
 

WWW.BROOKES.AC.UK/GO/RADAR 

RADAR 
Research Archive and Digital Asset Repository 
 

 

Rode-Margono, E and Nekaris, K  
 
Impact of climate and moonlight on a venomous mammal, the Javan slow loris (Nycticebus javanicus). 
 
Rode-Margono, E and Nekaris, K (2014) Impact of climate and moonlight on a venomous mammal, the Javan slow loris 
(Nycticebus javanicus).Contributions to Zoology, 83 (4). pp. 217-225. 
 
doi: no doi 

 
 
This version is available: https://radar.brookes.ac.uk/radar/items/30b1529c-fff2-4dda-a4c1-5e728acd065b/1/ 
 
 
 
Available on RADAR: August 2016  
Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for 
personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted 
extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed 
in any way or sold commercially in any format or medium without the formal permission of the copyright holders.  
 
This document is the accepted version of the article.  Some differences between the published version and this version may 
remain and you are advised to consult the published version if you wish to cite from it. 
 

https://radar.brookes.ac.uk/radar/items/30b1529c-fff2-4dda-a4c1-5e728acd065b/1/


1 
 

Impact of climate and moonlight on a venomous mammal, the Javan slow loris 1 

(Nycticebus javanicus Geoffroy, 1812) 2 

 3 

E. Johanna Rode-Margono1, K. A. I. Nekaris1,2 4 

1 Oxford Brookes University, Oxford OX3 0BP, UK  5 

2 Email: anekaris@brookes.ac.uk 6 

 7 

Keywords: Lunarphobia, environmental factors, predation, activity, humidity, temperature, moon 8 

 9 

  10 



2 
 

Abstract 11 

Predation pressure, food availability, and activity may be affected by level of moonlight and climatic 12 

conditions. While many nocturnal mammals reduce activity at high lunar illumination to avoid 13 

predators (lunarphobia), most visually-oriented nocturnal primates and birds increase activity in 14 

bright nights (lunarphilia) to improve foraging efficiency. Similarly, weather conditions may influence 15 

activity level and foraging ability. We examined the response of Javan slow lorises (Nycticebus 16 

javanicus Geoffroy, 1812) to moonlight and temperature. We radio-tracked 12 animals in West Java, 17 

Indonesia, over 1.5 years, resulting in over 600 hours direct observations. We collected behavioural 18 

and environmental data including lunar illumination, number of human observers, and climatic 19 

factors, and 185 camera trap nights on potential predators. N. javanicus reduced active behaviours 20 

in bright nights. Although this might be interpreted as a predator avoidance strategy, animals 21 

remained active when more observers were present. We did not find the same effect of lunar 22 

illumination on two potential predators. We detected an interactive effect of minimum temperature 23 

and moonlight, e.g. in bright nights slow lorises only reduce activity when it is cold. Slow lorises also 24 

were more active in higher humidity and when it was cloudy, whereas potential predators were 25 

equally active across conditions. As slow lorises are well-adapted to avoid/defend predators by 26 

crypsis, mimicry and the possession of venom, we argue that lunarphobia may be due to prey 27 

availability. In bright nights that are cold, the combined effects of high luminosity and low 28 

temperature favour reduced activity and even torpor. We conclude that Javan slow lorises are 29 

lunarphobic – just as the majority of mammals. 30 

 31 

  32 
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 44 

Introduction 45 

To secure maintenance, survival and reproduction, animals adapt their behaviour to various factors, 46 

such as climate, availability of resources, competition, predation, luminosity, habitat fragmentation, 47 

and anthropogenic disturbance (Kappeler and Erkert, 2003; Beier et al., 2006; Donati and 48 

Borgognini-Tarli, 2006). According to optimal foraging theory, animal behaviour can be seen as a 49 

trade-off between the risk of being preyed upon and the fitness gained from foraging (Charnov, 50 

1976). Perceived predation risk assessed through indirect cues that correlate with the probability of 51 

encountering a predator may shape an animal’s behaviour (Vasquez, 1994; Thorson et al., 1998; 52 

Orrock et al., 2004).  53 

 54 
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One of the indirect cues that animals use to assess predation risk is moonlight (Beier et al., 2006; 55 

Upham and Haffner, 2013). Most mammals decrease activity or change habitat choice with 56 

increasing lunar illumination (lunarphobia) (Price et al., 1984; Hecker et al., 1999; Horning and 57 

