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Abstract

Classifying demographic groups of humans from gait patterns is desirable from several
long-standing diagnostic and monitoring perspectives. IMU recorded gait patterns are
mapped into a nonlinear dynamic representation space using criticality analysis and subse-
quently classified using standard Support Vector Machines. Inertial-only gait recordings
were found to readily classify in the CA representations. Accuracies across age categories
for female versus male were 72.77%, 78.95%, and 80.11% for ¢(==[0.1, 1, and 10, respectively;
within the female group, accuracies were 73.36%, 76.70%, and 78.90%; and within the
male group, 77.65%, 81.48%, and 81.05%. These results show that dynamic biological data
are easily classifiable when projected into the nonlinear space, while classifying the data
without this is not nearly as effective.

Keywords: criticality analysis; support vector machine; gait pattern detection; chaotic
mathematical model; rate control of chaos; demographic analysis

MSC: 37M22; 93C15; 34H10

1. Introduction

Dynamic modelling methods for interpreting biological signals such as gait have
become increasingly important in various applications that include human activity recogni-
tion [1], clinical diagnosis [2], rehabilitation monitoring [3], and security surveillance [4].
Despite their widespread use, traditional methods often fall short in extracting the complex
dynamics of human movement, which prevents the precise detection and classification of
gait patterns, particularly when dealing with large datasets [5]. These limitations require
the integration of advanced machine learning and signal processing techniques to achieve
the desired level of detail and accuracy [6]. Gait dynamics are fundamentally complex
and nonlinear, characterised by obvious variations across populations. Criticality Analy-
sis (CA), which is based on a method to control chaos, provides a promising solution to
greatly enhance gait analysis performance [7]. This approach stabilises system dynamics
and enables the detection of discrepancies and visualisation of dynamic trajectories in a
data-agnostic manner. The CA uses a biologically inspired chaotic mathematical model
with Rate Control of Chaos to control exponential growth and restore stability to systems
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perturbed by external factors. A network of these RCC oscillators results in a Self-Organised
Critical System [8] that responds to nonlinear external perturbations. Representing gait
patterns using this method allows for a more precise identification of anomalies and im-
proved assessment of gait stability. Such capabilities are essential for accurate gait analysis,
including early detection of gait-related diseases and the monitoring of rehabilitation
progress. However, the CA method produces periodic dynamics from the gait pattern and
SVMs provide a classification framework well suited to this type of representation. These
two complementary methods transform high-dimensional, complex, nonlinear data into
a lower-dimensional space for easier classification. The Gaussian kernel function within
SVMs assists in identifying these complex structures in gait data, which makes SVMs a
suitable candidate for the classification of CA representations of data [9,10].

The main contribution of this work demonstrates that the CA method can help detect
and understand gait dynamics across different demographic groups, which is not readily
feasible using the raw IMU data alone. We apply the CA model to three groups from the
Science Museum dataset and map their movement patterns in phase space. We then use
an SVM classifier to support the evaluation, which shows that the CA method makes the
gait patterns clearer and easier to distinguish. Our results indicate that the combined CA
and SVM approach reveals important nonlinear features in the data and can be useful for
future gait analysis in clinical and rehabilitation settings.

The paper is structured as follows: Section 2 reviews the current literature, introduces
nonlinear dynamic modelling and the criticality analysis method, and highlights the main
contributions of this study. Section 3 presents the fundamentals of dynamic systems.
Section 4 introduces the topology of the phase space associated with the CA methodology
and describes how the system dynamics may be captured through a reduced set of state
variables. Section 5 develops the mathematical framework for criticality analysis of human
gait. Section 6 describes the gait model, details the experimental setup, and presents the
results with a discussion of their implications. Finally, Section 7 concludes the paper.

2. Related Work

This section reviews the key studies in gait recognition and sets out the gaps that
motivated our criticality analysis approach.

2.1.[Criticality [Analysis for Human Gait (]

Recently, there has been an increasing interest in studying human gait patterns, partic-
ularly in the applications of biomechanics, robotics, and healthcare [11]. The complexity
and dynamic nature of gait have led to the use of nonlinear chaotic mathematical models
to better understand its complexities. Initial efforts focused on developing mathematical
models that use control functions to generate optimal walking trajectories, which help
individuals walk with minimal muscle effort while maintaining balance and control [12].
These models were extended to explore the nonlinear aspects of walking performance
through a passive compass gait model [13]. Although simple, this model revealed both
regular and chaotic behaviours, highlighting the intricate nature of gait dynamics. Building
on these insights, practical applications based on mathematical models emerged, such as
the development of cylindrical electromagnetic vibration harvesters [14]. These devices
measure the mechanical energy generated from human gait and convert it into electrical en-
ergy, powering small biomedical implants without needing external batteries or recharging.
The vibrations produced by these harvesters during walking provide crucial information
about their performance across various walking speeds and gait conditions, demonstrating
the practical impact of understanding gait dynamics. To address the complexities revealed
by these applications, chaotic control principles were applied. Techniques such as the
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bifurcation method, combined with artificial neural networks, were used to manage un-
predictability and restore stability within chaotic gait patterns [15]. Additionally, models
linking gait dynamics to the nervous system were developed by incorporating external
stimuli into a fractional diffusion equation. This approach provided a more comprehensive
view into how external factors and neural control interact to influence walking patterns,
leading to more precise predictions of gait patterns. Furthermore, studies have examined
how gait varies in younger and older adults during spontaneous walking and treadmill
walking [16]. These studies, using nonlinear dynamics, found that older adults show
greater variability in their gait, suggesting that aging affects walking stability. Moreover,
integrating chaos theory into nonlinear dynamics models has shed light on the complex
interactions between neural control, biomechanics, and environmental factors [17]. This ap-
proach has been particularly effective in studying long-range correlations in stride intervals
associated with pathological gait patterns [18,19]. While these methods differ from the one
used in this paper, the findings theoretically reinforce the idea that nonlinear approaches
provide more thorough gait analysis than traditional linear methods [20].

Furthermore, studies have examined how gait varies across different populations,
highlighting the influence of age and gender on gait variability.

2.2.[1Age-Dependent (Changes in(Gait Variability[ ]

Gait speed decline is generally associated with increasing age [21,22], along with
increases in gait parameter variability, such as step width, stepping distance, and stepping
rate [23]. Whilst the exact mechanisms are complex, increased variability is often linked to
age-related muscular stiffness and weakness, which challenge dynamic balance control and
elevate the risk of falls [24]. Individuals with higher relative muscle performance, often
associated with increased physical activity, demonstrate reduced variability within their
gender’s gait patterns [25]. From a gait perspective, the most significant physiological con-
tributor to increased variance occurs during toe-off and the transition from double-to-single
stance, which relies on complex anteroposterior and mediolateral dynamic stability [26].

