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Abstract

We develop a Bayesian semiparametric method to estimate a time-varying

parameter regression model with stochastic volatility, where both the error

distributions of the observations and parameter-driven dynamics are unspec-

ified. We illustrate our methodology with an application to inflation.
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1 Introduction

A vast literature has demonstrated the gains from allowing for time-varying parame-

ters in stochastic volatility models (TVP-SV models), when analyzing (macro)financial

data (Primiceri, 2005; Cogley and Sargent, 2005; Stock and Watson, 2007; D’Agostino

et al., 2013; Clark and Ravazzolo, 2015). Due to the presence of the stochastic volatil-

ity component the likelihood function for this class of models is intractable. As a

result, researchers have developed Markov chain Monte Carlo (MCMC) algorithms

for estimating the model parameters (see, for example, Nakajima (2011)).

In this paper, we consider two semiparametric extensions of the TVP-SV model,

utilising a popular Bayesian prior for modelling unknown distributions, the Dirichlet

process (DP) prior (Ferguson, 1973). We first use this prior to model in a flexible

way the distribution of the dependent variable’s innovation and second, to consider

wider class of the distribution of the time-varying parameter’s innovation. The

resulting semiparametric TVP-SV model is referred to as the S-TVP-SV model.

To estimate the model parameters and the unknown distributions, we propose an

efficient MCMC algorithm.

The first semiparametric extension has already been applied in the context of

standard stochastic volatility models (Jensen and Maheu, 2010; Delatola and Griffin,

2011). The second semiparametric extension is novel and constitutes our main

contribution to the Bayesian semiparametric literature on TVP-SV models.

The motivation behind the S-TVP-SV model stems from the empirical literature

on inflation modelling. Recently, evidence has been found of non-normality in mod-

elling inflation persistence, leading to increased interest in non-Gaussian (fat-tailed)

distributions for modelling inflation dynamics (Lanne and Saikkonen, 2011; Lanne

et al., 2012; Chiu et al., 2014; Lanne, 2015). Our point of departure is an autore-

gressive version of the unobserved components with stochastic volatility (UC-SV)

model, proposed by Stock and Watson (2007). Stock and Watson (2007) considered

a UC-SV model that decomposed inflation into a trend and a transitory component
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and assumed fat-tailed error distributions for the observation and state equations

to control for outliers.

In this paper, we generalize the approach of Stock and Watson (2007) to account

for shocks that may not be symmetrically distributed, as economic systems may

react differently in recessions and expansionary periods. Furthermore, if there are

different regimes operating within the sample period, a fat-tailed distribution may

be inadequate to capture this data characteristic. In our proposed model, each of

the unconditional error distributions for the observations and the parameter-driven

dynamics is allowed to follow an infinite mixture of normals.

2 Econometric set up

2.1 The TVP-SV model

Consider the following TVP-SV model

yt = x′tβ+z′tαt+εt, εt ∼ N(µ, exp(ht)), t = 1, ..., T, (1)

αt+1 = αt+ut, ut ∼ N(0,Σ), t = 0, 1, ..., T−1, (2)

ht+1 = µh+φht+ηt, |φ| < 1, ηt ∼ N(0, σ2
η). (3)

Equation (1) contains two types of coefficients: the constant coefficient vector,

β, of dimension k×1 and time-varying coefficients, αt, of dimension p×1. xt and zt

are the design matrices which do not include an intercept and ht is the log-volatility

at time t.

Equation (2) is a random walk process which is initialized with α0 = 0 and

u0 ∼ N(0,Σ0), where N(·, ·) denotes the normal distribution with the initial state

error variance Σ0 being known.

The error terms εt and ηt are assumed to be independent1 for all t. The error term

1In the context of stochastic volatility models, Jensen and Maheu (2014) assumed that the
errors εt and ηt are correlated and modelled them nonparametrically, using DP priors.

3



εt follows a normal distribution with mean µ and time-varying variance σ2
t = exp(ht).