Trillmuch, 1999; Nash, 2007; Penteriani et al., 2011; Prugh and Golden, 2014; Saldana-Vásquez and 58 

Munguía-Rosas 2013) to be more concealed from predators. Some species increase their activity in 59 

brighter nights (lunarphilia) due to prey availability, higher foraging efficiency, or better visual 60 

detection of predators (Table 1) (Horning and Trillmich, 1999; Packer et al., 2011; Prugh and Golden, 61 

2014). Whether a species is lunarphobic or lunarphilic depends on the primary sensory system (e.g. 62 

visual acuity), phylogenetic relatedness, and habitat cover (Hecker et al., 1999; Michalski and Norris, 63 

2011; Saldana-Vásquez and Munguía-Rosas, 2013; Prugh and Golden, 2014).   Primates, for instance, 64 

are highly visually oriented (Gursky, 2003; Bearder et al., 2006) and are mainly lunarphilic, as 65 

opposed to rodents, lagomorphs carnivores and bats, which are largely lunarphobic (Prugh and 66 

Golden, 2014). Additionally to lunarphobia and lunarphilia, some species are lunarneutral, although 67 

the methods chosen may have an influence whether a certain reaction is found (Nash, 2007; 68 

Penteriani et al., 2011). The trade-offs regarding the reaction towards moonlight may vary between 69 

species, and even local populations (Lang et al., 2005; Saldana-Vásquez and Munguía-Rosas, 2013). 70 

 71 

A second cue that may affect animal activity is weather condition, causing variation in the detection 72 

of prey and predators, and influencing thermoregulation (Hanya, 2004). In general, low temperature 73 

causes animals – prey and predator species - to decrease activity to conserve energy. Low 74 

temperature especially affects the activity of poikilotherm species like amphibians or arthropods 75 

(Fitzgerald and Bider, 1974; Fadamiro and Wyatt, 1995) but also homeotherm species that may 76 

decrease activity, employ social and postural thermoregulation (Donati et al., 2011), or go into 77 

torpor or hibernation (Schmid, 2000; Smit et al., 2001; Dausmann et al., 2005; Schuelke and Ostner, 78 

2007). Humidity and precipitation may affect animal activity. Strong rain or wind generally decrease 79 

insect availability and can impede the ability of predators to detect prey (Vickery and Bider, 1981; 80 
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Thies et al., 2006). Some animals are more active in high humidity and precipitation due to food 81 

availability or physiological needs (amphibians: Fitzgerald and Bider, 1974; rodents: Orrock et al., 82 

2004; insects: Fadamiro and Wyatt, 1995; arthropods: Skutelsky, 1996), some decrease activity due 83 

to energetic constraints (primates: Donati and Borgognini-Tarli, 2006; bats: Voigt et al., 2011).  84 

 85 

Asian lorises (Lorisinae) are characterized by a suite of morphological traits that makes them 86 

sensitive to predators, foraging and temperature. Both slow (Nycticebus) and slender (Loris) lorises 87 

are arboreal slow climbers (Crompton et al., 1993), and rely on crypsis to avoid predators. 88 

Nycticebus is venomous, a trait that has been attributed to predator defence (Alterman, 1995; 89 

Nekaris et al., 2013), which might also affect its activity. High susceptibility to predators suggests 90 

that lorises would more likely be lunarphobic. Wild data, however, do not follow a consistent 91 

pattern. Wild Loris tardigradus (Linnaeus, 1758) tended to lower activity in bright nights, although 92 

this was not significantly different from dark night behaviour; they rested, groomed more and 93 

whistled more frequently during bright nights, but not significantly suggesting lunarneutrality 94 

(Bernede, 2009). Although in general, grey slender lorises were lunarneutral, L. lydekkerianus 95 

(Cabrera, 1908) were in some aspects lunarphilic (Bearder et al., 2001; 2006), whistling more in 96 

bright nights, and foraging more for energy-rich insects (Bearder et al., 2001). Infants of L. 97 

lydekkerianus however, sought more habitat cover in bright nights, possibly as predator avoidance 98 

strategy, indicating lunarphobia for this age class (Bearder et al., 2001). In Cambodia, the pygmy loris 99 

(Nycticebus pygmaeus Bonhote, 1907) was lunarphobic, especially in cold nights (Starr et al., 2012). 100 