2.3.[Gender Differencesin(Gait Variability[]

Irrespective of walking speed, females commonly exhibit larger dynamic gait variabil-
ity [27], particularly during the early swing-phase, when bodyweight shifts ahead of the
ipsilateral forefoot in the anterior—posterior direction. Some studies also report increased
medio-lateral gait variance [28], which correlates with the most common fall directions [29].
Despite these observations, there is no clear physiological explanation for the higher degree
of gait variability in females, although it has been consistently observed in both healthy
and clinical populations [30,31].

2.4.[Stateldf the[Artiand Main Contributions[

Previous research has utilised a nonlinear chaotic mathematical model with a control
function designed to control nonlinear growth in dynamic systems and restore stability.
This was achieved by introducing a control term into the influencing nonlinear variables,
based on the concept of Rate Control of Chaos (RCC) [7]. The model was subsequently
applied to two real-world datasets to detect abnormalities in gait patterns, with these
patterns being quantified and classified using supervised machine learning techniques,
such as the SVM classifier, with high accuracy [9,10].

To the best of our knowledge, this paper makes a unique contribution by applying this
approach to a new real-world dataset, as described in Section 6.1. This approach generates
scale-free and nonlinear data representations in a low-dimensional manifold, which enables
the precise detection of complexities in human gait and helps distinguish specific age-gait
patterns. The output of the CA model is then used as input features for a support vector
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machine (SVM) classifier, which utilises a Gaussian kernel function to enhance overall
detection accuracy.

3. Overview of Dynamic Systems

Dynamical systems modelling has a long history in mathematical biology, where it has
helped scientists explain processes that evolve over time, from the scale of single molecules
to entire populations [32]. At the level of individual cells, the same modelling tools are
used to describe metabolism, signalling, and the way biological components interact as
networks whose states continuously change.

When we shift from cells to whole-body motion, the logic is similar. Human walking is
not random muscle activity, but a coordinated rhythm built from many interacting muscle
groups. Because of that rhythm, models based on coupled oscillators are a natural fit
for representing gait, where each oscillator carries the signal of one muscle or functional
muscle unit. What matters most in these models is not only the strength of each signal,
but the timing between them, whose phase relationships shape smooth and efficient
movement [33].

Gait also adapts. The same walking pattern a person uses on flat ground may change
with speed, slope, surface type, or sudden disturbances such as a push or change in balance.
Dynamical systems models allow these changes to be studied mathematically, especially
how far a walking rhythm can shift before losing stability, and how quickly it can recover
or reorganise itself under new conditions [34,35].

Beyond modelling itself, dynamical systems theory provides data analysis tools that
describe how predictable or variable a walking signal is over time. Measures such as phase
reconstruction, attractors, and Lyapunov exponents help quantify the internal dynamics
of gait trajectories, including how stable they remain, and how widely they spread when
conditions or participants change [36,37]. Practically, the same mathematical language
used to understand cellular networks can also be used to understand the organisation and
resilience of human walking.

A dynamical system can be written as ordinary differential equations (ODEs) whose
state updates forward in time, either continuously or at discrete time steps. The system is
deterministic if the current state fixes exactly one future state, whereas a stochastic system
moves toward a range of future states governed by probability. Chaos theory sits in the
deterministic world, focusing on systems whose trajectories can shift dramatically when
their starting points shift even by a tiny amount [38].

Deterministic chaotic systems are commonly expressed in ODE form:

(1o
d:ltﬂ :EFl(x@),x@,x@,...,x@\l)),
)7
d’; = Fy(x),23, 2, xV),
o (1)
(N)O
d’;m :wNéx@),x@,x@,...,x@’)).
or more compactly as
dx(t)[]
d(ﬂ) =F(x(t)), 2)

where x(t) fepresents the full system state as an N-dimensional vector. Once the system is
initialised at x(0), its trajectory x(t) for later time points (¢>0) is fully determined by the
functions inside F.
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The transition of the system through stability, oscillation, or chaos depends on how
F behaves when it reaches Fx(t))=0[0, whose condition defines equilibrium points.
A fixed solution that satisfies this condition means the system is stable and unchang-
ing at that point [39,40]. If the system repeats its path over time after a period T, so that
x(t) =x(t3uT)for nl€Z, it forms a periodic orbit or cycle.

Chaotic behaviour appears when the system is not fixed, nor repeating, but constantly
changing within phase space, never settling into one point or one cycle. In that regime,
even a small disturbance at x(0)[dan shift future states enough that two nearly identical
starting points eventually drift apart into very different trajectories [41]. That sensitivity
is not a modelling flaw; it is often the signature that the system contains rich but tightly
coupled internal dynamics.

4. Topology of Phase Space

The phase space manifold represents the full set of possible states a dynamical system
can occupy. In a deterministic system, knowing the current state, and sometimes the previ-
ous states, allows for the prediction of future states. In practice, however, the governing
equations can be highly complex, making direct interpretation challenging for applications
like human gait analysis. Despite this complexity, the structure of the phase space holds
essential information about the system’s dynamics. Mathematically, the state of the system
at any time t[dan be expressed as follows:

O
x(t) :L(x@),x@,x@,...,x@])). (3)

For the extended model applied to gait dynamics, the phase space can be simplified to
focus on key variables of interest. In this case, the system state is described by

x(t) = (F, M), (4)

where Fland MIdapture the dominant features of the gait pattern in the phase plane. This
projection makes it possible to visualise and analyse the underlying dynamics even in a
high-dimensional system.

5. Mathematical Model for Criticality Analysis of Human Gait

The criticality analysis method [8], described in (5)—(11), is a nonlinear dynamical
system defined by a set of time derivatives that govern the interaction between two bio-
chemical components. The extracellular matrix, m, forms from soluble filaments, f| through
a process mediated by the transglutaminase enzyme, g, which reassembles filaments into
the matrix. At the same time, the proteinase enzyme, p, breaks down the matrix mback into
filaments fl1This interplay between deconstruction and reassembly maintains a dynamic
balance, ensuring proper regulation of both mland f([42].

