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ABS.TRACT 

THE ECOLOGY OF A MIGRATORY MOTH, Autographa gamma L. 

Although the Silver Y moth, Autographa gamma, is recognised as one of 

Britain's commonest migrant insects, little is known of its exact habitat 

requirements. This study attempts to define these requirements more clearly 

by assessing foodplant preferences and norms of reaction to environmental 

parameters under controlled conditions. 

The high level of polyphagy found in this species is produced by a female 

oviposition strategy which utilises many hostplants, high larval mobility and 

an ability to grow to maturity on a wide range of plant species. Selective 

pressures leading to polyphagy are discussed. Reduced growth rates and adult 

size were produced by different foodplants, larval density and temperature 

changes. The size changes are due to a subtle interaction between growth rates 

and the hormonal control of moulting. The susceptibility to size variation 

is the price paid for short generation times. 

Factors affecting adult fecundity were assessed adult food intake was 

found to be a major influence, providing a mechanical stimulus initiating 

rapid reproductive maturation, as well as energy which increases egg production. 

The most suitable habitat for a Silver Y would be a mesic enviromrent 

with a temperature of about 17.50C and abundant nectar. No Palaearctic or 

Mediterranean region provides these conditions all year round. As the Silver 

Y lacks a well-defined developmental arrest and trials showed a poor ability 

to overwinter in Britain, the moth must continuously track a shifting patch-

work of favourable habitats. The spatia-temporal pattern of habi tat changes 

is discussed in relation to whether true migration (sensu Lack) or dispersal 

is an appropriate life history tactic. Flight records purporting to 

demons.trate true migration are shown to be compatible with a random flight 

direction model and it is concluded that insect species such as the Silver Y 

are best regarded as nomadic generalists fundamentally different from 

classic migrants like the Monarch butterfly. 
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INTRODUCTION 

Ever since the pioneering work documenting the extent of migratory 

movements by insects conducted by C.B. Williams (Williams 1930, 1958, 

Williams et a1. 1942), it has been accepted by ecologists that a 

number of insect species regularly move thousands of kilometres 

northwards from their overwintering regions to produce new generations 

in the more favourable conditions found during the summer months at 

temperate latitudes. The model species and focus for research into 

migration has, for a long time, been the Monarch Butterfly, 

Danaus plexippus L., whose adults each spring migrate from their 

overwintering sites deep in the forest glades of the Mexican Neo-

. 1 \!. l' AI' . volcan1c P on1ze BC ep1as spp. throughout the Un1ted States 

and southern Canada (Urquhart 1960, Tuskes and Brower 1978). 

Throughout the period 1940-1960 the major emphasis in migration 

research was in documenting and observing those species which move 

and where they go,with little additional study of the biology of 

the species involved. The whole field of research lay well away from 

the developing theoretical framework of ecology until 1967, when the 

publication of MacArthur and Wilson's seminal work 'The Theory of 

Island Biogeography' placed and colonisation firmly amongst 

the attributes of r-selected species. r-K theory was the dominant 

theoretical tool of ecologists for the subsequent 10 years and it was 

only in the late 70s that the concept of an r-K continuum finally 

proved too simplistic to accommodate the variety of life-history 

strategies documented by field workers. 

During the same period a number of important reviews synthesised 

available data on migratory insects revealing important ecological 



similarities and parallels. Southwood (1962) emphasised the strong 

correlation between migratory species and the occupation of ephemeral 

niches. Johnson (1969) incorporated migratory movement of many adult 

insects into an 'oogenesis-flight syndrome'. where movement takes 

place prior to adult reproduction; a concept reinforced by Dingle 

(1972). who stressed the importance of dispersal by individuals which 

are at their maximum reproductive potential. The full elucidation 

of the hormonal control of adult flight activity and reproductive 

maturity (Rankin 1978) brought with it the realisation that migration 

and diapause serve as alternative methods of surviving deteriorating 

environmental conditions (Southwood 1977, Dingle 1978). It is now 

apparent that, rather than existing as an attribute of one end of the 

r-K continuum, migration itself exists as an ecological continuum of 

strategies used by insects to survive in habitats which vary both in 

space and time. The recent incorporation of spatial dynamics into 

models of classical population dynamics (Taylor and Taylor 1977, 1979) 

thus represents an important, albeit difficult, advance in the 

"reality" of models of changes in insect numbers. 

The Silver Y moth, Autographa gamma L. is one of Britain's 

commonest migratory insects, appearing in variable numbers every 

summer throughout the country and sometimes achieving almost plague-

like population sizes locally, even though it is not thought to be 

capable of surviving the winter at these latitudes. A. gamma figured 

prominently in William's analyses of insect migration to and from 

Britain and was one of the first insect species to be analysed for. 

the existence of seasonal changes of flight direction (Fisher 1938), 

During the excitement following the discovery of the morphological 

phase associated with migratory behaviour in the Desert Locust, 
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Shistocerca gregaria L. (Uvarov 1931) the larvae of A. gamma were 

extensively studied to see if they exhibited similar series of changes 

(Long 1953). More recently data on the flight direction of A. gamma 

adults at different times of the year have been used to support both 

wind-controlled and oriented migratory flights (Taylor, French and 

Macaulay 1973, Baker 1978). Along with the Red Admiral and 

Painted Lady butterflies, the Silver Y is one of Britain's common 

migrant insects. Inevitably perhaps, an assumption seems to have 

been made that the mechanism by which these movements are achieved is 

essentially the same, not only for both the northwards and southerly 

movements, but also for. all the different species involved. Although 

the gradual accumulation of observations by both amateur and 

professional biologists has greatly strengthened the argument for 

controlled oriented flight in butterflies the evidence for similar 

behaviour in moths remains equivocal. A major reason for the deficiency 

of evidence for nocturnal flying insects is the technical difficulty 

of collecting accurate data; a problem which has been slowly overcome 

in the past few years by the introduction of radar studies and large 

scale marking programmes (Schaffer 1976, Rabb and Kennedy 1979, 

Greenbank There remains, however, the problem that we 

may be setting out to prove what we want to believe; a task which can 

always be achieved in the realms of equivocal data. The main thrust 

of insect migration research has always been towards demonstrating 

that they do not form an aerial plankton passively moved through the 

atmosphere, but exhibit some degree of control over their movement. 

This thrust is in danger (I feel) of becoming an overshoot where 

all species are automatically endowed with the navigational attributes 

of the most highly evolved (or studied) species. Two important 
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points may be raised to demonstrate the needs for caution before 

accepting this kind of extrapolation; firstly (assuming that migratory 

ability is not of monophyletic origin) the requisite genetic 

variation may not have arisen or, more likely, not have been selected 

for in all species. Secondly, and more importantly, it is the life 

history strategy of the insect in question which will dictate the 

intensity of selection for migratory ability and navigational control 

of movement. This may not always result in the evolution of highly 

specialized directional movement patterns. 

Evidently great ecological differences exist between the Silver Y 

tOOth and a classic migrant butterfly like the Monarch. The latter, 

for instance, possesses an adult diapause stage, lays a maximum of 

500 eggs and is essentially monophagous. The Silver Y moth shows 

continuous development with no diapause or hibernation stage, lays 

a maximum of 1500 eggs per female and is one of the most widely 

polyphagous lepidopterans, The two species thus differ for three of 

the most fundamental life history attributes; generation time and 

fecundity, which together determine the intrinsic rate of natural 

increase (r ), and habitat (sensu foodplant) distribution. Did max 
these differences arise as the result of different migratory strategies? 

Did alternative migratory strategies evolve because of these ecological 

differences? Or are the two attributes so tightly interwoven 

(coevolved) as to render questions of this ,kind superfluous? The 

answers to any of these questions will not emerge from more and more 

studies of the bidogy of Danaus plexippus. They will only come from 

the gradual build-up of information about comparative life histories 

gained from the study of new species. There are over one million 

ways of "earning a living" in this world (a logical corollary of 

the number of extant species and the principle of Competitive Exclusion), 



It is possible to resolve these into a smaller number of life history 

tactics, just as we arrange species into higher taxonomic groups. 

Unfortunately the groupings "migrant" and "non-migrant" appear not 
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to be appropriate, even in the light of our present limited knowledge. 

Most likely we will have to learn to "position" a species along a 

series of continua for variables like habitat predictability, re-

productive potential, vagility etc. (Southwood 1977). Since a major 

component of these axes consists of other living species which are 

themselves evolving, we must also accept that no position will remain 

static (Van Valen 1973), although the rate of change of position is 

unlikely to interfere with present day ecological studies. 

In this study I haye attempted to dissect the life cycle of the 

Silver Y moth not just for descriptive purposes, but also to assess 

the likely selective pressures which have, and are, shaping its 

highly mobile life history strategy. The methods I have used are 

not those typically use:i in a single species thes is, which would 

usually adopt the classic autecological approach of documenting the 

interactions of the species with its natural habitat. This is 

relatively easily and meaningfully achieved when the habitat of the 

species under consideration is known (c.f. Asclepias plants for larval 

D.plexippus). But, although many papers have been published on the 

Silver Y and numerous anecdotal records of the species are condensed 

into the accounts contained in South (1962), Scorer (1913), Newman 

and Leeds (1913), we do not really know what the exact habitat of 

the moth is. We know that it is polyphagous, but which plant species 

does it prefer over others? Do ovipositing females prefer the same 

plants as the larvae themselves? Which criteria are important in the 

assessment of best? In order to answer these questions it is necessary 



to conduct the initial investigations under controlled conditions, 

where relatively unambiguous results might be obtained and we may 

begin to see "habitat" as it might appear through the eyes (rather 

sensory apparatus) of the Silver Y. Only when we achieve this does 

it become possible to ask whether the Silver Y is a migrant or not. 

The later sections of this report are devoted to an investigation of 

dispersal and its effect on reproductive success in Silver Ys. Only 

if sufficiently large selective advantages for directional migration, 

or diapause for that matter, can be demonstrated need we consider 

whether these strategies might actually be evolving. 

In summary, the aims of this study are:-

1. To attempt to define the preferred habitat of the Silver Y 

moth. 

2. To investigate possible conflict between adult and larval 

preferences. 

3. To establish which larval environmental factors influence 

reproductive success. 

4. To establish which adult environmental factors influence 

reproductive success. 

5. To review the evidence for directional migration by 

Silver Ys. 

6. To discuss the existence of a highly mobile "nomadic" life 

history strategy which has no requirement for directional 

migration. 

GENERAL HETHODS: 

The moth species for which experimental data were collected 

are all members of the Plusiinae, a sub-family within the family 

Noctuidae. Although I mainly concentrated on the ecology of the 
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Silver Y moth, Autographa gamma L. it was necessary to include 

comparative studies of other closely related non-migrant species. 

This enables particular biological characteristics to be assessed 

for their importance to the highly mobile life history of the Silver Y, 

rather than their being attributes shared by all members of the group, 

and therefore not specifically adaptations to migration. It was 

not possible to complete full control studies at every stage of the 

study due to the high workload this would have entailed. Where the 

controls are thought to be particularly relevant the data have 

been included in this report, but for other parts only small pilot 

controls were run to confirm that differences existed or not, 

without full replication. The data from these trials are not 

included in this report. Four different resident species were 

utilised in the study because each offered contrasts to the Silver Y. 

Below I give a summary of the life cycle of each species, emphasising 

their particular relevance to this work. Table 1 contains details 

of the typical phenology and known foodplants as given by standard 

textbooks (South 1961, Scorer 1913, Newman and Leeds 1913). 

Autographa gamma L. (The Silver y). This moth was recorded as 

causing economic damage to crops as long ago as 1735 near Paris and 

has remained an irregular pest throughout Europe since this date. 

It is traditionally thought to migrate north from N.Africa in the 

Spring and invade Europe in May, the time at which the first British 

adults are usually trapped. After an initial burst of adults in late 

May and early June a much more protracted flight period 

lasting from July to October in Britain. A.gamma is thought not 

to possess a resting stage at any point in its life cycle and is 

not considered to be able to survive the winter months at these 

latitudes. The larvae are noted for their extreme polphagy, eating 
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virtually any low-growing herbaceous plant, including grasses and 

some shrubs,in confinement. 

Autographa jotal(The Plain Golden y) This moth was utilised as 

a control species because it (along with A. pulchrina) is the most 

closely related British plusiid to the Silver Y. It differs from 

A.gamma in possessing a photoperiodically controlled diapause period 

during the third larval instar. Larvae cease to feed and move from 

the foodplant into the surrounding leaf litter during October and 

only initiate feeding again to lengthening photoperiods 

in the spring. Prevention of induction of this diapause appears to 

be impossible, so the life cycle is strictly univoltine. This species 

does, however, share with A.gamma a tendency towards polyphagy and 

has been recorded on a wide variety of different foodplants ranging 

from Crataegus and Salix to common herbs such as Lamium and Urtica. 

Autographa pulchrina Haw. (The Beautiful Golden y) This species 

is similar in most respects of its biology to the previous species 

but is slightly more common, in the vicinity of Oxford at least, and 

has a flight period slightly earlier in the year; during June rather 

than July. It is not recorded as being as catholic in its foodplant 

choice as A.jota, being restricted to herbaceous plants (see Table 1). 

Diachrysia chrysitis L. (The Burnished Brass) Although less closely 

related to A.gamma than the previous two species, this moth was used 

because it does not have a strictly univoltine life cycle, sometimes 

producing a second generation of adults in August/September. It was 

thought that it would prove possible to establish a non-diapause 

stock for use as a control in larval development time experiments , 

etc. This in fact proved to be impossible but the species still 

provided a useful comparison as an oli;gophagous species with a 

preference for Urtica rather than Lamium. 

8 



9 

TA3LE 1: OF THE BIOLOGY OF BRITISH PLUSIID 

UTILISED Pl THIS STUDY. 

SPECIES SEAsOtlALITY 

Diachrysia Imago July - Aug 
chrysitis Ova Aug 

Autographa 
jota 

Larva Sept - June 
Pupa June 

Imago July 
Ova July 
Larva Aug - May 
Pupa June 

Autograoha Imago' June - July 
oulchrina Ova July 

Autographa 
gamma 

Abrostola 
triplasia 

Larva Aug - Ma.y . 
Pupa '. May 

Imago June - Oct 
Ova July. 
Larva Aug - May 
Pupa May 

Imago June - July 
Ova July 
Larva. Aug - Oct 
Pupa Nov - May 

HABITAT A!m roODPLA:lT 

Lamium Urtica dioica 
Caleoosis tetrahit, 
minus, Carduus lanceolatus 

Urtica Ceum urbanum, 
Senecio' vulgaris, Lamium 
album, Chaeronhyllum sylvestre 
Lonicera 
sylvatica, Heracleum spp, 
Plantago spp, others in confines. 

Urtica. spp, Chaerophyllum 
sylvestre, Senecio vulgaris, 
Lonicera peric;,lYmenum, 
urbanum, Larnium album. 

Widely polyphagous on 
herbaceous plants, has also 
been found on lime and buddleia. 

Urtica dioica only. 

Compiled from Allan(1949), South(1961), Scorer(1913) 
and Uewman and Leeds(1913). . 



Abrostola trip1asia L. (The Spectacle) The Spectacle provides a 

contrast to the majority of other British plusiids. The adults and 

larvae are different morphologically from those of the other species 

in this group. The life cycle is also different, overwintering 

being achieved as a pupa rather than the usual larval stage/and the 

larvae are strictly monophagous, not being found on any foodplant 

other than Urtica dioica. Although South (1962) and Newman and Leeds 

(1913) consider the species to be univoltine, the protracted adult 

flight period (May-November) and occasional direct development and 

emergence found in laboratory stocks indicate that there may be a 

genetic polymorphism for one or two generations per year in this 

species, similar to that found for the Burnished Brass. 

Stocks of all the moth species used in this study were obtained 

from wild females trapped in Robinson mercury vapour light traps 

situated either on the roof of the Biology Department of Oxford 

Polytechnic (1977-1978) or in a suburban garden in Headington, 

Oxford (1978-1982). All stock lines were established from single 

gravid females but the genetic constitution of these lines was not 

assumed to be particularly homogeneous due to the frequent occurrence 

of multiple matings in this group of moths. Established stock 

lines were maintained as two separate populations whenever possible. 

One set of populations were maintained in a laboratory where they 

were exposed to normal photoperiods (the laboratory was rarely lit 

after dark in the summer months when the stocks were in residence). 

and to temperatures less variable and slightly higher than those 

outside. The other populations were maintained under controlled 

conditions at a constant temperature of 200 e (sometimes reduced to 

l8oe) and a photoperiod of l6L:8D. Whenever possible stock lines 

were outbred to one another or freshly caught females/males in order 

to preserve genetic heterozygosity. Lines which were inbred at 
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different times in the study showed increased mortality rates and 

lower mating success than outbred lines, implying that inbreeding is 

not common in these species. No single line of any ot the species 

was maintained throughout the whole study period. Usually only a 

single line was maintained during the winter months and new lines 

established each summer. All stocks were reared as larvae in plastic 

boxes (27 x 15 x 10 cm) at a maximum density of 50 larvae per box. 

Experimental larvae were kept either in groups of up to twenty in 

containers (17 x 12 x 6 cm) or in individual containers (8 x 5 x 2 cm). 

All boxes were cleaned and provided with freshly picked foodplant at 

least every 48 hours, and usually every day. Mortality due to nuclear 

polyhedral virus (NPV) infection appeared to be unavoidable in all 

species, but in order to minimise the amount and spread of infection 

the following sanitary procedures were used: 

1. Foodp1ant material was freshly picked each day and soaked 

for an hour, then rinsed thoroughly in running water before use. 

2. All frass and uneaten food was removed from the boxes 

daily (sometimes only every forty-eight hours with the smaller instars) 

along with the tissue paper used to line the boxes. Each box was 

then wiped with a cloth soaked in 70% alcohol before renewing the 

tissue paper and replacing the larvae with new food. 

3. Any larvae showing a characteristic black lesion on the last 

abdominal segment were removed. The appearance of these spots 

indicates a viral infection which may not kill the larva until it 

reaches the final instar, by which time it will have infected other 

larvae by the production of contaminated frass. Any larvae in 

individual boxes showing a lesion or a low growth rate were placed 

at the end of the feeding order until they either recovered or 

developed the full symptoms of infection. tn this way the transmission 

of disease was minimised. 

11 



4. Each week all the rearing boxes were exchanged for other 

boxes which had been soaked for at least 48 hours in a 1% solution of 

sodium hypochlorite, a laboratory disinfectant. The used boxes 

were then soaked in the disinfectant before being used again. 

5. At some times during the course of the study period the 

stocks of the controlled environment cabinets were provided with a 

source of ultra-violet light in addition to the normal lighting. 

U.V. radiation is reported to be effective in reducing the viability 

of virus particles, at least whilst they are outside their hosts. 

Since no proper control lines were run in parallel to these stocks 

I have no evidence as to whether this is an effective means of virus 

control in laboratory stocks. 

Pupae from stock lines were usually removed from the rearing 

boxes the day after pupation when the pupal case was fully tanu ed, 

and then kept in either male or female only containers until 

emergence. Pupae may be sexed by close observation of the abdominal 

regions of the pupa since the outline of the genital opening differs 

between sexes, as shown in Figure 1. 

Newly emerged adults could be sexed by gently separating the 

forewing from the hind wing and observing the single or mUltiple 

nature of the frenulum arising from the base of the hindwing. 

12 

Paired moths for stock lines or experimental trials were kept in the 

group containers with freshly picked leaves for oviposition and a 

cotton wool pad soaked in a 10% sucrose solution as a nectar 

substitute. Pairs were transferred to new boxes daily once oviposition 

had commenced so that synchronously hatching batches of eggs could 

be used to initiate experimental lines. Any surplus adults were 

either kept in large muslin flight cages or released well away from 

the trap sites. 



Figure 1 The differences in genital opening of the pupae of 
Autographa gamma males and females . 

Genital pores close together, often with white flashes 
on. the 

FEMALE : Genital pores further apart , no white .. flashes. 
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Trap records of moths were kept for captures at the two light 

traps mentioned above. In addition occasional records and specimens 

were obtained from Malaise traps situated in suburban gardens in 

Headington and Leicester, and a woodland site in Bernwood Forest, 

Bucks. 

Choice of plant species for oviposition and feeding trials. The 
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range of plant species used for the assessment of oviposition preference 

and larval feeding by the Silver Y was dictated partly by the need to 

choose plants which were available in sufficient quantity close by, 

and partly by a desire to utilise a taxonomically wide range of plants 

which did not vary too much in growth form. The final choice of seven 

species represents plants known to be utilised by at least some of 

the study moths, or plants found in similar habitats at approximately 

the same density. All the plant species chosen occur throughout 

most if not all of the total geographical range of A.gamma, and are 

therefore not likely to be plants only used in this country. Table 2 

summarizes the characteristics of the plant species used. 

HABITAT CHOICE: THE IMPORTANCE OF THE OVIPOSTING It is 

recognised that the main functions of the adult stage of a holo· 

metabolous insect are dispersal and reproductive activity. The 

division of labour between the larval feeding stages and the more 

mobile adults is the major ecological advantage of holometaboly. 

When considering the chosen habitat of any species it is usually 

necessary to consider the movements of the adult insect. particularly 

the ovipositing female, in selection of the larval habitat. There 

are many anecdotal examples of inappropriate oviposition site choices 

being made by insects; ranging from attempts by dragonflies to 

deposit their eggs in wet concrete or almost boiling water, .to the 
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TABLE 2: DISTRIBUTION OF FOODPLANT SPECIES USED I!l THIS STUDY. 

SPECIES FAMILY 

Taraxacum officinale 
COMPO SITAE 

Lamium album 
LABIATAE 

Stachys sylvatica 
LABIATAE 

Plantago lanceolata 
PLA..'lTAGINACEAE 

Urtica dioica 
URTICACEAE 

Rumex obtusifolius 
POLYGOUACEAE 

Brassica oleracea 
CRUCIFERAE 

HABITAT 

Pastures, meadows, 
lawns, wayside etc 

Hedgebanks, road-
sides ,wasteplaces , 
open woodland. 

Woodlands, 
banks and shady 
places. 

Grassy places and 
wastelands 

STATUS IU BRITAIN AND 
ABROAD. 

Abundant throughout 
N. Hemisphere. 

Common. Scandanavia 
to Spain and Italy. 

Common. Norway to 
N.Portugal and Albania. 

Generally disributed. 
Europe north to 
Iceland. 

Hedgebanks ,woods , Abundant ,in all 
grassy places, fens, temperate regions. 
wastelands,etc. 

Waste ground, hedge- Common. Scandanavia to 
rows, margins of 
fields, ,disturbed 
land. 

Cultivated land 

Spain. 

Local. Distributed in 
all temperate regions. 

Compiled from Clapham,Tutin and Warburg(1962). 



more commonly observed depositions of eggs found amongst the contents 

of moth traps. In general the fidelity of oviposition choice is so 

consistent that its significance. and the cost associated with 

inaccurate selection,is often overlooked. 

The level of selectivity shown by ovipositing females is an 

adaptation to the distribution pattern of larval foodplants, with 

the degree of sophisitication shown being adjusted to give the best 

cost: benefit ratio (maximal fitness). For example, a female 

of the Feathered Gothic moth, Tholera decimalis, a generalised 

grass feeder, can afford to literally spray its eggs into the grass 

where they roll down amongst the roots which form the larval food. 

At the other extreme, a female of EuphydEYas editha may spend up to 

an hour locating and testing the suitability of a potential foodplant 

prior to laying an eggbatch (Singer 1982). 

The scale at which habitat selection is made also varies from 

species to species. Selection may be made at the major geographical 

level by migratory insects like the Monarch butterfly. at the local 

habitat scale by the Orange tip butterfly (Courtney 1981). between 

individual plants within a habitat by other pierid species (Chew 1979). 

and even between individual leaves on the same plant by Heliconius spp. 

(Smiley 1978). Similarly the female is capable of making a choice of 

when to lay eggs in order to most benefit the larval stages. This 

is most obvious amongst the nymphalid butterflies which overwinter 

as adults in Britain. but is also found in species which delay 

oviposition during the summer (e,g. the Large Yellow Underwing. 

Noctua pronuba). 

In view of the overriding importance of the females. the adult 

stage is a convenient point at which to enter the life cycle of 
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Autographa gamma when considering the problem of habitat definition. 

Direct field observation of oviposition by night-flying insects 

is not a simple matter even when the potential larval foodp1ants are 

known. It is even less practicable when the range of hostp1ants 

utilised is not known. Daylight searches during 1978 and 1979 for 

eggs and young larvae of A.gamma and other p1usiids showed that they 

occur at a density too low to provide meaningful data on habitat 

choice. The choice of larval foodp1ants by gravid females was 

therefore investigated under laboratory conditions. The experiments 

were designed to provide information about two criteria of se1ection:-

(1) the rank order of preference shown to the foodplant species 

used in this study by A.gamma and other resident plusiids. 

(2) to test the strength of abstention from oviposition in 

the absence of any foodplant. This gives a measure of 

the likelihood that novel species might be incorporated 

into the foodplant spectrum. 

OVIPOSITION BEHAVIOUR IN THE ABSENCE OF FOODPLANT 

A female moth, once committed to reproductive maturity and 

successfully inseminated, may quite reasonably be regarded as anegg-

laying machine. This machine may already be fully loaded with mature 

eggs, as in the adult females of the Lasiocampidae and Lymantrudae. 

or the eggs may need to be matured using energy from the fat body. . . 

This latter situation is that found for plusiid moths. The rate 

at which the eggs mature is a function of temperature, and this sets 

the upper limit on the number of eggs available for oviposition, 
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and hence the maximum oviposition rate. This maximum rate may be 

further reduced by a number of other. factors, the most important of 

which are, the handling time (the time taken to complete an oviposition 

act) and the rate of encounter of 



of suitable oviposition substrate a female will usually abstain from 

laying and continue to search for a site. If maturation of additional 

eggs continues then the increased physiological pressure to oviposit 

may reduce the threshold of suitability of plants for oviposition. 

resulting in oviposition on novel or less suitable plant species. 

