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Abstract—Excess phase in oscillators or phase locked loops is a 
very important design specification typically modelled as a 
continuous time signal. In this paper we explain why, when the 
quantity of interest is jitter, excess phase should be treated as a 
discrete quantity.  This treatment helps explaining noise folding 
in frequency dividers and analyse its consequences in Phase 
Locked Loops.  
 

I. INTRODUCTION 
When referring to jitter of a clock signal we are interested 

in how the crossings of the signal though a certain threshold 
(𝐴0) change, due to noise or interferences, when compared to 
an ideal “clean” reference. In the time domain this quantity is 
often represented by the excess phase component represented 
by 𝜑(𝑡) in equation 1 where 𝑓(𝑡) is periodic in 2𝜋 and 
𝑉𝐶𝐿𝐾(𝑡) periodic in 𝑇, with 𝑇 given by 2𝜋/𝜔0 [1]. 

𝑉𝐶𝐿𝐾(𝑡) = 𝐴(𝑡) ∙ 𝑓[𝜔0𝑡 + 𝜑(𝑡)]  [1] 
 
Assuming that 𝐴(𝑡) is constant and that the crossings of 
𝐴(𝑡) ∙ 𝑓(𝜔0𝑡) through 𝐴0 occur at 𝑡 = 𝑛𝑇 it becomes 
apparent that when considering the real case of a clock signal, 
where 𝐴0 could represent the switching point in a mixer, the 
instant when an ADC samples the incoming signal or the 
moment when a flip-flop captures its input, the continuous 
nature of 𝜑(𝑡) is of little importance. In spite of having an 
impact in the overall wave shape of 𝑉𝐶𝐿𝐾(𝑡) the excess phase 
signal 𝜑(𝑡) only affects the threshold crossings at time 
instants when 𝜔0𝑡 reaches multiples of 2𝜋 meaning 𝑛𝑇.   
Therefore it is possible to treat excess phase as the discrete 
quantity 𝜑(𝑛𝑇) or 𝜑[𝑛] for simplicity where 𝜑[𝑛] represents 
the value of the excess phase signal at the threshold crossing 
number 𝑛. 
 Fig.1 illustrates how the discrete excess phase 𝜑[𝑛] of the 
Jittery Clock signal 𝑉𝐶𝐿𝐾(𝑡) in (a) may be computed by 
comparing each rising edge with an Ideal Reference in Fig.1 
(b).  It should be understood that there is a degree of error 
associated with taking 𝑛𝑇 as the time reference for plotting 
𝜑[𝑛] because, as expected, the instant when the Jittery Clock 

𝑉𝐶𝐿𝐾(𝑡) crosses the threshold 𝐴0 is not an exact multiple of 
𝑛𝑇. This limitation is however of no consequence in the 
majority of practical cases where jitter often represents only a 
small percentage of the overall period.  
 

 
Figure 1.  Excess Phase of a Jittery Clock Signal 

This approach should also be used carefully in the context of 
free running oscillators where, due to phenomenon of phase 
diffusion [2] the variance of 𝜑(𝑡) monotonically increases 
with the time difference between clock edges implying that a 
free running oscillator completely loses its initial phase 
information after a sufficiently long amount of time. 
Therefore oscillator edges eventually wander and drift, 
loosing synchronicity with a fixed timing reference. With 
locked oscillators however, such Voltage Controlled 
Oscillators (VCOs) at the core of Phase Locked Loops 
(PLLs), the phase drifts are bounded by the feedback path [4] 
making it possible to use the 𝑛𝑇 in Fig. 1 as the base to 
represent 𝜑[𝑛].  
In this paper we will show how treating excess phase as a 
discrete quantity provides a powerful insight towards 
understanding noise folding in frequency dividers and PLLs.  
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Section II explains why frequency division may be treated as 
down-sampling and how that explains noise folding. Section 
III analyzes the consequences of that in the context of PLLs.  