The Rate Control of Chaos (RCC), as defined in (8)—(11), describes how the system
variables evolve over time, particularly the production rates of enzymes pland g. The fila-
ment concentration, f|plays a key nonlinear role in the system. RCC modulates this effect
using the function in (5), limiting deviations and stabilising the system. By tuning the
parameters of this control function, it is possible to adjust the degree of control over the
chaotic dynamics [7]. The bifurcation parameter, r;,;,, serves as an external perturbation,
providing a steady input that drives matrix production.

As the system evolves, it exhibits rich nonlinear phenomena such as bistability, limit
cycles, spirals, and chaos, especially near critical transitions. Its states are represented in
an n-dimensional phase space manifold, which captures nonlinear correlations, the inter-
actions of coupled dynamics, and the scale-invariant nature of critical fluctuations. In the
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model (5)-(11), the trajectories of fland mdorrespond to the scale-free nonlinear response
of the system when perturbed by r;,,.

While the Berry model [8,42] is inspired by subcellular processes rather than gait
directly, it can be applied to human walking by highlighting critical transitions in biological
systems. It is important to emphasise that the nonlinear representation resulting from the
mapping into the network of oscillators is based on the Self-Organised Critical state of
each of those oscillators. This means that the system is sensitive to small perturbations and
assume different orbits depending on those perturbations. Furthermore, the RCC control
ensures that the system remains stable and in a weak chaotic state that enables the SOC to
emerge. The parameter space formed by the network of individually controlled oscillators
is conveniently less relevant to the results, as any RCC-controlled network of oscillators
is capable of producing these mappings, without loss of generality [8]. The method,
therefore, allows for the detection of subtle gait instabilities that may be overlooked by
conventional or direct methods. In this context, the model reflects how muscles, joints,
and the nervous system coordinate to adapt to varying conditions. Efficient gait control
relies on continuous feedback from sensory receptors (afferent signals) and motor responses
(efferent signals), regulating muscle activity and maintaining neuromuscular coordination.
External forces generated during walking, combined with internal energy expenditure to
drive muscle function and modulate neurotransmitters, are all captured in the dynamics of
this control framework.

_ fu
Up(‘ifﬂ :;fpe@’qf), (6)
0g () =Ifeel3e1), @)
dmll_ fgll mpu
Tm_ﬂgmm_%i Eim: ®
daft fed . mpt __fpU
dr 81<GD+W+1+1”D q+gﬂm ©)
dvl] - nll
d*;;ﬂ: Wp(’if)?% —kap?) (10)
gl _ /! gp!
TR KLt Kies g deg -8 (1)

The CA mathematical model includes several parameters: 'yL:i:L(D 026, B=10.00075,
Kgr=14.5, Kg=1, Kg=0.1, Kdegﬂ_[]l 1, k= [Bdggm—[() 05, and k, = ¢ d” =[0.0455. The Hill

coefficients nland Ilare both set to four. The bifurcation parameter r,m (drives a range of

dynamic behaviors, including stable periodic cycles, bistability, and chaos, and it is kept
constant across all oscillators within the chaotic domain. An external input is applied as
a perturbation to 7, as described in (12), linking the oscillators through a relative scale
contribution from all other oscillators. The RCC control parameters in (5)~(7) (fp-=[fe =11,
xp=Ixgr=[4+1, and pj/=[2) remain fixed throughout the simulation experiments in this
study. These parameters, however, can be adjusted to allow individual oscillators to shift
their oscillatory trajectories, providing flexibility in controlling local dynamics.

nl!

j=1,j#i0
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The connectivity strength between oscillators, denoted by wj, varies across the values
0.00011, 0.00012, and 0.00025. External perturbations, represented by ¢, follow a Gaussian
distribution and are scaled within the range [—1, 1]. These perturbations are applied over
multiple evolution steps to examine how they influence the different oscillatory cycles.
For the experiments in this paper, a connectivity strength of w; =[0.0002 was empirically
chosen from the chaotic domain of the oscillators to investigate its impact on the system’s
dynamics while preserving overall stability.

M= Y m, 13)
i=1

Fi= f fi (14)
i=1

The total unweighted dynamics, Mland Flin (13) and (14), were obtained by summing
the contributions of all individual oscillators. This approach allows the overall system
behavior to be observed, even when the activity of single oscillators cannot be directly
monitored. A network of 16 oscillators was used, and the local dynamics of each oscillator
could be adjusted in response to perturbations from neighboring oscillators. The RCC
model equations and the generated data can be found in [43].

The original model (8)—(11) was first simulated to examine how RCC control affects
stability. Initial conditions were set as m(0) =[f[(0) =[p(0) =[g(0) =[0.8, and the simulation
was conducted over 94 x 10° points with a time step of 0.5.

When RCC control was applied, more structured and stable trajectories were observed,
particularly at {,-=[3-1, as illustrated in Figure 1. A slight reduction in amplitude was
noted compared to the uncontrolled system, but overall stability was improved. Time
series plots (Figures 2-5) show consistent oscillations around 9.2561 x [10*. For Xpr=[+3,
sparser trajectories were recorded on the fHmplane, and stabilisation occurred more slowly,
reaching 10.743 x 10%. In these simulations, xprand xgwere set to —1 for stable trajectories
and —3 for the sparser ones.

12 T T T T T T T T T

0
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1

Figure 1. Phase plot projection in the fHm(plane, showing the system evolution from one dynamic
regime to another. Control is activated at approximately 1 x 10* s. Chaotic oscillations dominate
before control, and give way to a clearly stabilised trajectory after control is applied, as seen in
Figures 2-5.
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Figure 2. Example output from the chaotic Berry model, with control activated at the dotted line.
The top panel plots the modelled variable m[over time. The bottom panel shows the same signal on a
logarithmic time scale, making changes in growth rate and stability easier to observe before and after
control is applied.

15 T T T T T T
% 1WWMWW/\/MM\/\/WWW/WM/ _
05 1 1 1 1 1 1
0.5 1 15 2 25 3 35 4
Time (s) x10°
15 T T T T T T
s
L Ll
05 H H H | H R SR R SR S S S NS S S SN A A S N A A B A
0.5 1 15 2 25 3 35 4
Time (s) x10°

Figure 3. Example output from the chaotic Berry model, with control activated at the dotted line.
The top panel plots the modelled variable flover time. The bottom panel shows the same signal on a
logarithmic time scale, making changes in growth rate and stability easier to observe before and after
control is applied.

