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Energy Optimal Control for Formula One Race Car 

Abstract 

Formula One (F1) is considered to be the forefront of innovation for 
the automotive and motorsport industry. One of the key provisions has 
been towards the inclusion of the Energy Recovery System (ERS) 
since 2014 in F1 regulations. ERS comprises Motor Generator Unit-
Heat (MGU-H), Motor Generator Unit-Kinetic (MGU-K) and an 
Energy Storage (ES). This has not only converted the conventional 
powertrain into a hybrid power-split device, but also imposed 
constraints on the fuel energy available, energy recovered and 
deployed by MGU-K, and charge stored in ES, along with various 
other parameters. Although the objective for a F1 race is to minimize 
lap-time, it is obvious that there is no unique control path or decision 
to meet this objective. This builds up needs to optimally control the 
power-split and energy of the system.  

In this study, we propose an energy optimal control strategy for a F1 
car by constructing a detailed force-balanced mathematical model of 
the F1 powertrain, identifying state-space variables, as well as 
regulated constraints and weighted-cost functions and then solving for 
minimizing cost function based on model-based optimization inside 
GT-Suite© using Discrete Optimization and Genetic Algorithm. The 
obtained optimal trajectory is compared to the global optimum 
obtained by Dynamic Programming. Finally, the results are validated 
over in our high-fidelity GT-Drive based F1 powertrain simulator and 
also compared against conventional rule-based controls for added 
advantage to race performance and energy minimization. The result is 
the optimal strategy that results in minimal energy consumption for the 
provided speed trajectory over a single lap. 

Introduction 

Limited thermal efficiency, high fuel consumption and inefficient 
energy usage have pushed powertrain manufacturers to look for more 
efficient, robust and environment friendly options.  The discussion is 
further heated for high performance F1 hybrid electric vehicles (HEV), 
with a strict ban on fuel consumption of 100kg/hr during race and 
amount of energy deployment and recovery of 4MJ and 2MJ per each 
lap [1]. Although options like energy recovery system (ERS) have 
been permitted by FIA regulations [2], the optimum control strategy 
for either when to recover or deploy energy is not well discussed in 
published domain. There is a need to understand and develop an 
optimal control logic for high performance powertrains which could 
eventually increase the thermal efficiency, fuel economy and energy 
efficiency of the vehicle, above all providing a competing edge on 
track.  

Energy management system (EMS) is responsible for the efficient and 
even optimal deployment or recovery of energy. In passenger vehicle 
applications, EMS has been extensively used to control power-flow 
between engine and electric motor. Engine is capped by a certain fuel 
mass flow, as well as tail -pipe emissions. The electric motor, on other 
hand, is limited by the battery capacity. The choice of choosing the 
power source is thus based on calculation against a defined cost or 
objective. This cost could be fuel consumption or available battery 
capacity.  

In high-performance powertrains, like the F1, the energy available in 
the car is restricted by the regulations. This forms an interesting control 
problem which requires a better understanding of the power flow in the 
powertrain, in addition to the knowledge of the optimization theory. 
Only then can a car succeed to provide the desired performance over 
the lap. 

The F1 powertrains have a few unique features: Firstly, instead of a 
turbocharger, they contain a Motor Generator Unit- Heat (MGU-H). 
This makes it act as a supercharger, heat energy generator or a simple 
turbocharger as needed during the operation of the car. The other 
component is the Motor Generator Unit-Kinetic (MGUK). This helps 
supply a power boost or regenerative braking as needed. The electric 
energy is provided by the battery called as Energy Storage (ES).  

Acknowledging these restrictions as well as the complex hybrid 
structure, it is apparent that for any constructor, a careful consideration 
towards the development of controller is essential. Above all, to deploy 
and recover energy efficiently for maximum performance, the choice 
of when to use what power source is also essential. Such a control 
system is called the Energy Management System (EMS) [3]. 

EMS functions to have a supervisory control over component level 
controllers like engine, battery, and motor controllers. This enables a 
robust and, in some cases, nonlinear control strategy which may not be 
possible in conventional control systems. Here it becomes important 
to understand the different approaches for EMS, namely rule-based 
and optimization-based control.  