During surveys of the Javan slow loris (N. javanicus Geoffroy, 1812) lunar neutrality was suggested in 101 

that moonlight had no impact on detectability of the species (Nekaris et al., 2014). Captive greater 102 

slow lorises (N. coucang Boddaert, 1785) reduced activity with higher illumination (Trent, 1977). 103 

 104 
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It is notable that in the single wild study with clear evidence of lunarphobia, Starr et al. (2012) found 105 

that decrease in activity was heightened during low temperatures. Lorisines have low metabolic 106 

rates, good fur insulation, and possess extensive vascular retia mirabilia that help them to stay 107 

inactive for prolonged periods (Whittow et al., 1977; Mueller, 1979). Most notably, Nycticebus spp. 108 

enter torpor for hours or days in cold temperatures (Nekaris and Bearder, 2011). Starr et al. (2012) 109 

proposed that the combined risk of both predation and heat loss outweigh the benefits of being 110 

active, and that temperature should be considered in further discussions of loris activity. 111 

 112 

The Javan slow loris (Nycticebus javanicus), endemic to Java, Indonesia (Nekaris and Bearder, 2011), 113 

weighs around 1 kg, is known to go into torpor, and occurs at least up to 1800m ASL (Nekaris et al., 114 

2014; Nekaris and Rode-Margono, unpub. data). Indeed, much of the forest left on Java where slow 115 

lorises are found is at altitudes above 1000 m (Nekaris et al., 2014; Voskamp et al., 2014). We thus 116 

examined the effect of lunar illumination and temperature on activity of the Javan slow loris at a 117 

high altitude site replete with numerous potential predators. We also examined microhabitat use in 118 

the light of understanding predator perception. 119 

 120 

Methods 121 

We conducted our study on the foothills of the active volcano Papandayan in West Java. The site 122 

was located at altitudes ranging from 800 m - 1800 m asl, ranging into Zones that are in Java 123 

classified as Sub-montane (1200 m – 1800 m asl) and Montane Zones (1600 m - 2400 m asl); at 124 

altitudes above 1500 m asl, ground frost can occur (Nijman, 2013). The research site was located at 125 

S7°6’6 - 7°7’0 and E 107°46’0 - 107°46’5 and consisted of a mosaic-like landscape with forest and 126 

bamboo fragments (talun) and agricultural fields. Average temperature is relatively constant, but 127 

precipitation varies during the year (Figure 1), and daily minimum temperature ranges between 128 

10.4°C and 20.7°C.  129 
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 130 

We captured 12 animals by hand, took morphometric measurements, fitted a radio collar (ca. 17 g, 131 

Biotrack, UK) and released the animal at the capture site. From April 2012 to June 2013, we followed 132 

animals in two shifts from 18:00 h to 0:00 h and 00:00 h to 6:00 h (Wiens and Zitzmann, 2003) using 133 

antenna (6 and 8 element flexible Yagi antenna, Biotrack, UK) and receiver (R1000, Communication 134 

Specialists, US). We used instantaneous focal animal sampling with 5-minute intervals for behaviour 135 

and habitat data collection (Altmann, 1974). We followed the ethogram of Moore (2012) and 136 

grouped resting and sleeping into the category “not active” and all other behaviours except other 137 

into “active”. We recorded the heights of the animal and used tree. Assuming that a higher position 138 

in the tree provides more concealment by the canopy, we used the relative height (height of the 139 

animal divided by height of the tree) of the animal’s used tree as an indication of safety. We 140 

recorded any sighting of potential nocturnal predators, including common palm civets (Paradoxurus 141 

hermaphrodites Pallas, 1777) and leopard cats (Prionailurus bengalensis Kerr, 1792). Additionally, we 142 

had one to four camera traps (Cuddeback Attack IR; Bushnell Trophy cam night vision) installed in 143 

185 nights (304 individual camera trap nights). Cameras were installed about 50 cm above the 144 

ground in relatively dense forest or bamboo patches with undergrowth, located within home ranges 145 

of radio-tracked slow lorises. With a TFA Nexus weather (TFA Dostmann, Germany) station located 146 

at our basecamp, we collected data on temperature, humidity, rain and wind, with one data point 147 

every hour. We calculated minimum temperature of the night and rain over the last 24 hours. We 148 

estimated cloud cover in the field to the nearest 10 %.  Luminosity was recorded using the exact 149 

percentage of the moon illuminated when above the horizon, using the programme MOONDV 150 

version 1 (Thomas, 1998). When below the horizon an illumination of 0 was recorded. 151 