0.05 T T T T T T
0.04 - -
20.03 a
0.02 I
0.01 1 1 1 1 1 1
0. 1 15 2 2.5 3 35 4
Time (s) x10°
005 T T T ) ————— T T
0.04 F
F i
0.03 i H
- § 1|
1|
a (]
002 i
0.01 H H H H | H R S T N S S N S S S I S A A O A A N
0.5 1 15 2 25 3 35 4
Time (s) x10°

Figure 4. Example output from the chaotic Berry model, with control activated at the dotted line.
The top panel plots the modelled variable plover time. The bottom panel shows the same signal on a
logarithmic time scale, making changes in growth rate and stability easier to observe before and after
control is applied.
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Time (s) x10°

o
i
— T T

015 . . . A 1 . A S S R S S I S S S N S S A S B
05 1 15 2 2.5 3 35 4

Time (s) x10°

Figure 5. Example output from the chaotic Berry model, with control activated at the dotted line.
The top panel plots the modelled variable glover time. The bottom panel shows the same signal on a
logarithmic time scale, making changes in growth rate and stability easier to observe before and after
control is applied.

Phase-space trajectories in the f=m[plane were used to represent the dynamic charac-
teristics of the model and its sensitivity to small perturbations. These manifolds were then
supplied as input features for the SVM, which allows the supervised learning algorithm to
detect patterns generated by the coupled oscillator network.

6. Methodology

The proposed framework for the CA gait dynamic representation, illustrated in
Figure 6, was evaluated using the Science Museum dataset. This framework is designed to
classify gait patterns of human based on their age.

e

Criticality SVM ;
Collection Analysis Classification Performance End

Figure 6. Data processing workflow for CA gait dynamics classification.

6.1.(Science Museum Dataset ]

Individuals aged 5 to 80 were invited to participate in the Live Sciences at the Science
Museum in London. Informed consent was obtained in accordance with approvals from
the Oxford Brookes University Research Ethics Committee (UREC). Two ethics approvals
were applied: UREC number 100490 for participants aged 5-16, and UREC number 090434
for participants aged 16-80. Participant characteristics, including age (years), gender
(m/f), self-reported ethnicity, height (m), weight (kg), foot length (based on shoe size),
and leg length (measured from the anterior superior iliac spine to the medial malleolus),
were recorded. Each participant walked a 10-meter distance at a self-selected speed while
wearing an inertial measurement unit placed over the projected center of mass in the lower
lumbar region (4th lumbar vertebra). Temporal (step time [ms], cadence [steps/min]) and
spatial (step length [m], stride length [m], walking speed [m/s]) gait parameters were
derived using validated models based on leg length and foot size [44,45]. The final dataset
consisted of 2019 participants, including 1105 females and 914 males. Participants were
categorised into five age groups for both genders: Children (2-12 years), Adolescents
(13-18 years), Young Adults (1944 years), Middle-aged Adults (45-64 years), and Older
Adults (65+ years).
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The Museum dataset, which represents the IMU signals in the x, y, and zlaxes, was
used as is as a perturbing input to the criticality analysis model described above, whose
output was standardised (z-score) before being fed into the SVM classifier.

6.2.[Experimentsidnd Results[]

The proposed CA approach was evaluated using the age-based gait patterns from the
Museum dataset. The goal of this evaluation is twofold:

(A) To classify the gait patterns of children, adolescents, young adults, middle-aged,
and old-aged adults by comparing males and females within each age group, as well
as analysing gait patterns across pairwise age group comparisons for a single gender
group (male or female).

(B) To examine the robustness of the CA approach in using machine learning models,
e.g., the SVM classifier, to differentiate male and female gait patterns.

6.2.1. CA for Age-Based Gait Patterns

The three experiments described in Section 6.2 were established to compare gait
patterns of individuals using the CA methodology, as detailed in (5)—(11). The raw data
samples in the main dataset corresponding to a specific demographic group have been
paired with another age group, either within the same gender or across different genders.
In the first experiment, we compared gait patterns for both genders, with datasets denoted
as {Xgm1 ... X5} for female and male children, adolescents, young adults, middle-aged,
and old-aged adults. For the second experiment, we focused on female-specific pairwise age
group comparisons, represented by {xy ... X¢10} for various combinations of female children,
adolescents, young adults, middle-aged, and old-aged adults. In the last experiment,
which is identical to the second, we conducted pairwise age group comparisons for males,
with datasets denoted as {xp . .. Xm10}, corresponding to male children, adolescents, young
adults, middle-aged, and old-aged adults.

We mapped the CA walking data into phase plots, with each line representing the gait
force trajectory of one participant. In Figure 7, the left column shows female participants
and the right column shows male participants. Rows correspond to the five age groups:
children, adolescents, young adults, middle-aged adults, and older adults. The phase plots
are drawn between the total gait force components Fiy; and My, generated through a
perturbed 16-oscillator dynamic network. These plots reveal distinct nonlinear domains and
clustering behaviour in the model’s phase space, showing how gait patterns consistently
group according to demographic profiles.

180 200

160 180

140 as0

140
120

120
100
80

60

(a) Female Child Walk (b) Male Child Walk
Figure 7. Cont.
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(c) Female Adolescents Walk (d) Male Adolescents Walk

250

> 100

(e) Female Young Adults Walk (f) Male Young Adults Walk

(g) Female Middle Aged Walk (h) Male Middle Aged Walk

200 180

180
160
140
120

> 100

80
60
40

20

(i) Female Old Aged Walk (j) Male Old Aged Walk

Figure 7. Phase plots of gait trajectories across demographic groups, with axes representing the
interaction between total force projections in the two dynamic domains M((vertical axis) and F((hor-
izontal axis). Each line corresponds to one participant’s gait trace. The left column shows female
participants and the right column shows male participants. Rows represent children, adolescents,
young adults, middle-aged adults, and older adults. The gait signal Fy,,; is transformed using a
perturbed 16-oscillator dynamic network, showing separate nonlinear decision regions and clustering
patterns characteristic of each age and gender group.
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The CA methodology not only provides an efficient data representation tool but also
serves as a microscopic lens, which reveals stability and differences in gait patterns that may
not be immediately apparent through traditional feature analysis alone. Moreover, male
children showed more extended trajectories along the Y-axis, indicating greater variability,
which could mean larger step lengths or more dynamic movement. This might be linked to
factors like muscle mass and energy levels. In contrast, female children’s trajectories were
more compact, which may indicate cautious movement or reflect early-stage neuromotor
control aimed at maintaining stability. Among young adults, there was a noticeable shift to
more consistent walking patterns. Female young adults showed more efficient, goal-driven
movement, while male young adults covered a larger spatial area, likely due to longer
stride lengths and faster walking speeds, which are influenced by muscle mass and physical
activity levels. For elderly individuals, both males and females exhibited more compact
trajectories, suggesting an emphasis on stability and cautious movement. Female elderly
individuals showed more constrained movement patterns, likely prioritising balance, while
male elderly individuals maintained slightly broader trajectories, which could be due to
attempts to preserve stride length. These differences reflect typical age-related changes in
muscle strength, joint flexibility, and the potential influence of psychological factors such
as confidence and fear of falling.