Rule-based control is dependent on heuristics which are set by the 
designer with common examples of thermostat (on/off) control, fuzzy 
logic control and power-follower control. On the other hand, 
optimization-based control aims to optimize the system characteristics 
based on the system dynamics. This is done by constructing a cost-
function and minimizing/maximizing the cost function based on the set 
constraints and end-point conditions. Some optimization-based control 
can be done off-line from real-time system and commonly include 
Linear Programming (LP) [4], Dynamic Programming (DP) [5] and 
Non-linear Programming (NLP) [6]. Off-line optimal controls are also 
known for their ability to give global-optimum solution and thus are 
used as benchmarks. Whereas some optimization-based controls can 
be run on-line and make possible real-time optimal control. These 
control types include Model Predictive Control (MPC) [7] and 
Equivalent Consumption Minimization Strategies (ECMS) [8], to 
name a few. Not only this, but there are also a lot more types of EMS 
strategies developed for computationally solving the optimization 
and/or control problems like use of Neural Networks and Machine 
Learning, Particle Swarm Optimization (PSO), Genetic Algorithm 
(GA), in addition to conventional methods like Trial and Optimize 
using numerical tools, etc.  As suggested by the numerosity in types, 
each energy management strategy has different applications, each with 
a different caveat, as already described in detail in published domain 
[9]. A summary of this discussion in provided in Figure 1.  

One of the many applications of EMS include implementation of 
optimal power-split for Prius by using stochastic DP and ECMS to 
optimize engine operation benchmarked against DP [10]. Sciarretta et 
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al. [11] describe the development of ECMS with main work on 
development of instantaneous cost function leading to 30% reduction 
in fuel.  Similarly, more recent work has been done towards passenger 
hybrid electric vehicles with concern towards fuel economy and 
emissions[12][13]. Yet next to little implementation and development 
has been done in context to F1 in published domain.  

 

Figure 1 Summary of the Energy Management System techniques used mostly 
in published domain. 

One of the earlier validations of Kinetic ERS (KERS) in published 
domain has been done by [14]. In their work, they have investigated 
the benefit of KERS to “fuel economy and lap time” by optimization 
using Dynamic Programming. Bengolea et al. [15] have studied 
choices of optimum technology for maximum benefit to fuel 
consumption, emissions, and energy for F1 vehicles by comparing 
different technologies in terms of benefit to the road vehicle using 
drive cycles. Some researchers have developed MGU deployment 
strategies based on deployment speed by comparing different vehicle 
speed profiles from racetrack data [16].  

One of the few other series of work for high performance Hybrid 
Electric Vehicle (HEV) has been done towards lap-time minimization 
by using Pontryagin Minimum Principle (PMP) [17], Convex 
Optimization [18] and MPC [19]. Although the work is explicit and 
one of its kind, there are a few caveats to this approach:  Firstly, it is 
based on lap time-based optimization, which although is a key 
objective of the race, however, does not guarantee that system energy 
is consumed optimally. This is important because the plant (i.e., 
powertrain) optimal behavior is not guaranteed [20].  Secondly the use 
of energy optimization approach enables to use drive cycles developed 
from actual race-track data. This ensures that ERS has more energy to 
be deployed before reaching 4MJ limit and relying solely on engine 
for power. This back-up energy will help towards faster lap-time as 
well. Thus, an optimal split of energy between engine and battery is a 
key objective of this work. 

The present study proposes an energy optimal control strategy for F1 
car by constructing and validating a force-balanced mathematical 
model of F1 powertrain, identifying the state-space variables, as well 
as constraints regulated by F1 regulations and weighted-cost functions 
and then solve for minimizing the cost function based on model-based 
optimization inside GT-Suite using EMS. The results are compared to 

those obtained by DP and benchmarked against the energy 
consumption by a rule-based control strategy inside GT-Suite.  

The findings of this study will have two-fold of impact to the existing 
literature. Firstly, it will provide a detailed and validated mathematical 
model of a F1 powertrain which can be extended to use in future 
concepts and applications. Secondly, the study will propose a strategy 
to achieve maximum performance of a high-performance race car, 
without compromising on the limits of the energy flow as imposed by 
regulations. 

