
A new model for testing CRUD operations

in a NoSQL database

María Teresa González-

Aparicio

Computing Department

University of Oviedo

Gijón, Spain

maytega@uniovi.es

Muhammad Younas

Oxford Brookes

University

Oxford, United Kingdom

m.younas@brookes.ac.uk

Javier Tuya

Computing Department

University of Oviedo

Gijón, Spain

tuya@uniovi.es

Rubén Casado

R&D Department

Treelogic

Asturias, Spain

ruben.casado@treelogic.com

Abstract— NoSQL databases provide high availability and

efficiency in data processing but at the expense of weaker

consistency. In this paper, we propose a new approach in order to

test NoSQL key/value databases in general and their CRUD

operations in particular. We design a new context-aware model

that takes into account the contextual requirements of clients

(users) and the NoSQL database system. Accordingly, we develop

a transaction model and testing criteria in order to test NoSQL

databases by taking into account transactional and non-

transactional CRUD operations. Results from testing criteria are

used to analyse the trade-off between availability and consistency

of NoSQL databases. In addition, these are used to help NoSQL

database users and developers to choose between transactional

and non-transactional CRUD operations.

Keywords—Context-aware; CRUD; NoSQL key/value

database; Riak; transaction

I. INTRODUCTION

 Data has become one of the key sources for economic

growth in the 21 century. Public and private sectors

organizations and enterprises can achieve profitable results

through an efficient and intelligent analysis of data which come

from various sources such as web, cloud, IoT, and online social

media among others [1]. This phenomenon has led to the

concept of big data which has a higher order of magnitude and

a variety of origins generating such data in different structures

and different formats. Big data is characterized by 3Vs

(Volume, Variety, Velocity) or 4Vs (Volume, Variety, Velocity,

and Value) models [2].

Traditional databases, based on ACID (atomicity,

consistency, isolation durability) properties, do not fit well to

the characteristics of big data. One of the main reasons is the

stronger consistency enforced by traditional databases.

However, in big data environment, enforcing stronger

consistency can affect high availability and efficiency, which

are equally important given the high volume, variety and

velocity of big data. Therefore, a new generation of databases,

named NoSQL (“Not only SQL”), has been developed as the

core technology for storing and processing big data. NoSQL

databases are generally schema-free and support replication and

eventual consistency using correctness criteria such as BASE

(Basic, Availability, Soft-state, Eventual consistency) [3].

These have been categorized as document store, column

families, key/value, graphs and multimodel databases.

In order to process big data, NoSQL databases adopt CRUD

operations (Create, Read, Update and Delete) from traditional

databases. Nevertheless, in the Internet-based big data

applications, CRUD operations should also manage additional

features such as data replication over different nodes, and

concurrent requests from several clients requesting a common

(shared) data. Data replication is required to provide high

availability and efficiency as same data can have multiple

copies. For instance, efficiency can be achieved as multiple

requests can access different copies of the same data. Similarly,

data replication can provide data availability in situation when

any part of data centres (hosting big data) may face temporary

unavailability due to failures of network communication or

software systems. Though data replication is a viable solution it

may result in data inconsistency or stale data, in the case of

updating replicated data. Therefore, there should be a tradeoff

between data consistency, availability and efficiency.

In this paper, our research focuses on testing the CRUD

operations of NoSQL key/value databases. In such databases,

access to data is based on a primary key. There exist a number

of NoSQL key/value databases such as Aerospyke, Berkeley

DB, Redis, Voldemort, Dynamo and Riak among others. In this

paper, we use Riak for implementation of the proposed

approach. Riak is widely used and is based on Dynamo. It is

remarkable that Amazon, one of the biggest e-commerce sites,

is using a proprietary key/value database, Dynamo [4], for its

online services such as shopping carts, session management,

product catalog and customers preferences.

This paper proposes a new model for testing the CRUD

operations in NoSQL key/value databases. The proposed model

is context-aware as it takes into account client and system

contextual information. For instance, if during the execution of

a CRUD operation, client context is not met then the operation

should be automatically rolled back. However, existing NoSQL

database systems do not provide an automatic internal
mechanism to rollback CRUD operations. It is left to the

developer (or programmer) to implement a corresponding

rollback procedure for CRUD operations.

The key contributions of this paper include:

• A new context-aware model for testing NoSQL key/value

databases by taking into account transactional and non-

transactional CRUD operations.