 152 

Statistical analysis 153 
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To guarantee independence of the data we used only every 6th data point of our dataset, yielding 154 

single observations of the same individuals that were at least one hour apart. We excluded the first 155 

and last hour of the night (18:00 to 19:00 and 05:00 to 06:00) to ensure that astronomical twilight is 156 

excluded from the data. Astronomical twilight is defined as the moon being 18° below the horizon 157 

(Erkert, 2003). Twilight effects on activity may result in peaks at dawn and dusk and an 158 

overrepresentation of certain behaviours usually performed in these periods (Bearder et al., 2001; 159 

2006; Erkert and Cramer, 2006). We applied a logistic regression model due to the non-normal 160 

distribution of our data (c.f. Starr et al., 2012). We used the binary dependent variable “active” and 161 

“not active” (Field 2009). The predictor variables were sex, number of observers, luminosity, 162 

minimum nightly temperature, average humidity per night, wind, cloud cover, rain per hour and 163 

relative height of slow loris. Humans can be seen as predators (Charles-Dominique, 1977), and 164 

although we did not witness hunting of slow lorises for the pet trade in our study area it was 165 

reported for neighbouring villages and is generally common in West Java (Nekaris et al., 2009). We 166 

then applied a similar model to the presence of potential predators with one camera trap night as 167 

sample unit. For camera trap data we used illumination of the night (number of hours the moon was 168 

visible multiplied by moon phase), and we excluded cloud cover. Days without observations or 169 

camera traps were excluded. We included an index of effort into the model, consisting of the 170 

number of teams observing per night weighted by two to account for a higher viewing angle, plus 171 

the number of camera traps working that night. For both models, none of the predictor variables 172 

correlated significantly above r2 = 0.6. We used the forced entry method as we had specific 173 

predictions about the model (Hill, 2006; Field, 2009). If the odds ratio of a factor is above 1 there is a 174 

positive relation between dependent and independent variable. 175 

 176 

Results 177 



9 
 

We collected 7169 5-minute observation points of 12 radio-collared adult individuals, resulting in 178 

approximately 600 hours of direct observation and 1036 used data points. The activity budget of all 179 

animals per hour can be seen in Figure 1. There was a significant relationship between activity and 180 

the different hours of the night (χ2 = 22.708, df = 9, p<0.007), with animals being less inactive than 181 

expected between 19:00 and 20:00. 182 

 183 

The logistic regression model with slow loris activity as the outcome variable was highly significant 184 

(χ2 (1) = 116.158, df = 11, p<0.001), with lunar luminosity, humidity, cloud, relative height and the 185 

interaction of minimum temperature and moon having a significant effect on whether slow lorises 186 

are active or inactive (Table 2). While luminosity and relative height have negative effects on activity, 187 

humidity and cloud cover have positive effects. The interaction of minimum temperature and 188 

moonlight showed that temperature affected activity during bright nights, but not dark nights. Slow 189 

lorises are more active when it is warmer. In dark nights they are equally active in warm and cold 190 

nights. 191 

 192 

Camera trapping revealed six independent photos of the leopard cat, ten of the Javan ferret badger 193 

(Melogale orientalis Horsfield 1821), and 14 of the common palm civet. The logistic regression model 194 

with predator presence as the outcome variable was not significant (χ2 (1) = 12.523, df = 7, p<0.085) 195 

(Table 4).  196 

 197 

Farmers reported to us that domestic dogs sometimes detected and cornered slow lorises. We have 198 

never observed any flight or freezing reaction of Javan slow lorises towards common palm civets or 199 

leopard cats. In contrast, we have witnessed sub-adults feeding unperturbed by an adult male 200 

common palm civet within 5 m distance. 201 
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 202 

Discussion 203 

Lunar illumination and predation risk  204 

Our model on slow loris activity revealed a negative effect of lunar illumination and relative height 205 

on activity, a positive effect of humidity and cloud cover, and an interaction effect of lunar 206 

illumination and temperature. Activity was not affected by the number of people observing the slow 207 

lorises, neither was an interaction effect with luminosity detected. The predator model was not 208 

significant, thus the detection of predators was not affected by moonlight or any climatic factors. 209 

 210 

Most primate species increase their activity with increasing lunar illumination (Gursky, 2003; 211 