The paper is structured in the following way: Methodology section 
describes the tools and structure of analysis using three different 
approaches namely, GT-Drive Rule Based Controls which serve as 
benchmark for the optimization results, GT-Drive Optimization Based 
Controls which involve optimizing inside GT-Suite for higher-fidelity 
calculations, and lastly Dynamic Programming in MATLAB. The 
optimization is done based on mathematical model development. 
Following this, Results and Discussion describe the validation of 
mathematical model is performed along with comparison of different 
control strategies and cost function.  

Methodology 

GT-Drive Modelling 

Here the pre-validated Formula One powertrain model in GT-Drive  in 
earlier work [21] has been used as the baseline. This model is 
illustrated in Figure 2. The critical parameters for the model have been 
listed in Table 1.  

 

Figure 2 Overview of the model of F1 powertrain inside GT-Suite used for the 
work. 

Rules Based Controls 

Rule based control is the conventional control mostly involving “if 
this, then that” behavior [23]. In context to the application, rule-based 
control is done inside GT-Drive. The major benefit of this method is 
that extensive powertrain simulation can be done while the downside 
is that the control is not optimal, but rather sub-optimal i.e., there is no 
guarantee that the vehicle is performing optimally or not. However, 
this approach is used to evaluate the benefit of optimization in terms 
of percentage improvement in energy consumption or recovery. The 
model is split as below. 
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Table 1 Important parameters based on GT-Drive vehicle model. 

Parameter Unit Value 

Engine Capacity L 1.6 

Vehicle Mass Kg 728 

Passenger Mass Kg 70 

Vehicle Frontal Area m2 1.5 

Drag Coefficient - 0.78 

Battery Capacity A-h 20 

Tyre Rolling Radius m 0.331 

Tire Rolling resistance factor - 0.01 

MGU-K gear ratio - 4 

Final Drive ratio - 3.8 

Initial SOC - 0.6 

Simulation Circuit - Monza 

Lap Duration s 80 

Supervisory controller is responsible to key calculations including 
selecting engine mode, the power required from MGU-K based on 
power demand and finally the total power loss in the system. Primarily, 
it has two controllers i.e. MGU-K and Energy Storage.  

MGU-K controller shown in Figure 3 is responsible to request power 
to/from MGU-K. Also, it has constraints for energy deployment and 
recovery as set by FIA regulations. It receives the energy request from 
Supervisory controller and decides how much of energy it can provide 
based on those constraints. 

The Energy Storage controller is made to calculate the total energy 
deployed and recovered in MJ and difference in SOC, a critical 
parameter to be monitored during the race. This ensures that overall 
energy constraints in FIA regulations are fulfilled. This is shown in 
Figure 4. 

Optimization Based Control 

In order to achieve the best performance on track, an energy 
optimization approach is followed. This involves laying out the 
mathematical model of F1 powertrain, evolving into the state space 
model and finally optimizing for energy consumption. In order to 
achieve a computationally efficient while optimal solution, results 
from three different optimization techniques are compared. 

Mathematical Modelling 

The mathematical model is constructed based on the description of 
powertrain in regulations as shown in Figure 5. Torque required to 
drive the vehicle can be estimated and therefore, acceleration 
capability of the vehicle at any given state can be obtained from a 
complete powertrain model. 

𝜔̇ (𝐼 ) = 𝑇𝑒𝑥𝑐𝑒𝑠𝑠 = 𝑇𝑎𝑣𝑎𝑖𝑙𝑎𝑙𝑏𝑒 − 𝑇𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  (1) 

In this way (1) can be used to describe the evolution of kinetic energy 
of the system. The steps involved to achieve mathematical 
formulations for F1 power-split are summarized below.  

Figure 3 Snapshot of MGU-K controller inside GT-Suite. 

Figure 4 Summary of the model used in GT-Suite for the energy storage 
calculations. 

Figure 5 Schematic of the powertrain model describing th key forces and 
arrangemenet of system. 