6.2.2. SVM for Age-Related Gait Patterns

The phase plots shown in Figure 7 make it straightforward to differentiate walking
patterns across various demographic groups. However, machine learning algorithms could
be utilised to quantify these distinctive features generated by the CA phase plots, which
enable accurate age prediction through gait pattern analysis. Particularly, the CA input
features were then used as inputs to the SVM classifier. The SVM classifier uses a Gaussian
kernel function due to its ability to map the CA nonlinear representation into a higher-
dimensional space, making nonlinear complex patterns more separable. Details of the
technical implementation of the SVM classifier can be found in [9,10].

Figure 8 shows the decision boundaries generated by SVM models using a Gaussian
kernel to classify the gait patterns of different demographic groups. It compares males and
females within each age group, with varying regularisation parameters C[:=[0.1, C[=01,
and C[=[10. As Clincreases, the decision boundary becomes more complex, shifting from
a smooth generalised line as in Figure 8a, to a more tightly fitting boundary around the
data points as in Figure 8c. This indicates the increased sensitivity of the model to correctly
classify data points at the expense of potentially overfitting, a typical behavior observed
when adjusting the regularisation parameter in SVMs. The variance in decision boundaries
suggests that higher Cvalues allow for more flexibility but risk capturing noise as part of
the pattern, especially in the presence of overlapping class distributions.
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Figure 8. SVM decision boundaries with a Gaussian kernel for classifying walking trajectories

across five demographic groups and both genders. Subfigures (a—c) show results for children,

(d—f) adolescents, (g-i) young adults, (j-1) middle-aged adults, and (m-o) older adults. Within each

group, the regularisation parameter is varied as C/=[0.1 in in (a,d,g,j,m), C[=(1 in (b,e,h k,n), and

C=10in (c,f,i,1,0), with the kernel width fixed at o[=[0.1.
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In Figure 8g—i, the decision boundaries exhibit a similar progression. As Clincreases,
the model adapts to finer complexities of the data points. However, the tighter clustering
of data in the adult group compared to the children’s group suggests that adult gait char-
acteristics are more defined, likely due to a combination of physical maturity, including
less relative variation in height and leg length, and adjustments in motor control mecha-
nisms. These factors likely result in a more stable and less variable gait, which requires
less aggressive tuning for optimal boundary creation. Figure 8g with C[=10.1 illustrates a
wide decision boundary, which creates a balance between classification and generalisation.
Meanwhile, Figure 8i, where CZ=[10, defines the classes with increased precision but at a
potential risk of misclassification due to overfitting.

Figure 8j-1 depict a clear decision boundary as Clincreases, similar to previous age
groups. However, the scattered distribution of data points and their spatial separation
indicate a greater variability in gait patterns among older adults, possibly due to age-related
physical changes. Obviously, Figure 8m,o reveal a complex decision boundary that seems
adept at detecting variations in gait, which suggests that higher Cwalues might be beneficial
in scenarios with significant class overlap or complex patterns.

Similarly, the series of plots shown in Figures 9 and 10 demonstrate the use of the
SVM classifier with a Gaussian kernel under different configurations of ciand C, along
with the CA methodology. The results indicate that this combination significantly improves
the classification of nonlinear gait dynamics across pairwise age group comparisons for
a single gender (either male or female), which shows the effectiveness of the approach in
distinguishing gait patterns.
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Figure 9. SVM decision boundaries with a Gaussian kernel for classifying walking trajectories of
female participants across ten age categories. Each row corresponds to one age category, from
children (row 1, subfigures (1-3)) to the oldest group (row 10, subfigures (28-30)). Within each
row, the columns show the effect of varying the regularisation parameter C: left column Cl=[0.1,
middle column C[=[1, and right column C[=[10. The Gaussian kernel width is fixed at ¢[z=10.1 for
all subfigures.
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Figure 10. SVM decision boundaries with a Gaussian kernel for classifying walking trajectories
of male participants across ten age categories. Each row corresponds to one age category, from
children (row 1, subfigures (1-3)) to the oldest group (row 10, subfigures (28-30)). Within each
row, the columns show the effect of varying the regularisation parameter C: left column C[=[0.1,
middle column C==11, and right column C[Z=[10. The Gaussian kernel width is fixed at ¢(==[0.1 for
all subfigures.

In addition, we evaluated the performance of SVM classifiers in distinguishing gait
patterns across different demographic groups for the three experiments we ran by monitor-
ing the area under the ROC curve (AROC) (shown in Figures 11, 12 and 13, respectively),
which provides a single numeric measure of classification ability. Higher AROC corre-
sponds to better separation between classes, which allows us to examine how gender-
or age-specific gait differences are captured and how the model responds to different
regularisation parameters C.
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Figure 11. ROC curves comparing classification performance of walking patterns between male
and female participants within each demographic group. Subplots show: (a) Children, (b) Adoles-
cents, (c) Young Adults, (d) Middle Aged, and (e) Older Adults. Each curve represents a different
regularisation parameter C[(0.1, 1, 10) with fixed o[=[0.1, showing the effect of hyperparameter
variation on the model’s ability to distinguish gender-specific gait patterns. Note: In subplot (e),
the red curve corresponding to C'=[1 overlaps with the curve for C(=[10, which makes it visually

indistinguishable.
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Figure 12. ROC curves showing the performance of the classification models in distinguishing

walking patterns between different female demographic groups. Each subplot compares a specific

pair of groups: (a) Children vs. Adolescents, (b) Children vs. Young Adults, (¢) Children vs.
Middle Aged, (d) Children vs. Older Adults, (e) Adolescents vs. Young Adults, (f) Adolescents
vs. Middle Aged, (g) Adolescents vs. Older Adults, (h) Young Adults vs. Middle Aged, (i) Young
Adults vs. Older Adults, and (j) Middle Aged vs. Older Adults. Each curve within a subplot
represents a different regularisation parameter C[(0.1, 1, 10) with fixed o:=[0.1, illustrating how