Kappeler and Erkert, 2003; Bearder et al., 2006; Donati and Borgognini-Tarli, 2006; Fernandez-Duque 212 

and Erkert, 2006). This can be explained by the high visual orientation in primates and higher 213 

effectiveness of foraging and detection of potential predators in bright nights (Gursky, 2003). Instead 214 

of hiding in the dark, some lunarphilic primate species additionally use mobbing and warning calls to 215 

deter predators and warn conspecifics (Gursky, 2006; Fichtel, 2007, Nash, 2007; Eberle and 216 

Kappeler, 2008). In contrast, Javan slow lorises in our study seemed to reduce their activity in 217 

brighter nights, as was found for pygmy lorises (Starr et al., 2012) and greater slow lorises (Trent, 218 

1977). We can confirm lunarphobia for Javan slow lorises. Slow lorises thus resemble more the 219 

behaviour of other lunarphobic mammals (Prugh and Golden, 2014). This was explained by Starr et 220 

al. (2012) with the animals’ anti-predator behaviour relying on crypsis and concealment, and 221 

enhanced by the relatively disturbed and open habitat at our study site.  222 

 223 

Although lunarphobic, we did not find any evidence that activity of slow lorises could be negatively 224 

affected by human presence, neither was there any apparent relation with the behaviour of 225 
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predators. Slow lorises did not engage in more active behaviour like foraging, feeding and travelling 226 

in higher and denser canopy, but in contrast are more active in lower heights. Confirmed predators 227 

of Nycticebus are orang-utans (Utami and van Hooff, 1997), snakes (Wiens and Zitzmann, 1999) 228 

hawk-eagles (Hagey et al., 2003), and monitor lizards (Kenyon et al., 2014). Although all of these taxa 229 

may not be sympatric with Javan slow lorises, adaptations to such predators may still be responsible 230 

for their behavioural responses (Goodman et al., 1993). The African potto (Perodicticus potto 231 

Mueller, 1766) is comparable to Javan slow lorises in size and ecology and is predated upon by 232 

viverrids of relatively small size and by domestic dogs (Canis lupus Linnaeus, 1758) (Nash, 2007; 233 

Nekaris et al., 2007); pottos showed reactions to viverrids in predation experiments (Charles-234 

Dominique, 1977). Despite presence of potential predators, slow lorises did not show any fear when 235 

encountering potential non-human predators. Similar oblivious reactions to potential predators 236 

occurred in red and grey slender lorises and in greater slow lorises (Wiens, 2002; Nekaris et al., 237 

2007). Although hunting is the main threat to Javan slow lorises (Nekaris et al., 2009; 2013), the 238 

number of observers had no affect on slow loris activity. Lorises may not fear people because they 239 

do not perceive people as predators or they are habituated due to the presence of local farmers.  240 

 241 

One alternative explanation to predation pressure is a potential higher availability of prey during 242 

either moonlit or dark nights. Lang et al., (2005) attributed high activity during dark moon phases of 243 

the lunarphobic Neotropical insectivorous bat Lophostoma silvicolum Tomes, 1863 to high prey 244 

availability of katydids. Foraging depth of Galapagos fur seals (Arctocephalus galapagoensis Heller, 245 

1904) followed the moonlight-dependent horizontal migration of fish and squid (Horning and 246 

Trillmich 1999). The effect of insect abundance depends on the food preferences of the 247 

insectivorous predator. Although these data are not yet available for our field site, it is possible that 248 

the higher activity of slow lorises in dark nights follows the higher prey abundance; we are 249 

investigating this possibility with future studies.  250 
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 251 

We suggest that not predator avoidance but alternative factors like higher prey availability cause the 252 

slow loris to be more active in darker nights, perhaps due to the extreme morphological adaptations 253 

of lorises to avoid predators in the first place. Lorisines rely heavily on crypsis, moving slowly and 254 

freezing when feeling threatened (Nekaris et al., 2007). Their fur colour blends in with tree bark and 255 

makes animals difficult to detect (Nekaris et al., 2010). Slow lorises are among the few mammal 256 

species that are venomous (Alterman, 1995; Hagey et al., 2006; Ligabue-Braun et al., 2012; Nekaris 257 

et al., 2013). We are not aware of studies on other venomous mammals with a focus on the 258 

influence on moonlight on behaviour. Although uncommon in vertebrates (Pough, 1988), slow 259 

lorises may show Muellerian mimicry (Moore, 2012; Nekaris et al., 2013) with Indian cobras (Naja 260 

naja Linnaeus, 1758). Morphological and behavioural defences against predators can effectively 261 

reduce a prey’s perception of risk (Stankowich and Blumenstein, 2005), and the combinations of 262 

slow lorises’ adaptations might be effective enough to make them rather fearless animals when it 263 

comes to direct or indirect encounters with potential predators. 264 

 265 

Climatic factors 266 

Of the environmental factors, only humidity and cloudiness had a significant independent effect. 267 