The power required to move the car at a certain speed is provided by 
the engine, MGU-K, and brakes (negative power), with some 
component lost to the losses in the system as in (2). 

𝑃𝑟 =  𝑃𝑒 + 𝑃𝑘 + 𝑃𝑏𝑟𝑘 − 𝑃𝑙𝑜𝑠𝑠 (2) 

Usually, power balance is useful as it does not depend on gear ratios 
or speed difference. However for powertrain, it is useful to include a 
torque-based model which describe how the system accelerates over 
time.  The power balance at flywheel gives us (3).  

𝑇𝑓𝜔𝑓 
=  𝑇𝑒𝜔𝑒 + 𝑇𝑘𝜔𝑘  (3) 

Battery Power Request 
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Where,  𝜔𝑓 
=  𝜔𝑒  i.e., engine and flywheel speed are the same. Thus, 

it can simplify to get (4). 

(𝑇𝑓 − 𝑇𝑒)𝜔𝑓 
=  𝑇𝑘𝜔𝑘   (4) 

Where, 𝑖𝑘 could be defined as the MGU-K gear ratio as, 

𝑖𝑘 =
𝑟𝑓

𝑟𝑘
=  

𝜔𝑘

𝜔𝑓

(5) 

Hence, we get (6) from (5). 

𝑇𝑓 
=  𝑇𝑘𝑖𝑘 + 𝑇𝑒 (6) 

From force balance, we get (7) and (8), 

𝜔̇𝑘(𝐼𝑘 + 𝐼𝑔) = 𝑇𝑘 − 𝐹𝑟𝑘 (7) 

𝜔̇𝑓𝐼 = (𝑇𝑒 + 𝐹𝑟𝑓) − 𝑇𝑟 +
1

𝑖𝜃𝐾
(𝑇𝑏𝑟𝑘) − 𝑇𝑙𝑜𝑠𝑠 (8) 

Here, 𝑇𝑟 assumes no acceleration part and is solely based on the 
resistance forces, since acceleration is taken out into 𝜔̇𝑓𝐼. Upon further 
simplification we get (9). 𝜔̇𝑓, flywheel acceleration is related to car 
acceleration by (10). This finally gives (11). 

𝜔̇𝑓𝐼 = 𝑇𝑒 + 𝑇𝑘𝑖𝑘 +
1

𝑖𝜃𝐾
(𝑇𝑏𝑟𝑘) − 𝑇𝑙𝑜𝑠𝑠 − ⋯

𝑟𝑤

𝐾𝑖𝜃𝜂𝑡

(0.5𝜌𝐶𝑑𝐴𝑣2 + 𝑚𝑔𝑓𝑟) (9)
 

𝜔̇𝑓 =
𝐾𝑖𝜃

𝑟𝑤
 
𝑑𝑣

𝑑𝑡
 (10) 

𝑑𝑣

𝑑𝑡
=

𝑟𝑤

𝐾𝑖𝜃𝐼
[𝑇𝑒 + 𝑇𝑘𝑖𝑘 +

1

𝑖𝜃𝐾
(𝑇𝑏𝑟𝑘) − 𝑇𝑙𝑜𝑠𝑠 − ⋯

𝑟𝑤

𝐾𝑖𝜃𝜂𝑡

(0.5𝜌𝐶𝑑𝐴𝑣2 + 𝑚𝑔𝑓𝑟)] (11)
 

The total inertia is composed of the following components as in (12).  

𝐼 =  
𝑚𝑟2

(𝑖𝜃𝐾) 2
+

𝐼𝑤

(𝑖𝜃𝐾) 2
+

𝐼𝑡

𝑖𝜃
 2 + 𝐼𝑒 + 𝑖𝑘

 (𝐼𝑘) (12) 

Note that MGU-H is not involved in the direct power supply. The 
behavior is in fact non-linear. Hence, in this model development, the 
impact of MGU-H is split into two parts, engine, and battery.  The 
impact on engine is directly modelled into the engine parameter i.e., 
BMEP to give the resulting power from MGU-H. On the electrical 
side, map develop by [21] are used to give the mechanical power based 
on MGU-H speed and throttle input. The numerical basis is 
summarized in (13) to (16).  