• Analysing the trade-off between availability and

consistency of NoSQL key/value databases and thus helping

clients and developers to choose between transactional and

non-transactional CRUD operations.

• Evaluation of the proposed model using a widely used

NoSQL key/value database, Riak (by Basho). Riak, based

on Dynamo [4], is an open source which provides high

scalability and availability.

The reminder of this paper is organized as follows. Section
II presents an overview of NoSQL key/value databases and key
features of Riak. Section III reviews and analyses related work.
Section IV presents a general transactional model for CRUD
operations. Section V illustrates an example of how the general
transactional model could be used for generating tests in order
to test CRUD operations. Conclusions and future work are
described in Section VI.

II. OVERVIEW OF NOSQL KEY/VALUE DATABASES

NoSQL databases process large volume of data and
generate results in real time such as analysis of millions of
tweets or processing of live road traffic data. Such applications
demand high response time, scalability and availability but at
the expense of sacrificing stronger consistency. NoSQL
databases are used for different applications and have different
types including document stores, column families, key/value,
graphs and multimodel databases. In this paper, our research is
focused on key/value databases, where data access is based on
a primary key. Indeed, many Internet services have been
designed and implemented using key/value databases like best
seller lists, shopping carts, product catalog, and so on [4].
Nevertheless, developers (programmers) have to choose a
key/value database (Redis, Belkeley DB, Voldemort, Dynamo
and Riak, among others) that best suits their needs. This is due
to the fact that each of them provides a distinct operating policy
for data management. For instance, handling of transactions and
consistency management varies from one key/value database to
another as shown in Table I.

TABLE I. FEATURES OF SOME KEY/VALUE DATABASES

Redis Voldemort Dynamo Riak

Transactions

Execution of

group of

commands

No No No

Roll back

operations
No No No No

Consistency

adjustment

Yes Yes Yes Yes

In this paper our work focuses on Riak for two main

reasons: Firstly, it is an open source key/value database.
Secondly, it is based on Dynamo, which is used for large

systems such as Amazon. Riak uses cluster which is made of
multiple physical nodes, although each node is logically divided
into virtual nodes. The set of key/value pair is assigned over the
different virtual nodes by a hash function. Data scalability and
availability are through a partition and replica technique.
Indeed, each pair is replicated at N virtual nodes, which are
located in distinct physical nodes. Moreover, key/value pairs
are grouped in a namespace named “bucket” in order to allow
storing different pairs with the same key but in different
buckets. In addition, buckets are grouped in another namespace
named “bucket type”. This mechanism allows setting of system
behaviour properties in all key/value pairs which have been
stored inside the bucket that belongs to a specific bucket type.
For instance, properties like the number of replicas (N) and the
level of consistency/availability could be set at the bucket type
in order to establish when a read (‘r’) or a write (‘w’) operation
will be considered successful or not. For instance, if r and w
have a value lower than N, then the system will never reject the
operation as long as there are at least r and w nodes available.
Several instances of Dynamo set (3, 2, 2) as a common
configuration for (N, r, w) in order to achieve satisfactory levels
of performance, consistency and availability [4]. If r + w > N,
the system will be quorum-like, on the contrary if r + w ≤ N the
system will provide better latency.

III. RELATED WORK

NoSQL databases and big data platforms provide
availability, low latency, partition tolerance and high
scalability. In addition, they deal with distributed databases,
where the maintenance of data consistency is one of the key
factors for achieving a quality system response. They are based
on several types of models depending on the level of
consistency, such as: strong consistency or linearizability
(global real-time ordering) [5], sequential consistency (global
ordering) [6], causal+consistency (combination of causal
consistency and convergent conflict handling) [7], causal
consistency (partial orderings between dependent operations)
[8], FIFO consistency (partial ordering of an execution thread)
[9], per-key sequential consistency (global order operations for
each key) [10], and eventual consistency (convergence to an
agreement, which does not order concurrent operations) [11].

Generally, NoSQL key/value databases leave the
responsibility of managing transactional data access to the
client side application developer. However, this may lead to
inconsistent results if the client side application developer
incorrectly implements transactional data access operations. In
order to address this issue, various transactional NoSQL
key/value technologies have emerged. Such technologies
handle transactions at three different levels: data store,
middleware and client side. Systems such as Spanner [12],
COPS [7], Granola [13] and HyperDex Warp [14] have been
developed to handle transactions at the data store level. At the
middleware level, transactional application is hosted in the
cloud with a controlled set of data. For this group , systems like
Google Megastore [15], G-Store [16], Deuteromony [17] and
CloudTPS [18] have been developed. Finally, for the client
side, Percolator [19] and ReTSO [20] have been developed.