Different effects of humidity on the activity of animals have been found (positive: Fitzgerald and 268 

Bider, 1974; Orrock et al., 2004; Skutelsky, 1996; negative: Kappeler and Erkert, 2003; Donati and 269 

Borgognini-Tarli, 2006). Slow lorises become more active with increasing humidity, possibly because 270 

of a higher availability of arthropod prey, which also become more active in higher humidity 271 

(Fadamiro and Wyatt, 1995). Swifts increase flight height in lower humidity, following flying insects 272 

that adapt their flying height to humidity (Shamoun-Baranes et al., 2006). Slow lorises include many 273 

flying insects like Coleoptera and Lepidoptera in their diet (Wiens et al., 2006; Starr and Nekaris, 274 

2013). As slow lorises cannot leap or fly, they may be more actively foraging when humidity is high 275 
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and insects fly low. Higher percentage of cloud cover contributes to the darkness that is favoured by 276 

Javan slow lorises. As the temperature at our study site can drop to about 10 °C, it is likely that 277 

temperature would have affected the activity of Javan slow lorises. Although we could not find an 278 

independent effect of temperature, we detected an interaction effect of luminosity and temperature 279 

in Javan slow lorises, just like for pygmy lorises (Starr et al., 2012). Indeed, during these inactive 280 

bouts, Javan slow lorises, like pygmy lorises, might not move for hours at a time. Many small 281 

endotherm species show heterothermy (Heldmeier and Ruf, 1992; Heldmaier et al., 2004), including 282 

several nocturnal primates such as lemurs of the family Cheirogaleidae and lesser bushbabies 283 

(Galago moholi Smith, 1836) (Schmid, 2000; Smit et al., 2001; Dausmann et al., 2005; Schuelke and 284 

Ostner, 2007; Nowak et al., 2010). Nycticebus spp. are able to enter torpor (Whittow et al., 1977; 285 

Xiao et al., 2010). We have already found evidence for torpor in one animal at our study site (Rode-286 

Morgano and Nekaris, unpub. data) and we are further investigating through physiological 287 

measurement if animals at our site regularly enter torpor during cold temperatures. We attributed 288 

the positive effect of higher humidity on activity to an adaptation to the activity of flying insect prey. 289 

Potential predators showed no preference for dark or bright nights and we could not detect an 290 

effect of climate factors on their activity. 291 

 292 

Conclusion 293 

Nash (2007) rightfully stressed that crypsis and predation are not unitary phenomena but interact in 294 

complex ways. Most primate species are lunarphilic, but slow lorises seem to be the exception from 295 

that rule and decrease activity in bright moonlight (lunarphobia) like most other mammals. A higher 296 

activity when cloud cover is higher may contribute to this behaviour. Javan slow lorises seem to be 297 

indifferent to potential predators and do not shift their activities into more covered habitat. We 298 

suggest that lunarphobia in slow lorises is not due to an increased perceived predator risk, but due 299 

to other factors like lower availability of prey species in moonlit nights. Additionally, slow lorises may 300 
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be well-adapted to avoid or defend against predators by crypsis, venom and mimicry, and thus, do 301 

not need to be afraid in the dark.  302 
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Figure captions: 514 

Figure 1: Activity budget per hour for 12 adult Javan slow lorises. N = 915. Data points were at least 515 

one hour apart. Sample sizes for the respective hours are given in brackets. Inactive behaviour is 516 

indicated by the category “rest and sleep”. 517 
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Table captions: 519 

Table 1: Reactions of some animal species towards moonlight, and adaptive explanations.  520 

Table 2: Results of the logistic regression model with activity of Javan slow lorises as a binary 521 

outcome variable 522 

Table 3: Results of the logistic regression model with presence of predators as a binary outcome 523 

variable 524 