𝜔̇ℎ(𝐼ℎ) = 𝑇ℎ = 𝑇𝑒𝑥 − 𝑇𝑡𝑐 (13) 

𝑃ℎ = 𝑇ℎ𝜔ℎ  (14) 

𝑃ℎ = 𝑓(𝜔𝑒 , 𝜏) (15) 

𝜔ℎ = 𝑓(𝜔𝑒 , 𝜏) (16) 

Note that, maps are used for extracting BMEP of the engine. MGU-K 
power is not determined by the maps and is directly computed based 
on (2).  

Similarly, the evolution of energy in the battery 𝐸𝑏𝑎𝑡𝑡 can be described 
as (19) where SOC has been used based on formulation (17) to (18). 

𝑄(𝑡) = 𝑆𝑂𝐶(𝑡) × 𝑄𝑚𝑎𝑥 (17) 

𝐸(𝑡) = 𝑉𝑂𝐶 × 𝑄(𝑡) = 𝑉𝑂𝐶 × 𝑆𝑂𝐶(𝑡) × 𝑄𝑚𝑎𝑥 × 3600 (18) 

𝑃𝑏𝑎𝑡𝑡 =
𝑑𝐸𝑏𝑎𝑡𝑡

𝑑𝑡
= 𝑉𝑜𝑐 . 𝑄𝑚𝑎𝑥 .3600.

𝑑𝑆𝑂𝐶(𝑡)

𝑑𝑡
 (19) 

The power of battery 𝑃𝑏𝑎𝑡𝑡 is shown in (20). 𝑃𝑘−𝑏𝑎𝑡𝑡 and 𝑃ℎ−𝑏𝑎𝑡𝑡 show 
MGU-K and MGU-H power at battery. The individual components are 
shown in (21).  

𝑃𝑏𝑎𝑡𝑡 =  𝑃𝑘−𝑏𝑎𝑡𝑡 + 𝑃ℎ−𝑏𝑎𝑡𝑡 (20) 

𝑃𝑏𝑎𝑡𝑡 =  𝑇𝑘𝜔𝑘𝜂𝑒𝑘
𝑆𝜂𝑖𝑘

𝑆 + 𝑇ℎ𝜔ℎ𝜂𝑒ℎ
𝑆𝜂𝑖ℎ

𝑆 (21) 

Where, 𝑆 = {−1 || 1} based on if the battery is charging or discharging 
respectively. Here, the deduction of using 𝑃𝑏𝑎𝑡𝑡 = 𝑉𝑜𝑐 × 𝐼𝑏𝑎𝑡𝑡 leads to 
the evolution of SOC equation as shown in (22). 

𝑑𝑆𝑂𝐶(𝑡)

𝑑𝑡
= −

𝐼𝑏𝑎𝑡𝑡

𝑄𝑚𝑎𝑥 .3600
(22) 

Where negative sign is for the decay in the value of SOC over 
consumption. The State of Charge of battery, as defined by F1 
regulations, is the difference between the initial energy 𝐸𝑏𝑎𝑡𝑡(0) and 
the instantaneous energy 𝐸𝑏𝑎𝑡𝑡(𝑡) as (23). 

Δ𝐸𝑏𝑎𝑡𝑡 = 𝐸𝑏𝑎𝑡𝑡(𝑡) − 𝐸𝑏𝑎𝑡𝑡(0) (23) 

Finally, the evolution of fuel energy 𝐸𝑓𝑢𝑒𝑙  in powertrain is related by 
equation (24). 

𝑃𝑓𝑢𝑒𝑙 =
𝑑𝐸𝑓𝑢𝑒𝑙

𝑑𝑡
= 𝑚̇𝑓𝑢𝑒𝑙𝑄𝐻𝑉 (24) 

The mass flow  𝑚̇𝑓𝑢𝑒𝑙  is restricted by regulations based on engine 
speed as shown in (25). Where the engine speed 𝜔𝑒  can be shown to 
vary linearly in simple model as in (26).  