In this paper, we advocate that the execution of transactions
must be context-aware due to the fact that not all transaction

operations have the same client contextual needs. For instance,
in an e-commerce application it is logical that a purchase
operation must be executed with a stronger consistency than a
simple browse operation. A hierarchical transactional model
could be a solution, where transaction operations are classified
into four different data consistency levels [21]. If we consider
the hierarchy from the strongest to the weakest data consistency
level, the transaction management protocols applied to each
level are as follows: Snapshot Isolation based on serializable
transactions where ACID properties are ensured (SR level),
Causal Snapshot Isolation (CSI) referred to as the fork-join
model [22], Causal Snapshot Isolation with concurrent
commutative updates (CSI-CM) and asynchronous updates
(ASYNC).

IV. THE PROPOSED MODEL

In NoSQL applications, data are generally replicated over
multiple hosts in order to provide high availability and
efficiency. However, data replication complicates the process
of managing CRUD operations in situations where data are
concurrently read and updated by multiple clients.

In existing NoSQL databases, it is the responsibility of the
client side developers to manage several replicas (versions) of
data and the related concurrency issues. However, this may lead
to a high risk of causing implementation errors and erroneous
results when concurrency and updates are managed by different
developers. The work presented in this paper attempts to
minimise this problem by introducing a new model which
supervises/monitors the execution of CRUD operations in order
to ensure that the system response (outcome of CRUD
operation) meets the expectation of clients (users) of the
NoSQL databases. The architecture of the proposed model is
depicted in Fig. 1. The main components of the architecture are
described as follows.

Coordinator: Coordinator is the main component (or module)
that manages the overall execution of CRUD operations. It
ensures that every CRUD operation is executed in such a way
that the outcome of the whole operation is correct and that the
desired context is also fulfilled. For instance, execute a CRUD
operation so that it maintains the required level of consistency
as well as system response time. If CRUD operation cannot be
processed in the desired time, then it needs to be rolled back.

As shown in Fig. 1, Coordinator interacts with other
components in order to execute CRUD operation. It interacts
with the module, Data and Semantic Rules, which contains
information about data design and related semantic rules. This
module provides information about the different types of data
the application should handle and the relationships between
them. Semantic rules are used to establish and identify
relationships between data entities. For instance, if one (data)
entity belongs to a user and another belongs to a computer and
a relationship exists between both entities, then the semantic
rules would be to establish the level of permission or access
rights that a specific user (administrator, anonymous, etc) has
to a particular computer. In addition, data and semantic rules
can also provide information if there is any failure of a node in
the system. Failure of nodes may lead to an erroneous
interpretation of the actual data value, i.e., data values before
and after node failure. Therefore, if the Coordinator has

appropriate knowledge (using semantic information) of the data
and failures then it could correctly process the operations,
which are accessing the data effected by failures of nodes.

Figure 1. The proposed model for CRUD operations.

Context Controller: This deals with managing contextual

information related to the execution of CRUD operations and

the data. Sources of context information are systems (NoSQL

databases) and their clients (users and developers). For

instance, context information can come from system

configuration – i.e., how a particular system (or NoSQL

database) is configured to execute CRUD operations and to

manage the data internally, such as creating and processing

different versions (replicas) of the same data, the distribution of

replicas among different nodes, and the client access to the data.

Client context information can be related to the required

response time of their applications or the level of consistency

of the data they require. Client context information is related to,

and should be in line with, system context. For example, the

level of consistency required by the client application should be

based on the level of consistency supported by the system. In

the proposed model, system context and client context are

referred to as internal and external context respectively. A

description of each context is described as follows:

• Internal or implicit context: it is a set of parameters that

allows the configuration of the behaviour of the system

with respect to two properties, consistency and

availability. For instance, if a NoSQL key/value database

manages the administrators who are allowed to access to

a corporation network, the system behaviour could be

Transaction

Controller

…

A

Nodes

Coordinator

Model

Data +

Semantic

Rules

Client Manager

Context

Controller
Operation

Controller

Data Items

B D C E

D1 D2 D3

Client 1 Client 2 Client n

D1 D2 D1 D2 D1 D3

different depending on how the parameters N, r, w are set.

