓𝐖𝐑𝑖
𝑝
𝑖=1    + TRR                                            (1) 

TDR is time taken to communicate a request from Application Layer/Data Source Layer 
to Storage layer. TWRi is time to send data to a database ‘i’ and do write/read operation. 
TRR is time taken to send a response to a request. 



 
In case of database failures, if ‘q’ out of ‘p’ is the number of databases which are not 
available, then RSC is calculated as follows. 

RSCfailure = TDR + ∑ 𝐓𝐖𝐑𝑖
𝑝−𝑞
𝑖=1                + Δt1   + TRR                (2) 

Where Δt1 is the time to manage ‘q’ databases which are unavailable. 

                   Δt1 = ∑ 𝐓𝐅𝑖
𝑞
𝑖=1                                                                                         (3)    

TFi is the time taken in re-executing write/read operations, i.e., to keep trying to write/read 
data every ‘z’ seconds for a maximum of ‘max’ attempts in database, i. 

                  TFi =  ∑ (𝐳  +  𝐓𝐖𝐑i)
𝑚𝑎𝑥
𝑗=1                                                          (4) 

5.2.2. Metrics for a fallback scenario 

In the case of fallback scenario, the time for a write/read operation is calculated as 
follows. 

                      RSCfallback = RSCfailure + Δt2                                                             (5) 

Where Δt2 is the time taken to provide a positive response when unavailable (failed) 
databases recover. If ‘q’ is the number of unavailable databases then time taken to recover 
such databases (in sequence) is calculate as follows. 

                       Δt2 = ∑ 𝐓𝐅𝐅𝑖
𝑞
𝑖=1                                                                               (6) 

TFFi is the Time that a failed database remains in a Fallback process. Suppose, that a 
database ‘i’ becomes active after ‘r’ intervals, with a gap of ‘y’ seconds between each 
interval. If a fallback queue contains ‘s’ requests, then TFFi is calculated as follows.   

                   TFFi = ∑ 𝐲𝑟
𝑗=1   +   ∑ 𝐓𝐖𝐑𝑖

𝑠
𝑗=1                                                             (7) 

5.2.3. Metrics for a rollback scenario 

If the case of a rollback procedure, the time taken to complete a ‘cancel’ (or delete) 
operation is calculated as follows. 

                      RSCfallback = RSCfailure + Δt3                                                            (8) 

Where Δt3 is the time taken to provide a positive response when ‘q’ databases recover. 

                       Δt3 = ∑ 𝐓𝐅𝐑𝑖
𝑞
𝑖=1                                                                              (9) 

TFRi is the time that a failed database remains in a Rollback process. Suppose that a 
database ‘i’ becomes active after ‘r’ intervals, with a gap of ‘y’ seconds between each 
interval. If a fallback queue contains ‘s’ requests, then TFRi is calculated as follows.   

                   TFRi =  ∑ 𝐲𝑟
𝑗=1    +   ∑ 𝐓𝐃𝑖

𝑠
𝑗=1                                                       (10) 



TDi is the time to send a delete request to a database ‘i’ in order to remove a request 
located in position ‘j’ in a queue. 

5.2.4. Metrics for throughput 

The throughput of storage coordinator, ThSC, is the number of requests per second which 
are processed by the storage layer. However, if requests are sent in sequential order, it 
considers the instant of time taken to send a request (denoted TRS). If there are ‘n’ 
requests, then ThSC is calculated as follows. 

ThSC = n / (TRSn – TRS1)               (11)  

5.3. Simulation process 

The aim of every experiment is to measure the load of the system under two perspectives, 
both response time and throughput of the storage layer. Therefore, the system is tested 
with different number of buses. Specifically, the number varies at the power of two (1, 2, 
4, 8, …, 512). Table 2 represents a set of parameters used during the experiments.  

Table 2. A set of experimental parameters. 