𝑚̇𝑓𝑢𝑒𝑙 = {
100    , 𝜔𝑒 > 10500

0.009𝜔𝑒 + 5.5    , 𝜔𝑒 ≤ 10500
} (25) 

𝜔𝑒 =
𝜔𝑒,𝑚𝑎𝑥 − 𝜔𝑒,𝑖𝑑𝑙𝑒

100
𝜏 + 𝜔𝑒,𝑖𝑑𝑙𝑒 (26) 

Here two additional states are defining to control the limits on 
regeneration 𝐸𝑟𝑒𝑐 and deployment 𝐸𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑜𝑛as in FIA regulations. 
These are given in (27) and (28). 

𝑑𝐸𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑜𝑛

𝑑𝑡
=  max (0, 𝑃𝑏𝑎𝑡𝑡) (27) 
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𝑑𝐸𝑟𝑒𝑐

𝑑𝑡
=  𝑚𝑖𝑛 (0, 𝑃𝑘−𝑏𝑎𝑡𝑡) (28) 

Finally, the cost function can be constructed for the problem.  This is 
done in (29). Here ∝1 and ∝2 are constants for assigning weights to 
the terms of the cost function, provided their sum is equal to 1.  

𝐽 = ∫ (∝1 𝑃𝑏𝑎𝑡𝑡 +∝2 𝑃𝑓𝑢𝑒𝑙)
𝑡𝑓

𝑡0

𝑑𝑡 =∝1 𝐸𝑏𝑎𝑡𝑡 +∝2 𝐸𝑓𝑢𝑒𝑙 (29)

 
 

From (29), a normalized cost function can help with balancing the 
differences in magnitudes of the two energies as provided in (30). 

𝐽 =  ∫ (∝1 𝑃̂𝑏𝑎𝑡𝑡 +∝2 𝑃̂𝑓𝑢𝑒𝑙)
𝑡𝑓

𝑡0

𝑑𝑡 =∝1 𝐸̂𝑏𝑎𝑡𝑡 +∝2 𝐸̂𝑓𝑢𝑒𝑙 (30) 

Where ‘^’ over each quantity denotes normalized quantity with the 
general form for variable ‘V’ given in (31). 

𝑉̂ =  
𝑉 − 𝑉𝑚𝑖𝑛

𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛

 (31) 

Here  𝑉𝑚𝑖𝑛 is the minimum value of the variable and 𝑉𝑚𝑎𝑥 is the 
maximum value of the variable.  

State-Space Formulations 

 It is important to note that only three equations, (11), (21) and (24), 
can fully describe the evolution of powertrain characteristics in a car. 
Of all variables, some are dependent while other are the fundamental 
(minimum number of) variables to describe the state, and hence called 
state variable x(t). Whereas some variables are needed to be defined to 
be able to solve the equations according to degree of freedom of system 
and are called input variables u(t). These variables are essential to 
define control problems and are illustrated for defined equations as in 
Table 2. This enables to construct the optimizations problem now 
which has been constructed in Table 3. 

Note that of all inputs, throttle 𝜏 is the most fundamental as it not only 
controls the engine but also MGU-K and MGU-H as identified in the 
equations earlier. Hence, 𝜏 is mainly used as the only input for 
proceeding optimizations, where the 𝑇𝑏𝑟𝑘 and 𝑖𝜃 are assumed to be 
controlled by the driver in a rule-based strategy for the simulation. 

On the argument that how effective throttle is over other possible 
inputs say 𝑷𝒌, throttle is more explicit in implementation by the driver 
than any other input. The mathematical model presented earlier 
validates that throttle is a common input to almost all variables on car, 
including 𝑷𝒌. Studying throttle would also give a better insight to the 
driving behaviour required to achieve close to optimal results on actual 
track. 

Table 2 Summary of the state variables and input variables defined for state-
space equation. 