If (N, r, w) are set to (3, 1, 1), then the write operation

would be successful when only one node is written and the

other two are updated asynchronously later on. Therefore,

if a registered administrator is unsubscribed, the second

and the third node would maintain the administrator in the

database unlike the first node which would drop him out.

This is why the system becomes temporarily inconsistent.

If during this uncertain situation, the first node fails, the

administrator who is unsubscribed would be allowed to

log in to the network, owing to the fact that the read

operation is made from the second node (r=1). This fact

reflects a lack of access security. On the contrary, if the

parameters (N, r, w) are set to (3, 2, 2), the administrator

would be dropped out from the first and the second node

(w=2), but would temporarily exist on the third node. If

the first node fails, this situation is completely different

from the previous one (N=3, r=1, w=1), because the read

operation (r=2) would be made from the second (latest

version) and the third node (stale version), and the newest

version would have priority over the oldest version.

Therefore, the unsubscribed administrator would not be

allowed to access the corporation network. As a

consequence, the configuration of the system parameters

establishes a specific level of consistency and availability.

• External or client context: it is the environment which

establishes where, when and how a transactional/non-

transactional CRUD operation is executed. The goal is to

guarantee a set of functional and non-functional

application requirements. On the one hand, the execution

time of a CRUD operation could be limited (non-

functional requirement). If the time expires, one solution

could be to execute the CRUD operation a second time or

abort it. On the other hand, when a CRUD operation

finishes its execution, the actual and the expected outcome

must agree (functional requirement). If the CRUD

operation is successful the execution is finished (non-

transactional operation), otherwise a rollback operation

must be launched in order to guarantee the stability of the

system (transactional operation).

In addition, context information can be classified into vital and

non-vital [24]. Vital context is that it must be fulfilled for a

CRUD operation to be considered as successful. Non-vital can

be flexible and it may or may not be fulfilled depending on the

situation. For instance, a session management system must not

allow any user to log in without a complete registration into the

system (N=3, r=2, w=3). In this situation, a strong consistency

is required (consistency=vital, availability=non-vital).

Nevertheless, some online applications like those orientated

towards e-commerce would like to work with a weak

consistency policy. For example, if two clients buy the same

product at the same time and only one item is left, and the

configuration of the system parameters is set with a weak

consistency (N=3, r=1, w=1), then there is a possibility (if first

node fails) that both clients buy the same product. In this

situation, some e-commerce companies would refund to

potential clients (consistency=non-vital, availability=vital). In

short, the level of consistency/availability will be the same

throughout the execution. This fact will be referred to as “stable

behaviour”.

Nevertheless, during the execution of the online application the

configuration of the system parameters could change. The

period of time when client’s requests occur (peak hours,

weekends, holidays, etc) and the type of object requested, are

examples of two possible factors to take into account. For

instance, in an e-commerce application which deals with a

product catalog, some products could be published with a lower

price as a part of promotion or advertisement. Thus, it could be

advantageous to guarantee a weak consistency and a strong

availability during the period of promotion. However, both

properties could work the other way round when the promotion

ends. Therefore, the properties of consistency and availability

can fluctuate between vital and non-vital. This is because their

values vary during execution, and thus both properties could be

named as hybrid. This fact will be referred to as “dynamic

behaviour”.

Operation Controller: it is in charge of the communication

with the NoSQL key/value database when transactional/non-

transactional CRUD operations are executed by the

Coordinator. It proceeds with the execution and sends the new

database state to the Coordinator.

Transaction Controller: in collaboration with the above

modules, Transaction Controller has to deal with the

transactional features of the CRUD operations – i.e. a CRUD

operation can be successfully executed if it meets the required

context and transactional policies. If not, then the operation has

to be rolled back in order to maintain the required level of

consistency.

Fig. 2 models one of the execution scenarios of a transactional

CRUD operation.

Figure 2. General transactional model for CRUD operations.

In general, the following functions are involved in execution
of this scenario.

1. CRUD Check Operation (Coordinator): it checks the CRUD

operation when it is submitted to the system by a client. In

other words, before starting the CRUD operation, the

Coordinator checks the operation and its related contextual

requirements.