The oviposition rate of females held in the absence of foodplant 

may be used to monitor the giving up time of a.species. This time 

will be a function of the expected rate of encounter of plants. to 

which the rate of egg maturation should be adapted. and the cost 

incurred by an inappropriate choice. 

METHODS: Female moths from laboratory stocks were force fed with 

a 10% sucrose solution. paired with males, and then randomly assigned 

to either a rearing box containing suitable oviposition material. or 

one containing only a lining of tissue paper. These boxes were 

then placed in growth cabinets held at 200 C and 16L:8D. Each morning 

the moths were fed and transferred to new containers. The eggs laid 

during the previous night were then counted. This procedure was 

repeated until the death of the female moth. which was then 

dissected to confirm that mating had occurred and also to assess the 

number of unlaid eggs. Sub-samples of the laid eggs were kept until 

hatching to obtain an estimate of the fertility of each pair. From 

the data collected only those from the four day period with the 

highest mean oviposition rate are presented and used for analysis. 

18 

This was done because the parameter of interest is the pressure to 

oviposit in the absence of the usual foodplant stimulus. This pressure 

does not arise in the early stages of egg laying. when no backlog of 

eggs exists. nor in the latter stage when the number of eggs remaining 

to be laid is small. The results of these trials are given in Table 3. 
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TABLE 3: Number of eggs laid in the presence and in the absence of larval 
foodp1ant by A.gamma and other British p1usiids 

ABSENT PRESENT 

'SPECIES Day Day Day Day Day Day Day Day -
1 2 3 4 X 1 2 3 4 X 

A.gamma 1 82 47 65 70 66.0 84 362 172 173 197.8 
2 170 231 292 37 195.0 109 121 349 162 185.3 
3 65 83 92 57 74.3 190 123 132 129 143.5 
4 83 93 117 123 104.0 325 304 172 143 236.0 
5 65 137 153 126 120.3 180 183 140 133 159.0 
6 97 123 92 71 95.8 

Mean hr 111.9 Mean hr 169.5 
A'Eulchrina 1 32 34 48 62 44.0 101 132 333 147 178.2 

2 17 63 62 41 45.8 93 198 125 104 130.0 
3 27 82 32 33 43.5 112 183 168 93 139.0 
4 48 51 39 62 50.0 85 73 117 57 83.0 

Mean hr 45.8 Mean hr 132.6 
D.chrlsitis 1 62 57 48 72 59.8 70 43 72 74 64.8 

2 32 39 47 23 35.3 82 79 103 74 84.5 
3 93 62 48 52 63.8 278 269 217 140 226.0 
4 37 41 69 72 54.8 102 179 121 107 127.3 
5 30 40 61 57 47.0 205 92 154 66 129.3 

Mean hr 52.T Mean hr 126.2. 
Abrosto1a 1 15 13 23 17 17 .0 32 122 32 8 48.5 

trip1asia 2 10 8 22 18 14.5 53 67 38 30 47.0 
3 9 13 19 27 17.0 40 116 94 35 71.3 
4 27 23 24 35 27.3 91 27 139 23 70.0 

Mean hr TB:9 Mean hr 59.'2 
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The results in Table 3 show that there is a considerable reduction 

in the oviposition rate of all species tested when they are deprived 

of suitable foodplant. The three resident species (A.pu1chrina, 

D.chrysitis, Ab.triplasia) all show reductions of over 50%, whilst that 

of A.gamma is not so large, at 44%. This latter reduction is the 

only value which does not differ significantly from the control 

oviposition rates (Mann-Whitney U test, 95% level). It is also of 

interest that the largest % reduction was found for Ab.triplasia, the 

only true monophage in the study. The results support the idea that 

each species has its own trade-off point beyond which the inhibition 

to oviposition is overridden and eggs are laid even in the absence 

of foodplant. This, admittedly artificial, manipulation of oviposition 

behaviour gives an insight into the natural behaviour of the different 

species. For a specialist monophage, like Abrostola triplasi8, failure 

to locate the appropriate foodplant is a severe disadvantage and one 

might expect any variation for resistance to mistakes to be selectively 

advantageous and thus a high threshold to random laying will be 

observed, as was found in these experiments. A.gamma on the other 

hand incurs a much smaller cost for 'mistakes" since the larvae are 

able to develop successfully on a much wider range· of foodplant species. 

A.gamma respond to alternative pressures (quicker 

oviposition rates to avoid predation risk) without the constraint of 

larger subsequent larval mortality. This point will be returned to 

and discussed in greater detail after the data from the next set 

of experiments have been presented, since, although the previous :experiment 

shows the potential existence of a faculty for control of oviposition 

timing and location, it says nothing of the exact nature and specificity 

of the choice. In order to further elucidate this aspect of oviposition 

behaviour a series of choice trials were conducted in which several 

plant species were presented to gravid females simultaneously. 



OVIPOSITION SITE CHOICE IN FLIGHT CAGES CONTAINING SEVERAL FOODPLANTS 

METHODS: 
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These trials were carried out using stocks obtained in the summer 

of 1981. Newly emerged females were placed in standard rearing 

boxes with one (sometimes two) males and force fed with a 10% 

sucrose solution. These boxes contained no foodplant material. The 

day after the first laid eggs were observed the females were transferred 

to the oviposition trial cages. These consisted of a wooden frame 

(34 x 34 x 34 cm) covered with white muslin cloth, the whole cage 

standing on a smooth hardboard base. Within this cage a sprig of 

each of the best foodplants was placed. Each freshly picked sprig 

was held upright in a small vial which provided sufficient water to 

prevent wilting of the plant within 24 hours. The exact arrangement 

of the plants was determined randomly; the position of the plants by 

drawing the orientation of the cage by random number 

generation. The cages were then left overnight in complete darkness 

in order to eliminate the strong tendency of the moths to fly (and 

oviposit) in the direction of any light source. Each morning the 

female was removed and returned to the rearing box whilst the number 

of eggs on each of the plant species was counted. These 

were then replaced with fresh ones. This procedure was repeated 

until the death of the female oro: until the oviposition rate fell to a 

low level. Because the pattern of oviposition became rather erratic 

after the major burst of oviposition only the data from the first five 

(four in some species) days are presented for analysis. The mean 

numbers of eggs laid are given in Table 4. 

The laid data were subjected to a two-way analysis of variance, 

using the Statistical Package for Social Sciences: SPSS (Nie et a1. 

1975, Hull and Nie 1979), and the results of this analysis are given 

in Table 5. 



TABLE 4: % Total No of eggs laid on different plant species by A.gamma and other p1usiid species 

SPECIES OFF TARAXA LAMIUM STACHYS PLANTAGO URTICA RUMEX BRASSICA 
'. 

A.gamma 9.45 25.3 28.6 11.4 11.1 13.85 0.53 0.0 

A.pu1chrina 5.25 0.75 78.79 11.51. 1.00 2.5 0.06 0.13 

D.chrysitis 12.93 4.93 14.2 3.77 1.80 47.23 0.4 0.33 

Abrostola 10.0 3.61 1.65 0.08 2.93 81.2 0.53 0.0 
trip1asia 

N 
N 



TABLE 5: Analysis of variance in oviposition choice by A.gamma and 
other plusiid species 

SPECIES Source of F Value Significance 
Variation 

A.gamma Foodplants 16.21 p<O.Ol 
Females 0.99 NS 

A. Eulchrina Foodplants 46.98 p<O .01 
Females 2.80 NS 

n.chrlsitis Foodplants 37.07 p<O.Ol 
Females 0.93 NS 

Abrostola Foodplants 18.02 p<O.Ol 
triplasla Females 0.50 NS 

23 
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The data obtained from this trial give a more detailed picture of 

resource utilisation, and demonstrate" a marked asymmetry in the 

foodplant choice of all the species tested. These patterns are shown 

in Figure 2, where the mean number of eggs laid by females of each 

of the different species is graphed. This use of means is legitimate 

since a 2-way ANOVA of the raw data failed to reveal any significant 

variations between females within species. A lack of variation supports 

the existence of species wide tendencies to utilise several foodplants, 

rather than the recorded polyphagy being the accumulated response 

of different females,each of which has an individual preference. 

This latter of local race specialisation is found, for 

example, in the Yellow barred brindle moth, Acasis viretata (Allan 

1949) and may be of wider occurrence than previously realised 

(Fox and Morrow 1981). 

The ANOVA also demonstrates highly significant variation in 

mean numbers of eggs laid per female between foodplants (within each 

plusiid species). The exact pattern of egg deposition differs for 

each species of moth, however, as shown by Figure 2. The rank order 

of preference shown by each species is given in Table 6, with those 

plants not significantly different with respect to oviposition use 

denoted by the same alphabetic symbol. Although obvious differences 

in the rank orders exist there appears to be an underlying pattern 

to the plant choice shown by all the moth species. Plant species 

fall into one of three groups with respect to the frequency with 

which they are used as oviposition substrates. A first group of 

plants seems to stimulate oviposition. For Abrostola trielasia and 

D.chrysitis only Urtica dioica falls into this group. whilst 

A.pulchrina utilises Lamium significantly more often than any other 

plant. Only A.gamma uses more than one plant species at this high 
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fI GURE : Eggs laid on different plant speoies by A. gamma and other plusiids 

x-axis symbols refer to foodplants listed in Table 2. ! 
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TABLE 6: Rank Order of Preference for oviposition by A.gamma and 
other plusiids 

Rank Order of A.gamma A. Eulchrina n.chrx:sitis Abrostola 
Preference triplasia 

1 Lamium Lamium Urtica Urtica a a a a 
2 Taraxacum Stachysb Offb a 
3 Urticab Offbc Offb Taraxacun;, 

4 Stachysb Urticabc Taraxacumc Plantagob 
5 Plantagob Plantagoc Stachysc Lamiu,rtb 

6 Offb Taraxacumc Plantagoc 
7 Rumex Brassicac Rumex 2!achx: sb c c 
8 Brassica Rumex Brassicac c c 

similar alphabetic symbols (a-c) denote foodplant species not, 
differing significroltly(Least Significant Differenc:; 0.05) 

26 
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level,utilising both Lamium and Taraxacum at a similar rate. A 

second group of plants appear to act neither as stimulants nor 

deterrents and the frequency of oviposition on them is not significantly 

different from the rate at which eggs were laid on the side walls 

of the cages. For A.pulchrina both Stachys and Urtica fall into this 

group; similarly for D.chrysitis only Lamium is used at this rate, 

but Urtisa, Stachys and Plantago were commonly oviposited on by 

A.gamma, indicating less discrimination between hosts by this species. 

Abrostola triplasia hardly oviposited on plants other than Urtica, 

all six other species appearing to act as deterrents to oviposition. 

Similarly D.chrysitis used Taraxacum, Stachys, Plantago, Rumex and 

Brassica at rates lower than the side walls, indicating deterrence, 

whilst A. pulchrina neglected Plantago, Taraxacum, Brassica and Rumex. 

A.gamma on the other hand oviposited at this low rate only on Rumex 

and Brassica, the other plants falling into the neutral category. 

The importance of female oviposition to the subsequent ecology 

of the different species is thus apparent, as imposing the limits to 

the range of foodplants which the larva must encounter, and it is 

clearly shown by these data that the polyphagous characteristics of 

A.gamma, compared to other plusiids, are initiated, at least, by the 

oviposition choice of the female moth. 

CHOICE OF LARVAL FOODPLANT BY 1ST INSTAR PLUSIID LARVAE 

. In the preceding section differences in the selection of 

oviposition sites by different species of plusiid moths in experimental 

cages were demonstrated. If these differences are real and exist 

in a field situation then they must influence the range of food 

plants experienced by the larvae of the,different species and consequently 



the exact nature of any adaptive response shown by the immature 

stages with respect to feeding ecology. These differences in 

oviposition preference could, however, be rapidly negated if the 

young larvae redistribute themselves amongst foodplants. This 

situation is commonly found amongst tree feeding Lepidoptera, such 

as Lymantria dispar and 0perophtera brumata, whose larvae use their 

silk to "balloon" away from unsuitable hosts. In these examples 

the unsuitability is not usually due to foodplant chemistry per se 

but rather the lack of synchrony between egg hatching and leaf 

budburst. If similar redistribution strategies were a common feature 

of herbaceous feeding larvae also then the selective pressure for 

accurate oviposition would be considerably diminished. Alternatively, 

the existence of a pattern of foodplant choice by young larvae 
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which is essentially the same as that shown by ovipositing females 

would provide strong support for the idea that the existence of a 

hierarchy of preferred foodplants is an adaptation in its own right. 

With these two possibilities in mind a series of foodplant choice 

trials was conducted for A.gamma larvae, again utilising the other 

resident species as a yardstick against which to measure differences 

which might be specific adaptive. responses to a highly mobile lifestyle, 

METHODS 

Newly hatched larvae from stock females were used for the 

foodplant choice trials. All choice trials were conducted in standard 

microbiological petri dishes (gem diameter). Each dish was lined 

with moistened filter paper thus maintaining a relatively high relative 

htDDidity and minimising rates. of water loss from the leaf discs. 

A leaf disc from each of the seven foodplants (see list in General 

Methods section) was arranged in the dish around the perimeter at 

equal distances apart. 
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The exact sequence of discs in anyone dish was determined using 

a dice. A slight methodological problem was encountered over how best 

to introduce the larvae into the experimental arena. Ideally larvae 

should be p1aced,(or better still, allowed to hatch from eggs laid) 

on the different foodp1ants in turn and their redistribution monitored. 

This however would have necessitated an extremely large experimental 

design. Since it had been observed that, for A.gamma at least, the 

larvae frequently moved distances of up to lOcm before initiating 

feeding I decided that introducing the larvae to the centre of the 

dish amongst the discs would be sufficiently random to allow 

an appropriate measure of choice to be obtained. The null prediction 

is that each leaf disc has an equal probability of having larvae 

select and feed upon it. Any deviation from equality is an indication 

of active preferential acceptance or rejection. Ten larvae were 

released into each dish with as many replicates as possible.' up to 

a maximum of 13, being run. After release of the larvae the 

dishes were placed in a growth cabinet maintained at 200 C and 

16L: 80. The distribution of the larvae was recorded at "lights on" 

in the morning. As the consumption and deterioration of the discs 

was minimal after just one feeding period the discs were then returned 

to the cabinets for a.further 24 hours and the positions of the larvae 

recorded again in order to gain some idea of the extent of 

redistribution of larvae after the initial feeding choice had been 

made. These data are summarized in Table 7. 

RESULTS 

The data obtained from these trials may be utilised in a number 

of ways to demonstrate the possible existence of difference in larval 

foodplant preferences both within and between British plusiid species. 

The data for each species of moth may be s imply represented as a 



TABLE 7: % 1st instar larvae found on leaf discs after 24 and 48 hour feeding periods 

SPECIES TIME OFF TARAXACUM LAMlUM STACHYS PLANTAGO URTICA 

A.gamma 24 12.0 11.0 25.0 23.0 7.0 22.0 
48 10.0 20.0 35.0 15.0 5.0 15.0 

A.jota 24 0.0 10.0 33.3 10.0 3.3 20.0 
48 0.0 13.3 33.3 13.3 3.3 23.3 

A. pu1chrina 24 5.4 18.5 40.0 22.4 1.5 12.3 
48 4.6 17.7 43.1 17.7 1.5 15.4 

D.chrlsitis 24 3.3 1.1 35.6 21.1 14.4 23.3 

Abrostola 24 5.0 0.0 1.0 0.0 0.0 94.0 trielasia 

RUMEX 

0.0 
0.0 

10.0 
0.0 

0.0 
0.0 

1.2 

0.0 

BRASSICA 

0.0 
0.0 

13.4 
13.3 

0.0 
0.0 

0.0 

0.0 
--

w o 



histogram of the number of larvae recorded on anyone foodplant 

expressed as a percentage of the total number of larvae in the 

trial (Figure 3). Figure 3 shows that differences in foodplant 

choice exist but does not reveal the significance of these 

differences. Statistical tests of the differences were therefore 

performed and are discussed below, initially for each species 

separately, and then with respect to differences existing between 

the moth species used in the different trials. 

FOODPLANT CHOICE BY Abrostola triplasia LARVAE 
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Larvae of this species, the only true monophage in the species 

studied, exhibit a clear-cut preference for the discs of Urtica dioica, 

their normal foodplant. All other discs were observed with larvae 

on them less often than larvae were observed on the filter paper 

between the discs (the Off category in the Tables). An ANOVA 

confirms the significance of this distribution (F = 825.7,p(O.OOl) 

whilst the LSD test on the rank order of preference shows that all 

the significant variation lies in the difference between Urtica and 

the remaining choices. 

FOODPLANT CHOICE BY Diachrysiachrysiels LARVAE 

Although Figure 3 shows that D.chrysitis larvae do not possess 

such a narrow range of foodplant acceptance as A.triplasia, utilising 

six of the seven possible plant species, they still show a preference 

for some species over others. The ANOVA reveals a significant amount 

of variation (F iii 4.44, p < 0.-00 but no one species is preferred over 

all others. The LSD tests show that the plants fall into three 

slightly overlapping groups. The first group contains Lamium, Urtica 

and Stachys which are positively selected along with Plantago, whilst 
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the remaining species appear to be actively rejected by the larvae, 

being found occupied less often than the Off category. This foodplant 

profile is in agreement with the records given in Allan (1949), 

who lists Lamium and Urtica as potential foodplants but not the 

other species used in this study. 

FOODPLANT CHOICE BY Autographa jota LARVAE 

The distribution of larvae between the foodplants for this 

species was more even than that of D.chrysitis, and was in fact the 

most even of the whole set. This is reflected in the ANOVA result 

(F = 1.978, p. NS). This species did have fewer replicates than the 

other species and this may have contributed to the non-significant 

ANOVA result. A non-significant result for the overall variation 

means that one cannot attach much importance to differences between 

pairs of plant species but there appears to be a trend towards 

A.jota larvae selecting Lamium, Urtica and Brassica over other 

species. Although the latter is not given as a potential foodplant 

in Allan (1949) larvae of this species are known to accept a wide 

range of foodplants in captivity, including some tree species. 

FOODPLANT CHOICE BY Autographa pulchrina LARVAE 

The ANOVA for this species is again highly significant 

(F = 15.27, p.<O.Ol) indicating that some foodplants "are preferred 

over others. From the LSD tests of the rank order it may be seen 

that the majority of the variance lies in the clear preference for 

Lamium discs, with Urtica, Stachys and Taraxacum forming a second 

group of positively selected plants. The remaining three species 

appear to be actively avoided. 

33 
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FOOD PLANT CHOICE BY Autographa gamma LARVAE 

FinallY,the data for A.gamma larvae again reveal a relatively 

even pattern of foodplant choice but containing a significant amount 

of variation (F = 9.163, p<O.01). Inspection of the LSD test 

values indicates that three groups of plants exist; those positively 

selected by this species being Lamium, Stachys and Urtica; a second 

group of fairly neutral plants not chosen at a frequency above that 

expected by chance (Plantago and Taraxacum); and a third group of 

actively rejected plant species; in this case Rumex and Brassica. 

The above records for foodplant preference were all made after 

a 24-hour period during which choice and feeding could occur in order 

to assess the initial choice made by the larvae. This choice 

profile can then be compared with that made by the females during 

the oviposition trials. For the last three species a further test 

of larval foodplant selection was made by allowing the larvae to 

remain in the choice chambers for a further twenty-four hours. 

Comparison of the distribution after 24 and 48 hours will give an 

estimate of the persistence of the original choice. The data for 

the larval distributions after 48 hours are also included in Table 7. 

After 48 hours the distribution of A.pulchrina is essentially the 

same as that found after 24 hours, the most obvious change being 

a slight increase in the proportion of larvae found on Lamium. For 

A.jota the trend is almost the opposite, with the change being towards 

an erosion of the differences between the numbers of larvae found on 

different plants. The only change in the rank order was the increased 

utilisation of Plantago compared with Rumex, which was avoided more 

after 48 hours. The biggest change in the number of larvae on 

different plants was found for A.gamma larvae. Here there was an 
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increase in the number feeding on Taraxacum and Lamium with a 

corresponding decrease in the number of larvae on the other foodplants. 

The forty-eight hour distributions thus do not reveal any major changes 

in foodplant choice by the species tested and no clear trend towards 

either a widening of the original differences or their disappearance 

may be deduced from this admittedly limited set of data. One further 

point which these data can provide is, however, a little more 

revealing. If the number of larvae on any particular disc is 

different after 48 hours compared with the 24-hour value then, obviously, 

this must be due to larval movement (immigration or emigration). A 

count of the number of changes in number of larvae per disc scores 

each twice, once as an emigration from its original disc and 

once as an arrival on a second disc. Dividing the total number of 

changes by two thus gives the minimum number of larval movements 

requirement to explain the change in larval distribution. Applying 

this method to the three species for which 48 hours data was recorded 

gives the following results:-

% Moving 

Autographa pulchrina 11.9 

Autographa jota 16.7 

Autographa gamma 42.5 

The static dispersion patterns recorded at the end of 24 and 48 hours 

are thus masking an important difference in the mobility shown by 

the different species. It appears that first instar larvae of 

A.gamma are far more likely to move sufficiently far to change 

foodplants than those of other species. 
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DIFFERENCES BETWEEN THE FOODPLANT DISPERSION PATTERNS OF THE DIFFERENT 
MOTH SPECIES 

The significance of the differences in foodplant profile shown 

in Figure 3 may be tested by use of the Kolmogorov-Smirnov Test 

(Table 8). Pairwise comparison of the percentage of the total number 

of larvae on each of the foodplant discs revealed that significant 

different distributions only exist for those of A.triplasia from 

A.pulchrina, A.gamma and D.chrysitis. These differences are due to 

the high percentage choice shown by the larvae of A.triplasia for 

Urtica discs. The foodplant spectra for the other species could all 

have been drawn from the same distribution and therefore do not provide 

evidence for niche separation by choice of different larval habitats. 

In the light of the low numbers of field observationsof larvae, this 

result is perhaps not unexpected. It is unlikely that competition 

for suitable foodplants ever becomes a limiting and therefore selective 

factor in this country and thus the evolution of foodplant preferences 

is due to other forces. It does appear that a common pattern of 

foodplant utilisation for polyphagous species emerges from these 

trials. Regardless of which particular species are preferred there 

seem to be three categories of foodplant which may be arranged 

within the following framework:-

1. Large percentage of larvae on plant: A plant species which 

is chemically distinguishable to the larvae and whose defence 

chemicals (if any) pose no barrier to feeding and growth by the 

larvae. 

2. Smaller percentage of larvae on foodplant: A plant species 

which is acceptable but not favourable for rapid growth and 

development; or alternatively one which is not as 

suitable due to its novel chemical composition. 
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TABLE 8: Ko1mogorov-Smirnov Test for Differences in foodp1ant 
selection shown by 1st Instar larvae of different plusiid 
species 

Species Pair D Significance of D 

v. A.jota 21.4 NS 
v. A. pu1chrina 15.8 NS 
v. D. chrysitis 18.6 NS 
v. Abrosto1a 72.0 p<O.OS trip1asia 

A.jota v. A. pu1chrina 32.9 NS 
v. D.chrysitis 32.2 NS 
v. Abrosto1a 50.6 NS trip1asia 

A. pu1chrina v. D.chrysitis 25.1 NS 
v. Abrostola 81.7 p<O.Ol 

trip1asia 
D.chrysitis v. Abrosto1a 69.5 p=O.OS triplasi.a 
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3. Few or no larvae found on the foodplant: A plant species 

which is chemically distinguishable to the larvae but which has 

chemical defences which prevent adequate feeding and growth by the 

larvae and the chemical distinction is therefore used for rejection. 

The LSD tests for the foodplant choice data split the different 

plant species into these three categories quite well. A.triplasia 

has only Urtica in Group I, with the rest presumably belonging to 

Group 3. A.pulchrina has only Lamium in Group 1, whilst Taraxacum, 

Stachys and Urtica comprise Group 2, and Rumex, Brassica and Plantago 

are actively rejected. A.jota has Lamium and Urtica forming Group I, 

with all the other species falling into Group 3. a pattern which 

conforms with the records of larvae of this species feeding on a 

whole range of plant species including shrub and tree species. 

D.chrysitis shows a preference for Lamium, Stachys and Urtica whilst 

Plantago most likely falls into Group 2. and the remaining three 

species (Taraxacum. Brassica, Rumex) forming Group 3. Finally 

A.gamma actively selects Lamium,Stachys, Urtica with Taraxacum and 

Plantago forming Group 2. Brassica and Rumex were chosen by larvae 

less frequently than expected by chance and form Group 3. The 

ecological significance of these groupings cannot be carried too far 

in the absence of detailed knolwedge of the biochemical composition 

of the different plant species, but it is of interest to note that. 

for all the species listed, there is a consistent trend towards 

selection of members of the Labiat:ae and over other plant 

species. Members of these groups may represent the usual.foodplant 

of ancestral plusiid moths, with the differences in present day 

foodplant choice being determined mostly by whether new plant groups 

have been incorporated in the diet or not. 
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FOOD PLANT CHOICE BY FIFTH INSTAR LARVAE OF A.gamma 

The choice of larval foodplant in the first instar is an 

important since it determines whether the adult oviposition 

choice is accepted or negated. It is also likely that physiological 

stress caused by secondary plant chemicals is greater in the 1st 

and 2nd instars, due to the relatively greater volume of gut 

contents to body tissue, making these larvae a sensitive test of 

preference. The majority of total food consumption in the larval 

stages occurs in the last instar however, on average 52% (Scriber 

and Slansky 1981). and it is therefore important to consider whether 

larval foodplant preference in this ins tar is different from that 

shown by early stages. 