Parameters Meaning 
NUMBER_BUSES Number of buses 
NUMBER_STATIONS Number of bus stops 
DISTANCE_BETWEEN_STATIONS Distance between bus stops 
LENGTH_ROUTE Length of the route 
INTERVAL_BETWEEN_BUSES Distance between buses along the journey 
NUMBER_OF_MOVEMENTS Total number of times that buses are 

moving along the bus line 
DISTANCE_PER_SECOND Number of metres a bus moves per second 
TIME_TO_MOVE_FORWARD Time a bus spends moving every time is 

ordered to move  
PERIOD_LAUNCH Interval of time during which all buses 

have to be moved 

During experimentation, the simulation of NUMBER_BUSES movements is performed. 
A journey takes place along the same bus line from an origin to a destination and vice a 
versa. Every second all buses data are sent to the system evenly distributed in time, i.e., 
each bus data are sent every PERIOD_LAUNCH / NUMBER_BUSES seconds. 
Therefore, a new location for every bus is calculated every second. So, the corresponding 
set of pairs (key, value) are built up, and sent to the system to be stored in the cluster.  
Experiments consider two modes of sending requests; sequential and parallel. A study on 
both modes has been analysed under three scenarios per mode: no database failures, 
fallback, and rollback.  
 
 
 



5.4. Experimentations of sequential order  

In this mode, buses’ data are sent in sequential order. Therefore, the interval between 
requests is the sum of two values, i.e., system response time per bus data and the gap time 
until the next bus data are sent (PERIOD_LAUNCH / NUMBER_BUSES). Nevertheless, 
this fact implies that the bus rate per PERIOD_LAUNCH is lower, because it depends on 
the response time of the storage layer per bus. For instance, if it is required to send 4 buses 
per second, but the storage layer response time per bus is 0.5 seconds, then the bus data 
rate is 2 buses data per second instead of 4. 

5.4.1. Normal scenario 

It considers a failure free scenario where a cluster of NoSQL key/value databases is 
working in a normal state. Fig. 13 shows mean response time of the storage coordinator, 
i.e., the time it takes to send a response to the Application/Data Source Layer when data 
are written to the databases. It can be observed from the experiments that response time 
is not severely affected with an increase in a workload (number of buses/sec). In other 
words, it provides a good response time as well as data consistency using transactional 
(read/write) operations. Fig. 13 shows that response time fluctuates between 0.04 and 
0.08 sec with a mean of 0.051 sec approximately. However, when the system enters into 
a stable stage (i.e., 32 requests per second and onwards) then the response time remains 
stable around 0.04 sec. 

The throughput is graphically represented in Fig. 14. It shows percentage of how many 
bus requests the storage layer is capable to manage per second. The graph shows a steady 
level of throughput with respect to an increase in the workload (i.e., number of buses/sec). 
If the workload is high the throughput is reduced, possibly, due to communication and 
processing overhead of data sources (buses, sensors, etc), and configuration parameters 
in both, NoSQL databases and microservices. But with higher workload, the time interval 
between requests is reduced to a negligible level.  

Figure 13. RSC in Normal scenario. Figure 14. ThSC in Normal scenario. 

 



5.4.2. Fallback scenario 

In this scenario, the system starts its execution in a normal state. After a certain period of 
time, one database stops working. This then triggers fallback process to start executing, 
which runs for a period of 60 sec (approx). After such period (of fallback), the database 
starts working again. The different phases are represented in Fig. 15. 

 

 

 

In a fallback period, when the cluster identifies a database failure, then it keeps in memory 
those keys which could not be saved totally. It waits for an answer from two (working) 
databases. Fig. 16 shows that the response time in fallback scenario. It moves from almost 
0.09 to 0.05 lower or equal to 1.0 request per second. However, it stabilises from 32 
requests/sec and onwards. In relation, workload and throughput, fallback scenario is in 
line with the normal scenario. As discussed, for the reasons stated above, throughput goes 
down when workload goes high. 

Figure 16. RSC in Fallback scenario. Figure 17. ThSC in Fallback scenario. 
 

5.4.3. Rollback scenario 

In this scenario, the system starts its execution in a normal state, but after a certain period 
of time, two databases stop working one after another. Therefore, a fallback process starts 
when one database stops, and a rollback process starts when second database stops. After 
a duration of 60 sec (approx), both databases are restarted in sequential order. A fallback 
process comes up again after one database gets restarted. Finally, the system recovers to 
its normal state when the second database is recovered. The different phases are 
represented in Fig. 18. 
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Figure 18. Stages in a Rollback scenario. 
 

Cluster fully active A database stops Cluster fully active 

Normal Fallback Normal 

Figure 15. Stages in a fallback scenario. 

 



Fig. 19 represents the response time in rollback scenario. However, in rollback, response 
time fluctuates more as compared to the previous scenarios. This could be linked to the 
time taken in recovering two databases instead of one. In relation to throughput, rollback 
states seem to follow the same pattern as in previous scenarios. As the workload (16 
requests/sec and onwards) increases, the percentage drops substantially. 