The dynamics of the log-volatility ht = log(σ2
t ) are described by equation (3) which

is a stationary (|φ| < 1) first-order autoregressive process. This process is initialized

with h1 ∼ N(µh/(1− φ), σ2
η/(1− φ2). The parameter φ is the persistence volatility

that measures the degree of autocorrelation in ht, and ση is the standard deviation

of the shock to log-volatility.

We assume the following priors over the set of parameters (β, σ2
η,Σ, µh, µ),

β ∼ N(β0,B), σ2
η ∼ IG(va/2, vβ/2), Σ ∼ IW (δ,∆−1),

µh ∼ N(µ̄h, σ̄h
2), µ ∼ N(µ̄, σ̄2),

where IW and IG denote the Inverse-Wishart distribution and the inverse gamma

distribution, respectively. To guarantee that the persistence parameter φ satisfies

the stationarity restriction, we assume (φ+ 1)/2 ∼ Beta(φa, φβ).

2.2 Two semiparametric extensions

The advantage of Dirichet process modelling results from its theoretical properties,

one of which is the clustering property. A detailed exposition of the statistical

properties of the DP prior is given, among others, by Ghosal (2010).

The error term εt, is assumed to have an unspecified functional form based on

the following Dirichlet process mixture (DPM) model

εt|ϑt, ht ∼ N(µt, λ
2
t exp(ht)), ϑt = (µt, λ

2
t ), t = 1..., T ,

ϑt
i.i.d∼ G,

G|a,G0 ∼ DP (a,G0), (4)

G0 = N(µt;µ0, τ0λ
2
t )IG(λ2t ;

e0
2
, f0

2
),

a ∼ G(c, d),
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where µh in the stochastic volatility equation is set to zero for identification rea-

sons. The unspecified functional form of the distribution of εt, given in (4), was first

proposed by Jensen and Maheu (2010).

According to specification (4), the conditional distribution of εt given ht and ϑt

is Gaussian with mean µt and variance λ2t exp(ht). The ϑt = (µt,λ
2
t ) is generated

from an unknown distribution G. For the prior base distribution G0 we assume

a conjugate normal-inverse gamma, N(µt;µ0, τ0λ
2
t )IG(λ2t ;

e0
2
, f0

2
). A gamma prior

distribution G(c, d) is placed upon a, which is the precision parameter (positive

scalar). As a tends to infinity G converges pointwise to G0.

One can show that the unconditional distribution of εt follows an infinite mixture

model with time-varying means and variances. So our DPM model is able to capture

asymmetries and multiple modes that may characterize the data.

Furthermore, to capture the uncertainty about the distribution of ut, we impose

on it the following novel flexible structure,

ut|ωt,Σ ∼ N(0, ω−1t Σ), t = 1, ..., T − 1,

ωt
i.i.d∼ Gω, (5)

Gω|aω, G0ω ∼ DP (aω, G0ω = G( eω
2
, eω

2
)),

aω ∼ G(cω, dω).

The positive scale parameter ωt in (5) comes from an unknown discrete distri-

bution Gω. The Dirichlet process prior in (5) is defined by the parameter aω and

the base gamma distribution G0ω. As the precision parameter aω tends to infinity,

Gω converges pointwise to G0ω. In this case, the unconditional distribution of ut is

a multivariate Student-t distribution with eω degrees of freedom and as eω increases

the error distribution mimics the Normal distribution. For small values of aω the

unconditional distribution of ut is a finite mixture of multivariate normals, each of

which has the same mean. Therefore, our semiparametric approach for the distri-

bution of ut can capture the potential clustering in the mixing scalar parameter of

5



the innovation’s covariance matrix.

The TVP-SV model combined with the DPM models of (4) and (5) produces

the semiparametric TVP-SV model (S-TVP-SV model).