2. CRUD Operation (Operation Controller): it proceeds with

the execution of transactional/non-transactional CRUD

operations on the NoSQL key/value database.

3. Check External Context (Operation Controller + Context

Controller): it is responsible for checking whether the

execution of a CRUD operation obeys non-functional

application requirements (part of the external context).

Indeed, due to the nature of distributed systems

(propagation of information, recovery of nodes, etc), a

CRUD operation could not be executed successfully. Then,

if the Context Controller detects that the execution of the

operation exceeds its time, it must inform the Coordinator,

which must order a retry of the execution after a period of

time (µsg, msg, sg, hours, etc). If the problem persists, the

execution could be repeated a number of times. The length

between requests will depend on the characteristics of the

application. Finally, if the operation cannot be executed,

then the problem might have been that one or more nodes

were not able to recover.

4. Check System Response (Coordinator + Operation
Controller): If a CRUD operation is executed, but and it is
not able to be finished, then it is highly likely that one or
more nodes have failed. In this case, the operation could be
aborted or on the contrary the Coordinator could order the
Context Controller to make an adjustment in the level of
consistency/availability (internal context). For instance,
suppose a database which manages the set of
administrators of a company with (N, r, w) = (3, 3, 3)
(strong consistency, weak availability). If an administrator
needs to be registered but the first node fails, then the write
operation will fail. If the registration needs to be done as
soon as possible, one possibility could be to decrease the
level of consistency for the (uncertain) write operation
from 3 to 2 (w=2, weaker consistency and stronger
availability).

5. Check Client Expectation (Coordinator + Context
Controller + Transaction Controller + Operation
Controller): the Operation Controller informs the
Coordinator about the current state of the database after the
CRUD operation has finished. The Coordinator then has to
check if the new state is consonance with the application
design (Model Data+Semantic Rules) and both the internal
and the external contexts (Context Controller). If the
operation matches all features, then the operation will be
considered as successful. Otherwise, the operation must
abort and a transaction must rollback the CRUD operation
(Transaction Controller).

V. APPLICATION SCENARIO OF THE GENERAL TRANSACTIONAL

MODEL

The general transactional model will provide useful
information for detecting defects in the implementation of
CRUD operations on NoSQL key/value database. In this
section, we will use the model to generate a number of tests that
cover the different paths, which are described in the model.

A. Data Modeling

A real-world example, named as “authorization and access
control” [25], was implemented in order to look into how the
correctness of the CRUD operations could be checked using
tests derived from the general transactional model. The
experiment was conducted with the following
hardware/software: a CPU core with 2.4 GHz Intel(R)
Core(TM) i7-5500; the operating system Ubuntu 14.04 LTS of
64 bits; Eclipse Luna 4.4.2 as IDE (Integrated Development
Environment); Oracle Java 7 as the programming language;
and the NoSQL key/value Riak (by Basho) 2.1.1 as database
management.

The authorization and access control system is composed of
three types of entities, which are identified as administrators
(A), groups (G) and enterprises (E). Each administrator must
belong to at least one group, and each group will stablish what
type of access permission will exist between an administrator
and a specific enterprise. In addition, enterprises are related
with a parent-child relationship. Indeed, three distinct access
restrictions could be set between a group and an enterprise: a
group could have access permission to an enterprise and all its
children (ALLOWED_INHERIT: AI), only to the father
(ALLOW_DO_NOT_INHERIT: ADNI) or to none of them
(DENIED: D). A fragment of this example is shown in Fig. 3.

During system operation, the administrator of the system
may introduce changes in the relationships between the
different entities. For instance, the administrator A1 could
change the relationship between G1 and E1 from ‘AI’ to ‘D’.
In this example, the test derived from the model reveals a defect
in the Riak implementation of this CRUD operation.

B. Generation of tests

The first step is to select the paths of the model that have to
be covered by the tests. Looking at Fig. 2 (Section IV, part B),
we can see that each path which starts at the initial point “Start
CRUD operation” and ends at the point “End CRUD operation”
will be considered as a use case to be tested. The idea is that
each path of the graph should be covered by at least one test. In
our example, we focused on two paths: (1) the path which

Figure 3. Example of relations between administrators, groups and

enterprises.