METHOD 

Stock A.gamma larvae were reared on each of the foodplants 

chosen for this study until the majority had successfully moulted 

into the fifth ins tar. Five groups of ten larvae each were then 

placed into boxes (24 x 24 x 2cm) containing a randomly distributed 

equal amount of the seven different foodplants. For this trial 

equal amounts should be measured in weight since it is the biomass 

ingested which determines consumption rates. Direct gravimetric 

methods in feeding trials always pose large problems of correcting 

for water loss, especially when using different plant species, and 

for this reason consumption was assessed by measuring the area of 

leaf consumed. Similar area measurements, however, do not allow 

for variations in thickness of the leaves between the different plant 

species. The amount of leaf presented in the trials and the 

calculations of consumption were corrected for the different weight: 

surface' area ratios of each species to compensate for this bias. 
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As much foodplant as possible was added to each box to minimise 

errors due to depletion of one plant over the 24-hour feeding period 

but care was taken to ensure that the larvae still had freedom to 

move around the box easily. During the feeding period the larvae 

were kept under the same rearing conditions as they had been exposed 

to during their early stages (l8oC, l6L:8D). The results from fthis 

trial are given in Table 9 (as the amount of each foodplant consumed 

expressed as a percentage of the total consumption) and are shown 

graphically in Figure 4. The use of percentages is necessary to 

correct for the different weight and physiological state of the larvae 

in the different replicates. This inability to use the raw data 

precludes the use of a two way ANOVA to test the overall significance 

of the differences between preconditioning foodplants, but it is 

possible to use a one-way ANOVA to test the variation within foodplant 

classes. The results of these analyses are given in Table 10 along 

with the LSD tests of significance between ranks. 

DISCUSSION 

The overall picture to emerge from these trials is not easy 

to interpret. The variation between different preconditioning foodplants 

is high, indicating that preconditioning may greatly influence 

subsequent foodplant choice. The rank position of the 

preconditioning plant is higher than its mean position in all trials, 

with the exception of Brassiea, which was consumed less in the 

trial in which it was the preconditioning species also. These results 

support evidence from other studies of the existence of short term 

habituation to particular foodplants (Schoonhaven and Meerman 1978, 

Blau et ale 1978, Fox and Morrow 1980), Other variations in the 

rank order of foodplant choice are not so easily reconciled with 

accepted concepts of larval foodplant choice, however. It appears 
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TABLE 9: % Consumption of different plant species by 5th Instar larvae 
of A.gamma after preconditioning to different foodp1ants 

Precondit10n1ng Taraxacum Lamium Plantago Urtica Rumex Brassica Foodp1ant 

Taraxacum 44.6 12.2 6.2 13.4 5.6 0.0 18.0 

Lamium 10.6 31.0 19.8 16.2 17.2 0.0 5.2 

Stachys 19.6 25.2 23.2 3.2 22.2 0.0 6.2 

Plantago 8.0 27.6 5.4 16.8 23.6 0.0 18.4 

Urtica 15.8 16.6 16.0 3.8 32.4 0.0 15.4 

Rumex 0.6 37.2 0.2 14.4 12.2 13.0 22.4 

Brassica 17.2 22.8 1.6 18.6 24.0 0.4 15.4 
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TABLE 10: Rank Order of Preference to different foodp1ants shown by 5th Instar larvae of A.gamma 
after preconditioning to one plant species 

Rank Order Preconditioning Plant Species 
of 

Preference Taraxacum Lamium Stachys Plantago Urtica Rumex Brassica 

1 Taraxacuma Lamium Lamium b Lamium Urtica Lamium Urtica a a a a a a 
2 '. Stachysb Stachysab Urtica Lamiumab a 
3 Plantagobc Urticab Brassicab Stachysb c 
4 Lamiumc Plantagobc Taraxacum Plantagob Rumex Taraxacum c c 

5 Stachysd Taraxacumcd Brassicad Taraxacum Brassicab Urtica Brassica c c 
6 Urticad Brassicadc Plantago Stachys Plantago Taraxacumd Stachysd c c c 
7 Rumex Rumex Rumex £ Rumexd Rumex Stachysd Rumexd e e c 

.. 

'J."oodplant species not differing significantly (LSD Test jO.05) with respect to larval 
feeding are denoted by ,the same alphabetic s:vmbol. 

c 

c 

w 
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that in the majority of the trials, Urtica, Stachys and Lamium tend 

to either be concentrated on or ignored. These three species occupy 

the first three rank positions whenever one of them was the pre-

conditioning species, but when the preconditioning species was 

different they drop in rank (as in Taraxacum) or Stachys drops down 

the ranking on its own. In a similar way Taraxacum and Brassica 

appear to be correlated in their changes in rank position. If these 

patterns have any true biological significance it seems to me that 

they indicate that A.gamma larvae do not make direct choice decisions 

about particular foodplants, rather they make them against an internal 

standard. This internal reference is not fixed but modifiable by 

past experience (recent at least). Exposure to any particular foodplant 

will affect the reference such that the larval response not only to 

that foodplant but also other species is changed. This hypothesis 

would be compatible with known detoxification mechanisms of 

polyphagous species, which rely on a series of mixed function oxidase 

enzymes induced by the presence of particular chemicals in the food. 

If two plants possess different chemicals which are recognised in the 

same way by the larva by induction of the same enzymes, then exposure 

to one species will also precondition the larva to the other one, 

even though it has never been exposed to it and the exact chemical 

profilesof the plants are quite different. Although we may see the 

plants as being different taxonomically and biochemically the larvae, 

with their limited number of sensory cells for olfaction (Schoonhaven 

1973), may be unable to, and perhaps not need to, distinguish between 

the two. 

THE EFFECT OF DIFFERENT FOODPLANTS ON LARVAL DEVELOPMENT 

The experiments in the prece! ding sec tions have been primarily 

concerned with attempts to define the foodplant 
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of A.gamma might find themselves in. They demonstrate that a fairly 

large number of potential foodplants are likely to be encountered and 

eaten by A.gamma larvae but we do not yet know the effect that these 

plants may have on the fitness the larvae. This can be assessed 

by rearing larvae on each of the foodplants utilised for this study, 

simulating conditions in which the larva lacks the behavioural reptrtoire 

to leave a foodplant or lacks suitable alternative foodplants which 

might be. reached by larval movement. A decrease in fitness relative 

to other individual larvae will occur if restriction to a particular 

foodplant causes any of the following:-

1. a decreased probability of survival to reproductive age 

2. a lengthening of the generation time 

3. a decrease in potential fecundity through reduced body 

size, fat body size or number of ovarioles. 

Accurate quantification of these parameters is difficult under field 

conditions due to the inability to hold other variables constant. 

Since it is the chemical differences between the plants which were my 

chief concern for these trials they were conducted in the laboratory 

under controlled conditions. In order to assess parameters 1 and 2 

a simple life table record was kept for each cohort of larvae whilst 

it was decided that adult weight would be used as an indicator of 

potential adult fecundity. The exact relationship between adult 

weight and fecundity is discussed in a later section. 

METHODS 

Single larvae hatching from eggs laid by stock females were 

placed in individual rearing boxes (8 x 4.5 x 2em) lined 

paper. Each box contained foodplant surplus to the amount consumed 

by a larva of that size in 24 hours.· Old remaining foodplant and 
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frass were removed each day and new foodplant supplied. Cohorts of 

forty larvae were started on each of the six different foodplants 

with the exception of Brassica for which only twenty larvae were 

used. All stocks were maintained at 16L:8D and 220 C in environmental 

cabinets and the following measurements recorded: 

1. The number of larvae surviving each day: This parameter 

does not necessarily indicate time of death accurately since virus 

infected larvae (distinguishable by a characteristic blackened patch 

on the terminal segment and reduced growth rate) were removed whenever 

they were seen to minimise cross contamination. 

2. The head capsule width of the fifth ins tar larvae: Since 

the sclerotised parts of an insect do not change in size within a 

stadium this could be measured at &ny time within the instar but 

the measurement was usually made on the second day after moulting 

into the fifth instar. 

3. The maximum weight of the fifth instar larvae: After 

moulting into the fifth instar the larvae were weighed each morning. 

The maximum weight achieved prior to spinning the cocoon was used 

for the analysis. 

4. The fresh weight of the pupa: The day after pupation the 

pupae were removed from their cocoons, sexed and weighed. 

5. The fresh weight of the emerging adult moth: Adults which 

had emerged on inspection of the boxes in the morning were agitated 

slightly to encourage elimination of the meconium then cooled in a 

refrigerator and weighed. Adults emerging later in the day were 

stored overnight in the refrigerator and then weighed, again after 

ensuring that the meconium had been eliminated. 

6. The duration of the larval The time in days from 

hatching of the eggs until the day of pupation, not cocoon spinning. 



7. The duration of the pupal stage: The time from the day of 

pupation to adult emergence. 
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8. Winglength: This measure is the distance from the midpoint 

of the thorax to the tip of the forewing when the forewing is positioned 

so that the front margin is at right angles to the main axis of 

body. Only one wing measurement was made to facilitate comparisons 

with measurements made on trap caught individuals which often had 

one wingtip damaged. Measurements were made using vernier calipers, 

on dead individuals. 

9. Proboscis length: The proboscis was unrolled and the position 

of the tip when fully extended marked with a pin as was the proximal 

end. This distance was then measured again using vernier calipers. 

These data are summarised as Table 11, whilst Table 12 

shows the results of the statistical analyses of these data. 

These foodplant trials provide a large data set from which details 

of the effects of the different plants on A.gamma may be extracted. 

The ANOVA results shown in Table 12 demonstrate that the variation 

between foodplants is significant for all parameters except wing length 

and proboscis length. Table 12 also shows that variation due to sex 

differences is not significant, with the exception of the pupal 

duration and total development time, both of which are significantly 

longer in the males. This pattern of longer development times in 

A.gamma males was apparent in most of the rearing trials carried out 

for this study and strongly indicates that adult emergence in this 

species is protogynous,' the opposite to the early male emergence 

found in many moth species (Wiklund and FagerstrBm 1977). This is an 

indication that mortality during adult stages may be high inA.gamma, 

with males delaying emergence to coincide with the time of ovarian 

maturation, rather than emergence o'r • 



fOODPLANT II HCW LARVAL PUPAL ADULT LARVAL PUPAL TOTAL WING PROBOSCIS % 
WEIGHT WEIGHT WEIGHT DURA TION DURA TION DURATION LENGTH LENGTH SURVIVAL 

M 20 203.5+ 6.42 347.15+26.54 283.17+27.31 133.66+21.20 15.45+0.76 11.35+0.81 26.8+1.15 20.51+0.79 7.52+0.43 - - - -
TARAXACUM 87.5 

f 15 201.0+4.74 333.38+25.6 282.65+20.65 140.94+20.48 15.40+0.97 11.00+1.18 26.29+1.B2 20.34+0.73 7.56+0.31 - - - - -

M 19 198.7+1.43 329.28+25.16 266.29+19.86 132.41+20.9 14.05+0.62 10.68+1.0 24.14.0.81 19.94+0.87 7.45+0.51 - - - - - -
lAMIUM 12.5 

f 10 195.6+17.28 331.02+22.85 269.49+14.15 120.38+14.95 13.09+0.51 11.00+0.61 24.9+0.57 19.11+0.62 1.47+0.24 - - - - -

It 11 199.5+4.82 348.93+23.18 283.41+25.45 131.14+33.76 14.94+0.56 10.88+0.7 25.84+0.81 20.38+0.9 7.53+0.34 - - - - - -SIACHYS 12.5 
F 12 202.3+4.66 .345.89+29.55 277.44+28.55 123.53+15.65 15.00+0.74 10.0+0.74 25.0+1.13 20.34+1.06 7.55+0.53 - - - - - -

M 6 204.7+4.68 360.42+28.21 112.75+10.69 16.67+0.52 10.5+1.23 27.17+1.47 19.77+1.48 7.40+0.76 - - - - - - - -PLANTAGO 50.0 
F 14 206.4+4.31 359.61+37.52 274.56+36.94 129.33+26.72 16.29+0.73 10.07+1.07 26.36+1.5 20.28+1.24 7.56+0.57 - - - - - -

M 15 205.3+5.93 320.4+30.57 260.78+29.96 106.66+15.38 14.92+0.67 11.33+0.65 26.25+0.75 20.06+0.71 7.26+0.34 - - - - - - - -tJRTICA 61.5 
. f 12 202.1+5.23 320.11+28.24 239.83+32.81 103.21+20.82 14.93+0.70 10.57+0.51 25.57+0.76 19.33+1.05 7.15+0.48 - - - - - - -

PI 5 191.2+2.28 273+43.1 225.53+36.55 90.04+15.83 20.4+1.14 12.40+0.55 32.80+1. 30 - - - - 32.5 
f 8 197.0"+3.10 267.39+37.35 218.3+32.43 86.81+11.39 19.63+1.69 11.63+1.06 31.25+1.67 19.37+0.45 7.2.0.62 - - - - - - -

4 121.81+20.67 21.00+0.82 10.75+0.5 31.75+0.96 - - - - 50.0 
6 183.5+5.26 319.68+10.86 260.45+32.74 124.88+23.35 21.6],,0.52 11.17+0.75 32.83+1.17 - - - -

..,. 
THE EFfECT Of DIff£RUT FOODPlANT SPECIES ON lARVAE of A. gamllia 

<X> 



TABLE 12: ANALYSIS OF VARIANCE OF THE EFFECTS OF DIFFERENT FOODPLANTS ON A. gamma LARVAE 

Source of Larval Pupal Adult Larval Pupal Total 
Variation HCW Weight Weight Weight Duration Duration Duration 

Foodplant F 6.27 16.4 11.9 10.8 72.0 6.4 27.5 

P <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

Sex F 0.03 0.49 1.4 0.16 0.21 3.4 10.0 
p NS NS NS NS NS <0.01 <0.01 

Interaction· F 1.10 0.31 0.62 0.85 0.24 0.79 0.35 
p NS NS NS NS NS NS NS 

Wing 
Length 

1.8 
NS 

0.20 
NS 

0.60 
NS 

Proboscis 
Length 

1.6 
NS 

NS 

0.84 
NS 

-

.po. 
.\,C) 
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It is apparent from Tables 11 and 12 that the amount of variation 

shown by different parameters is not the same. The gravimetric 

parameters, maximum larval weight, pupal weight and adult weight all 

show highly significant variation (F = 16.4, p<O.Ol,· F = 11 9 p<O 01' ., ., 
F = 10.8, p(O.Ol, respectively) as do the parameters measuring time; 

larval stage duration (F = 72.0, p<O.Ol), pupal stage duration (F = 
6.4, p<O.Ol), total egg to adult development time (F = 27.5, p<O.Ol). 

Those parameters which measured morphological attributes, however, do 

not show such a high degree of variation, with both the wing length 

and proboscis length failing to show any significant variation with 

foodplant changes. This indicates that within certain limits at 

least, the size of A.gamma adults may show a degree of canalisation, 

maintaining a relatively constant value in the face of wide fluctuations 

in larval and pupal weight. Since the size of morphological features 

such as wings is to a large extent determined by the shape of the 

pupal epidermis (Snodgrass 1954), it may be that the size of the final 

adult is determined more by the mass at pupation. whilst the adult 

weight is determined more by the calorific content at this stage. Two 

larvae with the same mass but different calorific contents, caused by 

growth on foodplants differing in water or fibre content, might 

therefore pupate to form similar sized pupae and thus similar sized 

external adult features. In one, however, the proportion of nutrients 

committed to adult structures is proportionately greater than in the 

other, leaving less energy in the fat body for reproductive use. The 

optimal foodplant in this case would not be the one which produced 

the largest adult necessarily but the one producing the largest adult 

using the minimum amount of calories, the plant with the highest 

calorific value:weight ratio. Although many studies of plant -

insect interactions have documented the importance of water content 

of the plant to larval growth efficiency (Scriber and Slansky 1981), 

it seems that no studies have been performed which follow these effects 
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through into the adult stage. even though it is only through the 

adult that fitness effects and therefore natural selection can operate. 

The absence of a significant amount of variation resulting from 

sex differences makes it acceptable to pool the data from both males 

and females and perform a oneway analysis of variance for significance 

of foodplant effects. More interestingly, one can obtain the rank 

of suitability of the different foodplants and the Least 

Significant Differences (LSD) between different plants. The results 

of these calculations are shown in Table 13. The most obvious 

observation from inspection of Table 13 is that no common pattern of 

suitability emerges, and thus no immediate conclusions over suitability 

can be drawn without knowledge of the relative importance of adult 

weight. speed of development. etc •• to fitness. This will be returned 

to at a later stage when more information of the effects of larval 

biology on adult reproductive activity has been presented. 

The final parameter recorded in these trials and not thus far 

mentioned might conceivably be the most important in determining 

foodplant choice in A.gamma. The results for percentage survival 

through the larval and pupal stages show large differences. ranging 

from 87.5% for Taraxacum to a low of 32.5% for Rumex. If these 

mortality differences were to be found under field conditions. one 

would expect selection to remove inferior species from the range of 

plants accepted as food. This may be the case but I feel that field 

mortality of larvae feeding on these different plants would not vary 

as much as in these trials. The majority of the mortality in the 

rearing boxes of all trials was due to nuclear polyhedral virus 

infection. and it is likely that once one larva in a box succumbs 

to the virus due to physiological stress caused by inferior food. then 

the probability of other larvae in the same box dying is increased. This 



TABLE 13: Rank Order of Performance of A.gamma when restricted to particular foodplants 

Rank Order Larval Pupal Adult Larval Pupal Total Wing length 
of Weight Weight Weight Period Period Development 

Performance 

1 Plantago Taraxacum Taraxacum Lamium Plantago Lamium Taraxacum a a a a a a a 
2 Stachysab Stachysab Lamium b Urticab Stachysab Stachysab Stachys a a 
3 TaraxacuIDab Plantagoab Brassica Stachysb Lamium b Urticabc Plant·ago ab a 
4 Lamiuu;,c Lamiun;,c Plantagoab Lamium b a 

5 Urtica Brassica Stachysb Plantago Brassica Urticab c c c 
6 Brassica Urticac Urtica Rumexd Brassica Rumex c c 
7 Rumexd Rumexd Rumex ---c Brassica Rumexd Rumexd -

Proboscis 

Stachys a 
TaraxacuIDab 
Plantagoab 
LamiuIDab 
Rumex ---
Urticab 

-

U1 
N 



supposition is supported by the tendency for mortality rates in 

different boxes of larvae on the same foodp1ant, to be either very 

high or low. 

If the differences in mortality rate do not vary by too much, or 
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are not consistent in their direction, for example when the phys,io10gica1 

condition of the plant is more important than its chemical defence 

spectrum, then it is possible for selection to act on the biology of 

the larvae through other agencies, such as growth rates, density, 

temperature. The effect of some of these parameters on larvae of 

A.gamma was therefore also investigated in some detail. 

OTHER FACTORS AFFECTING LARVAL DEVELOPMENT: 

The effect of one variable, the foodp1ant upon which the larvae 

feed, has been shown to exercise a major influence on size and rate of 

development in A.gamma. In a field situation this effect might be 

either exacerbated or confounded by the effects of other environmental 

variables. The effects of two other variables were investigated in 

this study. The first, temperature, was chosen because a geographically 

widespread species such as A.gamma must be exposed to a wide range of 

temperatures, probably changing considerably from generation to 

generation. The second, larval population density. was chosen because 

high population levels have traditionally attracted considerable 

attention as a proximate factor triggering emigration responses. This 

was in an attempt to extend the phenomenon of phase transformation 

found in desert locusts by Uvarov (1931) to other insects and 

resulted in an intensive search for similar changes in lepidopterous 

species during the 1950s and '60s (reviewed by Iwoa 1967. Harrison 

1980). A series of detailed but tanti1isingly inconclusive experiments 

on density responses of A.gamma was performed by Long (1953. 1955. 1959) and 

it was hoped that a repetition and extension of these experiments might 



throw further light on the effect of crowding on the life history of 

this species. 

THE EFFECT OF TEMPERATURE ON LARVAL DEVELOPMENT: 

METHODS 

Newly-hatched larvae from eggs laid by stock females were placed 

into solitary rearing boxes lined with tissue paper. Each box was 

provided with a surplus of L.album leaves which were replaced every 

24 hours. At the same time the uneaten food and frass was removed. 

Those larvae being reared at low temperatures and thus with a long 

developmental time were transferred to new sterile boxes every 

tenth day in order to minimise viral infection buildups. Forty 

larvae were reared at each of the following temperatures:-
o 0 0 0 0 0 12.5 e, 15 e, 17.5 e, 20 e, 23 e, 25 e. These temperatures were 
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maintained using the growth cabinets described in the General Methods 

section. Each cabinet was kept at an air humidity of between 60-80%RH 

but it is likely that the relative humidity within the rearing boxes 

was near to saturated due to water loss from the leaves into a small 

air volume. Due to the constraint of only two cabinets being 

available for use, plus a third in use for another project but maintained 

at lsoe initially and then 200 e later, the experiments were conducted 

in two parts. The first series of trials used stock line 79B2 

whilst the second series was conducted using 79B3, the offspring of 

a sib mating of 79B2, in order to minimise the likelihood of any 

genetic variance for temperature effects being introduced. For each 

temperature regime the following variables were recorded:-

1. The number surviving to adult emergence. Only those individuals 

which emerged with no obvious physical deformities were included. The 

% survival figure is therefore probably a fair estimate of the number 

capable of successful breeding. 
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2. The duration of the larval period (days) 

3. The duration of pupal period (days) 

4. The fresh weight of the pupa (mg.) 

5. The fresh weight of the emerging adult (mg.) 

The results of the temperature trials are given in Table 14. 

RESULTS 

The results shown in Table 14 were initially tested for the 

significance of differences between the two sexes for the parameters 

measured. This was done using t-tests (SPSS Package) and a summary 

of the results is given in Table 15. All tests for sex differences 

failed to show significant results with the exception of those for 

the duration of the pupal stage and also the total developmental time 
o from egg to adult emergence at 17.5 C. These latter results again 

show that the males take longer to emerge from the pupae indicating 

the possibility of a tendency towards protogyny in A.gamma. Although 

the data are kept separate throughout this section it is assumed that 

comments on temperature effects apply to both sexes equally unless 

otherwise stated. The effect of temperature on both larval and pupal 

period duration is shown graphically in Figures 5 and 6 and the effect 

on size is shown in Figures 7 and 8. 

DISCUSSION 

DEVELOPMENT TIME 

Increasing the ambient temperature at which larvae are reared 

has a dramatic effect on the rate of development. At a temperature of 



TABLE 14: The effect of different rearing temperatures on larval growth and adult size of A.gamma 

Rearing % Emerging Larval Stage Pupal Stage Total time - Pupal 
Temperature Sex N as adults Duration Duration Egg to adult Weight 

M 7 56.1 ±. 3.0 31.8 ± 2.5 88.0 :t 2.8 286.0.:t14.8 
12.50 C 40.0 

F 9 56.9 ± 3.4 32.4 2.1 89.3 ;t. 2.6 279.6il6.4 

M 10 41.2 % 4.8 26.7 1.3 65.9 :t 2.9 348.9.118.7 
15.0oC 60.0 

F 14 41.0 i 3.8 26.5 .t 1.5 67.5 .:t 3.7 

M 14 30.1 .t. 1.8 17.1 ± 1.0 47.4 2.0 371.0;1:34.7 
17.50 C 92.5 

F 23 29.4 i: 1.4 16.1 ±. 1.2 45.6 .;t 1.6 363. 

M 15 19.4 ± 0.6 14.5 .:!: 0.7 33.9 :t 1.1 363.4!33.5 
20.0oC· 77 .5 

F 16 19.0 ;t. 0.9 14.3 ± 0.8 33.3 ;I:. 1.0 

M 19 14.1 :t 0.6 10.7 :t 1.0 27.7 ± 0.8 329.3%25.2 
23.0oC 72.5 

F 10 13.9 ± 0.6 11.0 ± 0.7 24.9 :t 0.6 337.0±22.9 

M 7 14.0 1: 0.8 8.7 0.8 22.7 ± 1.0 193.6:t14.5 
25.0oC 32.5 

F 6 14.2 :t 0.8 9.0 oj: 0.6 23.0 ± 0.6 198.0*17.0 
.. -

Adult 
Weight 

148.6 ± 7.1 

147.8 t 7.5 

168.1 8.3 

172.6 ± 8.2 ; 

189.5:i.32.0 

195.7.:t32.7 1 

167.6:t26.7 

169.0:t25.3 

132.4*20.9 

120.4%15.0 

101.0%14.1 

93. 5.tl5.4 

VI 
(J'\ 

J 



TABLE 15: Student's t test for significant differences between sexes of response of 
A.gamma to different rearing temperatures 

Rearing Larval Stage Pupal Stage Total time - Pupal Adult 
Temperature Duration Duration Egg to Adult Weight Weight 

t p t P t P t P t P 

12.50 C 0.46 0.65 0.51 0.62 0.99 0.34 0.80 0.44 0.22 0.83 

15.0oC 0.11 0.91 0.34 0.74 1.14 0.27 1.09 0.29 1.30 0.21 

17.50 C 1.51 0.14 2.72 <0.01 3.02 (0.01 0.45 0.66 0.53 0.60 

20.0oC 1.43 0.16 0.56 0.58 1.44 0.16 0.28 0.78 0.15 0.88 

23.0oC 0.65 0.52 0.89 0.38 0.57 0.58 0.80 0.43 1.61 0.12 

25.0oC 0.38 0.71 0.73 0.48 0.62 0.55 0.50 0.63 0.92 0.38 
_.- --_.- - ---- -

I 

I 

I 

I 

U'I 



FICURE 5 The effect of rearing temperature on the duration of the larval 
and pupal of A.r.amma. 
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FIGURE 6 The effect of temperature on developmental period of larval 
and pupal stages of Autographa eamma. 
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FIGURE1 .The effect of larval rearing temperature on size of 
pupae. 
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FIGURE 8: The effect of larval rearing' temperature on size of 
gamma adults. 