3 Posterior analysis

3.1 The MCMC algorithm for the S-TVP-SV model

Define

y = (y1, ..., yT ), α = (α1, ...,αT ), h = (h1, ..., hT ),

θ = (ϑ1, ..., ϑT ), ϑt = (µt, λ
2
t ), ω = (ω1, ..., ωT−1).

Our MCMC scheme for the semiparametric model consists of two parts. In part

I, we update the parameters (β, Σ, σ2
η, α, h, φ) and recover the error terms {εt}Tt=1

and {ut}T−1t=1 . We sample α using the simulation smoothing algorithm of De Jong

and Shephard (1995). To update the volatility vector h we apply the approach of

Chan (2015), which is not based on Kalman-filter methods but on the precision

sampler of Chan and Jeliazkov (2009).

Having calculated the error terms {εt}Tt=1 and {ut}T−1t=1 , we update, in part II,

the DP parameters (θ,ω, a, aω) using marginal methods, since the DP is integrated

out; see, for example, Escobar and West (1995) and MacEachern and Müller (1998).

Details of the MCMC algorithm for the semiparametric model along with a

simulation study are given in the Online Appendix.

3.2 Posterior predictive density of the error term εT+1

A key quantity of interest in density estimation and an important feature of Bayesian

inference is the posterior predictive density. With respect to the S-TVP-SV we

obtain from the sampler the out-of-sample posterior predictive density for the (one-

step ahead) error term εT+1 conditional on the data ΩT = (y,XT ,ZT ), where XT =
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(x1, ...,xT ) and ZT = (z1, ..., zT ) which is given by

f(εT+1|ΩT ) =

∫
f(εT+1|θ∗, hT+1, a)π(θ∗, hT+1, a|ΩT )dθ∗dhT+1da. (6)

≈ 1
L

∑L
l=1 f(εT+1|θ∗(l), h(l)T+1, a

(l)),

where θ∗ = (ϑ∗1, ..., ϑ
∗
M)′, M ≤ T is the set of unique values from θ, with ϑ∗m=(µ∗m,

λ∗2m ), m = 1, ...,M and M is the number of clusters in θ (see also Online Appendix

for further details). θ∗(l) and a(l) are simulated samples of θ∗ and a respectively

and h
(l)
T+1 is a posterior draw generated from N(φ(l)h

(l)
T , σ

2(l)
η ). L is the number of

iterations after the burn-in period. The predictive density of εT+1 conditional on

θ∗(l), h
(l)
T+1 and a(l) is a mixture of a Student-t density and Normal densities, namely,

f(εT+1|θ∗(l), h(l)T+1, a
(l)) =

a(l)

a(l) + T
qt(εT+1|µ0, (exp(h

(l)
T+1) + τ0)f0/e0, e0)

+ 1
a(l)+T

∑M(l)

m=1 n
(l)
mN(εT+1|µ∗(l)m , exp(h

(l)
T+1)λ

∗2(l)
m ), (7)

where qt(.|m, v, u) is the Student-t distribution with mean m, degrees of freedom

u and scale factor v. The quantity nm is explained in the Online Appendix.

3.3 Model comparison

We conduct Bayesian model comparison, using the Deviance information criterion

(DIC) (Spiegelhalter et al., 2002) and cross-validation predictive densities. Further

details on how to implement these methods are provided in the Online Appendix.
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4 Empirical application

We use data on US quarterly consumer price index (CPI) inflation from 1948Q1 to

2013Q2. For modelling inflation persistence, we consider the following autoregressive

TVP-SV (AR-TVP-SV) model,

yt = α1,t + α2,tyt−1 + εt, εt ∼ N(0, exp(ht)), t = 1, ..., T,

αt+1 = αt + ut, ut ∼ N(0,Σ), t = 0, 1, ..., T − 1,

ht+1 = µh + φht + ηt, |φ| < 1, ηt ∼ N(0, σ2
η),

where yt = 400 ∗ log(lt/lt−1) denotes the CPI inflation and lt is the quarterly CPI

figure. We plot yt in Figure 1.
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Figure 1: The inflation path from 1948Q1 to 2013Q2.