model performance varies across hyperparameter settings and age-group comparisons. Note: In

subplot (d), the red curve corresponding to C(=(1 overlaps with the curve for C[=[10, which makes it

visually indistinguishable.
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Figure 13. ROC curves showing the performance of the classification models in distinguishing
walking patterns between different male demographic groups. Each subplot compares a specific pair
of groups: (a) Children vs. Adolescents, (b) Children vs. Young Adults, (c) Children vs. Middle Aged,
(d) Children vs. Older Adults, (e) Adolescents vs. Young Adults, (f) Adolescents vs. Middle Aged,
(g) Adolescents vs. Older Adults, (h) Young Adults vs. Middle Aged, (i) Young Adults vs. Older
Adults, and (j) Middle Aged vs. Older Adults. Each curve within a subplot represents a different
regularisation parameter C[(0.1, 1, 10) with fixed ¢[=[0.1, illustrating how model performance
varies across hyperparameter settings and age-group comparisons. Note: In subplots (c¢,d,g,i,j), the
red curve corresponding to C[=[1 overlaps with the curve for C[*=[10, which makes it visually
indistinguishable.

The ability of the classifier to distinguish male and female walking patterns gener-
ally improves with increasing C. For instance, in young adults (xgy3), AROC rises from
88% at C[:=[0.1 to 95% at C[:=10, highlighting the strong influence of hyperparameter
choice. Children (x¢y,1) and older adults (xgy5) exhibit lower AROC, ranging from 77-82%
and 67-77%, respectively, indicating weaker gender differences or higher gait variability.
The approximate standard deviation of AROC across Clfor each group is about 3—4% for
young adults, reflecting the importance of tuning C, while older adults show a slightly
higher spread of 5-6%, suggesting consistently lower classification performance. Figure 14
summarises the model’s ability to separate young and middle-aged adults more reliably,
whereas children and older adults remain more challenging for classification.

100 ‘
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AROC (%)

40

30

20

Xfm3 Xfm4 Xfm5
Male and Female Demographic Groups

Xfml

Figure 14. Gender classification performance using SVM, whose kernel width is fixed at c(%=(0.1
and whose regularisation values are C[=[0.1,1,10. Lines represent X¢y; to Xgy5, and bars report
AROC percentages describing the model’s ability to separate male and female gait in each demo-

graphic group.
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Classification across female age groups shows greater variability. Certain pairs, such
as Young Adults vs. Middle Aged (x¢g), achieve 91-97%, while others, like Young Adults
vs. Older Adults (xgq), range from 70 to 100%. Higher Clgenerally improves perfor-
mance, but some pairs (x¢) drop from 95% to 80%, showing sensitivity to hyperparameters.
The standard deviation across Clvalues ranges from 2% to 12%, reflecting that some age-
group comparisons are easier to classify than others due to subtle gait differences. Figure 15
shows that the classifier performs reasonably well for female participants, but its confidence
depends on how distinctive the gait patterns are between age groups.

100 ‘

[ C=0.1
90 | I c=1 - u
[Tc=10 — =

80
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AROC (%)

40

30

20
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X1 X2 Xp3 Xgg Xf5 X6 Xf7 Xf8 Xpy Xf10
Female Age-group Pairwise Comparisons

Figure 15. Pairwise female age-group comparisons x¢ to X9 using SVM with fixed ¢[=[0.1 and
Cl[=[0.1,1,10. AROC percentages in each comparison measure the sharpness of age-separable
decision boundaries in female gait across demographic distances.

For male participants, the classifier reaches AROC values mostly between 86% and
100%. Young adults (xn3) achieve scores around 98-97%, with very strong separation
between male and female gait. A few demographics, such as x,,1, drop slightly at higher C[I
(from 89% to 86%), which means that too much regularisation can sometimes tighten the
boundary more than needed and affect accuracy by a small margin. When we look at all ten
age-group tests shown in Figure 16, the standard deviation of AROC sits roughly between
3-5%, which suggests that performance changes a moderate amount when either Clor the
age pair shifts. The runs where AROC climbs to 100% (xm9) tell us that for certain male
demographics, their walking features are so distinct that the classifier draws a decision
boundary with almost no overlap between the classes. These peak values confirm that
the model is most dependable when male gait differences are clear and biologically or
behaviourally pronounced across age groups.

Across all experiments, the classifier performs best on young and middle-aged adults,
with AROC consistently above 90% for both male and female datasets. Children and older
adults show lower performance (67-82%), reflecting more variable gait patterns. Standard
deviation analysis across Clshows how sensitive the model is to regularisation: higher
std indicates significant performance changes with C, while lower values correspond
to consistent but potentially lower accuracy. These results highlight the strengths and
limitations of the classifier depending on demographic group and hyperparameter choice.

The classification performance of the three experiments was also complemented
through examining the key metrics of the confusion matrix, such as precision, recall, F1-
score, and accuracy. The results of the classification models derived from the confusion
matrix metrics are tabulated in Tables A1-A3, which show the degree to which the SVM
classifier generalises across various age groups and gender demographics. These results
are further analysed through the lens of Figures 8-10, which provide deeper insights into
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the behavior of the classifier with different parameter settings. The results for x¢y,; (female
and male children) illustrate that the decision boundary, shown in the first row of Figure 8,
appears more flexible and adapts to variations in the feature space with a smaller cland
low C, as demonstrated by the mixed clustering of data points. However, it struggles
with overfitting at Cz=[0.1 due to its sensitivity to noise. As Clincreases, the boundaries
become smoother and more accurate, which better captures the true separation between
classes. This improvement is reflected in better precision and recall at C[=[1 and C[=[10.
However, as olincreases, the boundary loses definition, which indicates reduced specificity.
Similarly, the third row of Figure 8, which corresponds to xqy,3 (female and male young
adults), illustrates that the classifier performs best with optimal cland C. As clincreases,
the boundaries become overly simplistic, which is evident at c&=[10, where data points
from different classes overlap significantly. This can be interpreted as a reduction in both
accuracy and specificity. Conversely, the last row of Figure 8 for x¢y,5 (female and male old-
aged individuals) shows tight clustering at optimal configurations, which aligns with high
precision and recall metrics. As olincreases, the decision boundaries become too simple,
which leads to overfitting or underfitting. The same analysis follows for the results shown
in both Tables A2 and A3 with respect to their visualisation shown in Figures 9 and 10.