II. FREQUENCY DIVISION  
A. Frequecncy Division as edge down sampling.  

In conventional frequency dividers the edges of the output 
low frequency clock are synchronous with the edges of the 
input clock signal. There may exist some amount of delay 
between input and output caused by finite propagation times 
of digital gates, or due to the number of stages in a cascade of 
dividers, but the fact is that an edge at the output of the 
divider only occurs when triggered by an edge at the input. 
This is the case as well for high frequency pre-scalars that in 
an LC PLL form the interface between the VCO and the 
Feedback Divider. However, and as expected, not all input 
edges cause transitions at the output of the frequency divider. 
This is illustrated in Fig. 2 where (a) and (c) are the input and 
output signals of a divider by 4 respectively.  
As expected, being a divider by 4 only 1 in 4 input edges is 
propagated to the output and the location of intermediate 
edges is unimportant, as long as they occur.  Of course in a 
real implementation the corresponding frequency of the 
narrow intermediate pulses may cause a failure in the internal 
digital state machine, but for the purpose of this explanation 
we assume that that is not the case.  
Fig. 2(b) represents the excess phase 𝜑𝐼𝑁[𝑛] of the input 
clock 𝑐𝑙𝑘𝑉𝐶𝑂(𝑡) and due to the synchronous nature of the 
divider, the output clock, 𝑐𝑙𝑘𝑓𝑏𝑘(𝑡), is jittery with only 1 in 4 
samples of the excess phase signal arriving at the output.   

 
Figure 2. Clock Division as Down Sampling 

Therefore one may represent 𝜑𝑂𝑈𝑇[𝑛] as 𝜑𝐼𝑁[𝑛 ∙ 4] meaning 
the first is a down sampled version of the later, with 4 being 
used as an example that could be generalized for any N 
integer.  
It is also interesting to observe that if the input excess phase 
signal 𝜑𝐼𝑁[𝑛] had a repetitive pattern of 4 𝑐𝑙𝑘𝑉𝐶𝑂(𝑡) periods 
then the excess phase 𝜑𝑂𝑈𝑇[𝑛] at the output would simply 
have a DC component, representing a phase shift which 
would be inconsequent as jitter.  
As an example Fig. 2 uses rising edges as reference but, as 
stated earlier on, the conclusions may be generalised to any 

effective edge used by the circuit that follows the divider, 
such as a Phase Frequency Detector that following the 
feedback divider in a PLL or the edge that triggers a 
particular event in a digital state machine.  
B. Frequecncy Division in the frequency domain.   

The effect of down-sampling may be better understood by 
looking its effect in the frequency domain. If we consider 
𝑋(𝑒𝑗𝜔) to be the discrete-time Fourier transform of the input 
excess phase 𝜑𝐼𝑁[𝑛] of Fig. 2 than we may express the 
discrete-time Fourier transform of 𝜑𝑂𝑈𝑇[𝑛] as [5] : 

 

𝑋𝑑(𝑒𝑗𝜔) =
1

𝑁
∑ 𝑋 (𝑒𝑗(

𝜔

𝑁
−

2𝜋𝑖

𝑁
))𝑁−1

𝑖=0   (2) 
 
In equation (2) it should be noted that both spectrum are 
periodic in the relative frequency 2𝜋 however due to the 
different sampling ratios of 𝜑𝐼𝑁[𝑛] and 𝜑𝑂𝑈𝑇[𝑛] when 
expressing the discrete-time Fourier transforms in absolute 
frequency 2𝜋 represents   𝑓0and 𝑓0/𝑁 respectively with 𝑓0 
being the frequency of 𝑐𝑙𝑘𝑉𝐶𝑂(𝑡). 
 
Fig. 3 has a frequency domain illustration, using absolute 
frequency, of how the excess phase discrete-time Fourier 
transform for the original and down sampled spectrums of an 
arbitrary division ratio of 𝑁.  
 