In the semiparametric version of the AR-TVP-SV model, denoted as the AR-S-

TVP-SV model, the error terms εt and ut follow the DPM models of (4) and (5),

respectively2. For comparison purposes, we also estimated the AR-TVP-SV model,

2A limitation of the semiparametric model is that mixing over the time-varying parameters
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with the errors εt and ut being Student-t distributed. We refer to this model as

AR-St-TVP-SV. The St-TVP-SV model is presented in the Online Appendix.

After discarding the first 80000 draws, we run the sampler for 150000 iterations.

To monitor convergence we use the CD statistics of Geweke (1992) and the inef-

ficiency factor (IF); see, for example, Chib (2001). For the AR-S-TVP-SV model,

we chose the same hyperparameters for the priors as in the simulation study (see

Online Appendix).

The estimation results are presented in Table 1. Across all models of Table 1,

all the parameters but µh are significant. Based on the DIC and CV values (Table

1), the AR-S-TVP-SV model has the best fit to the data. The AR-TVP-SV model

is the least preferred model.

-15 -10 -5 0 5 10 15 200

0.05

0.1

0.15

0.2

0.25

 

 
AR-S-TVP-SV model
AR-St-TVP-SV model

Figure 2: Posterior predictive densities for ε.

The posterior predictive density of the error term εt for the AR-S-TVP-SV model,

which is plotted against that of the AR-St-TVP-SV model (Figure 2), indicates that

the distribution of the dependent’s variable innovation is nonnormal (with kurtosis

5.6254 and skewness 1.9735). This empirical finding is supported by the fact that

scaled covariance matrix fails to capture the regime switching behavior of the Sims and Zha (2006)
model. A change from one regime’s parameter values to another is only possible if the mixture
representation of the parameter innovations is mixed over the mean vector of the normal kernel.
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the semiparametric model requires M = 4.3764 clusters to fit the data (Table 1).

The parametric models inflate the volatility parameter ση to compensate for the

excess kurtosis found in the data; the estimated degrees of freedom v1 for the AR-

St-TVP-SV is 9.3842.

The path of the posterior estimates of exp(ht) obtained from the semiparametric

model shows high inflation volatility during the Great Moderation and the Great

Recession (Figure 3).
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Figure 3: Evolution of exp(ht) obtained from the AR-S-TVP-SV model; posterior
mean (blue), two standard deviation bands (red).

Also, the AR-S-TVP-SV model highlights some degree of clustering in the mixing

scalar parameter of the innovation’s covariance; the number of clusters in ω was

found to be Mω =4.0796 (Table 1)-Mω is explained in the Online Appendix.

Figure 4 presents the estimates of αt for the AR-S-TVP-SV model. As can be

seen, there is apparent time-variation in these estimates, highlighting the importance

of allowing for time-varying parameters. Similar results were produced by the rest

of the models (see Online Appendix).
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Figure 4: Evolution of αt obtained from the AR-S-TVP-SV model; posterior mean
(blue), two standard deviation bands (red).
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5 Conclusions

We proposed a novel Bayesian semiparametric time-varying parameter regression

model with stochastic volatility (TVP-SV), where both the error distributions of

the observations and parameter-driven dynamics were left unspecified. The Dirich-

let process was used as a prior to these unknown distributions. We devised an

efficient Markov chain Monte Carlo algorithm to estimate the model parameters

and unknown distributions. An autoregressive version of the proposed model was

applied to inflation persistence. The empirical results showed that the proposed

model had better fit to the data than competing parametric models. For future

research it would be interesting to enrich the proposed semiparametric model with

a nonparametric leverage effect, as macro shocks that have the greatest effect on

the economy are often asymmetrically distributed. Extending the TVP-SV model of

this paper in this direction could prove fruitful relative to existing TVP-SV findings.
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