AROC (%)

Xy Xt Xuns Xt Xt Xus Xy Xuio
Male Age-group Pairwise Comparisons

Figure 16. Gender classification performance for male participants using SVM, which uses a fixed
c(=[0.1 and C=10.1,1,10. Lines Xy, to X190 show AROC percentages, whose values quantify how
clearly male gait features form gender-separable decision boundaries under each regularisation strength.

Furthermore, Tables A1-A3 show how well the SVM classifies gait patterns using the
CA features. Table Al looks at male vs female overall, with accuracy from about 57% up
to 97%, and generally high precision, recall, and F1-score. Table A2 focuses on female age
group comparisons, showing strong accuracy mostly above 80% and consistently high
F1-scores. Table A3 shows male age group comparisons, with similar trends and good
overall performance. Across all tables, precision, recall, and F1-score show that the model
correctly identifies classes while staying robust.

7. Conclusions

The effectiveness of the criticality analysis method in creating data-independent nonlin-
ear representations was shown, with the aim of improving the detection of complex patterns
in human gait dynamics across different demographic groups. The CA method was driven
by a network of biologically-inspired chaotic mathematical models, controlled by the rate
control of chaos, which is capable of controlling the chaotic exponential growth evolved
over time and restoring stability to the system. This resulted in a network of controlled
oscillators that produce a Self-Organised Critical system that is sensitive to the nonlinearities
in the input data when perturbed. A visualisation of how dynamic trajectories are formed is
provided, and the detection of any discrepancies introduced by the system is made obvious
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without the need for further machine learning training. The classification of various gait
patterns was validated using the SVM classifier with a Gaussian kernel function. This trans-
formed the high-dimensional nonlinear gait patterns into a lower-dimensional representation
space, where complex gait patterns can be identified efficiently. The combination of the CA
methodology with supervised machine learning algorithms like the SVM is found to work
really well, especially in capturing nonlinear relationships and enabling precise classification,
allowing classification between genders and ages with high reliability.
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Appendix A

Table A1. Confusion matrix for gender-based (female and male) comparisons for each age group.

Performance c=0.1 c=1 o[=10
C=0.1 C=1 C=10 C=0.1 C=1 C=10 C=0.1 C=1 C=10

Xfm1

Precision 0.73 0.78 0.79 0.67 0.80 0.85 0.56 0.56 0.56

Recall 0.989 0.989 0.989 1 1 1 1 1 1

F1-Score 0.84 0.87 0.88 0.80 0.89 0.92 0.72 0.72 0.72

Accuracy (%) 78.94 83.62 84.79 73.09 86.54 90.64 56.72 56.72 56.72
Xfm2

Precision 0.83 0.86 0.85 0.68 0.89 1 0.53 0.53 0.53

Recall 0.96 0.96 1 1 0.94 0.93 1 1 1

F1-Score 0.89 0.90 0.92 0.81 0.91 0.96 0.7 0.7 0.7

Accuracy (%) 87.41 89.51 90.90 74.83 90.9 96.5 53.84 53.84 53.84
Xfm3

Precision 0.84 0.93 0.93 0.76 0.91 0.93 0.55 0.55 0.55

Recall 0.98 0.99 0.99 0.99 0.97 0.99 1 1 1

F1-Score 0.91 0.96 0.96 0.86 0.94 0.96 0.71 0.71 0.71

Accuracy (%) 89.53 95.81 96.02 82.42 93.93 95.81 55.64 55.64 55.64
Xfm4

Precision 0.91 0.93 0.93 0.74 0.91 1 0.57 0.57 0.57

Recall 0.96 0.96 0.98 1 0.92 0.94 1 1 1

F1-Score 0.94 0.94 0.95 0.85 0.95 0.97 0.72 0.72 0.72

Accuracy (%) 93 94 95 80 95 97 57 57 57
Xfm5

Precision 0.68 0.81 0.81 0.73 0.82 0.82 0.63 0.63 0.63

Recall 0.92 0.92 0.92 1 1 1 1 1 1

F1-Score 0.78 0.86 0.86 0.84 0.90 0.90 0.77 0.77 0.77

Accuracy (%) 68.18 81.81 81.81 77.27 86.36 86.36 63.63 63.63 63.63
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Appendix B
Table A2. Confusion matrix for female-specific pairwise age group comparisons.
Performance =01 c=1 o=10
C=0.1 C=1 C=10 C=0.1 C=1 C=10 C=0.1 C=1 C=10
Xf1
Precision 0.79 0.79 0.80 0.65 0.78 0.79 0.57 0.57 0.57
Recall 1 1 1 1 1 1 1 1 1
F1-Score 0.88 0.88 0.89 0.78 0.87 0.88 0.73 0.73 0.73
Accuracy (%) 85.05 85.05 86.08 69.07 84.02 85.05 57.73 57.73 57.73
Xf2
Precision 0.8 0.82 0.82 0.68 0.77 0.76 0.57 0.57 0.57
Recall 0.98 1 0.99 1 0.99 0.99 1 1 1
F1-Score 0.88 0.90 0.90 0.81 0.86 0.86 0.73 0.73 0.73
Accuracy (%) 85.01 87.37 87.37 73.06 82.65 81.64 57.74 57.74 57.74
Xf3
Precision 0.78 0.79 0.80 0.71 0.83 0.83 0.58 0.58 0.58
Recall 0.97 0.97 0.98 1 0.99 0.99 1 1 1
F1-Score 0.87 0.87 0.88 0.83 0.90 0.90 0.74 0.74 0.74
Accuracy (%) 82.78 84.1 85.43 76.82 88.07 88.07 58.94 58.94 58.94
Xf4
Precision 1 0.8 0.8 0.76 0.86 0.86 0.56 0.56 0.56
Recall 0.84 0.92 0.92 1 1 1 1 1 1
F1-Score 091 0.85 0.85 0.86 0.92 0.92 0.72 0.72 0.72
Accuracy (%) 91.3 82.6 82.6 82.6 91.3 91.3 56.52 56.52 56.52
Xf5
Precision 0.94 0.87 0.88 0.72 0.94 0.96 0.58 0.56 0.56
Recall 0.89 0.99 0.98 0.99 0.95 0.98 1 1 1
F1-Score 0.91 0.93 0.92 0.83 0.94 0.97 0.73 0.72 0.72
Accuracy (%) 91.07 91.58 91.58 78.45 94.27 97.13 59.42 56.39 56.39
Xf6
Precision 0.86 0.87 0.85 0.68 0.88 1 0.52 0.52 0.52
Recall 0.98 0.97 0.96 1 0.94 0.98 1 1 1
F1-Score 0.92 0.92 0.90 0.81 0.91 0.99 0.68 0.68 0.68
Accuracy (%) 91.39 91.39 89.4 75.49 90.72 99.33 52.31 52.31 52.31
Xf7
Precision 0.72 0.88 0.81 0.56 0.63 1 0.39 0.39 0.39
Recall 0.88 0.88 1 1 0.77 1 1 1 1
F1-Score 0.8 0.88 0.9 0.72 0.7 1 0.56 0.56 0.56
Accuracy (%) 82.6 91.3 91.3 69.56 7391 100 39.13 39.13 39.13
Xf8
Precision 0.82 0.92 0.93 0.75 0.92 0.92 0.53 0.53 0.53
Recall 0.98 1 1 0.98 0.96 1 1 1 1
F1-Score 0.89 0.95 0.96 0.85 0.94 0.95 0.69 0.69 0.69
Accuracy (%) 88.07 95.36 96.02 82.11 94.03 95.36 53.64 53.64 53.64