 
Figure 3.  Down-Sampled Spectrum 

It may be observed that the replicas of the periodic spectrum 
centred at multiples of the absolute frequency 𝑓0 are re-
centred around multiples of 𝑓0/𝑁, which, due to the absence 
of filtering create an aliasing effect if 𝜑𝐼𝑁[𝑛]  contain 
frequency components bigger than (𝑓0/𝑁)/2. This 
mechanism is responsible for noise folding in frequency 
division. 
By inspecting equation 2 and ignoring all the terms in the 
sum with the exception of the first (𝑖 = 0) we get the 



conventional assumption for the mathematical modelling of 
frequency division in PLL theory [3], a gain scaling by a 
factor  1/𝑁 with 𝑁 representing the division ratio.  
C. Example Results with a frequency divider.  

As an illustrative example in Fig. 4(a) we represent the 
first harmonic of a 1MHz square wave clock signal 
modulated by a 0.1rad peak 40KHz excess phase pattern. 
This signal was submitted through a behavioral time domain 
model of a divider by 4. The rich spectrum of the output 
square wave is represented in Fig.4(b) up to the 5th harmonic 
and in Fig.4(c) and (d) we can a see plot of the excess phase 
signals at the input and output of the divider against time 
respectively. It may be observed by comparing Fig. 4(c) with 
(d) the phase scaling following the frequency division. It can 
also be observed that the frequency of the excess phase signal 
at the output of the divider is was not altered but however the 
output excess phase has less samples per period due to the 
reduction in sampling rate following the division.  

 
Figure 4.  1MHz clock signal with 40KHz spur 

 
Figure 5.  1MHz clock signal with 290KHz spur 

In Fig. 5(a) we illustrate the spectrum of the same 1MHz 
clock signal as before. It is also modulated by an excess 
phase pattern with 0.1rad peak amplitude but with a 
frequency of 290KHz. It is interesting to note that 290KHz  is 
higher than (𝑓0/4)/2, with 𝑓0 now being 1MHz. This means 
that we expect to observe aliasing when referring the 290KHz 
spur to the re-sampling frequency of 250KHz with a 
frequency component appearing at 40KHz, (290KHz - 
250KHz). This is observable by inspecting the resulting 
excess phase signal after the division in Fig. 5(d).   

The occurrence of aliasing after the re-sampling is clear by 
comparing Fig. 5(c) with (d) where we clearly see the 
290KHz disappearing to give place to a 40KHz component.  
Another interesting phenomenon is the observation that even 
though having spectrums with spurs at different locations the 
outputs of the dividers with the spectrum, plotted in Fig. 4(b) 
and Fig. 5(b) have excess phase signals, plotted in Fig. 4(d) 
and Fig. 5(d), with the same amplitude and frequency. This 
apparent inconsistency regarding the phase noise and jitter 
will be the subject of future work by the authors.  
 

III. DIVIDER NOISE FOLDING IN PHASE LOCK LOOPS 
A. Phase Locked Loop description.  

On an integer N PLL such as the one represented in Fig.6 
the VCO runs at a frequency N times bigger than the 
comparison frequency at the inputs of the Phase Frequency 
Detector (PFD).  So for each N VCO edges at the output of 
the PLL only 1 edge is passed on to the PFD for comparison 
with the input reference clock. This may be analysed from the 
point of view of the down sampling of edges as explained in 
the previous section. And for the purpose of analysing this 
phenomenon an accurate time domain model for the block 
diagram of Fig. 6 was built in Simulink, with the 
characteristics described in Table 1.  

 
Figure 6.  Charge Pump PLL Block Diagram 

The additional input Vn(t) shown in Fig. 6 allows for 
disturbances to be introduced in the control voltage in order 
to analyze the excess phase response at the output of the 
VCO. Measuring the excess phase fluctuations, can be done 
via phase noise measurement.  This method uses an 
inverted low noise op-amp as voltage adder to be used as the 
disturbance injection mechanism of the control voltage. This 
op-amp will be connected at the additional input Vn(t) as 
shown in Fig. 6. 