200 

Adult 

Weight 
(mgs) 

175 

150 

125 

100 

61 

12.5 20.0 B.O 25.0 . 
Te .. 

'. 



o 12.5 C development from egg to adult emergence requires almost 90 

days whilst at 2SoC the time required is only 23 days. Converting 

the times for development into rates is easily achieved by taking 

the reciprocal and a plot of the rate against temperature gives a 

straight line graph (Figure 9). The slope of this graph shows that 

the Q10s for growth rates of a similar range may be found in the 

literature; for example, Q10 is reported as approximately 2.77 for 

Diaphania nitidalis. the pickleworm, (Elsey 1980) and 2.68 for 

Agrotis ipsilon (Archer et al. 1980). Q10 values in the region of 

2-3 are expected for processes which are under the control of enzymes 

and contractile proteins (Heinrich 1977) and simply reflect the 

increasing speed of cellular metabolism at higher temperatures. The 

speed of development thus continues to increase as temperatures 

increase until either enzyme inactivation or denaturation occurs 

or other physiological processes, such as water conservation or 

osmoregulation become disrupted. This is indicated by the increased 

mortality occurring at 2SoC and the failure to obtain perfect adults 

above this temperature. The graph of developmental rate versus time 

may also be used to calculate the developmental zero, or threshold 

temperature, at which no growth occurs. For A.gamma this appears to 

be 9.30 C; a relatively high value compared with the mean monthly 

temperatures for Britain and other N.European countries. Once the 

developmental zero is known it is possible to calculate the number of 

degree-days required to complete development. The values calculated 

using the formula: Thermal units (degree-days) - (T-th) x Dt (where 

T - constant temperature, th • threshold temperature, and Dt • 

Development time in days) for each of the experimental temperatures 

except 2SoC, where deleterious effects seem to interfere with 

development, are given in Table 16. 
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!IGURE 9: Reciprocal plot or development time or A.eamma against temperature. 
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From Table 16 it may be seen that an average value of 364.3 

17.04 degree-days for females and 373.5 + 13.33 degree-days for males 

is required to complete development. Using an average time of four 

days from egg-laying until hatching at 200 C a further 44 thermal units 

should be added to these values giving a figure in the region of 

410 units for the total developmental period. In conjunction with 

the mean temperatures for a particular geographical region and trap 

data showing the time of adult flight activity it may be possible to 

assess whether the moths trapped belong to a local resident population 

or have recently arrived in the area. 

This method may be feasible for monophagous species, which 

have few other influences on their developmental rates other than 

temperature, but may not be of much predictive value for highly 

polyphagous species, such as A.gamma, where foodplant differences 

may alter the developmental rate by up to 30%, even under the same 

temperature conditions. 

THE EFFECT OF TEMPERATURE ON SIZE 

Whilst the effect of temperature on developmental rates is 

fairly simple, in the sense that the relationship is essentially 

linear, the size response of A.gamma to different temperature regimes 

is more complicated. There is an apparently "optimal" temperature 

for size at about 17.SoC, with a rapid decline in size at 

temperatures above and below this value. Although this is the usual 

pattern obtained in studies of the effect of temperature on insect 

growth (Sokoloff 1974, Wigglesworth 1972) it is astonishing how few 

studies present data on these effects, or comment on the significance 

of the curves. When the reproductive success of many insect species 
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TABLE 16: Degree day accumulation at different temperatures for 
A.gamma 

Rearing Total I, Temperature Developmental Degree days 
Period (T) T 

M 88.0 0.0113 283.36 
12 .5 

F 89.3 0.0112 273.64 

M 65.9 0.0152 376.95 
15.0 

F 67.5 0.0148 386.10 

M 47.43 0.0211 389.87 
17.5 

F 45.6 0.0219 374.91 

M 33.9 0.0295 363.09 
20.0 

F 33.3 0.0300 357.08 

M 27.74 0.0360 380.59 
23.0 

F 24.9 0.0402 341.63 

M 22.7 0.0440 357.0 
25.0 

F 23.0 0.0435 361.56 

M 373.5 ± 13.33 
X 

F 364.3 ± 17.04 
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is. to a large extent. determined by their size (number of eggs in 

females. competitive advantage in males) these effects may deserve 

more attention than they have previously received. 

Inspection of the standard deviations of the graphs in Figures 

7 and 8 reveals that within the range of temperatures lSo-20oC the 

maximum size is still attainable. but the further the temperature 

is from 17.SoC then the smaller the chance of actually achieving this. 

Beyond these temperatures there is a rapid decline in mean size of 

adult which presumably reflects the disruption of normal growth 

processes at these higher or lower temperatures. This disruption 

is brought about by imbalance between rates of food intake and rates 

of water and energy loss. The precise mechanism of this imbalance 

is not easily explained without recourse to details of the moulting 

processes of larval growth and will therefore be explained after 

presentation of the experimental results of other growth experiments. 

THE EFFECT OF LARVAL DENSITY ON DEVELOPMENT 

METHODS 

Although many experimental studies of the effect of larval 

density on their subsequent development have been performed (Iwao 

1967) no standard set of densities has ever been adopted making 

comparative interpretations almost impossible. 

In the light of the large temperature and foodplant effects 

found in the previous sections all density trials were carried out at 
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a temperature of 17.SoC using only Lamium album as a foodplant. Three 

separate replicates of the density trials were run in order to increase 

the sample size. During the summer of 1980 two parallel replicates 

were run using different stock lines (SY80A and SY80C, both the 



offspring of wild females). Trials were set up using larvae which 

all hatched on the same day and consisted of twenty larvae in solitary 

rearing boxes and a further sixty larvae in three separate batches 

of twenty to a standard rearing box. Particular care was taken to 

ensure that at no time did the crowded larvae run short of food, 

especially in the fifth instar when food consumption is high and 

it was necessary to replenish stocks twice daily. In the crowded 

boxes larvae were removed as they pupated, weighed and sexed, and 

then placed into separate boxes until they emerged as adults. It 

was therefore not possible in these trials to test the possibility 

of any density effect operating on the pupae themselves, although 

this might be considered unlikely. Any differences in pupal duration, 

etc. observed in these trials must therefore be the result of 

effects perceived by the larvae prior to pupation. A third generation 

of stock A.gamma was used for another in the late autumn of 

1981 (Stock line SY81A1). In this trial only two boxes of crowded 

larvae were reared along with twenty solitary larvae. For each trial 

the following parameters were recorded:-

1. Time from hatching to pupation (days) 

2. Time from pupation to adult emergence (days) 

3. Total time from egg hatching until adult emergence (days) 

4. Fresh weight of the pupa (mgs) 

5. Fresh weight of the emerging adult (mgs). 

The results from these trials are given in Table 17 and were 

initially subjected to a three-way ANOVA, the results of which are 

given in Table 18 •. 

RESULTS 
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Larval duration: The F values from the ANOVA show there is a significant 

effect of density on the time taken from egg hatching to pupation 



TABLE 17: The effect of larval rearing density on the development time and adult size of A.gamma 

DENSITY GEN SEX N LARVAL PERIOD PUPAL PERIOD TOTAL TIME - ADULT WEIGHT 
Egg to Adult 

I M 8 29.9 J: 1.60 16.6 .± 0.74 47.1 :J: 2.6 172.5 :f: 23.9 
II M 6 29.7 .:1 0.52 17.8 :t 0.83 47.5 ::l 1.1 223.4 * 11.6 

III M 6 29.2 .:1 0.41 17.7 :!:. 1.00 46.8 J:. 1.3 198.3 ±. 16.7 
SOLITARY 

I F 11 29.0 .:t 1.60 15.0 :l: 0.71 44.0 ± 2.0 182.1 :.t 26.7 
II F 12 29.7 1.20 16.9 :to 0.79 46.6 .i 0.9 209.3 .:t 33.6 

III F 3 29.7 :t 0.58 17.7 :t. 1.53 47.3 :I: 2.0 193.9 .± 20.6 

I M 18 27.9 :I: 2.0 16.1 j:. 0.90 44.0 .:1 2.6 154.6 .:l 35.S 
II M 22 27.6 J: 0.73 17.9 0.53 45.5 :!: 0.7 219.7 :t 37.4 

III M 7 2S.6 -to 1.0 lS.1 ;t. 1.07 46.7 ,j: 1.6 185.7:i 12.S 
CROWDED 

I F 13 27.4 ;t 1.80 15.5 ± 1.05 42.S .t 2.4 172.0 * 24.4 
II F 16 27.8 .:I:. 0.9 17.4 :I: 0.81 45.1 .:i; 1.3 198.0 :i: 42.6 

III F 6 28.5 of: 0.8 16.8 f. 0.41 45.3 :!; 1.0 162.9 :t. 20.7 
--_ ... _--
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TABLE 18: Analysis of Variance for combined Density Trials: the significance of variation due to sex, 
generation and rearing density in A.gamma 

Source of Variation Larval Period Pupal Period Total time - Adult weight 
Egg to Adult 

F p F P F P F P 
Generations 0.636 NS 68.66 <: 0.001 17.46 <0.001 25.25 < 0.001 

Main Sex 0.848 NS 31.63 (0.001 1'1.18 (0.001 1.05 NS Effects 
Density 46.900 <0.001 0.359 NS 26.45 < 0.001 4.58 0.034 

Gen Sex 1.946 NS 0.38 NS 1.98 NS 3.82 0.025 
Two-way Cen Den 1.738 NS 0.38 NS 1.07 NS 0.23 NS Interactions 

Sex Den 0.440 NS 1.07 NS 1.10 NS 0.04 NS 

Three-way Cen Sex Den 0.549 NS 3.26 0.04 2.09 NS 0.34 NS Interactions 
... ---- - --- - -- ---

0' 
1..0 



70 

(F = 46.9. p (0.01) with no significant differences between generations 

or sexes as main effects and no significant interactions. The 

difference is due to the more rapid development of the crowded larvae, 

which on average pupated about one day sooner than solitary larvae. 

This result is similar to that obtained by Long (1953),who observed 

a 10-20% reduction in larval duration for reported 

for Leucania seperata (Iwao Spodoptera exempta (Brown 1962) and 

for Prodenia litura (Hodjat 1970),amongst others. This is by no 

means a general trend however and several reports showing no change 

or even a retardation of larval development exist, even in species 

closely related to the above ego Plusia. nigrisina, (Ichinose and 

Shibuya 1959) and Leucania loreyi (Iwao 1967). It appears that the 

explanation to these results lies in a subtle balance between negative 

effects of crowding, such as competition for food and contamination 

of the environment, and positive effects of grouping, such as mutual 

stimulation to greater feeding activity. These effects will be 

discussed in more detail after presentation of results for the 

other parameters. 

Pupal duration: The ANOVA reveals significant main effects of both 

generations and sex for the time from pupation until adult emergence 

but not for density itself. The variation between the sexes is again 

due to the female moths emerging before the males, on average about 

one day earlier in both the crowded and the solitary cultures. The 

differences found between the generations is not so easy to explain. 

although similar results are to be found in other studies of this 

species (Zaher and Long 1959). In the latter Case the variation 

was almost certainly due to changes in the ambient temperature which 

was not carefully controlled. Since my trials were conducted in the 

same growth cabinets. albeit at different times, it is unlikely that 



temperatures varied much, but this, in conjunction with possible 

genetic variation between strains and foodp1ant quality changes may 

be sufficient to account for the range of results. There appears 

to be no general trend for the effect of larval density on pupal 

duration. Iwoa (1961) reviews three species which show no effect, 

two where the rate of development is faster and three which are 

retarded, including A.gamma (Zaher and Long 1959). A similar 

compensatory lengthening of the pupal period when crowded was found 

in Prodenia 1itura (Hodjat 1970). This may be due to a negative 

correlation between pupal weight and the speed at which metamorphosis 

proceeds. Significant negative correlations between pupal duration 

and weight of the larva, pupa and adult were found in the large data 

set of the food plant trials where the range of sizes produced was 

greater but were not apparent in the density trials. It is perhaps 

not unreasonable to speculate that the rate of metamorphosis might 

be limited by nutrient supply in a smaller pupa. A further possible 

explanation for the variation between generations is indicated by 

the significant interaction component in the ANOVA which might be 

due to the changing sex ratio in each cell of the data. 

Total development time: Total development time shows significant 

main effects for generations, sex and density reflecting the influence 

of the sources of variation discussed above. The generation effect 

is mostly due to the variation in pupal duration whilst. the sex 

variation is a reflection of the faster female development. The 

·density effect is due to the shortened larval period (supplemented 

by the non-significant trend in the same direction shown by the 

pupae) of crowded cultures. 
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Adult weight: The analysis of variance reveals a significant effect 

(F = 4.58, P = 0.034) of larval rearing density on the size of the 

subsequent adults, with the crowded larvae smaller in all three 

generations. Besides this consistent trend there was also 

considerable variation between generations for size (F = 25.25, p (0 .001). 

Again this appears to be due to a number of compounded experimental 

errors including slight temperature differences, changes in foodplant 

quality, and differences in food provision. Similar differences 

between generations were also found by Long and Zaher (1958) and 

although this variation does not obscure the density effect it does 

provide a reminder that the effects observed under controlled conditions 

may be weak compared with the range of variation produced by 

fluctuations in other environmental influences in natural conditions. 

Regardless of how small the density effect might be it still requires 

a biological explanation. Some factor in the environment of a crowded 

larva produces a change such that pupation occurs at a size which 

produces a smaller adult than is produced under solitary conditions. 

This could be the result of one of the following effects:-

1. The larva senses the crowding and "decides" to pupate 

earlier than it normally would in order to escape competition or 

to prepare for migration. Such ideas have been proposed in the past 

by workers (see Johnson 1969, p.2l8-224) searching for migratory 

adaptations, particularly in response to local crowding. 

2. The smaller size of the crowded larvae is due to a 

starvation effect, either real in the sense of decreased food 

availability, or apparent through an increased amount of interference 

to food intake or increased energy expenditure to obtain the 

same amount of food. (A poorly designed density experiment would 

demonstrate the first real starvation whilst a well designed one 

would demonstrate the latter effects). 
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Whichever mechanism is operating in A.gamma (or any other species) 

it might reasonably be asked why a larva encountering these conditions 

does not continue to feed until it finally reaches the desired size 

but after a longer time. There is abundant evidence that insects can 

adapt to nutrient poor situations with prolonged slow growth both 

within the Lepidoptera (cf the clothes moth, Tineola bisselliella Hum. 

will pupate after 4 moults in 27 days on a rich diet but will take 

40 moults and 900 days on a poor one (Wigglesworth 1972), and in 

other insect orders (cf mayfly nymphs and periodical cicadas). 

Although this type of adaptation may be available as an evolutionary 

choice it is not one open to the larvae of leaf-feeding lepidopterous 

species on an ontogenetic level. Individual larvae are constrained 

as to the number of moults which they can undergo prior to pupation 

and the times when these moults occur. Changes in final adult size 

may be the result of changes to these constraints produced by the 

larvae themselves or the result of changes produced by external 

forces, Although the first of these choices is a possibility it is 

my contention that the latter is most likely for the following reasons:-

1. All the experiments designed .to measure ways by which larvae 

might detect density effects have failed except those which allow 

direct physical contact (Long 1955). This absence of a proximate 

control for an adaptation is rare in ecology. 

2. Food deprivation studies demonstrate that despite an increased 

assimilation rate on reintroduction of food the normal adult weight 

cannot be achieved (e,g. in the Cherry Scallop moth, Calocalpe undulata, 

SChroeder 1976), This indicates that the larvae are attempting to 

but are prevented from compensating for past losses. 

3. Similar size reductions to those observed in density trials 

are produced by temperature and foodplant changes and possibly by 

other factors. 



It appears that all adult size differences observed in this study 

might be due to subtle changes in energy balance.'·1 similar to those 

referred to by Iwao (1967) with respect to social aggregation but 

where the effect is mediated and made irreversible by the dictates 

of insect moulting processes. Temperature effects, foodplant 

differences and crowding might well be termed surrogate starvation 

effects which interfere with the normal moulting processes in the 

same way as true food deprivation. With this possibility in mind I 

decided to investigate the ways in which each of these factors 

might interact with the moulting process. 

THE RELATIONSHIP BETWEEN GROWTH, SIZE AND MOULTING IN INSECTS: 
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The post-embryonic life of an insect is divided into successive 

developmental stages, or instars, by a series of moults (ecdyses) which 

provide the insect with a new, larger cuticle within which growth 

can continue. In like the Lepidoptera, the 

juvenile stages, concerned primarily with feeding, are separated 

from the adult stage by a pupal stage within which drastic morphological 

changes occur. During the larval stages growth is limited within 

each ins tar by the finite extensibility of the cuticle and it is 

generally accepted that each moult is initiated by the detection of 

stretch on the cuticle (Wigglesworth 1972). Stimulation of these 

stretch receptors results in a complicated sequence of hormonally 

controlled changes culminating in ecdysis. 

Since the sclerotisedparts of the insect cuticle do not change 

in size during an ins tar (only unsclerotised parts can stretch) 

it is possible to characterise. an instar by measuring the dimensions 

of these sclerotised parts. Dyar (1890) deduced, from his studies. 

of the head capsule width (HCW) of 28 lepidopteran species, that the 
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size of the head capsule increased in size with each moult in a 

regular geometric progression, each Hew being 1.4 times larger than the 

preceding one. The ratio between the two HCWs is termed the Moult 

Ratio (MR). Similar Moult Ratios have been found for linear 

measurements of many different cuticular structures in many different 

insect orders (Tessier 1936). In the past 50 years numerous papers 

have, however, documented deviations from and exceptions to this constant 

Moult Ratio (see Cole (1980) for a review). Deviations from Dyar's 

Law have been reported for species from most insect orders, between 

individuals in the same species, between different moults in the same 

individual and even between different structural parts in the same 

moult. One might therefore be justified in querying the significance 

of the Moult Ratio at all were it not for the fact that there are 

a number of interesting correlations associated with these progressions, 

which indicate that the Moult Ratio characteristics, even the amount 

of variance itself, are shaped by natural selection. Enders (1976) 

observed that those species which have large Moult Ratios tend to 

be relatively immobile as larvae (notably larval Diptera and Hymenoptera) 

whilst highly mobile predaceous Coleoptera larvae and Hemiptera 

nymphs have smaller Moult Ratios. Enders speculates that the latter 

are prevented from evolving higher Moult Ratios by the need to maintain 

an adequate power/weight ratio. This association between Moult Ratio 

and motility appears to exist within the Lepidoptera also. In a 

similar manner there is association between speed of development 

and a reduced number of moults regardless of the final size of the 

adult insect and also an association between the variance on the 

number of moults and environmental unpredictability 

prep). 

(Duthie, in 



This final section on the larval stages of the life cycle of 

A.gamma therefore concentrates on elucidating the exact nature of 

the control of moult initiation at an ecological (not biochemical) 

level. 

THE RELATIONSHIP BETWEEN HCW AND WEIGHT WITHIN ANY INSTAR: 

A preliminary analysis of data gathered in other parts of this 

study reveals that there is a strong correlation between the HCW 

of a larva and the maximum size that it attains prior to moulting. 

Figure 10 shows a log-log plot of the relationship, in which the 

correlation is highly significant (r - 0.999, p(O.OOl). This 

result was obtained from the mean values of many larvae at each 

instar. Inspection of the individual values within each ins tar 

reveals that not all the larvae achieve the maximum size prior to 

moulting. It is therefore apparent that it is not the maximum 

weight attainable in each ins tar which triggers the actual moulting 

process and this trigger must be operated at some other weight (or 

rather some other degree of stretch). This lower threshold weight 

was determined for different larval instars in A.gamma in the 

following experiments. 

THE CRITICAL WEIGHT FOR INITIATION OF MOULTING IN A'gamma 

METHOD 

The first requirement for this series of experiments was the 

production of larvae all in the same ins tar but covering a wide 

range of weights. This was achieved by taking stock larvae as they 

moulted into a particular instar and transferring them to individual 

rearing boxes in which the amount of food supplied could be closely 

controlled. By manipulation of the amount of food supplied and 
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monitoring of the weight of each larva each day a range of larval 

weights varying from normal to almost starved was obtained by day 

three into the new instar. All the larvae were then deprived of 

further food and weighed daily until they either moulted or, if 

moulting had not occurred by the sixth day of starvation, they were 

returned to a normal diet. Those larva which successfully completed 

moults were also returned to a normal diet after the size of the 

new head capsule had been measured. These starvation experiments 

were completed for moult 31-41, 41-51 and the final pupal moult, and 

the results are given in Tables 19-21 and Figures 11-13. These data 

show that it was not necessarily the lightest larvae which failed to 

moult within each instar group. This means that it cannot be weight 

which serves as the trigger for the initiation of moulting. As 

the moult is triggered by stretch, at least in the bloodsucking 

hemipteran, Rhodnius (Wigglesworth 1934) and another hemipteran 

Oncopeltus fasciatus (Blakley and Goodner 1978, Nijhout 1979) it 

may be necessary to allow for the slight size difference revealed by 

HCW variation. within instar groups. This can be done by calculating 

a weight/size ratio of the weight of the larva (in mgs) divided by 

the HCW rom units). This value will be called the Moult Index 

(MI). From Tables 19-21 and also the graphs in Figures 11-13 it 

can be seen that moulting cannot occur unless a certain critical 

value for the MI is attained. From the graphs it seems that this 

critical value is itself size dependent and tentative lines have been 

drawn to indicate the values which seem to be essential to successful 

initiation of moulting. Using these approximate values it is 

possible to compare the minimum M1 possible with that achieved by 

a larva under optimal conditions. These comparisons are given in 

Table 22. From these results it may be seen that a normal third 
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TABLE 19: The threshold size for moulting from the 3rd to 4th Instar 
of A.ganuna 

HCW Maximum Moult HCW Moult 
3rd Instar Larval Index 4th Instar Ratio 

Larvae Weight Larvae 

76 12.5 0.164 114 1.50 
74 10.7 0.145 110 1.49 
76 11.2 0.147 118 1. 55 
76 7.8 0.103 102 1.34 
72 9.4 0.131 110 1.53 
78 12.8 0.164 120 1.54 
74 10.6 0.143 120 1. 62 
76 10.8 0.142 108 1.42 
72 8.1 0.113 90 1.25 
78 10.3 0.132 118 1. 51 
76 11.6 0.153 124 1.63 
72 12.2 0.169 116 1.61 
72 7.5 0.104 92 1.28 
74 9.8 0.132 110 1.49 
72 10.8 0.150 122 1.69 
78 14.2 0.182 124 1.59 
76 8.9 0.117 100 1.32 
76 10.4 0.137 114 1.50 
76 7.9 0.104 96 1.26 
78 9.2 0.118 102 1.31 
76 13.0 0.171 118 1.55 
80 11.4 0.142 120 1.50 

76 8.2 0.108 
78 8.2 0.105 
78 6.8 0.087 
72 7.3 0.101 
76 7.1 0.093 
80 6.8 0.085 failed to moult 72 7.6 0.106 
74 6.2 0.084 
76 6.3 0.083 
72 5.8 0.080 
72 6.3 0.094 
76 7.3 0.099 
80 8.5 0.106 

Tables 19-21: Hew in 1/50 mm. units, weights in grams. Moult Index 
and Moult Ratio are explained on pages 78 and 75 respectively. 

-----
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TABLE 20: The threshold size for moulting from the 4th to 5th Instar 
of A.gannna 

Hew Maximum Moult Hew Moult 
4th Instar Larval Index 5:th Instar Ratio 

Larvae Weight Larvae 

114 45.2 0.396 176 1.544 
122 50.9 0.417 182 1.492 
110 34.9 0.317 144 1.309 
118 61.1 0.518 194 1.644 
126 72 .6 0.576 192 1.524 
124 81.3 0.655 196 1.5S1 
102 37.4 0.367 162 1.588 
110 34.8 0.316 152 1.382 
120 59.0 0.492 190 1.583 
108 35.9 0.332 148 1.370 
90 21.4 0.237 130 1.444 

114 52.2 0.458 180 1.579 
118 52.9 0.448 182 1.542 
124 45.7 0.369 186 1.500 
116 63.9 0.551 194 1.672 
92 33.2 0.361 130 1.413 

110 55.1 0.501 182 1.655 
124 45.3 0.365 180 1.452 
100 23.2 0.232 134 1.340 
114 49.4 0.433 186 1.632 

96 24.4 0.254 138 1.438 
138 72.2 0.523 200 1.450 

114 20.0 0.175 
110 18.3 0.165 

98 10.1 0.103 
116 14.5 0.125 
128 14.7 O.llS 
126 27.1 0.21S failed to mou1 t 
102 18.1 0.177 
102 14.5 0.142 j 132 24.0 0.182 
94 12.9 0.137 

116 24.1 0.208 
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TABLE 21: The threshold size for pupation of larvae of A.gamma 

Hew Maximum Moult 
5th Instar Larval Index 

Larvae Weight 

200 269.8 1.349 
194 209.0 1.077 
192 202.6 1.055 
190 260.7 1.372 
204 376.1 1.844 
200 320.8 1.604 
180 320.8 1.723 
182 208.1 1.143 
194 277.6 1.431 
182 239.0 1.313 
180 232.0 1.289 
186 211.0 1.134 
200 259.2 1.296 successfully pupated 
200 225.1 1.126 
192 233.4 1.216 
198 255.1 1.288 
196 231.1 1.179 
188 205.1 1.091 
188 219.8 1.169 
196 233.8 1.193 
204 307.0 1.505 
202 255.8 1.266 
208 299.2 1.438 
198 263.2 1.329 
200 285.8 1.429 

188 154.5 0.822 
182 168.9 0.928 
194 163.9 0.845 
196 204.0 1.041 
184 151.2 0.822 
204 198.5 0.973 
198 146.7 0.741 failed to pupate 
192 140.2 0.730 
182 159.8 0.878 
200 161.6 0.808 
196 195.8 0.999 
204 150.8 0.739 
194 211.5 1.109 
208 252.1 1.212 
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FIGURE The threshold size for pupation of larvae of A.eamma. 
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TABLE 22: Moult Indices of A.gamma larvae under normal and starved 
conditions 

Moult Fed Normally Starved 

N X SD N X SD 

31-41 23 0.183:0.016 22 0.139:!0.023 

41-51 24 0.560" 0.044 22 0.414:0.113 

Pupation 25 1.786 j: 0.158 25 1.312%0.199 
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instar larva of A.gamma would have a HCW of about 75 units and 

attain a maximum weight of 13.75 mg.; before moulting giving an MI 

of 0.183, whilst the minimum MI which allows moulting is 0.106 
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and would be obtained from a larva of similar Hew but only weighing about 

8 mgs. 