AI

ADNI

D

Enterprise = bucket_type + bucket + key_enterprise

+ level_r_enterprise + level_w_enterprise

+ name_enterprise;

Group = bucket_type + bucket + key_group

+ level_r_group + level_w_group + name_group

+ key_group_enterprise

+ relationship_enterprise

Figure 4. Data model for enterprises and groups.

represents an unsuccessful CRUD operation due to faulty nodes
(“CRUD Check Operation” - “CRUD Operation” - “Check
External Context (EC)” - “Check Client Expectations” -
“CRUD Rollback Operation” - “Terminate”), and (2) the path
without problems (“CRUD Check Operation” - “CRUD
Operation” - “Check External Context (EC)” - “Check Client
Expectations” - “Terminate”).

After selecting the paths, the internal context of the system
must be configured in order to tune a number of parameters in
relation to data management. In Riak, there are two parameters
which determine how CRUD operations will work : (1) the
number of nodes where data must be replicated (N) to guarantee
a specific level of consistency/availability, and (2) the level of
success in read and write operations with the parameters r (r ≤
N) and w (w ≤ N), respectively. In our experiment, the
datacenter was made of 5 nodes, where N was equal to 3. The
influence of the aforementioned parameters was checked
against the paths selected from the model.

The data model design for the entities, both enterprises
(“Enterprise”) and groups (“Group”), is shown in Fig. 4. An
integrity restriction must exist between the “key_enterprise” in
“Enterprise” and the “key_group_enterprise” in “Group”. The
level of consistency and availability was set in “Enterprise”
(“level_r_enterprise”, “level_w_enterprise”) and in “Group”
(“level_r_group”, “level_w_group”). Moreover, the
relationship between groups and enterprises was established as
a property (“relationship_enterprise”) of the “Group”.

Finally, we tested the different CRUD operations over the
selected paths (fail/no fail) and internal context configurations;
values for the parameters r and w were ((1,1), (1,2), (2,1), (2,2)).
This example shows the tests for the CRUD operation ‘update’
for a link. There are three kinds of link updates: ADNI to AI,
AI to D and ADNI to D. The tests related to the update of the
relationship between group G1, and enterprise E1, from AI to
D are shown in Table II, which represents the results in eight
test cases.

TABLE II. TESTS RESULTS FOR THE UPDATE AI TO D OPERATION FOR A LINK

The first column represents the path, and the second and
third column represent the internal context configurations.
System response column “expected” displays the expected
output (the set of enterprises with access from group G1): group
G1 was able to access the enterprises E1 and E2 before the
update operation, but after the operation G1 must not be
allowed to access any of them. This is represented in the table
as ().

The “Actual” column in Table II shows system behaviour
when the test cases are executed against the current
implementation. Cases 2 and 6 reveal a failure, because
administrators belonging to group G1 are allowed to access E1
and E2. In fact they should not be allowed to access E1 and E2.
This situation occurs when a node fails and w=1. This security
problem has been caused because the new permission was not
updated in time, in the second and the third node, when the first
node failed (w=1). Due to this reason, a stale version was read
from the second node (Case 2), or from the second and the third
node (Case 6).

C. Fault Localization

 The update operation, concerning the relationship between
a group and an enterprise (“updateRelationWithEnterprise”,
updateMapWithContext”), was implemented in Java as well as
using the NoSQL key/value database API for Riak. The source
code, shown in Fig. 5, indicates the failure, which was revealed
by the tests in the previous subsection.

 System conditions System response
Tests r w Expected Actual

Case 1 No fail 1 1 () ()

Case 2 Fails 1 1 () (E1, E2)

Case 3 No fail 1 2 () ()

Case 4 Fails 1 2 () ()

Case 5 No fail 2 1 () ()

Case 6 Fails 2 1 () (E1, E2)

Case 7 No fail 2 2 () ()

Case 8 Fails 2 2 () ()

public void updateRelationWithEnterprise

 (String keyEnterprise, String relationship) {

 this.location = new Location(new Namespace(bucket_type,
 bucket), key);

 RegisterUpdate reg2 =

 new RegisterUpdate(BinaryValue.create(keyEnterprise));

 RegisterUpdate reg3 =

 new RegisterUpdate(BinaryValue.create(relationship));

 MapUpdate enterprise = new MapUpdate()

 .update("keyEnterprise", reg2)
 .update("relationship", reg3);

 MapUpdate mu = new MapUpdate()

 .update("enterprise_info", enterprise);

 updateMapWithContext(mu);