TABLE I.  PLL CHARACTERISTICS 

Parameter 
Table Column Head 

Descripton Value Unit 

𝑓0 VCO Center Frequency 100 MHz 

𝐾𝑉𝐶𝑂 VCO Gain 500 MHz/V 

𝑅2 Zero Resistor 10 kΩ 

𝐶2 Anti-Riple Capacitor 5 pF 

𝐶2 Integration Capacitor 100 pF 

𝐼𝐶𝑃 Charge Pump Current 10 μA 



Parameter 
Table Column Head 

Descripton Value Unit 

𝑁𝐷𝐼𝑉 Feedback Division Ratio 10 - 

BW PLL Bandwidth 1.1 MHz 

 
B. Noise Folding Results.  

The circuit was simulated with a range of test signals with 
varying amplitudes and frequencies. Fig. 7(b) shows the time 
domain excess phase response to a 10.1MHz disturbance 
injected in the Control Voltage. The amplitude of the noise 
signal is 10mVpk and because the PLL bandwidth is 1.1MHz 
the feedback loop is insensitive to the 10.1MHz frequency, 
meaning that the output peak excess phase is simply given by 
VCO transfer characteristic [3] 𝑉𝑛𝑝𝑘 × 𝐾

𝑉𝐶𝑂
/10.1𝑀𝐻𝑍: 0.5rad. 

In Fig. 7(b) it is clear the effect 10.1MHz component in the 
excess phase at the output of the VCO. However, besides this 
high frequency component it is also visible a low frequency 
with the same peak magnitude.   

 
Figure 7 Response to 10.1MHz Vn(t) disturbance 

 
Figure 8 Response to 10.0MHz Vn(t) disturbance 

The low frequency components visible in Fig. 7(b) at the 
output of the VCO is created by the feedback divider when it 
down-samples by a factor of 10 the 10.1MHz spur injected in 
the loop. The 10.1MHz signal at the input of the divider is 
aliases and appears at the output with a frequency of 0.1MHz. 
But because the bandwidth of the PLL is 1.1MHz, this 

0.1MHz components is not filtered is goes straight to the 
VCO output, with the same amplitude as the original 
10.1MHz disturbance. Fig. 7(c) shows the Control Voltage 
tracking the aliased low frequency spur.  
Also interesting is to observe is the response of the loop to a 
10MHz disturbance injected in the control voltage in Fig. 8(a). 
In (b) the excess phase at the output of the VCO is visible, 
however in these conditions the PLL Control Voltage remains 
almost static, the reason being that the 10MHz spur, sampled 
at 100MHz by the VCO, is aliased to DC when down-sampled 
by a factor of 10. Therefore the PLL control loop is 
completely insensitive to it.  

C. Overal Transfer Characteristic.   
By exercising the previous model it is possible to plot, the 
overall transfer characteristic from noise injected in the 
control voltage to excess phase at the output of the VCO, 
shown in Fig. 9.  The waveform identified as 1st and 2nd are 
the PLL forward transfer characteristic, re-centered at 
multiples of the reference frequency and shaped by the VCO 
forward transfer characteristic.  

 
Figure 9.  Control Voltage to Excess Phase Transfer Characteristic 

Noise injected in Vn(t) at small offsets of multiples of the 
reference frequency, follows two paths to the output of the 
VCO.  The first, direct sees a scaling by the VCO transfer 
characteristic 𝐾𝑉𝐶𝑂/𝑓. The second is folded to DC and further 
shaped by the PLL closed loop forward (input to out) transfer 
characteristic as illustrated in Fig. 9.  

IV. CONCLUSION 
We presented excess phase as a discrete-time quantity, and 

frequency division as down-sampling of clock edges. This 
treatment allows us to explain noise folding as observed in 
frequency dividers. We then extend this analysis to phase 
locked loops and present the overall transfer characteristic for 
control voltage disturbances with the replicas created by 
down-sampling.  All simulation results presented in this paper 
were performed using Cadence Virtuoso suite 6.1.3 with real, 
silicon proven spice models. 
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