The significance of the critical Moult Index ratio to the larval 

ecology of insects does not lie just with its function as a trigger. 

It is the precise nature of this trigger and, most importantly, the 

time delay between triggering and actual ecdysis which brings about 

size variation. In order to understand how these changes are 

brought about it is necessary to outline the hormonal control of 

moulting in some detail. Once the critical MI value is passed a 

larva (under normal rearing conditions) continues feeding and attains 

the maximum size for that ins tar and its own particular Hew. The 

delay between triggering of moulting and ecdysis is the result of 

the requirement for the larva to complete the following processes. 

The first change induced in the larva is the cessation of JH secretion 

by the corpora allata and the removal of JH already present in the 

haemolymph by the action of JH esterases (Nijhout and Williams 1974). 

This takes about 24 hours at normal physiological temperatures. 

During this period larval behaviour is normal and feeding may 

continue. Once the JH level is low enough the larval brain becomes 

competent to release prothoraci c? trophic hormone (PTTH). 

This hormone, which stimulates ecdysone release, has a photo· 

periodically gated control on its secretion from the brain (Truman 

1972). There is only one period in any 24 hour cycle during which 

PTTH secretion can occur. A larva which attains the correct level of 



JH during this period (Gate I) will release PTTH and ecdysone 

activity will begin within the next few hours. If JH is not cleared 

from the haemolymph before the closing of the photoperiodic gate 
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then the larva must wait a further 24 hours until the next gate (Gate 2). 

During this additional period the larva would be able to continue 

feeding until the maximum size was reached. Following PTTH release 

the prothoracic glands secrete ecdysone which in turn controls 

apolysis and new cuticle synthesis after which ecdysis can finally 

take place. The duration of the events following PTTH release 

is temperature dependent but takes about 24-36 hours at 200 C for 

A.gamma. During the latter half of this period the occipital region 

of the new head capsule withdraws from the old head capsule but the 

old capsule remains as a "muzzle" over the new, preventing any 

further feeding until ecdysis is complete. 

From the above account it should be apparent that, not only can 

differences in feeding rates during the critical time between moult 

initiation and completion affect growth, but also that the length 

of this critical period itself can be influenced by external conditions. 

The significance of these differences lies in their effect on the 

quality of the subsequent moult. Whilst a normally fed larva will 

moult and have a head capsule width of around 125 units, a starved 

larva with an MI of only 0.106 would only have a HCW of 96 units, 

thus limiting the size which the larva can reach in the next ins tar 

before moulting is triggered again. In this way any failure to 

maintain a normal growth pattern has an enduring and irreversible 

effect on the size of the insect. Variations introduced 

larval moults affect even the adult moth, since the changes which 

occur during larval growth also set the upper limit to size attainable 
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prior to pupation. The trigger for metamorphosis as opposed to another 

larval moult is again size dependent (Blakey and Goodner 1978, 

Nihjout 1975) and although the exact hormonal control is not yet 

fully understood the switch from larval to pupal moult is thought 

to be triggered when the JH titre is sufficiently low during a critical 

time period, usually midway through the ins tar (Nijhout and Wheeler 

1982). If the JH titre is high then another larval - larval moult 

takes place but if the larva is large enough to dilute the JH 

titre sufficiently then a pupal moult occurs. A sub-optimally 

sized larva may have a HCW large enough to allow it to attain a 

size which will trigger pupation yet prevent it from achieving the 

normal weight prior to gut purging and cocoon spinning, thus resulting 

in a smaller adult. Alternatively. an even smaller larva would reach 

its maximum weight (limited by the amount of stretch in the cuticle) 

whilst still short of the size required to trigger a pupal moult and 

is therefore forced to undergo an additional larval moult (Nijhout 

1975). Although supernumerary moults have been reported for A.gamma 

(Long 1953. Novak 1968, Cayrol 1972) only a few larvae from early 

experiments of this study are thought to have undergone supernumerary 

moults and by far the commonest result of any mistreatment of the 

larvae was the production of small adults, weighing as little as 

50% of the normal adult weight. 

The results reported in this section are far from telling the 

complete story of how moulting is controlled in A.gamma larvae but 

they do clearly show how the requirement to moult dramatically 

alters the way that different perturbations of growth affect larvae. 

Regardless of the cause of a failure to attain the appropriate size 

in any ins tar the net outcome is the same. It therefore seems 



possible to propose that the size differences reported in the 

earlier sections of this report and by other workers. not only with 

A.gamma but with any other insect larva. are due to similar effects. 

Below I outline the ways in which moulting disturbances bring about 

size changes in A.gamma for each of the factors investigated earlier. 
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FOODPLANT: Each larval foodplant has its own characteristic nutrient 

and secondary compound profile. Since lepidopterous larvae do not 

digest the cellulose content of their food. a fibrous plant, such 

as Brassica, provides less nutrients per mg tissue in the gut than 

a more typical foodplant. ego Lamium. But if the trigger for 

moulting is a particular weight/size ratio as suggested above, then 

the moult is triggered at the same point in two larvae feeding on 

these two plants. The Lamium feeding larva should have more nutrients 

available for new cuticle growth, etc., than the Brassica feeding 

larva, which has a greater portion of its weight composed of useless 

cellulose. 

Alternatively, two foodplants with similar fibre content may 

differ in their defence chemicals and thus present the larva with 

greatly different energetic costs for detoxification. A noted 

polyphage, such as A.gamma, i$ almost certain to possess a mixed-

function oxidase detoxification mechanism (Brattsten 1979). These 

enzyme systems are induced by the presence of a broad range of 

toxic compounds but their production drains nutrients and energy 

from other processes leaving fewer reserves for growth. 

It is possible that growth differences between larvae on different 

foodplants may be caused less by nutritional differences per se but 

more by the way these differences interact with the temporal sequence 

of events involved in moulting. As already noted a larva which 
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has been temporarily starved is unable to attain a normal adult 

weight when provided with unlimited food even though its assimilation 

rate may rise to above the normal rate (Schroeder 1979). A larva 

which is starved whilst below its critical MI is incapable of 

moulting and steadily loses weight until it dies or is fed again. A 

larva which is starved when past its critical MI moults regardless 

of its subsequent feeding regime and the lower Moult Ratio resulting 

from starvation imposes a new upper limit on the size attainable 

prior to pupation. A similar result to that obtained by starvation 

is observed if a lower food assimilation rate is caused by increased 

metabolic cost of detoxification or by increased activity searching 

for a more suitable foodplant. A larva confined to a sub-optimal 

foodplant (e.g. for A.gamma) may be paying the cost for both 

of these activities. 

DENSITY: Even when provided with suitable foodplant and physical 

conditions, rearing larvae in close proximity to one another can 

prevent them from attaining a normal weight. This can now be 

explained in the following way. The repeated contact between larvae 

in a crowded culture alters the pattern of activity shown by 

individual larvae. Long (1953) found that crowded larvae spent 

13% less time resting but only 5% of this was used for feeding 

activity; the rest being non-feeding activity. Once the larva 

has passed the critical weight it is irreversibly committed to 

moulting either at Gate 1 or twenty-four hours later at Gate 2. A 

Gate 1 larva will be interrupted from feeding so often that it will 

fail to attain its maximum possible weight before the first surge of 

PTTH release. A Gate 2 larva may have time to reach its maximum 
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mass but will also lose more nutrients than a solitary larva through 

its increased activity. The above scenarios are statistical likelihoods 

which mayor may not happen to a particular larva but, since the 

effect of sub-optimal MIs is a permanent consequence regardless of 

the instar during which it occurs, it is likely that every larva in 

a crowded culture is affected to some extent, during at least one 

moult sequence and will therefore not attain the typical size 

achieved by non-crowded larvae. 

TEMPERATURE: The results given in Table 14 show that both higher and 

lower than normal temperatures influence the growth of A.gamma, 

producing smaller adults. A larva growing at a low temperature will 

have a slow assimilation rate. Once the larva passes the critical 

size for moult initiation it has only 36-48 hours before the head 

capsule slips forwards and prevents further feeding. 

If the temperature is sufficiently low during this period the 

assimilation rate of the larvae will be so low that the maximum 

weight will not-be obtained. At higher than normal temperatures the 

metabolic rate of the larvae is much higher and although feeding 

rates are adequate to ensure that the larvae reach their maximum 

size before the opening of the PTTH gate, the increased metabolic 

costs and water loss at these temperatures will reduce the effective 

mass available for cuticle expansion after the moult. These losses 

will be particularly important in the pupal moult where the larva 

must first 'wander' to locate a suitable site for pupation, then 

spin a cocoon with the pupal moult only occurring about 48 hours 

after PTTH release. 

It appears that there may be a common physiological explanation 

for previously separately considered effects of environmental 

parameters on growth and size in insects. If the above reasoning 
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is correct then consideration of the influence of the threshold weight 

for moulting to the overall ecology of A.gamma may yield clues to the 

nature of its usual habitat and the strategy A.gamma has evolved to 

cope with it. 

The existence of widely varying numbers of moults and differing 

Moult Ratios (under good conditions for growth) in different insect 

orders implies that these parameters may evolve by natural selection, 

at least over long time periods. But if attaining the correct size is 

important to the survival and fecundity of insects, which it appears 

to be, then it is surprising to find that the achievement of this 

size is so easily disrupted in some insects. Is there any 

corresponding advantage or limitation which makes size stability less 

desirable to some life styles? The simplest way to guarantee the 

achievement of the optimal {maximal} size would be to have the critical 

MI ratio identical to the optimal, maximum size. In this way moulting 

could not occur unless the correct size had been reached. This would 

also mean,however, that'the larva would then have to wait about 48 

hours whilst the moulting processes are completed without being able 

to feed. This may have two drawbacks. The first is that this period 

may be too long for the larva to persist without the water intake 

which accompanies food consumption. This will be especially 

important at the and/or low %RH conditions that 

A.gamma encounters at its southernmost distribution limits. A 

second and possibly more important drawback is that a 48 hour delay 

with no feeding at each moult may add as much as 75% to the length 

of the larval period. An opportunist colonizing species like 

A.gamma would be expected to be strongly r-selected (MacArthur and 

Wilson 1967) and therefore to have as high an intrinsic capacity of 
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natural increase as possible. Cole (1954) demonstrated that an 

equivalent effect on r to that achieved by a doubling of the 

fecundity might be brought about by a 10% reduction in the 

generation time, highlighting the importance of this parameter to 

r-selected species. Selection for a critical MI lower than the 

maximum MI will shorten the time period during which the larva is unable 

to feed and thus considerably shorten the larval period. Another 

consequence of a lower Critical MI is that in conditions of intense 

food competition or' poor food quality it allows a larva to successfully 

pupate albeit at a smaller size. The small adults emerging from these 

pupae can then disperse to new, more favourable habitats. A larger 

adult might have greater fecundity if it survived the larval stages 

but under these extreme conditions hard selection (sensu Wallace 

1968) will remove the majority of these individuals from the gene 

pool, even if these situations are relatively rare occurrences. In 

view of the extremely small size of A.gamma adults which can be 

produced by manipulations of the Moult Ratio in the laboratory, and 

which are also encountered under field conditions (personal observation, 

Bretherton 1978) it seems likely that A.gamma has been subject to 

this type of selective pressure. 

FACTORS AFFECTING REPRODUCTIVE SUCCESS IN THE ADULT STAGE OF THE 
LIFE CYCLE OF A. 

In the previous section I have been primarily concerned with 

attempting to determine those factors which have the greatest effect 

on the larval stages of A.gamma, not just with respect to survival, 

but also to elucidate the type of phenotypic change produced in 

the adult by these factors. Whilst the "goal" of the larva is simply 

to survive and produce an optimally sized adult, the "goal" of the 
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adult phenotype is not only to survive but also to achieve the 

maximum reproductive success. For male moths this entails obtaining 

the maximum number of matings (with the best possible/fittest 

females) whilst for females reproductive success is usually equated 

with the number of viable eggs laid (although the site of oviposition 

should also be taken into consideration especially in highly mobile, 

polyphagous species such as A.gamma). Measuring the potential 

reproductive success of an organism is not a simple procedure and 

insects are no exception. If the germ line tissues of an organism 

were provisioned separately from the somatic tissues which carry 

them then the assessment of reproductive potential would be a simple 

matter of measuring the number of gametes or calorific value of the 

germ line. This situation is almost attained in some lepidopterous 

insect adults where the ovaries are fully developed on emergence and 

no further calorific input is possible because the mouthparts have 

atrophied. If the females are flightless, thus further reducing the 

variance on the amount of energy used in movement, then a good 

linear relationship between size and the number of eggs laid by a 

female might be found (e.g. in Lymantria dispar or Operophtera brumata). 

Such a relationship has indeed been found by many workers in laboratory 

studies of insect fecundity (Prebble 1941, Richards and Waloff 1954, 

Murdie 1969, Taylor, 1975). In very few cases can these measurements 

be reliably extrapolated into field situations, however, because in 

most insects a dynamic relationship exists between the germ line 

the soma (in particular the fat body) and further calorific input by 

adult feeding. Any instantaneous measure of the reproductive investment 

is therefore likely to be misleading. A simple flow chart of the 

factors affecting reproductive output is given in Figure and 
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although it is unlikely that all these factors are important to 

A.gamma, some undoubtedly are. Since selection operates on the variance 

in reproductive output between A.gamma adults, those factors producing 

the largest variance should be the most important selective forces at 

work on this species (whilst those with the smallest variance are 

either no longer important selective pressures or never were). In 

order to measure the response of A.gamma adults to some of the above 

forces one would ideally like to conduct a series of controlled 

experiments varying only one factor at a time. Unfortunately the 

factors themselves are not completely separable and therefore a more 

complex situation is inevitable. However, for initial simplicity 

at least, the experiments conducted are reported separately and then 

integrated in a final discussion. 

THE RELATIONSHIP BETWEEN LARVAL, PUPAL AND ADULT SIZE, WEIGHT AND 
FECUNDITY 

In order to assess the influence of the maximum weight achieved 

by the larva on the subsequent pupal and adult sizes data from 

previously reported trials were utilised. Tables 23 and 24 show that 

the percentage weight losses during larval-pupal and pupal-adult 

transformation are in the region of 20% and 55% of the weight at 

the beginning of each stage, respectively. These values show little 

variation with the larval foodplant, with the exception of the larval 

to pupal loss of those larvae fed on Plantago, which lost rather more 

but as the larvae were slightly heavier before pupation than those 

on other foodplants, this made little difference to the weight of the 

final adults. The larval - pupal weight losses (expressed as 

percentages) for those larvae fed on were slightly smaller than 

with other foodplants. This is probably a reflection of the much 

reduced overall mass of these larvae which must pupate with minimal 
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TABLE 23: Weight loss during pupation and metamorphosis of A.gamma 

Larval 
Foodplant Sex Loss during Pupation Loss during Metamorphosis 

i. 
Weight Larval Weight i. 
Lost (mgs) Weight Lost (mgs) 

M 64.0 18.4 149.5 52.8 
Taraxacum 

F 50.7 15.2 141.7 50.1 
M 63.0 19.1 133.9 50.3 

Lamium F 67.5 20.0 149.1 55.3 
M 65.5 18.8 151.7 53.5 

Stachys 
F 68.5 17.8 153.9 55.5 
M 85.9 23.8 161.8 58.9 

Plantago 
F 85.1 23.7 145.2 52.9 
M 59.6 18.6 154.1 59.1 

Urtica 
F 80.3 25.1 136.6 57.0 
M 47.5 17.3 135.5 60.1 

Rumex 
F 49.1 18.4 131.5 60.2 -
M - - - -

Brassica F 59.2 18.5 135.6 52.1 

TABLE 24: Weight loss during metamorphosis of A. gamma reared at different: 
temperatures . -

Rear1ng 
Temperature Sex Loss during metamorphosis 

Weight 
Lost (mgs) % 

M 136.4 47.7 
12.SoC F 131.8 47.1 

M 180.8 51.8 
15.00 C 

F 183.1 51.5 
M 181.5 48.9 

17 .SoC 
F 168.1 46.2 
M 195.8 53.9 

20.0oc 
F 197.3 53.9 

23.0oC 
M 196.9 59.8 
F 216.6 64.3 

25.0oC 
M 92.6 47.8 
F 104.5 52.8 



fat body deposits. 

The lack of variance shown by these results may underestimate 

the losses which might be incurred during these changes in the field 

since the environmental conditions within the rearing boxes are, on 

the whole, favourable to the minimization of losses. Potential 
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losses during pupation would include energy expended locating a site 

suitable for pupation. This cost may be quite considerable in some 

species where the site may be some distance from the larval foodp1ant, 

e.g. Pieris brassicae, but is unlikely to be large in p1usiid species, 

the majority of which spin cocoons on the larval foodplant. Containment 

within the larval rearing boxes is likely to keep this potential cost 

at a low level. A second cost which might vary in field situations 

is the cost of constructing the cocoon itself. The usual method 

employed by p1usiid species is to pull several leaves together. a 

procedure which uses considerably less silk than the construction 

of a complete cocoon. This latter situation was often found in the 

rearing boxes where larvae chose the uppermost corners of the boxes 

for pupation. Construction of an adequately secure cocoon was 

implied to be a major factor influencing not only pupal weight loss. 

but even survival in the cabbage moth, Mamestra brassicae (Honek 

and Novak 1980>. where failure to provide the correct soil substrate 

for cocoon construction prevented successful pupation. This study 

also concluded that the most important factor influencing the weight 

loss during both the prepupal and the pupal stages was the relative 

humidity surrounding the pupa. In the rearing boxes utilised in 

the present study the atmosphere was almost certainly at or near 

100i.RH. thus minimising water loss from the pupae. Water loss is 

likely to be a major problem facing pupae during the Summer months 

especially in the arid Middle East localities which A.gamma inhabits. 



It is likely that saturation of the atmosphere within the rearing 

boxes is responsible for the lack of variation seen in the percentage 

weight losses of larvae reared at different temperatures. These 

results are given in Table 24 and show that the losses vary over a 

range of only 46-64%. Although there is a trend towards increasing 

loss at higher temperatures this is lost at the highest temperature 
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(2SoC) when the larvae are much smaller at the beginning of metamorphosis, 

presumably due to a higher rate of water loss in the previous stages 

combined with the lower threshold size for pupation. 

Although there is the potential for considerable variation 

between the completion of larval feeding and emergence of the adult 

moth there is still a highly significant correlation between maximum 

larval weight and pupal weight (r • 0.695, p <0.001) and pupal and 

adult weight (r = 0.617, One point of interest which 

emerges from these correlations (Figure 15, based on the combined 

data from the foodplant trials) is that the best predictor of adult 

size as measured by the winglength and proboscis length is not adult 

weight, as might be expected, but rather the weight of the pupa 

(r = 0.773, p<O.OOl and r • 0.683, p(O.OOl, respectively). As 

previously noted, this implies that the size of the adult moth is 

determined at an early stage in metamorphosis, possibly by the actual 

dimensions of the pupal case, which bear the outline of the wings and 

proboscis at metamorphosis, and that increased weight loss subsequent 

to this period might be seen as a reduction in those structures 

developed at a later stage, i.e. the fat body, through which energy 

for the ovaries must be channelled. 

It seems that although potential differences in weight loss and 

size, and hence fecundity, may appear during development of the pupa 

the variance present at this stage of the life-cycle is relatively small 
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FIGURE 15: Correlation matrix of developmental parameters of 
Autographa gamma (based on total foodplant data). 
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when compared with the amounts present during larval growth and also 

in the adult stages, as is shown in the following sections. 

THE RELATIONSHIP BETWEEN ADULT SIZE, FEEDING AND FECUNDITY 

Ideally one would like (and expect) to be able to establish a 

strong correlation between the size or weight of an adult moth and 
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its reproductive success. This would be expected to be true particularly 

of the females, whose investment in reproductive tissues is so much 

larger than that of males. Initial trials to establish a regression 

line between the weight of A.gamma females and their reproductive 

output soon revealed that it was not possible to obtain realistic 

reproductive performance in the absence of adult nutrition. Trials 

which comprised matings of females of different weights and counting 

the eggs laid were therefore replaced by a more sophisticated series 

of trials. 

METHOD 

Adults emerging from isolated, sexed pupae were allowed to fully 

expand and dry their wings and produce meconia, cooled to 40 C to 

reduce their activity and then weighed. Pairs of moths of 

approximately similar weight were placed in standard rearing boxes 

provided with suitable foodplants for oviposition (usually Lamium 

The boxes were kept under constant conditions of 200 C, 

16L:8D and the moths provided with one of the following feeding 

regimes: 

1. with neither water nor nectar substitute (10% sucrose). 

2. Provided with access to water only (a soaked cotton wool 

pad, replaced daily). 

3. Provided with a 10% sucrose solution. 
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For each pair of moths the following data were recorded: 

A. Weight of the male and the female (mg.). 

B. Winglength of the male and female (recorded on the dead moth 

at the end of the trial)(mm). 

C. The longevity of the male and female (days) 

D. The length of the preoviposition period (days) 

E. The number of eggs laid each day. (The moths were transferred 

to new boxes each day once oviposition had begun. The old boxes 

were then retained in order to obtain the number of eggs hatching). 

F. The ovarian status of the female moth at death. (Moths 

were placed in one of the following four categories: 1. Only fat 

body present. no ovarian development. 2. Only immature eggs and fat 

visible. 3. Some mature eggs present. still some fat. 4. No fat 

visible only mature and developing eggs). 

G. The number of mature eggs left in the ovaries. Mature 

eggs were classified as those on which the sculptured pattern of 

the chorion was clearly visible. 

H. The number of matings. This was determined by counting the 

number of spermatophores in the bursa copulatrix of the dead female. 

A summary of the mean values for each parameter is given in 

Table 25. These data were analysed using the ANOVA programme of the 

SPSS computer package. The summary output from this analysis is 

given in Table 26 (Trial 1). 

RESULTS 

The resuks shown in Table 25 and 26 reveal the importance of 

adult feeding to reproductive success in A.gamma. In the absence of 

a supply of sucrose the number of viable eggs laid is effectively 

zero. Those moths kept as adults without access to either water or 
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TABLE 25: The effect of adult feeding regime on the longevity and reproductive success of A.gamma 

Adult Adult Wingspan Longevity Preovi- Maturity of Unlaid Eggs 
Food N Sex Weight position Ovaries 

Period 
10 M 118.1±20.9 19.5±0.18 10.4±0.97 

I 10 F 106.9±23.0 18.6±0.85 8.6±2.72 3.3±1.1 2.7±0.7 55.4±52.7 
Sucrose 

11 M 128.2±21.5 12.7±2.0S 
II 11 F 121.5±16.5 12.2±3.74 3.2±0.9 3.3±0.7 30.9±38.3 

10 M 103.6±8.S 1S.9±0.52 4.9±0.57 
I 10 F 109.0±1S.0 19.1±0.74 5.9±1.29 4.7±1.3 2.3±0.8 23.5±24.0 

Water 
IS M 119.S±21.3 7.2±0.86 

II 18 F 114.6±l6.3 9.2±1.72 5.3±l.6 2.1±1.1 22.2±43.0 

8 M 118.8±lS.4 19.6±0.93 3.5±0.53 
I 8 F 113.2±20.2 19.1±0.79 4.0±0.53 6.0±0.0 1.3±0.7 3.3± 9.2 

Nothing 
8 M 12S.S±16.2 4.1±0.64 

II 8 F 118.5± 7.9 5.9±0.84 O.O±O.O 1.0±0.0 O.O± 0.0 

Number of 
Matings 

1.2±0.9 

2.36±1.0 

0.4±0.5 

0.S±0.6 

0.1±0.4 

O.O±O.O 

Tctal Eggs % 
I hatched Eggs } 

hatched 

v 
526.1±161.4 90.6±5.0 n 

I' 
F , 

S06.1±lS9.S 90.4±10.4 

" 

P 
16.0± ,0.0 78.0± 0.0 t 

l 

I 
233.1± 94.4 86.6± 6.4 L 

O.O± 0.0 

O.O± 0.0 

O.O± 0.0 I 
O.O± O.Oi 

....... o w 

I 



TABLE 26: Analysis of Variance of the effect of feeding regime on 
reproduct1ve success of A.gamma 

Variable Trial Source of F p 
Variation 

I Food 35.5 <0.001 
Number of Hatings 3.76 0.014 
eggs hatching Interaction 0.04 0.844 

II Food 32.85 <0.001 
Matings 3.40 0.021 
Interaction 5.36 0.028 

I Food 12.18 <0.001 
Male Matings 8.38 <0.001 
Longevity Interaction 27.95 <0.001 

II Food 12.39 <0.001 
Matings 3.34 0.040 
Interaction 8.19 0.003 

I Food 138.10 <0.001 
Female Matings 00.81 0.501 
Longevity Interaction 65.46 < 0.001 

" 
II Food 8.48 0.002 

Matings 1.13 0.363 
Interaction 0.93 0.412 
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sucrose failed to lay viable eggs; indeed only one female laid eggs 

at all. This female was observed "in copulo" on the morning of the 

third day and remained coupled to the male until he died later in the 

day. The male was then removed artificially leaving a completely 

formed spermatophore partially transferred to the female. This 
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female subsequently laid 13 infertile eggs before she died. Dissection 

of the female later revealed that she was the only moth to show ovary 

maturation in this group. All other females in this group were 

unmated at death. showed no ovary maturation and had greatly depleted 

fat bodies when dissected. 