https:/ /doi.org/10.3390/math14010177


https://doi.org/10.3390/math14010177

Mathematics2026, 14, 177 28 of 31
Table A2. Cont.[]
Performance o=10.1 =01 o=[10
C=0.1 C=1 C=10 C=0.1 C=1 C=10 C=0.1 C=1 C=10
Xf9
Precision 0.71 0.81 1 0.76 0.90 0.90 0.43 0.43 0.43
Recall 1 0.9 1 1 1 1 1 1 1
F1-Score 0.83 0.85 1 0.86 0.95 0.95 0.60 0.60 0.60
Accuracy (%) 82.6 86.95 100 86.95 95.65 95.65 43.47 43.47 43.47
Xf10
Precision 1 0.92 1 0.75 0.90 0.92 1 0.52 0.52
Recall 0.83 1 1 1 0.83 1 0.5 1 1
F1-Score 0.90 0.96 1 0.85 0.86 0.96 0.66 0.68 0.68
Accuracy (%) 91.3 95.65 100 82.6 86.95 95.65 7391 52.17 52.17
Appendix C
Table A3. Confusion matrix for male-specific pairwise age group comparisons.
Performance ol=100.1 =01 o=10
C=0.1 C=1 C=10 C=01 C=1 C=10 C=01 C=1 C=10
Xm1
Precision 0.86 0.89 0.88 0.68 0.83 0.84 0.55 0.55 0.55
Recall 0.98 0.97 0.95 1 1 1 1 1 1
F1-Score 0.92 0.93 0.91 0.81 0.90 0.91 0.71 0.71 0.71
Accuracy (%) 90.9 92.3 90.2 74.12 88.81 89.51 55.94 55.94 55.94
Xm2
Precision 0.81 0.89 0.89 0.63 0.86 0.85 0.53 0.53 0.53
Recall 0.98 0.98 0.96 1 0.99 1 1 1 1
F1-Score 0.89 0.93 0.93 0.77 0.92 0.92 0.69 0.69 0.69
Accuracy (%) 87.65 92.67 92.25 69.03 91.63 91.21 53.13 53.13 53.13
Xm3
Precision 1 0.93 0.93 0.67 0.94 0.94 0.55 0.55 0.55
Recall 0.945 1 1 1 1 1 1 1 1
F1-Score 0.97 0.96 0.96 0.80 0.97 0.97 0.70 0.70 0.70
Accuracy (%) 97 96 96 73 97 97 55 55 55
Xm4
Precision 1 0.87 0.87 0.82 1 1 0.63 0.63 0.63
Recall 0.85 1 1 1 0.92 0.92 1 1 1
F1-Score 0.92 0.93 0.93 0.80 0.97 0.97 0.77 0.77 0.77
Accuracy (%) 90.9 90.9 90.9 86.36 95.45 95.45 63.63 63.63 63.63
Xm5
Precision 0.95 0.86 0.84 0.65 0.84 0.85 0.59 0.52 0.52
Recall 0.87 0.98 0.98 1 0.99 1 1 1 1
F1-Score 0.91 0.92 0.90 0.78 0.91 0.92 0.74 0.68 0.68
Accuracy (%) 91 91.42 89.74 71.96 89.95 91 63.8 52.3 52.3
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Table A3. Cont.[]

Performance ol=10.1 =1 o[=10
C=0.1 C=1 C=10 C=0.1 C=1 C=10 C=0.1 C=1 C=10
Xmé6
Precision 0.95 0.84 0.83 0.62 0.81 0.82 0.98 0.51 0.51
Recall 0.90 0.98 1 1 0.98 1 0.96 1 1
F1-Score 0.92 0.90 0.91 0.76 0.89 0.90 0.97 0.67 0.67
Accuracy (%) 93 90 90 69 88 89 97 51 51
Xm?7
Precision 1 0.93 0.93 0.82 1 0.93 0 0.63 0.63
Recall 0.85 1 1 1 1 1 0 1 1
F1-Score 0.92 0.96 0.96 0.90 1 0.96 0 0.77 0.77
Accuracy (%) 90.9 95.45 95.45 86.36 100 95.45 36.36 63.63 63.63
Xm8
Precision 0.83 0.96 0.90 0.70 0.87 0.77 0.51 0.51 0.51
Recall 1 0.98 0.98 1 1 1 1 1 1
F1-Score 0.91 0.97 0.94 0.82 0.93 0.87 0.67 0.67 0.67
Accuracy (%) 90 97 94 79 93 85 51 51 51
Xm9
Precision 0.93 1 1 0.87 1 0.93 0.63 0.63 0.63
Recall 1 1 1 1 0.92 1 1 1 1
F1-Score 0.96 1 1 0.93 0.96 0.96 0.77 0.77 0.77
Accuracy (%) 95.45 100 100 90.9 95.45 95.45 63.63 63.63 63.63
Xm10
Precision 1 0.87 0.87 0.82 1 1 1 0.63 0.63
Recall 0.85 1 1 1 0.92 1 0.78 1 1
F1-Score 0.92 0.93 0.93 0.90 0.96 1 0.88 0.77 0.77
Accuracy (%) 90.9 90.9 90.9 86.36 95.45 100 86.36 63.63 63.63
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