 }

private Context getMapContext() throws Exception {

 FetchMap fetch = new FetchMap.Builder(location).build();

 return client.execute(fetch).getContext();

 }

private void updateMapWithContext(MapUpdate mu) {

 try{

 Context ctx = getMapContext();

 UpdateMap update =

 new UpdateMap.Builder(location, mu)

 .withOption(Option.W,new Quorum(level_w))

 .withContext(ctx)

 .build();

 client.execute(update);

 } catch (Exception e){
 System.err.println(e.getMessage());

 }}

Figure 5. Faulty version of the Riak source code for updating a relationship.

public void updateRelationWithEnterprise

 (String keyEnterprise, String relationship) {

 this.location =

 new Location(new Namespace(bucket_type, bucket), key);

 RegisterUpdate reg2 =

 new RegisterUpdate(BinaryValue.create(keyEnterprise));

 …………

 updateMapWithContext(mu);

 //Check external context and check internal context

 if (!relationship.equals(getRelationshipEnterpriseGroup ())

 && (level_w != level_required)){

 //Client’s expectations are unreachable

 rollbackCRUDoperation();

 }}

Figure 6. Corrected Riak source code for preserving internal and external
contexts.

The fault (defect) in the implementation of the CRUD
update operation emerges due to the fact that the temporary
failure of nodes has not been checked. When this event occurs,
the CRUD operation should not proceed in its execution in
order to assure that data have not changed. The program should
either rollback the operation or notify (help) the client to make
a decision between a transactional and a non-transactional
CRUD operation. If the program does not take either of these
actions, an access permission security could be broken when a
node fails. A modified version of the function
“updateRelationWithEnterprise” is shown in Fig. 6.

The aim is to avoid these access permission failures when a
node fails. This new function has been implemented according
to the design of the general transactional model.

Therefore, the system response must be analysed. On the
one hand the expected and the actual relationship must have the
same external context:
 “relationship.equals(getRelationshipEnterpriseGroup()”.
On the other hand, the r and w parameters must be set to the
desired level of consistency and availability – i.e. internal
context: “level_w == level_required”. According to the model,
both internal and external context must satisfy client’s
expectations, otherwise a roll back operation must be
committed.

VI. CONCLUSIONS AND FUTURE WORK

This paper has investigated NoSQL CRUD operations and
the related issues of consistency and availability. We have
developed a new model that takes into account the contextual
information of clients (users) and the NoSQL database system.
We have identified and classified various types of contexts
related to the execution of CRUD operations, including internal
and external contexts, and vital and non-vital contexts. The
proposed model supports the execution of both transactional
and non-transactional CRUD operations. We have also
developed the testing criteria needed to test the CRUD
operations and to identify their correctness. The proposed
model is implemented using a widely-used Riak NoSQL
database.

Based on the proposed model, various test cases have been
developed. We take into account every path in the model (from
the initial point “Start CRUD operation” to the end point “End
CRUD operation”) in order to provide the basis for developing
test cases, and to check the CRUD operations correctness. A
real-world example, of “authorization and access control” [25],
was implemented in order to look into how CRUD operations
correctness could be checked using tests derived from the
general transactional model. Various experiments have been
conducted. These show promising results and identify various
faults in the execution of CRUD operations, which have
otherwise not been detected when using standard Riak
technology.

We believe that the proposed model would be of significant
help to developers of NoSQL key/value databases (such as
Riak) in order to test CRUD operations in a transactional or
non-transactional mode. The future work will investigate
different versions of data and concurrent requests, as part of the
corresponding key/value NoSQL database.

ACKNOWLEDGMENT

We would like to express our gratitude to the three financial
sponsors who supported this work: the Spanish Research,
Development and Innovation Plan supported by the Ministry of
Economy and Competitiveness, geared towards challenges in
society 2013 (PRESI, TIN2013-46928); the Principality of
Asturias (GRUPIN14-007) with a grant to support the activities
of the research groups that develop their activities in that area
and the FEDER Fund; Santander Bank through the mobility
aids for teachers and researchers of the University of Oviedo in
the Campus of International Excellence within the context of
economic excellence in 2015 (BOPA 11/04/2015). In addition,
this work has been developed in collaboration with Oxford
Brookes University (Oxford, United Kingdom).

REFERENCES

[1] M. Chen, S. Mao, and Y. Liu, "Big data: A survey," Mobile
Networks and Applications, vol. 19, pp. 171-209, 2014.