Those pairs supplied with water only showed improved longevity 

and achieved a higher level of ovary maturation than the previous 

group. Three females failed to show development. however. and 

resembled Group 1 females on dissection. Three females showed signs 

of ovarian maturation (Grades 2 and 3) but were unmated and 

consequently laid few eggs. Four females had been mated once. containing 

a single spermatophore at death. Of these, one showed no signs of 

ovary maturation when she died on Day 5. whilst the other three 

females all laid small numbers of eggs and contained mature eggs in 

their ovaries on dissection. Only one of these females laid fertile 

eggs; sixteen larvae hatching from the 21 eggs that she laid. 

Those pairs which were supplied with sucrose as a nectar substitute 

achieved a far greater reproductive success. Although one female 

died unmated on Day 3 with immature ovaries, and a. second died 

unmated on Day 11 with a large number of fully developed eggs in her 

ovaries, seven of the remaining females t"aid fertile eggs. These 

moths produced an average of just over 500 larvae each. The 

remaining female of this group contained two spermatophores but laid 

only a few eggs which failed to hatch. These spermatophores were not 



the usual translucent colour but instead a dark black colour and I 

suspect that the male of this pair was not fertile. thus disrupting 

the normal oviposition behaviour of the female. 
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DISCUSSION: Although the importance of adult feeding to fecundity is 

immediately apparent from the results of this trial a simple clear 

cut explanation for the results is not so obvious. Carbohydrate 

intake seems to be essential for normal reproductive performance yet 

one female provided with only water laid fertile eggs and most of 

the females in this group showed signs of ovary maturation. Another 

female deprived of all fluid input also managed to develop her 

ovaries. The simplest explanation of the results would be to accept 

that sucrose is required for normal behaviour and that the other 

results were accidents or experimental artefacts. An alternative 

explanation might be that it is the intake of fluid regardless of 

its constitution which is important for triggering ovary maturation. 

and that the difference between the sucrose and water trials was 

the result of a secondary qualitative difference caused by the 

additional calorific input. In addition to a feeding stimulus for 

female ovarian maturation the act of mating itself may act as a further 

but less effective stimulus. This type of multiple stimulbs trigger 

for reproductive development has been found in other moth species 

(Benz 1970>. In an attempt to determine which of the above alternatives 

was correct a further series of mating trials was conducted during 

the following summer. The first of these trials was essentially a 

repeat of the original format with a slightly larger number of 

replicates. A second experiment was designed to clarify further the 

qualitative role of sucrose consumption. 

The results of the repeat trial (Trial II) are also summarized 

in Tables 2S and 26. The overall trends are the same as the first 

trial but a number of interesting differences also emerged. 



Those moths deprived of both water and sucrose again had zero 

reproductive success but the results from moths provided with only 

water were considerably different from those in the previous trial 

producing an average of 233 larvae. The sucrose fed adults again 

differed from the previous trial producing an average of 806 larvae 

per female, an increase of around 300 larvae. The results of the 

second trial therefore differ qualitatively from those of the first 

W7 

but show the same trend. The significance of this difference was 

assessed using an analysis of variance which showed a highly significant 

variation between trials (see Table 27). The greatly increased 

reproductive success of the water fed pairs in the second trial implies 

that it is the mechanical stimulus of feeding which serves as the most 

important trigger to reproductive development of the females, and 

that the calorific content of the sucrose trials is important in only 

a qualitative sense. The large difference between the two trials still 

requires an explanation, however. This may lie in the different 

conditions under which the two trials were conducted. The first 

trial was carried out during an extremely warm period in July in a 

room where the ambient temperature was about 2Soe by day and only 

slightly lower by night. The second trial was the 

following year in the same room but whilst temperatures were 

considerably lower, about lSoe by day and around l6°e by night. 

Those moths in the second trial were thus not subjected to the same 

amount of metabolic stress as those in the first trial. The higher 

temperature appears to have a twofold cost of increasing the rate of 

water loss and also the metabolic rate, thus increasing the amount of 

energy stored in the fat body which has to be used for maintenance. 

This leaves less energy available to the developing ovaries. The 

magnitude of the maintenance cost felt by the moths in these trials 
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TABLE 27: Analysis of Variance of the effect of feeding regime 
on adult A.gamma in both Trials 

Variable Source of F p 
variation 

Trial 10.25 0.002 
Number of Food 25.40 <0.001 
Eggs hatching Matings 5.14 <0.001 

Trial 27.12 <0.001 
Male Food 101.75 <0.001 
Longevity Matings 3.64 0.010 

Trial 19.88 <0.001 
Female Food 9.89 <0.001 
Longevity Matings 2.01 0.105 
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may have been amplified compared with a real situation since the 

rearing boxes severely limit the moths ability to exercise any 

behavioural control over their temperature or water balance. If the 

conditions were sufficiently unfavourable to cause an emigration 

response then the moths would use a much greater amount of energy 

trying to leave the boxes. It was noticed during the trials that those 

moths which were deprived of fluid showed much higher levels of 

activity, especially by day, than the moths from boxes supplied with 

sucrose. 

Further evidence for the quantitative rather than qualitative 

role of the carbohydrate component of the adult diet is provided by 

the second series of experiments which were conducted using an identical 

format to the sucrose replicates of the previous trials but the amount 

of sucrose supplied was varied between 2% and 10% strength. Six pairs 

of moths were provided with 2,4,5,8 and 10% sucrose solutions and the 

same measurements as before made. The results from this experiment 

are presented in Table 28 and Figures 16-18. 

The results of these trials further demonstrate the critical 

role of adult feeding to reproductive success in A.gamma. Those 

pairs confined to weak solutions achieved a reproductive output not 

much larger than that of the water fed trials reported above (running 

at the same time, in the same room). Those adults fed higher 

concentrations of sucrose produced greater numbers of eggs, although 

there was considerable variation within groups (Figure 16). Similar 

large increases in fecundity with increasing sucrose concentrations 

have been reported for Autographaorecationis (Khalsa et ale 1979) and 



TABLE 28: The effect of sucrose solutions of different strengths on reproductive success of A.gamma 

Sucrose Adult Adult Preovi- Maturity No. of Number of Number of 
Solution Sex Weight Longevity position of Ovaries unlaid Matings Eggs hatching 

Eggs· 
M 142.3±32.4 9.3±2.0 

2% F 99.5±26.3 9.8±2.3 4.17±0.4 3.0±0.6 29.2±22.5 1.33±0.S 227.5±241.3 

M 127.4±22.9 9.3±2.2 
4% F 107.8±8.22 10.7±2.8 . 4.00±0.6 3.3±0.S 16.7±23.6 2.00±0.6 373.3±229.5 

M 111.4±24.5 10.8±l.7 
6% F 111.8±17.5 10.8±1.9 3.80±0.8 3.3±0.5 30.8±58.9 2.0±1.27 709.2±313.2 

M 147.3±43.4 1l.O±l.6 
8% F l03.0±19.9 10.8±3.8 3.17±0.4 2.7±1.4 23.3±l6.0 1. 7±0.82 414.2±289.0 

M 143.6±20.9 10.5±l.6 
10% F lOS.5±21.1 12.2±l.9 3.00±0.0 3.2±0.4 15.8±14.6 2.8±0.75 786.3±314.0 

-

% Eggs 
Hatching 

84.9±13.7 

8S.S± 8.2 

94.2± 4.3 

SO.5±3S.3 

92.4± 5.4 

I-' 
I-' o 
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Trichoplusia ni (Shorey et ale 1963). The latter authors also noted 

that there was no significant difference between sucrose concentrations 

above 6% possibly re!lecting the ability of the moths to adjust 

consumption to suit calorific requirements. 

In addition to an overall increase in numbers of eggs produced, 

A.gamma females fed higher concentrations of sucrose attain their 

peak of reproductive output more quickly than those feeding on more 

dilute solutions. Although this is not readily apparent from the 

small decreases in preoviposition period with increasing sucrose 

concentration (Figure 17) it is clearly shown by the complete 

egglaying profiles plotted in Figure 18. These reductions in generation 

time and the risk of egg shortfall through adult mortality constitute 

further selective advantages for the location of nectar rich regions 

by A.gamma adults. 

The preceeding experiments have demonstrated a strong effect of 

adult nutrition on reproductive maturation in A.gamma. This does not 

in itself preclude the operation of other environmental factors as 

controlling influences on reproduction. An environmentally controlled 

reproductive arrest might still allow a resident species to survive 

unfavourable conditions (cf.Aglais urticae and .Inachis io in England) 

or, alternatively, allow time for an emigratory response (Oanaus 

plexippus in the United States). A general slowing down of reproductive 

maturation on the other hand, might allow a population to survive 

less favourable conditions with no true diapause strategy, as appears 

to be the case in some moth species, such as the Angle Shades moth. 

Phlogophora meticulosa. Which of these strategies is currently 

being shown by A.gamma? In order to answer this question it is 

necessary to consider evidence on the following three points:-



(i) What is the influence of environmental factors, particularly 

those prevalent in autumn in N. Europe, on the reproductive biology 

of A.gamma? 

(ii) What is the evidence for overwintering of A.gamma at these 

latitudes? 

(iii) What is the evidence for an emigratory response of A.gamma 

to a decline in habitat suitability? 

THE REPRODUCTIVE CONDITION OF SILVER Y FEMALES IN THE AUTUMN 

The fact that the majority of the females captured in late 

summer and autumn are reproductively immature has been cited as 

evidence for the need for a (return) migration to conditions compatible 

with reproduction (Williams 1958). This idea was given respectability 

by the emergence of a common theory of migration and dispersal in 

insects associated with the reproductively immature stages of the 

adult life cycle (Johnson 1969). This 'oogenesis-flight syndrome' 
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was incorporated into ecological theory by Dingle (1970), who 

demonstrated that the optimal time for migration was when reproductive 

potential (expected contribution of an individual to population growth). 

was greatest and that this time of maximum potential was the pre-

reproductive adult. Example of dispersal movements associated with 

this stage in the life cycle may be found for many species from most 

insect orders (Johnson 1969, pp 175-194). Records of 

immature females of A.gamma in late summer are given for Britain by 

Fisher (1938), for Sweden by Sylven (1947). for Denmark by Larsen 

(1949), for Germany by Koch (1966) and for France by Cayrol (1972). 

This trend towards increasingly less well 4eveloped ovaries in A.gamma 

females is also apparent in dissections of trapped m.v light and 

Malaise trap) individuals made by myself in 1982. These dissections 



show that, whereas in early summer both mature and immature individuals 

are to be found in trap samples, as the summer progresses the females 

are almost all immature, although some exceptions may be found. This 

infrequent occurrence of mature females amongst immature 

moths was also noted by Sylven (1946) for A.gamma females in Sweden 

and Denmark. It is known that the ovaries of A.gamma females are 

immature when the adult moth emerges from the pupa. Females killed 

immediately after emergence invariably have no visible ovarian 

development and the abdomen contains mostly fat deposits. Females 

dissected at later stages of their life may be found to have developed 

their ovaries at a rate which is determined by the ambient temperatures 

(see below). The degree of development may be conveniently divided 

into a number of stages for classification, as outlined previously 

on page 101 • 

If the immature state of the ovaries of A.gamma females is to 

be used as evidence of a reproductive arrest to allow time for a 

migratory movement then it should be possible to demonstrate the 

existence of a trigger initiating arrest, and another which terminates 

the arrest and allows normal reproductive activity. The most reliable 

cue to use as an indicator of seasonal changes and the one found in 

most highly developed migration and diapause strategies (Barker and 

Herman 1976, Herman 1981, Danislevski 1965) is the seasonal change in 

photoperiod length experienced at temperate latitudes. Alternative 

less reliable cues known to be used by some insects include temperature 

(Denlinger 1974), foodplant quality (de Wilde and Ferket 1968, 

Beck 1968) or performance of the dispersal act itself (Kennedy 

1975). The pattern of reproductive immaturity in A.gamma observed 

by the above authors may not be due to any specific migratory 

adaptation, however. Another explanation might be that only newly 
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emerged and therefore immature females are attracted to the traps in 

the autumn and that mature females are present in the population but 

not caught. Alternatively, the immature state of the ovaries may 

be caused by the environment rather than the environment being used 

as a trigger by the insect. Even if the rate of ovary development 

is just slowed then the probability of capturing mature females is 

lowered, assuming that adult mortality risks are equal for both' 

newly emerged and older females. In order to establish the exact 

nature of the relationship between the autumnal conditions and 

reproductive.activity in A.gamma the following series of experiments 

was designed and carried out in 19S0. 

METHODS 

Sufficient pupae for the experimental replicates were obtained 

from larvae exposed to one of the following photoperiods: Short 

(SL: 160), Equal (12L: 120) and Long (16L: SO). All stocks were 

maintained in constant temperature cabinets at 200 C on Lamium album 

at a density of 15 larvae per standard rearing box (from the third 

ins tar onwards). The photoperiods were controlled by covering the 

different stocks with black cloths" at the appropriate times of 

day. These pupae were sexed and those within a size range of 300-

350mgs were kept separately under the same conditions as above 

until adult emergence. Fully formed emergent adults were checked to 

confirm their sex and then pairs of moths were established in standard 

reaying boxes supplied with a 10% sucrose solution and fresh larval 

foodplant daily. Five pairs of moths were kept under each of the 

following conditions:-

1. lSoe and Short, Equal and Long photoperiods, respectively. 

2. 200 e and Short, Equal and Long photoperiods, respectively. 

3. 2Soe and Short, Equal and Long photoperiods, respectively. 
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For each pair of moths the following records were kept:-

1. The longevity of the male and female in days. 

2. The length of the preoviposition period (emergence until 

day of first egg-laying). 

3. The number of matings (the number of spermatophores in the 

spermatheca) • 

4. The number of fertile eggs laid (the number of larvae 

hatching) . 

A summary of these results is given in Table 29. 

RESULTS: The results of these experiments demonstrate convincingly 

that by far the most important factor affecting the fecundity of 

A.gamma, once they are provided with adequate adult nutrition, is 

the temperature at which the adult moths are kept. When kept at 

high temperature (25.0oC), the mean number of fertile eggs laid 
o was less than 50% that laid by females kept at 20.0 C. Moths 

kept at 15.00 C achieved almost as high a mean fecundity as those 

reared at 20.0oC. but the timespan over which the eggs were produced 

was considerably longer. At 15.0oe no female laid eggs before the 

sixth day after emergence. Moths reared at higher temperatures laid 

their eggs from day three 'onwards • This, effect, of temperature on 

development time would be much greater in a real situation where the 

larval duration would also be considerably lengthened and adult size 

reduced (see earlier sections). 

The significance of the results given in Table 29 was confirmed 
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using a two-way analysis of variance, 'the results of which are given 

in Table 30. This table reveals that temperature has a highly 

significant effect on male and female longevity, the of the 

preoviposition period. and the number of fertile eggs laid. Photoperiod 



TABLE 29: The effect of photoperiod on reproductive success of A.gamma 

Temperature Photoperiod Male Female Preoviposition 
Longevity Longevity Period 

Short 25.8±6.63 23.0±5.10 9.6±2.6l 
15.0 Equal 22.4±3.72 24.0±5.57 10.2±2.95 

Long 23.0±6.2l 27.4±7.27 1l.2±3.1l 

Short 8.8±3.49 8.8±2.59 3.6±0.89 
20.0 Equal 7.8±2.28 9.0±2.24 4.0±0.71 

Long 7.6±2.30 1l.8±2.86 3.6±O.89 

Short 3.2±0.84 4.8±l.79 2.3±0.50 
25.0 Equal 4.6±l.52 4.4±1.14 2.8±O.50 

Long 4.2±0.84 4.6±l.67 2.8±O.45 

-",' .. .. :;!.. t_, "':-:. .... 

Number of 
Matings 

2.4±1.14 
2.8±l.30 
2.4±1.34 

2.2±0.84 
2.2±O.45 
2.6±0.55 

l.0±0.71 
1.2±O.84 
1.2±O.84 

Number of 
Eggs hatching 

634.6±189.48 

590.0±279.54 I 
355.6±296.2l 

778.8±229.35 I 
I 
1 

6l4.2±229.52 
692.4±294.40 

249 .O±234. 68 
263.6±166.37 
209.4±243.64 

.",' 

...... 

...... 
1.0 



TABLE 30: Analysis of Variance of the effect of temperature and 
feeding on reproductive success of A.gamma 

Variable Source of F p 
Variation 

Temperature 105.16 <0.001 
Male 

Longevity Photoperiod 0.39 0.680 
Interaction 0.54 0.706 

Temperature 99.45 <0.001 
Female 
Longevity Photoperiod 1.65 0.208 

Interaction 0.50 0.733 

Temperature 77.03 <0.001 
Preoviposition 

Photoperiod 0.50 0.556 Period 
Interaction 0.30 0.876 

Temperature 7.01 0.003 
Number of 

Photoperiod 0.19 0.826 Matings 
Interaction 0.28 0.885 

Temperature 10.12 <0.001 
Number of Photoperiod 1.58 0.220 
Eggs hatching 

Interaction 0.63 0.645 
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and the interaction component between temperature and photoperiod 

provide no additional significant variation. These results argue 

strongly against the existence of a photoperiodically controlled 

reproductive arrest in A.gamma at any ambient temperature. Theories 

that the reproductive immaturity of A.gamma females constitutes part 

of an adaptation to effect emigration from or diapause in Britain 

1n autumn are not supported by this lack of a direct control. 

Reproductive maturity in A.gamma, like the rest of its developmental 

cycle, appears to proceed as rapidly as prevailing conditions allow. 

This supposition is further supported by the evidence on overwintering 

ability of A.gamma in Britain reported below. 

OVERWINTERING ABILITY OF A.gamma IN BRITAIN 

The Silver Y moth has been recorded in Britain in every month 

of the year in one or more of its developmental stages (Cooper 1946, 

Paton 1947, Huggins 1958, de Worms 1964, Warry 1964, Hadley 1978, 

Baker 1978, Rothamsted Insect Survey pers.comm.), although it is 

usually only recorded in the months May through November. The yearly 

m.v light trap records for A.gamma are shown in Figure 19 and show 

Clearly that no strong phenological pattern is apparent. If a 

lit • 111. 1 • yp1ca pattern eX1sts then the data for 980 represents 1t most 

closely with an initial peak of adults in late May and early June 

and a second larger peak of adults emerging in August, September 

and October. If one samples trap data from different regions of the 

country in the same year or the same region of the country in different 

years it is apparent that no consistent pattern exists. 

Insect species resident in pa:ticular geographical regions 

typically possess diapause periods, the induction, duration and 

termination of which are synchronous with changes in local conditions 
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FIGURE : ·Numbers of Autol<ranha amma adults caught in Oxford. 
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(Danislevski 1965, Beck 1968). The adult flight periods for closely 

related resident plusiid moths (Autographa jota and A.pulchrina) demonstrate 

this point, adults appearing in traps in Oxford for only a short 

time period in June or July. Difference in the exact emergence dates 

of the adults from year to year are related to the effect of 

prevailing temperature conditions on the speed of development of post 

diapause larval stages. A.gamma adults, on the other hand, may first 

appear as early as May, but sometimes not until August, and have a 

flight period which extends from June until late October with no 

obvious generation gaps. This erratic and protracted pattern of 

adult flight periods is shown by other moth species in Britain, 

notably Noctua pronuba and Phlogophora meticulosa. The former 

species possesses a larval diapause stage and an adult aestivational 

reproductive arrest, whilst the latter is thought not to possess a 

true diapause at any stage of its development, yet certainly has 

a resident popUlation in Britain. Patterns of phenology on their 

own are thus of little use in determining the resident status of any 

particular species. The pattern of appearances of A.gamma adults in 

spring could be due to either of the following: 

I. They are adults emerging from overwintered populations with 

the precise time of emergence determined by the prevailing local 

climatic conditions. 

2. They are newly arrived immigrants from outside the British Isles. 

In an attempt to distinguish between these two possibilities 

a series of overwintering survival trials were conducted in Oxford 

during the winters of 1978-9 and 1979-80. 

METHOD 

Initial trials to assess the stage of the life cycle at which 

surviv31 would be most likely revealed that all stages are capable 
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of surviving at least short periods (72 hours) at zero temperatures. 

Since no record of an overwintering stage for A.gamma exists in the 

literature (but see Novak 1968). I decided that the most realistic 

and informative experiment to run would be to allow a 'natural 

population' to establish itself in cages outside and enter the winter 

in whichever developmental stage it had reached by then. This 

population was established from eggs laid by two females trapped in 

July. The larvae were placed on large clumps of foodplant (mostly 

Lamium album. but with some Urtica and Stachys) in perspex cages 

(30 x 30 x 44cm) on the roof of the Biology Dept. of Oxford Polytechnic. 

The floor of the cages was covered with a thin layer of soil and a 

layer of dead leaves which was kept moist. but not wet. throughout 

the winter. Fresh clumps of foodplant were introduced as required 

but at no time were the larvae in the cages interfered with. When 
l 

adults were seen one side of the cage was covered with tissue paper 

soaked in a 10% solution of sucrose as a substitute for nectar. 

This paper was moistened or replaced when necessary. The second 

part of the trial was conducted using larvae hatching from eggs 

laid by the last females of 1978. These larvae were placed on the 

roof about three days after hatching on the 1st of November in 

batches of twenty to each standard rearing box. The foodplant in the 

boxes was replaced whenever necessary and the number of surviving 

larvae in each box counted at irregular intervals throughout the 

winter. This enables a survivorship curve for the winter months to 

be constructed. 

RESULTS: The results from the second series of experiments are 

summarized in Table 31 and shown graphically in Figure 20. The shape 

of the survivorship curve obtained in Figure 20 is typical of that 

found for many high fecundity lepidopteran species where mortality 



TABLE 31: Survivorship data for larvae of A.gamma maintained in 
rearing boxes outside during Winter 1979-1980 

Days Larvae Larvae % Comment 
from Alive Dying Surviving 
Hatching 

1 400 - - 1.11.79 
17 391 9 97.75 
28 234 157 58.50 
50 165 69 41.25 
69 79 86 19.75 10.1.80 
83 70 9 17.50 

102 68 2 17.00 
142 59 9 14.75 
153 55 4 13.75 4.4.80 
178 51 5 12.75 First larva spinning 
184 37 14 9.25 
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191 34 3 8.50 First pupa fully formed 
196 24 10 6.00 
198 24 0 6.00 
200 24 0 6.00 21.5.80 
217 19 5 4.75 First adult emerged 
227 19 0 4.75 Last surviving larva 

pupates 
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is highest in the early larval stages and then during the pupal stage. 

The curve is a Type 3 curve (Deevey, 1947) and the mortality is 

usually a reflection of the difficulty of the small larvae successfully 

establishing on the foodplant followed by a concentrated burst of 

mortality in the pupal stages caused by the emergence of parasitoids 

(see Ito (1978) for representative curves from other species). In 
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this trial (and throughout the whole study) no mortality due to 

parasitoids was recorded, although NPV virus infections were relatively 

common in the later larval instars. I consider the mortality in 

the trials at this time to be mostly due to the difficulties involved 

in pupation at temperatures near to the developmental zero temperature. 

Of the total of 24 pupae obtained 14 males and 5 females emerged 

between the 4th and 14th June 1979. Two of the females were slightly 

deformed and failed to mate, but the other three all mated and laid 

fertile eggs by mid June. 

An essentially similar pattern to the above was observed in the 

'free running' population used for the first trial. A second 

generation of adults was obtained in September which laid eggs 

towards the end of the month. These eggs hatched but since the exact 

number'was not known no accurate survivorship curve was constructed 

for this group. The mortality pattern appeared to be similar to the 

previous trial with a total of 10 (6 male and 4 female) adults 

emerging between the 25th May and 6th June. Thus although the two 
c: . - . 

popUlations entered the winter with their hatching dates about 30 

days apart the two emerging adult populations showed sufficient temporal 

overlap to allow interbreeding. 

of the roof trial adults also spans the 

captures of A.gamma that year (captures 

May, '1st, 2nd, and 3rd June). 



It was apparent that the rate of larval growth was very slow 

during December, January and February when the majority of the larvae 

were in the second or third instars. Only a few larvae reached the 

fourth ins tar before March and these larvae all died in subsequent 

cold spells indicating that the smaller larvae have greater cold 

resistance. During the winter it was noticed that even warm spells 

lasting only one day were accompanied by increased feeding activity 

and frass production. It appears that normal activity is resumed 

whenever the ambient temperatures allow. This observation was 

further supported by results of a further trial which was 

carried out using environmental cabinets adjusted to the mean 

temperature for each month of the winter period. This trial was 

set up as an insurance against an atypical winter in 1978-9. The 

larvae in this trial were maintaining a similar growth profile to 

those on the roof until the weekend of the 15th January when the 

temperature regulation of the cabinet failed and the temperature rose 

to around 200 e for the duration of the weekend, with an obvious increase 

in larval feeding activity. On the 23rd January these larvae were 

removed to normal laboratory temperature conditions and subsequently 

produced adults on the 1Sth-22nd February. 