Figure 19. RSC in Rollback scenario. Figure 20. ThSC in Rollback scenario. 
 

5.5. Experimentation of parallel order 

In this mode, buses data are sent to the system in parallel order. It generally provides a 
better response time but may result in race conditions, wherein data (write) operations 
compete for accessing the same database in order to write or update data. 

5.5.1. Normal scenario 

Throughput of normal scenario in asynchronous mode is shown in Fig. 22. It shows that 
the throughput of the system tends to be steady with workload (up to 16 requests/sec). It 
then starts plummeting with workload (32 requests/sec and onwards). Therefore, the 
system achieves its maximum capacity between 16 and 32 requests. However, in 
synchronous mode, the system seems to lose capacity at a constant pace as the number of 
requests increases. Those numbers are correlated with the time system response (RSC) 
(Fig. 21). In synchronous mode, it behaves at constant rate always below 0.1 seconds in 
comparison to the asynchronous mode, where the delay starts increasing exponentially 
from 32 requests and onwards, and the system seems to be overloaded. Further 
observation is that RSC tends to be higher in asynchronous mode, as parallel requests are 
competing for same databases.  



Figure 21. RSC in normal scenario. Figure 22. ThSC in normal scenario. 
 

5.5.2. Fallback scenario 

As described above, failure of one database triggers fallback process, which runs for a 
period of 60 sec (approx). After recovery, the failed database starts working again. In this 
scenario, the RSC tends to be below 0.1 seconds when workload range is between 1-64 
requests/sec approximately. Nevertheless, the system starts being overloaded when 
workload goes higher, i.e., 128 requests/sec and onwards, where the RSC is above 0.3 
seconds (Fig. 23). This fact is also reflected in the throughput (Fig. 24). The percentage 
of requests per second is above 50% from 1 to 64, and below 20% from 128 and onwards. 

Figure 23. RSC in Fallback scenario. Figure 24. ThSC in Fallback scenario. 
 

5.5.3. Rollback scenario 

The execution of rollback scenario follows the same steps as described above. However, 
response time in rollback of asynchronous mode tends to be more unstable and fluctuates 
sharply. 

In the rollback state, data are written to only active database. During this phase, the system 
seems to be affected by the increase in the number of requests (due to parallel execution). 
At the beginning, with workload (e.g. 2 requests/sec) is very low, and the system can 
manage it without incurring extra overhead. However, it can be observed that as the 



number of requests increases the system spends more time in providing a response (Fig. 
25). Indeed, the system starts being overloaded from 64 requests per second with a 
throughput below 50% (Fig. 26).  

Figure 25. RSC in Rollback scenario. 
 

Figure 26. ThSC in Rollback scenario. 

6. Conclusion 

This paper has designed and developed a new transaction platform and protocols for 
NoSQL big databases that adopt microservices architecture. The transaction platform 
manages processing of big data stored in a cluster of NoSQL databases. It is evaluated 
through the prototype system that simulates London bus service across bus routes. The 
platform is evaluated through a number of simulated experiments with data from 
‘Transport for London’ data service. Experiments are mainly conducted to evaluate and 
analyse the response time and throughput when database (write/read) operations are 
executed as transactions. The transaction platform reliabily processes database operations 
and enables data availability and consistency in failure-free and failure-prone 
environment. Thus data (e.g. bus time, location) can be consistently sent to passengers 
and other stakeholders through various channels such as display screens at bus stops, on 
board ‘next-stop signage’ screen within the buses, websites and mobile apps.  

Our main objective was that the proposed transaction platform ensures data consistency 
and application correctness in a complex distributed system using modern technologies 
such as big data, NoSQL databases and microservices architecture and that it works in a 
(real) application setup, e.g., London bus service. Moreover, the proposed transaction 
platform may not be efficient in terms of response time and throughput while using 
transactions and maintaining data consistency and application correctness. Various 
factors contribute to the performance of transactions such as underlying network, 
(NoSQL) databases, transactions delay (write/read operations), and other aspects such as 
microservices architecture and technology. For instance, using microservices architecture 
has undeniable advantages, but it has performance implication in the proposed transaction 
platform. When a monolithic transaction platform or architecture is refactored into 
microservices architecture then high latency is inevitable. 
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