 [2] J. S. Ward and A. Barker, "Undefined by data: a survey of
big data definitions," arXiv preprint arXiv:1309.5821,
2013.

[3] M. A. Mohamed, O. G. Altrafi, and M. O Ismail,
"Relational vs. NoSQL Databases: A Survey,"
International Journal of Computer and Information
Technology (ISSN: 2279–0764) Volume, 2014.

[4] G. DeCandia, et al., "Dynamo: amazon's highly available
key-value store," SIGOPS Oper. Syst. Rev., vol. 41, pp.
205-220, 2007.

[5] M. P. Herlihy and J. M. Wing, "Linearizability: a
correctness condition for concurrent objects," ACM Trans.
Program. Lang. Syst., vol. 12, pp. 463-492, 1990.

[6] L. Lamport, "How to Make a Multiprocessor Computer
That Correctly Executes Multiprocess Programs," IEEE
Trans. Comput., vol. 28, pp. 690-691, 1979.

[7] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen, "Don't settle for eventual: scalable causal
consistency for wide-area storage with COPS," presented
at the Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles, Cascais, Portugal, 2011.

[8] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W.
Hutto, "Causal memory: definitions, implementation, and
programming," Distributed Computing, vol. 9, pp. 37-49,
1995/03/01 1995.

[9] R. J. Lipton and J. S. Sandberg, PRAM: A Scalable Shared
Memory: Princeton University, Department of Computer
Science, 1988.

[10] B. F. Cooper, et al., "PNUTS: Yahoo!'s hosted data serving
platform," Proc. VLDB Endow., vol. 1, pp. 1277-1288,
2008.

[11] W. Vogels, "Eventually consistent," Communications of
the ACM, vol. 52, p. 5, 2009.

[12] J. C. Corbett, et al., "Spanner: Google’s Globally
Distributed Database," ACM Trans. Comput. Syst., vol. 31,
pp. 1-22, 2013.

[13] J. Cowling and B. Liskov, "Granola: low-overhead
distributed transaction coordination," in USENIX ATC'12,
Boston, MA, 2012

[14] R. Escriba, B. Wong, and E. Gün Sirer, "Warp: Multi-Key
Transactions for Key-Value Stores," 2013.

[15] J. Baker, et al., "Megastore: Providing Scalable, Highly
Available Storage for Interactive Services," in Innovative
Data system Research (CIDR), Asilomar, California, 2011,
pp. 223-234.

[16] S. Das, D. Agrawal, and A. El Abbadi, "G-Store: a scalable
data store for transactional multi key access in the cloud,"
presented at the Proceedings of the 1st ACM symposium
on Cloud computing, Indianapolis, Indiana, USA, 2010.

[17] J. J. Levandoski, D. B. Lomet, M. F. Mokbel, and K. Zhao,
"Deuteronomy: Transaction Support for Cloud Data," in
CIDR, 2011, pp. 123-133.

[18] Z. Wei, P. Guillaume, and C. Chi-Hung, "CloudTPS:
Scalable transactions for Web applications in the cloud,"
Services Computing, IEEE Transactions on, vol. 5, pp.
525-539, 2012.

[19] D. Peng and F. Dabek, "Large-scale Incremental
Processing Using Distributed Transactions and
Notifications," in OSDI, 2010, pp. 1-15.

[20] F. Junqueira, B. Reed, and M. Yabandeh, "Lock-free
transactional support for large-scale storage systems," in
Dependable Systems and Networks Workshops (DSN-W),
2011 IEEE/IFIP 41st International Conference on, 2011,
pp. 176-181.

[21] A. Tripathi and B. Thirunavukarasu, "Design and
Evaluation of a Transaction Model with Multiple
Consistency Levels for Replicated Data," 2015.

[22] Y. Sovran, R. Power, M. K. Aguilera, and L. Jinyang,
"Transactional storage for geo-replicated systems," in
Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, 2011, pp. 385-400.

[23] J. Scott and G. Marshall, Eds., A dictionary of Sociology.
Oxford: Oxford University Press, 2009.

[24] M. Younas and F. S. K. Most, "A new model for context-
aware transactions in mobile services," Personal and
Ubiquitous Computing, vol. 15, pp. 821-831, December
2011.

[25] I. Robinson, J. Webber, and E. Eifrem, Graph databases,
2013.