It therefore seems that A.gamma is capable of surviving at least 

the climatic component of the winter at British latitudes· although 

the degree of success is considerably lower than that shown by 

resident plusiids with well developed diapause arrests. Similar 

trials to the ones reported above were completed for both D.chrysitis 

and A.pulchrina whose larvae enter diapause during their third 

ins tar and show no growth at all between the end of October and late 

March when kept under natural conditions. The percentage survival 
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in these species was 62% and 54% respectively (N = 100 and 150) compared 

with 4.75% for A.gamma larvae over the same period of time. This 

difference is due to the absence in A.gamma of a developmental 

arrest which would hold the larvae in the size range at which they 

are most resistant to the effects of both cold and freezing (Ahasina, 

1969). Smaller larvae are more prone to separation from the foodplant 

and lack the nutrient reserves to relocate it in addition to having 

a less favourable surface area: volume ratio for resistance to 

freezing. Larger larvae suffer the disadvantage of entering 

temperature sensitive developmental periods whilst the ambient 

temperatures are still unfavourable. A further qualifying statement 

must be made here also. Trials in which larvae were released into 

Clumps of L.album and U.dioica in a suburban garden failed to produce 

pupae in the vicinity of the plant"s in the spring even though larvae 

were observed in February. It may be that the numbers of larvae 

surviving the winter conditions are too low to allow a population 

to persist in the face of other mortality effects, such as bird 

predation or parasitism. 

Q.VERWINTERING OF A.gannna IN EUROPE 

Although A.gamma is found throughout Europe, in numbers large 

enough to earn it pest status in some regions, little information on 

the biology of the species exists at a level better than anecdotal. 

In France the larvae are considered to survive the winter in the south 

in greater numbers than in the north (Cayrol, 1972) whilst Novak 

(1968) has proposed that there are two populations of A.gamma present 

in Central Europe, one which hibernates as a third instar larva and 

a second which cannot survive the winter and must recolonise the 

area each year. In Germany A.gamma"is classified. along with V.atalanta 



and C.cardui, as a "Saisonwanderer". These are defined as: "5 . peCles 
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which leave their country of origin every year, flying to regions 

where they are not native, and producing their young ones. The latter 

migrate back to the supposed regions of origin" (Eitschberger and 

Steiniger, 1973). This statement implies that the moth does not 

survive the winter in Germany. Finally, in the southernmost regions 

of the species distribution development is continuous although 

probably not in anyone area but as the result of local seasonal 

movements to more suitable regions (Wiltshire 1946). 

It therefore appears that A.gamma shows a cline of developmental 

patterns, ranging from continuous development in the south with 

progressively less likelihood of survival through the winter months 

as latitude increases. Whether any population of the moth exists 

which possesses a higher probability of survival in the north reasins 

a moot point to which I will return in the final discussion, after 

consideration of the third of the questions posed at the beginning 

of this section. 

IS THERE AN EHIGRATION FROH THE COUNTRY AT THE OF TID: 

It is certain that large scale seasonal shifts in the geographical 

distribution of populations of A.gamma do occur. What is less 

certain is the exact causes of these changes. Two extreme mechanisms 

immediately suggest themselves. The first is that seasonal changes 

in the suitability of different regions causes the expansion and 

contraction of what are' essentially separate populations. This 

historical view of insect populations would have the massive spring 

emigration of Lepidoptera, including the Silver Y, as the'inevitable 

f vel." Population, contributing little or nbthing to consequence 0 0 . ' 



populations elsewhere. Alternatively, the changes in population 

density may be caused entirely by the movement of individuals from 

one region into another. Between these two extremes lies a whole 

continuum of possible mechanisms consisting of different proportions 

of differential population growth and movement. The paucity of 

estimates of the relative contribution of each of these components 

to any particular species population dynamics is the Achilles heel of 

insect ecology at the present time (Taylor and Taylor 1977, 1979). 

The demonstration of seasonal changes in flight direction and 

estimation of their size and importance to population changes was 
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the main object of the research into migration initiated by C. B. Williams. 

In particular, the demonstration of a return flight from habitats 

which were only suitable was essential to any genetically 

controlled migration, since otherwise genes for migration would be 

continually lost from the original gene pool. 

Return flights have now been conclusively demonstrated for the 

Monarch Butterfly, Danaus plexippus and evidence of seasonal migrations 

in more than one direction has been accumulated for many other 

species (Williams 1958, Baker 1978). In Britain the evidence is 

most convincing for the Red Admiral, Vanessa atalanta, whilst that 

for other species remains equivocal. Of more import than the simple 

existence of flights in more than one direction is a pattern showing, 

for Britain, a prevalence of northwards flights in spring followed 

by southerly flights in autumn. Data demonstrating 

this trend have been presented for the following species: V.atalanta 

(Williams 1951); Collas croceus, (Williams 1959), Pieris 

brassicae and P.rapae (Baker 1969, 1978) in Britain, and similar 

evidence for Inachis io and Aslais urticae, and 

C • • has been presented for European movements rnthla cardul (Baker 

-
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1969, Roer 1961, 1962, 1969). This seasonal reversal of flight 

coupled with the observations that the adults in the autumn 

are all reproductively immature and that, for some species, over-

wintering ability is not apparent has led the above authors to conclude 

that these species show an evolved seasonal return migration. 

The first evidence for seasonal changes in flight direction by 

Silver Y moths was presented by Fisher (1938), based on records gathered 

by a number of different people at different sites throughout Britain 

between 1933 and 1937. Her results are shown as vector diagrams 

in Figure 21a where the length of the lines represents the proportion 

of the total flights recorded for any particular compass 'direction 

including weighting factors. A second analysis of flight direction 

records for the Silver Y was performed by (1973). 

These authors were specifically concerned with the problem of flight 

directions in relation to wind directions but they list the records 

used in an appendix. Plotting these data, which cover the period 

1933-1964, gives similar vector diagrams to those obtained by Fisher 

(Figure 21b). Vector diagrams of these proportions appear to be 

strong evidence for a seasonal change in flight directions by Silver Y 

moths, and have been accepted as such by most people. Although no 

statistical tests of the significance of the difference of these • 

diagrams from one of equal flights in all directions have been 

performed it is that highly significant results would be 

obtained. A null assumption of equal observation of flights in all 

directions is not a correct one, however. The appropriate nutl 

assumption is that any individual moth has an equal probability of 

flying in any compass direction. The proportion of flights observed 

in particular directions at any point is then determined by the 

dispersion of individuals around that point. This point is 

simply illustrated by considering a popUlation evenly distributed 

within a circular area. Only an observer at the centre of the 



circle will observe an equal number of flights in each direction. 

An observer standing at the north point of the circle will see no 

Southerly flights and a high proportion of northerly flights. 

Seasonal changes in population density of A.gamma in different parts 

of its distribution, whether caused by reproductive increase or 

migration itself, will alter the probability of flights in particular 

directions in Britain being observed. In order to illustrate this 

effect more clearly I constructed a simple model of a Silver Y 

133 

population where dispersal is achieved by diffusion from any location, 

sending propagules in all directions with equal probability and 

incorporating seasonal changes in distribution and density of individuals. 

In Spring the centre of the Silver V's distribution lies well 

to the south of Britain. This is due to two factors. Firstly the 

survival probability of moths north of 4SoN latitude is appreciably lower 

than it is in the more southerly regions of Europe and the Mediterranean. 

In addition to this there is a greater density in the south in Spring 

as these moths have the opportunity to produce an additional generation 

during March and April (Wiltshire 1946). The offspring of this 
I 

generation emerge as adults at the same time as more northerly 

overwintering larvae complete their development. This time of late May 

and early June is the time at which Silver Y adults first appear in 

appreciable nUmbers in Britain. 

The spring distribution of the moths is represented in the 

model as a circle centred on North Africa with a radius large enough 

to reach the north of England. The distribution of the moth in 

Africa is not well documented but it is unlikely that it is found 

south of the Sahara so no importance is attached to the lower part of 

this hypothetical distribution. The different densities in different' 

parts of the circle are simply allowed for by weighting the lower 

, 
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regions of the circle below 4SoN to carry twice the value of areas 

above this line. If one assumes that an equal number of moths is 

produced in each area (before the weighting factor is applied) then 

the number reaching any particular point from any particular direction 

is proportional to the land mass contained in the circle between the 

point and the limits of the distribution. 

Although moths the size of the Silver Y have been shown, by 

capture-recapture methods, to cover up to 1400 km 1964. 

quoted in Johnson 1969) it is clear that the probability of a moth 

passing through anyone point is inversely proportional to the distance 

it is away from that point. For this model I made the assumption that 

no moth could reach Britain if it was more than 1350 miles away. 

The proportion of moths passing through a point in central England 

from each direction is now given by the relative landmass contained 

in each segment of the region of overlap between the distribution 

circle and the flight range circle (see P-rpendi)( f\). To allow for the 

decreasing probability of passage through a point with increasing 

distance from it contained within the inner circle (radius 

SOO miles) were weighted double compared with the outer regions. The 

land mass contained within each sector was measured using a MOP scanner 

and the appropriate weighting factor applied. to give the proportions 

of expected flights in each direction for moths observed in Britain 

in spring (Table 32). Similar distribution maps were constructed 

for the mid summer and autumn distributions of the Silver Y and the 

predicted flight directions are given in Table 32 and as vector 

diagrams in Figure 2la. For the midsummer distribution no weighting 

factors were applied other than the flight distance one, but the 

focus of the distribution was shifted northwards to mid-France reaching 

up into Scandinavia. The late summer distribution is shifted even 

further north so that the diminished southern populations contribute 
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TABLE 32: Seasonal changes in flight direction of A.gamma. % flights in each compass direction 
as predicted from random model and observed records. 

Flight Model Predictions Data from Taylor et al Data from Fisher (1938) 
Direction Spring Summer Autumn Spring Autumn Spring Summer Autumn 

South 1.9 6.9 10.9 0.01 32.5 0.0 25.5 54.3 

South-West 0.7 10.8 20.2 3.7 0.8 0.0 19.4 8.6 

West 18.1 26.0 26.2 11.1 16.7 11.3 28.6 8.6 

North-West 34.0 24.7 22.6 16.0 14.3 0.0 14.3 5.6 

North 31.2 20.8 9.5 43.2 20.6 79.2 12.2 19.1 

North-East 9.7 3.3 1.7 13.6 4.8 5.7 0.0 3.7 

East 2.5 2.8 2.9 9.9 6.3 3.8 0.0 0.0 

South-East 1.92 4.7 5.6 0.01 4.0 0.0 0.0 0.0 
------ ------"._-

..... 
w 
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little to the immigrations whilst the highly mobile northern populations 

contribute rather more. 

The shifts of the focus of the population of the Silver Y 

throughout the summer used in this model are based on the changing 

relative success of larval development and adult reproduction in 

different geographical regions at different times of the year. In 

midsummer Silver Y populations in Central and N. Europe, whether 

derived from overwintering or newly immigrating individuals, will be 

at an advantage compared with those populations further South. Larval 

growth is better because temperatures are nearer to 17.SoC and 

foodplant quality is better due to higher rainfall. Adult survival 

and fecundity is much higher in these regions due to the greater 

abundance of nectar. More northerly populations, besides being less 

dense (fewer colonists>, have much slower rates of development than 

central populations and will produce few individuals to provide south-

moving flights in Britain. 

A further shift in effective population arises in autumn as the 

result of a progressive northward movement of the major regions of 

nectar flow. Populations at British latitudes experience the best 

nectar supply whilst populations further North have less abundant 

supplies and will therefore be more mobile (both food searching and 

true emigratory responses). Southern populations now contribute 

relatively less to observed flights in Britain due to the encroachment 

of Mediterranean style climate (high temperatures and reduced rainfall) 

into Southern Europe. Obtaining exact records of annual changes in 

the distribution of favourable regions for growth and reproduction of 

the Silver Y would be major research task in itself. It would involve, 

at the very least, plotting in isotherms, precipitation rates 

and documenting their effects on plant growth rates and nectar flow 

across Europe throughout the year, and ideally should also consider 
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population changes of other competitor and disease organisms. However, 

in the light of the laboratory trials reported earlier 1 feel that the 

population density changes used in this model are at least correct in 

trend, and support my contention that an expectation of even distributions 

of flight records is not an·appropriate null assumption when collecting 

evidence for directed migratory flights. 

The vector diagrams derived from the model outlined above show 

C.01\S\c\.cto.b\.rt . ,- similarity to those obtained from Fisher's (Figure 21a) 

and Taylor's (Figure 21b) data. In particular they reflect the 

paucity of records for easterly flights at all times of the year and 

the switch from predominantly northerly flights in spring to westerly 

in mid summer and then more southerly in the autumn. The major 

differences between the model and the published record lies in the 

greater tendency for the former to be concentrated around the cardinal 

points (a bias considered to be an observational artefact by Taylor 

1973, p.752) and the overall greater proportions of westerly 

flights in the model compared with the observed records. This latter 

discrepancy is the result of the large effect of the outer segments 

of the sectors covering eastern Europe. This effect would be considerably 

(and the proportional representation of the other sectors 

correspondingly increased) if the flight distance circles were reduced 

in diameter or more weight was attached to the inner regions. 

I am confident that a random model giving an almost perfect fit to 

observed records could be constructed by jiggling the parameters of 
I 

the model sufficiently; the most important point to be drawn from this 

exercise is that the flight directions recorded for the Silver Y 80 far 

do not in themselves constitute sufficient data for the existence of 

evolved seasonal return migration by preferred orientation changes. 



In summary, the conclusions that may be drawn from this and 

the preceding sections with respect to the life history tactics of 

A.gamma are that environmental conditions in N. Europe and Britain 

pose a severe problem to continued persistence of A.gamma populations, 

which lack a dispause condition to assist survival or emigration. 

A.gamma appears not to be able to decide whether it is a resident 

or a migrant. Selection for a diapause strategy which would improve over-

wintering ability does not seem to be occurring, but the evidence for a 

migration response is equivocal to say the least. Our natural tendency 

to look for and find precise adaptations of species to their habitats 

appears to be frustrated. Perhaps if we relax our assumption that 

the Silver Y moth is adapted to assumption that the Silver Y 
A 

moth is adapted to survive in the Palearctic region we will find more 

'optimality'? In the discussion which follows I will attempt to 

argue that this is the case. 



GENERAL DISCUSSION 

We are now in a position to return to the questions posed 

in my Introduction and attempt to interpret the life history 

tactics of A.gamma in relation to its habitat. Since habitat 

preference is not so much a choice as the result of natural selective 

forces this question can only be resolved by investigation of the 

forces acting on the different parts of the life cycle and the ways 

in which this may change. The "chosen habitat" for a species is 

that which gives the maximum long-term capacity for increase r c 
(Laughlin, 1965), while satisfying the constraints imposed by short-

term individual selection. The results presented in this study 

provide an indication of how A.gamma responds to changing environmental 

conditions similar to those it is exposed to in the field (Q3 and 4 

of Introduction). In A.gamma, as in the majority of insects, the 

adult stage, with its greater vagility, has the potential to influence 

habitat choice the most and it is important to consider the habitat 

of the adult moth prior to that of the larval stages. 

The flow chart given in Figure 14 shows the potential sources of 

energy loss and gain which affect fecundity of adult holometabolous 

insects. For A.gamma the most important factors have been shown to 

be temperature (acting both directly on adult longevity and indirectly 

through the effect of larval conditions on adult size), adult nutrition 

in the form of nectar, larval foodplant quality and the amount of 

energy expended on flight activity. Selection therefore operates on 

A.gamma to minimise the fitness variance caused by these factors. 

The importance of ambient temperature to adult longevity and 

reproductive success is apparent from the results given in Tables 

29 and 30. Temperatures of 250 C produce a greater than 50% decrease 

in both longevity and number of fertile eggs laid when compared to adults 
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kept at 200 e. Similar effects of high temperatures on A.gamma adults 

in Egypt are reported by Rashid The exact cause of 
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this decline in fecundity cannot be determined from my data. Decreased 

longevity may be due to greater environmental stress depleting stored 

fat (virtually every moth dissected in the trials contained no 

fat tissue at death) but this stress may take one. or all. of the 

following forms: 

It may be due to the greater metabolic cost imposed on somatic 

tissues by increased temperature causing a decline in energy 

available for reproduction whose activities are constrained by 

circadian rhythms. It may also involve a more rapid depletion of 

the fat body in order to provide metabolic water to compensate for 

the increased rate of water loss at high temperatures. This is 

unlikely to have been an important factor in my experiments where 

adequate nectar substitutes were provided and the %RH within the 

boxes was high, but may be of greater importance in field situations. 

The third possibility is. that the increased metabolic stress imposed by 

the high temperatures is exacerbated by an emigratory response by 

the moths. Since the moths were not able to escape the conditions 

within the boxes. continued efforts to escape would exact high 

energy costs. The sustained flight activity observed by pairs of 

moths kept at temperatures of 2SoC support this interpretation, but 

attempts to demonstrate this effect in the flight activity cages 

were inconclusive. 

Moths kept at lSoC show only a small decline in fecundity when 

compared with moths kept at 200 C although this difference is still 

significant (Mann Whitney U test. p(O.OS). A much more important 

effect of the low temperatures on fitness of the moths at low 

I . 



temperatures is caused by the increased preoviposition period (10 

days at l50 C compared with 4 days at 20 0 C). A longer preoviposition 

period will result in greater mortality of pre-reproductive adults 

and also lengthens the generation time (see below>. Selection of 

the correct habitat with respect to prevailing temperatures is not 

only important to the immediate reproductive output of the adult 

but is also critical to the success of the subsequent larval stages. 

Low temperatures during the larval stages cause an increase in the 

length of the growth period, the total development time, egg 

hatching to adult emergence, being 66 days at ISoC compared with 
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33 days at 200 C and only 23 days at 25°C. In a continuously developing 

species, like A.gamma, a lOr. reduction in the generation time has 

the equivalent effect on capacity for increase as a doubling of the 

fecundity (Cole 1954, Lewontin 1965>. From this one can conclude 

that A.gamma would derive considerable benefit from locating 

habitats with a high temperature. Selection of habitats with high 

temperatures carries with it effects other than that of reduced 

developmental time. As already mentioned, adult survival and 

fecundity are reduced at above Similarly larval 

survival and the size of the adults emerging both decline at 

temperatures above 200 C (see Table 14). There would seem therefore 

to be an intermediate temperature at which reproductive success 

Would be maximised. It is known that adult lepidopterans possess 

thermoreceptors (Chapman 1982) and thermoregulatory responses are well 

known in both butterflies and moths (May 1979), Before considering 

Whether selection of habitats might be based on the ambient temperature 

it is necessary to consider the importance of the other factors 

influencing adult biology in A.gamma. If one or more of the 

factors is of more importance than temperature or conflicts with the 

Optimal temperature choice then accurate temperature detection may 

not be the basis for habitat selection. 
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All the trials investigating the effects of temperature on adult 

biology were carried out using moths supplied with an adequate nectar 

substitute. Tables 25, 26 and 28 show that in the absence of this 

nectar supply fecundity is dramatically reduced. Although the 

results given in Table 25 indicate that differences in egg output 

may be greater than two orders of magnitude it is likely that field 

differences will resemble those found in the second trials, where 

fourfold increases in egg production were obtained by supplying 

sucrose to the adults. Similar large increases in fecundity with 

increased supply of adult nutrients have been reported for Trichoplusia 

ni (Shorey 1963) and Autographa californica (Khalsa 1979). 

The potential effect of nectar supply seems therefore to be 

greater than that of temperature, and so long as temperatures are 

within certain extreme values, greater effort should be expended 

on locating nectar resources rather than precise temperature 

regimes. Finally consideration must also be made of the relationship 

between foodplant quality and temperature. No data for the effects 

of varying food quality within plant species are presented in this 

study since all stocks were supplied with freshly-picked 

looking" plants. It is known that for a wide variety of herb-

feeding insects larval growth is best on plants with water contents 

greater than 80% (Scriber and Slansky 1981). Mesophytic C3 plants 

growing at temperatures greater than 20°C are under direct water 

stress from elevated transpiration costs and drier soils, in 

addition to suffering reduced photosynthetic efficiency due to the 

increased photorespiration. This would almost certainly reduce the 

quality of the plants as a larval food supply and cause increases in 

larval development time and reduced adult size similar to that found 

when A.gamma is confined to foodplants of different. less suitable 

species. such as Rumex spp. Reduction in adult size in insects 
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may cause a reduction in fecundity due to decreased energy available 

for reproductive effort. A positive correlation between adult weight 

and number of eggs laid has been found in several lepidopterans 

(Klomp, 1958; Baker, 1969). The results of the experiments carried 

out in this study failed to reveal a significant relationship between 

adult size and fecundity within the normal size range of adults. 

Moths supplied with sucrose show no relationship between size and 

eggs laid at all, whilst those moths supplied with only water show 

a minimal effect of about one egg more laid per 20 mg increase in 

body weight. I suspect that under field conditions an effect between 

adult size and fecundity might be larger but doubt whether it is 

ever of the same scale as the effect of nectar provision. If one 

assumes that nectar provision is adequate in all environments then 

it is possible to perform some rough calculations to determine the 

best trade off between increased speed of development and subsequent 

survival and egg production. Of the range of possibilities covered 

by my experiments the largest value of r I the capacity for increase c 
(Laughlin, 1965), is 2.83 when the temperature is 20°C. To achieve 

a similar rc at higher temperatures A.gamma would have to select 

temperature high enough to reduce the development time to 15 days. 

This could be achieved at an ambient temperature of about 28°C 

So long as this temperature does not alter any other mortality 

factor. Since temperatures this high would reduce foodplant quality, 

nectar availability and pose severe thermoregulatory and water 

balance problems for the larval and adult stages, the optimal habitat 

Choice for A.gamma would appear to be a geographical region with 

a temperature of about 200 C with abundant nectar. If adult A.gamma 

moths are to locate these regions it is necessary to consider the 

ways in which such regions might be detected and used as the basis 

for an emigratory response. 



Although insects are known to be able to respond to temperature 

differences of as little as lOCi the exact physiological basis for 

this ability remains unclear (May 1979). In order to be able to 

follow a geographical thermal gradient an insect would have to be 

able to detect small mean temperature changes over long periods of 

time whilst compensating for any rhythms of temperature and 

changes in its own internal temperature whilst flying. basking, etc. 

Just such an ability has been proposed for Pieris rapae to explain 

the autumnal change in peak flight direction in Britain (Baker 1978) 

although to my knowledge no experimental data demonstrating such an 

ability exist for any lepidopteran. 

An alternative mechanism of habitat selection by A.gamma 

might be to locate areas of high nectar availability directly. 

Location of areas of high nectar flow would not only bring about 
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large increases in fecundity, but also guarantee that larval foodplant 

of suitable quality is available. This is because plants flower 

during periods of suitable growth conditions. EVen a "big bang 

reproducing" annual plant flowers and produces nectar to attract 

pollinators sufficiently far enough from the end of its growing 

season to allow time for seed and fruit formation prior to leaf 

senescence. 

This allows sufficient time for completion of the larval stages 

of development of rapidly growing species such as A.gamma. {Only 

the time to pupation is important hereJ A second useful correlation 

with nectar flow is that regions with large amounts of nectar are 

likely to have conditions of low plant water stress. a further 

indication of good larval growth conditions. Is it possible for a 



moth (or any other insect) to evolve a nectar detection system? 

There appears to be no possible mechanism by which nectar can be 

detected at long range, except by use of the proximate cues provided 

by flowering plants to attract pollinators. The experiments of 

Schremmer (1941) show that Silver Y moths are attracted to a wide 

variety of flowers and locate them using scent cues, although they 

can also find them using vision alone. Neuro-physiological studies 

show that, in addition to pheromone sensitive receptors (long 

trichoid cells), adult Lepidoptera, including Trichop1usia nil have 

large numbers of broad "response odour sensitive cells present in 

both sexes (Chapman 1982). The upwind movements 

recorded by Larsen (1949) and others may reasonably be interpreted 

as nectar-seeking flights. Indeed the frequent diurnal flights of 

A.gamma. which are often viewed as a manifestation of migratory 

activity, might be more correctly interpreted as a way of maximising 

the range of nectar sources available and the time available to 

exploit them. Diurnal flight is not seen in any other species of 

migrant noctuid and does not therefore seem to be a requirement for 

successful long distance movements. Is there any evidence that 

reproductive activity in A.gamma is coupled to nectar feeding? 

The data given in Tables 25, 26 and 28 demonstrate that ovarian 

maturation (and possibly male fertility too) is dependent on the 

availability of sucrose. When the ability to feed, adult 

A.gamma fail to reproduce. This may be the result of mortality 

caused by excessive water loss but could be due to the absence of a 

trigger to initiate reproductive maturation. The complete absence 

of ovarian maturation on dissection of these moths is compatible 

with the latter explanation. Both water and sucrose solutions 

stimulate reproductive maturation in females. The feeding act itself 

may therefore be the stimulus required for activation of the corpora 
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alata and subsequent reproductive activity. Since A.gamma adults 

are not normally attracted to pure water sources the water results 

may be experimental artefacts, and in field situations only feeding 

at nectar stimulates ovarian activity. Absence of feeding maintains 

the moth in a state of reproductive arrest during which dispersal 

may take place -- the oogenesis flight syndrome of Johnson (1969). 

Responses of this kind have been'found for the milkweed bug, 

Oncopeltus fasciatus, in the studies of Dingle and others, summarised 

in Dingle (1978). It is possible to imagine the response of A.gamma 

adults when faced with three different environmental situations (which 

it is likely to encounter at different times of the year in different 

parts of its range) in the light of this type of control to be as 

follows: -
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(i) In a hot, dry climate similar to Middle Eastern and Mediterranean 

regions in early spring. Either a direct behavioural avoidance of 

high temperatures or the absence of nectar for feeding leads to a 

high incidence of dispersal flights. Location of cooler habitats 

increases longevity by lowering thermal stress whilst location of 

nectar leads to further increases in survival probability and allows 

reproductive maturation. Failure to locate cooler, nectar rich 

habitats results in high mortality or further movement. Behaviour 

of this kind explains the massive spring exodus of A.gamma from these 

regions at the end of the early flowering season (Williams 1958). 

(ii) In a cooling climate at the end of the summer period similar 

to Britain and N.Europe in September and October. Although survival 

at low temperature is quite high, development and ovary maturation 

is slow. If the density of nectar sources is low this further 

inhibits ovary maturation. There is therefore a considerable period 

of time during which dispersal can take place prior to oviposition. 



Improved nectar supply speeds ovary maturation as does increased 

temperature, whilst lower temperatures and/or low nectar supply 

prolong the dispersive phase. Behaviour of this sort is compatible 

with the progressive but non-synchronous disappearance of A.gamma 

adults from Britain in autumn. 

(iii) In a warm summer climate with adequate nectar supply. 

Reproductive maturation would be relatively rapid, minimising the 

time available for dispersal flights. Most flight activity is 

appetitive rather than migratory (Kennedy 1961) and the moths produce 

a second generation within the same geographical region. 

Attempts to mimic these conditions using the flight recording 

apparatus were made during the latter stages of this study but no 

conclusive supporting evidence was obtained. The data collected 

indicate that such a response might be found if appetitive and 

dispersal flights could be distinguished from one another. The 

trials conducted did reveal that the levels of flight activity shown 

by A.gamma are much higher than those shown by resident plusiids 

under all conditions, indicating a much higher level of movement in 

this species. This would be compatible with the low recapture rates 

of A.gamma obtained by Craik (19") compared to the other species 

in his study. These results combined with the observations -of Larsen 

(1949) who noticed that a circadian rhythm of feeding flights followed 

by more restless flights leading to movements to higher altitudes 

suggest that a dispersal flight is a part of the normal eircadian 

activity of the moths. Theoretical considerations predict such an 

obligate dispersal response under either of the following conditions:-

(i) when the habitat suitability is unpredictable. the length 

of time that a patch remains suitable is usually less than twice 

the species generation time and new habitats are always arising in 

different regions (Southwood 1977). 
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(ii) in a stable habitat in order to colonise new patches which 

are under-exploited or vacant (Hamilton and May 1977). 

A.gamma is likely to have been selected under both these 

conditions. Assuming that its ancestral habitat was sub-tropical 

(the plusiids are essentially a tropical group of moths), the major 

climatic trends have produced an increasingly arid environment with 

plant growth confined to ever decreasing periods, but the seasonal 

timing of plant growth differing with altitude. In order to maintain 

continuous development in these regions it would be necessary for 

A.gamma to track suitable habitats up and down the mountains. This 

pattern of movement has been recorded for A.gamma and other migrant 

Lepidoptera in Iran and the Syrian Desert (Wiltshire 1946). As the 

ice sheets withdrew from Europe a new seasonally available set of 

habitats became accessible to highly mobile insects. When suitable 

habitats further afield exist and no habitat remains suitable for 

more than the time required to complete a second generation, then the 

penalty for "too much" movement may be less than that incurred by 

not moving. If this cost is not sufficiently large then there is 

little or no selection for a facultative dispersal operated by a 

proximate trigger, since movements of all kinds are advantageous 

compared to sedentary strategies. 

So far we have only been concerned with habitat choice on a 

scale at which only the winged adult stages are capable of operating. 

Once a suitable geographical habitat has been chosen and, in the 

case of A.gamma, this appears to be where it is when its ovaries 

mature, then another choice as to exactly where to lay eggs must be 

made by the ovipositing female. The results of my experiments 

indicate that A.gamma females oviposit on a wide range of 

different foodplant species but that some degree of preference is 
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shown. The rank order. of preference shown by both the ovipositing 

females and first ins tar larvae correlates most highly with the rank 

order of foodplants with respect to the speed of larval development. 

If the female moth can discriminate between foodplant species and 

appears to show some preference towards those supporting the. fastest 

developmental rates, why are these species not chosen all the time? 

A number of possible reasons come to mind, some more likely than 

others to be applicable to A.gamma. One is that the best species 

are not found throughout the entire range of the species, or that 

the most suitable plant varies with geographical location. All the 

plant species used in this study are widespread throughout N. and 

Central Europe and were chosen with this problem in mind, in order 

to minimise local specialisation effects. The rank order of 

preference shown in this study is similar to that obtained by Novak 

(1972) in Czechoslovakia, suggesting that geographical variations 

do not OCcur. A second possible reason might be that the egg 

dispersion is a strategy to avoid local competition for resources 

between larvae. Although the situation might differ in other 

regions the extremely low density of occurrence of not only A.gamma, 

but also other larvae feeding on the same foodplants in Britain 

indicates that larval competition is not a major selective factor. 

Since this phenomenon of oviposition on sub-optimal foodplant species 

is not confined to A.gamma, but is found in other Lepidoptera 

(Wicklund 1973; Chew 1975; Courtney 1982) a generally' applicable 

explanation of the behaviour would be desirable and has been developed 

recently by application of the principles of optimal foraging theory 

to oviposition behaviour (Jaenike .1978, Courtney 1982). Jaenike 

demonstrated that the optimal oviposition strategy for an adult insect 

should be to oviposit on a particular foodplant if: the plant has 



a high suitability for larval development. there is a low probability 

of locating an alternative of better quality. the rate of egg 

maturation is high creating a backlog and the density of alternate 

hosts fluctuates over time. Courtney developed this model further 

with respect to oviposition behaviour of the Orange-tip butterfly. 

Anthocharis cardamines L. and emphasised the influence of adult 

mortality occurring before egg deposition is complete. A butterfly 

utilising several hosts of varying suitability achieves greater 

reproductive success than one which spends more time locating only r-
the best plant species and suffers a high egg shortfall due to early 

predation (or other mortality factors). It is likely that A.gamma 

females. particularly in Middle East and Mediterranean regions. have 

been selected for rapid oviposition rates since high temperature 

causes a high rate of egg maturation and also greatly decreases adult 

longevity. In order to lay their eggs sufficiently quickly to avoid 

egg shortfall, females may be forced to utilise a variety of different 

species. 

What both Jaenike and Courtney fail to realise. but which is of 

particular importance to this study, are the long-term 

of this type of behaviour on the nutritional ecology of the species. 
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These are best illustrated by means of a simple hypothetical example. 

Imagine a typical oligophagous insect feeding on a number of species 

belonging to several different genera. If one species has greater 

suitability for the development of this species (because of allelochemical 

differences, less interspecific competition, better synchrony. etc.>, 

then there is a selective advantage to any female which preferentially 

deposits eggs on this species provided there is sufficient time to 



locate them. Larvae developing in the same foodplant environment 

will be selected for increased specialisation to the one species 

and may lose the ability to develop on other species so well, thus 

increasing the selective pressure on the females to make the correct 

choice. The result is an inevitable progression towards total 

monophagy. If, however, all the usual larval foodplants of the 

hypotnetical ancestral oligophage are approximately the same in 

terms of suitability but adult mortality is high, then there is a 

selective advantage to those females which deposit eggs as quickly 

as possible on any foodplant. This may include novel foodplant 

species but even if it means that a whole range of usual foodplants 

is experienced by the offspring of each female, the result is 

selection for a generally effective detoxification system. Should 

such a system evolve then the penalty of oviposition on foodplant 

species of widely differing allelochemical composition will be 

reduced, leading to less selectivity by the females. This will in 

turn further test the generality of the detoxification system and 

leads to a polyphagous feeding habit. Just such a generally acting 

detoxification system is known to occur in many different species 

of polyphagous including Trichoplusia ni (Krieger 

1971). The technical difficulties of performing accurate 

determinations of the activity of mixed function oxidases (MFO) 

preclUded the possibility of testing A.gamma larvde for the presence 

of this ability but the high positive correlation between the 

activity levels of this system, which is present in all aerobic 

organisms (Brattsen 1979), and of polyphagy shown by particular insect 

species makes it likely that the polyphagous feeding habits of 

A. gamma are also dependent upon thfs sya tem. The wide range 

of foodplant species used by the adult moths is therefore a balance 
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between the degree of suitability of a foodplant and the intensity 

of adult mortality. 

The existence of a tendency to utilise particular foodplant 

species over others. especially by the first instar larvae. when 

chemical differences are no longer so important raises the problem 

of b,!l' which criteria is suitability measured by A.gamma (or. more 

correctly. by the selective pressures acting on A.gamma). As stated 

above. the best correlation between choice shown for foodplants is 

to the rate of development of the larvae. For example. Urtica dioica 

was consistently chosen by both the ovipositing female and first 

instar larvae (rank order third in both cases) but was the second 

worst plant with respect to the adult size. This plant species ranked 

third for the speed of larval development though. The possibility 

that larvae (or adults) might be selected to detect plants on the 
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basis of the growth rates is an interesting one in the light of the 

current ideas on insect-plant coevolution. Ever since the paper by 

Ehrlich and Raven (1965) it has been assumed that selection of foodplant 

species was based on.the detection of plant chemicals. the insects 

being restricted to those plants whose defences they had evolved a 

means of detoxifying. studies have attempted to 

demonstrate the ability of specific insect receptor cells to respond 

to specific chemicals. both as stimulants and deterrents. The 

existence of low numbers of chemosenso ry cells (only about one hundred 

compared with the 1500 of grasshoppers and locusts) in lepidopterous 

larvae coupled with the lack of specificity of their response has 

led neurophysiologists to increasingly favour the idea that the 

discriminatory powers of particular species lies. not so much with 

specific responses fade by particular cells. but rather in the way sensory 



154 

information is processed. In other words both specialist and 

generalist feeders within any major taxonomic group may sense the 

world in essentially the same way but respond to it differently 

(Oethier 1980). A simple model of feeding behaviour in a polyphagous 

insect might be as shown in Figure 22 (modified from Bernays and 

Simpson (1982». This scheme allows not only chemosensory information 

to influence feeding behaviour but also the internal physiological 

state of the insect. This more sophisticated approach to feeding 

responses is essential to a correct understanding of insect-plant 

coevolution. The importance of changes in the internal state is 

easily seen in the termination of a feeding bout. Increased input 

from stretch receptors located within the insect body provide a 

negative or inhibitory feedback, which overrides the chemosensory 

input from the mouthparts and antennae and stops feeding. When 

provided with a sub-optimal food suply, however, many insects cease 

to feed long before the normal sized meal has been taken in. The 

size of meal varies with the different plant species provided in 

Locusta migratoria but females always consume more than males by 

an amount proportional to their greater weight (Bernays and Chapman 

1972), indicating that some weight or size related factor is being 

measured. Since it is known that smaller amounts of more concentrated 

artificial diets are ingested compared with the amount normally 

consumed (House 1965, Ma 1972. Slansky and Feeny 1977) insects 

may be monitoring the rate of uptake of nutrients directly. 

Evidence to show that spiders regulate their meal size in relation 

to the concentration of certain critical amino-acid concentrations 

has been presented by Greenstone (1980), whilst Bernays and Simpson 

(1982) report that injections of nutrients directly into the 

haemolymph of L.migratoria cause a decline in feeding activity. For 

a Widely polyphagous species such as A.gamma a of chemo-
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sensory detectors capable of recognising a wide variety of plant 

species and ranking them according to growth suitability does not 

seem likely. Foodplant choice could be more efficiently achieved 

by monitoring the rate of nutrient uptake from any particular food-

plant and if the rate is above a set level then feeding continues. 

The few receptors available for foodplant detection may then be 

used for detection of highly toxic molecules and common nutrient 

molecules required for a high rate of growth. If, whilst feeding 

on any particular plant, the rate of nutrient uptake is not 

sufficiently high, then feeding is terminated before the normal full 

meal size is reached and searching behaviour to locate a more suitable 

food supply initiated. If no suitable supply is found then feeding 

begins on other sources as the increasing starvation lowers the 

threshold to initiation of feeding. An adequate rate of nutrient 

uptake is important to A.gamma for the following reasons:-

(i) a slow rate of growth decreases developmental rates and 

increases larval mortality, and also leads to a lower r • c 
(ii) an adequate nutrient supply is necessary to give the 

correct size increase between moult threshold and maximum weight in 

order to maximise the Moult Ratio. 

The penalty for ceasing to feed before full distention of the 

gut is not large if this is done prior to the attainment of the first 

threshold weight. Larvae below this weight cannot moult and if they 

locate a more suitable foodplant achieve a higher moult ratio than 

those larvae which remain on an inferior plant, and therefore produce 

larger adults. 

The feeding strategy of A.gamma is thus geared not only to 

acneving the size necessary for pupation but is also the result of 

strong selection for maximal growth rates even when faced with a 



157 

wide variety of different plant species. This has been achieved by 

the evolution of a broad spectrum ability to handle plant allelo-

chemicals and a growth schedule which minimises the duration of non-

feeding periods during larval development, even at the expense of 

a greater variance on adult size. The effect of this adult size 

variance has been minimised by the high rate of nectar acquisition 

of the moths, thus uncoupling adult size from reproductive output. 

This flexibility over adult size has other advantages which may be 

applicable to A.gamma. The ability to produce a smaller adult under 

sub-optimal conditions may minimise the chances of hard selection 

(sensu Wallace 1968) operating during scramble competition for 

decreasing resources and also prevents the generation time from 

becoming greatly extended due to the inability to attain a high 

threshold weight for pupation. A.gamma may often find itself in 

situations of declining environmental quality where there is a 

selective advantage for rapid pupation and production of small 

adults which can emigrate to more favourable sites. 

It is now possible to see that the definition of suitable 

habitat for A.gamma requires the integration of a large number of 

different variables producing a continuous gradient of habitat 

suitability. This gradient might be depicted diagramatically, 

as seen through the sensory apparatus of a female moth, as a patchwork 

of different shades of grey, some lighter (more suitable) than 

others but with few if any pure white or pure black regions. A 

female moth located on a grey patch is faced with the choice as 

to whether to remain on the patch of grey which it presently occupies 

or to move to a lighter one. Since the act of movement carries a 

Cost, both through increased energy consumption and increased risk 

of mortality, the decision as to whether to move or not should be 

taken only when:-
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where hl suitability of habitat 1 

h2 • suitability of habitat 2 

m - the cost of moving from 

hl to h2 

This simple rule poses some difficult problems to an organism, however. 

How is suitability of·a habitat assessed. especially the suitability 

of habitats not presently within sensory range? For insects it is 

fairly safe to assume that direct knowledge of h2 is not available 

due to their restricted sensory range and that decisions to leave hl 

must be non-calculated responses based on internal references (Baker 

1978). I have already discussed the likely triggers for movement 

in both adult (temperature and nectar) and larvae (toxic chemicals 

or inadequate growth rate) of A.gamma. It remains only to consider 

the cost of movement to give a clear picture of the habitat choice 

of the species. 

With respect to the larval stages of Lepidoptera, there appears 

to be no information available on the range at which larvae can 

detect other foodplants (habitats). It is unlikely that an insect 

larva can obtain accurate information of the surrounding plants 

unless it has a particularly close relationship to a plant group with 

a characteristic chemical profile. Even in these cases, like the 

pierid butterflies and their cruciferous foodplants, it is the adult 

stage which locates the plants and larvae appear not to be able to 

detect suitable plants until in tontact with them. One of the hest 

studies of searching behaviour in lepidopterous larvae has shown 

that different species, even different races 6£ the same species, 

adopt search patterns which are suitable to the normal dispersion 

pattern of their hosts (Jones 1977). Pieris rapae adopts a 

conservative strategy suited to a clumped distribution of foodplants, 
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as is usually found in wild crucifers. Plusia californica. a polyphagous 

species. adopts a more radical search strategy suited to a more 

homogeneous distribution of foodplants. It appears that the search 

behaviour of larvae has been shaped by the expected distribution of 

foodplants rather than by the sharpening of the sensory apparatus 

required to allow accurate detection. 

Although it is known that many adult insects are capable of 

accurate long-range detection and orientation to particular chemicals, 

such as pheromones, far less is known of the range over which other 

habitat criteria may be detected. At present the maximum authentic 

recorded distance for orientation to naturally produced host plant 

VOlatiles in the field appears to be about 15m, recorded by Hawkes 

(1974) for the cabbage root fly, Delia brassicae. It is likely that 

any of the movements undertaken by A.gamma are of internal 

thresholds for appetitive or dispersive behaviour (Kennedy 1961). 

Selection operates to cause the evolution of an emigratory response 

to an appropriate set of proximate cues based on the expectation of 

locatinga more suitable habitat. Included in this calculation is 

an assessment of the cost of movement. This may be partitioned 

into two Components; the energetic cost of the movement itself, and 

the increased mortality risk of movements towards an unknown habitat. 

Each species locomotory ability is the result of these two selective 

forces. For example, migratory locusts characteristically orient and 

fly downwind, since this maximises the amount of ground covered per 

unit energy consumed, whilst at the same time bringing the insects 

into a zone of wind convergence where the probability of rainfall and 

fresh foodplant growth is high (Rainey, 1978). 
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Migratory birds, on the other hand, make long journeys which 

involve considerable energy expenditure and demand a high level of 

navigational ability in order to return to the same nesting sites 

each year. The locomotory and energetic capabilities of birds 

allow them to undertake this kind of movement. Some insects, such 

as the Monarch butterfly, undertake movements of a similar type to 

that shown by birds and many butterfly species can orient their 

flights in particular compass directions at different times of the 

year. This capacity to orient should not be confused with the 

ability to Although vast numbers of Monarch butterflies 

aggregate in the overwintering quarters in the Mexican highlands 

little is known of how many insects fail to reach these sites. It 

is likely that a net southward movement coupled with an avoidance 

of open water and an altitudinal limit suffices to lead many butter-

flie.5 to these sites with no true navigation. Similar maximal search 

movements coupled to a few simple environmental responses are thought· 

to operate for the majority of fish migrations (Leggett 1977. 

Balchen 1976). From a knowledge of the dispersion pattern of habitats 

of the Silver Y moth it should be possible to predict the type of 

movement which would locate favourable habitats efficiently. 

This would include consideration of possible ways in which the" 

energetic cost of flight can be reduced. A starting point here can be 

the observation that all calculations of energy required to cover 

known migratory routes of Lepidoptera by active flight are greater 

than the energy content of the insect which performs these flights 

(Beall 1948, Koerwitz and Pruess 1964. Macaulay 1974). Either our 

calculations of flight efficiency are hopeles'sly unrealistie::.the 

species are capable of ingesting additional (undoubtedly 
" > ' 

true for some species), :orthe efficiency of flight is improved by the 

use of favourable climatic conditions. The 
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flight in many different insects has been predicted and measured under 

laboratory conditions with considerable accuracy (Nachtigall 1976, 

Weis-Fogh 1976). Changes in aerodynamic efficiency by developmental 

manipulation of wing-loading have been shown to be not great enough 

to cause major revision of these efficiency estimates. Although 

butterflies like the Monarch feed avidly at nectar sources along 

their migration route it has been shown in many other insects that 

migratory flights occur before feeding and indeed that feeding 

depresses flight activity (Dingle 1978, Johnson 1969). Earlier 

in this discussion I argued that this situation is likely to be found 

in A.gamma. 

It seems therefore that the major energy saving option open to 

A.gamma is to make use of the available climatic conditions to maximise 

the distance covered during dispersive flights. The visual observations 

of A.gamma flight activity in Denmark by Larsen (1949) describe the 

characteristic lazy flight of the moths when they moved to higher 

altitudes after their earlier flights searching for food. She describes 

them as drifting and floating unenergetically and all her observations 

were of downwind flights; even when the wind had shifted through 

1200 from the previous night and the wind was blowing to the North-

west, not a favourable direction for movements in August. The most 

detailed studies of insect flight movements made to date, those carried 

out on the spruce budworm moth, Choristoneura fumiferana (Clem), 

have not found a single large scale flight which has deviated by 

more than 500 from the downwind direction (Schaefer 1976, Greenbank 

et al. 1980) •. There is evidence that insects above the boundary 

layer height (Taylor, 1974) are not simply aerial plankton (Hardy and 

Milne 1938) but are sophisticated aerial baloonists or canoeists 

(Southwood 1978). adjusting the speed and direetion of movement by 

adjusting the timing and height of flight activity to use favourable 

" 
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conditions. Assuming that A.gamma only makes long distance flights 

in downwind directions, how does one account for the observed patterns 

of distribution and movement known to occur? If every moth flies down-

wind on every night then the overall distribution of insects would 

be determined by the prevailing direction of the winds. A strong 

seasonal bias to wind dire.,-tions 'could result·in a seasonal pattern of 

insect movements. This does appear to be an important factor in 

insect colonisation patterns in the S.E. United States (Muller 1979, 

Walker 1980) although less suitable biases in the distribution of 

weather types around Britain (Lamb 1977) make it unlikely that the 

colonisation of Britain by A.gamma.every summer reliant 

upon prevailing winds in this way. An alternative mechanism may 

be that each moth has its own preferred compass direction which it 

attempts to maintain using celestial cues. Moths therefore choose 

an altitude at which they obtain wind assisted flight and if not 

suitable wind is available then refrain from dispersal movements or 

remain within their boundary layer where flight direction may still 

be.maintained against the wind. Consistent orientation in one 

direction has been demonstrated in the Large Yellow Underwing, 

Noctua pronuba, with') the directions chosen by individual moths varying 

between SSE and W on the same night (Sottibandhu and Baker 1979). 

Evidence from radar studies is also compatible with this hypothesis. 

On still nights moths may be recorded moving in most compass directions 

at different altitudes but, when the wind speed increases the recorded 

direction are consistently dowpwind,although fUgh ts in oppos lte 

directions may still occur at different altitudes (Schaefer 1976; 

Greenbank et a1. 1980). A consequence of this "type of dispersal 

strategy is the occurrence of flights in all directions at all times 

of the year, as found in the records of A.gamma in Britain (Fisher 

1938, Taylor et ale 1973). The existence" of flights in all directions 
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at all times of the year is further supported by the detailed records 

of insect colonisation of the newly formed island of Surtsey (Lindroth 

et ale 1973). Following its birth in 1963 the arrival of 

on the island, 30km south of Iceland, was documented by ecologists 

who visited the island at regular intervals. The first records of 

Lepidoptera are shown in Table 33. Although A.gamma has been known 

to produce a second generation on occasions when it has invaded 

Iceland early in the year (Wolff 1971) the records of A.gamma on 

Surtsey in May and the prevailing winds during the largest immigration 

in 1971 led Lindroth et ale to consider that all records are the 

result of long range overseas dispersal. The incidence of only 

"notorious migrants" on the islands, especially at times during which 

southerly movements are more advantageous indicates that these 

species are sampling new geographical regions by virtue of their 

high vagility. The inevitably high mortality rates this strategy 

must entail can be compensated for by the high numbers of eggs 

which surviving females can produce (more than for A.samma 

and over for Agrotis ipsilon). Until such time as conclusive 

evidence of accurate navigational ability and seasonal changes in 

chosen flight direction is produced, it seems that the most 

parsimonious explanation of moth dispersal lies in the existence 

of flights in every direction at all times of the year with the observed 

pattern of flight direction records being explained by seasonal shifts 

in popUlation density and habitat suitability. This interpretation 

is not only compatible with the known ecology of A.gamma but appears 

as the logical consequence of adaptation to situations it is likely 

to have encountered in its evolutionary past. There is a large 

ecological difference between the life history strategy of A.gamma snd 

that of a true migrant like the Monarch butterfly. In the latter 

the penalty for incorrect direction choice is high and selection 
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TABLE 33: Lepidoptera caught on Surtsey Island 1964-71 

1964 

1965 

1966 

1967 

1968 

1969 

1970 

1971 

18th August 
15th October 

4th October 

25th May 
28th August 

8th August 
21st August 

1st August 
15th August 

6th August 
8th August 
11th September 

14th May 
16th June 
21st June 

16th July 
19th October 
20th October 
26th October 

27th October 
27th October 

P1utel1a maculipennis 
Agrotis. ipsi10n 

Autographa gamma 

Autographa gamma 
Plutella maculipennis 
Nomophila noctuella (2) 

Plute11a maculipennis (2) 
Agrotis ipsilon 

Agrotis ips ilon 
Agrotis ipsilon 

P1utel1a macu1ipennis (2) 
Autographa gamm( 
Vanessa cardui dead) 

Plutella macu1ipennis 
Agrotis ipsBon 
Plutella macu1ipennis (2) 
Nomophi1a noctuella 

Peridroma saucia (dead) 
Autographa gamma (4) 
Autographa gamma (12) 
Autographa gamma (dead) 
Vanessa atalanta (dead) 

Autographa gamma (1 alive, 4 dead) 
Ph1ogophora meticulosa (dead) 
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refines the orientation ability to improve the success rate of long 

distance movements between summer and winter habitats. Within each 

habitat (and on its migrations) the Monarch is a specialist displaying 

many of the attributes of k-selected species. The Silver Y on the other 

hand has responded to selection in a different way. In the absence 

of strong selection to refine its habitat selection abilities due to 

the difficulties of detecting and navigating accurately at night, it 

has been forced instead to adapt to a wider range of habitats. 

If the survival rate between good and bad habitats is reduced 

sufficiently, by high tolerance and fecundity, the requirement for 

accurate directional movements becomes small, since there are habitats 

of differing suitability in every direction. It appears that a group 

of moth species including A.gamma, its American plusiid counterparts, 

. A.californica and Trichoplusia ni, as well as Agrotis ipsilon, many 

Spodoptera and Heliothis ap2 in the Old World have become the true 

nomads of the world, exemplifying a colonistic, opportunistic life 

history strategy which dIffers greatly from that of true migrants. 

These species have attained such a high level of population movement 

that they exist essentially as single panmictic gene pools, showing 

little genetically controlled morphological or electrophoretic 

variation (den Boer 1978) over their entire range. This unity of 

the gene pool precludes the evolution of local adaptations which 

might allow a more sedentary existence to evolve in particular 

regions of their distribution. The dominant selective force operating 

on these species is therefore truly generalist. 
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