State Variable x(t) Input Variable u(t) 

𝒗 , 𝑬𝒃𝒂𝒕𝒕 , 𝑬𝒇𝒖𝒆𝒍 , 𝑬𝒅𝒆𝒑𝒍𝒆𝒕𝒊𝒐𝒏 , 𝑬𝒓𝒆𝒄 
𝝉 , 𝑻𝒃𝒓𝒌 , 𝒊𝜽 

Table 3 Summary of the Optimisation problem along with the objective 
function and constraints. 

𝒙 = {𝒗, 𝑬𝒃𝒂𝒕𝒕, 𝑬𝒇𝒖𝒆𝒍, 𝑬𝒅𝒆𝒑𝒍𝒆𝒕𝒊𝒐𝒏, 𝑬𝒓𝒆𝒄𝒐𝒗𝒆𝒓𝒚} ∈  𝓧𝟓 

𝒖 = { 𝝉, 𝑻𝒃𝒓𝒌 , 𝒊𝜽 } ∈  𝓤𝟑         𝓧 , 𝓤 ∈ ℝ 

𝐦𝐢𝐧
𝒖

∫ 𝑷(𝒙, 𝒖, 𝒕)𝒅𝒕   𝑶𝑹   𝐦𝐢𝐧
𝒖

𝑬(𝒙, 𝒖, 𝒕) 

Where, 
𝑬(𝒙, 𝒖, 𝒕) = ∝𝟏 𝑬𝒃𝒂𝒕𝒕 +∝𝟐 𝑬𝒇𝒖𝒆𝒍 

S.t., Dynamics, 
𝒅𝒗

𝒅𝒕
=

𝒓𝒘

𝑲𝒊𝜽𝑰
𝑻𝒆 + 𝑻𝒌𝒊𝒌 +

𝟏

𝒊𝜽𝑲
(𝑻𝒃𝒓𝒌) − 𝑻𝒍𝒐𝒔𝒔 − ⋯

𝒓𝒘

𝑲𝒊𝜽𝜼𝒕
(𝟎. 𝟓𝝆𝑪𝒅𝑨𝒗𝟐 + 𝒎𝒈𝒇𝒓)

 

𝑷𝒃𝒂𝒕𝒕 =
𝒅𝑬𝒃𝒂𝒕𝒕

𝒅𝒕
= 𝑽𝒐𝒄 . 𝑸𝒎𝒂𝒙 . 𝟑𝟔𝟎𝟎 × 𝟏𝟎−𝟔.

𝒅𝑺𝑶𝑪(𝒕)

𝒅𝒕
 

𝑷𝒇𝒖𝒆𝒍 =
𝒅𝑬𝒇𝒖𝒆𝒍

𝒅𝒕
= 𝒎̇𝒇𝒖𝒆𝒍𝑸𝑯𝑽 

𝒅𝑬𝒅𝒆𝒑𝒍𝒆𝒕𝒊𝒐𝒏

𝒅𝒕
= 𝒎𝒂𝒙 (𝟎, 𝑷𝒃𝒂𝒕𝒕) 

𝒅𝑬𝒓𝒆𝒄𝒐𝒗𝒆𝒓𝒚

𝒅𝒕
= 𝒎𝒊𝒏 (𝟎, 𝑷𝒌−𝒃𝒂𝒕𝒕) 

S.t., Constraints, 
−𝟓𝟎, 𝟎𝟎𝟎 𝒓𝒑𝒎 ≤ 𝝎𝒌(𝒕) ≤ 𝟓𝟎, 𝟎𝟎𝟎𝒓𝒑𝒎 

−𝟏𝟐𝟓, 𝟎𝟎𝟎 𝒓𝒑𝒎 ≤ 𝝎𝒉(𝒕) ≤ 𝟏𝟐𝟓, 𝟎𝟎𝟎 𝒓𝒑𝒎 
𝟎 𝑴𝑱 ≤ 𝚫𝑬𝒃𝒂𝒕𝒕(𝒕) ≤ 𝟒𝑴𝑱 

𝟎 ≤ 𝒎̇𝒇𝒖𝒆𝒍 ≤ 𝟏𝟎𝟎
𝒌𝒈

𝒉𝒓
 

𝑬𝒅𝒆𝒑𝒍𝒆𝒕𝒊𝒐𝒏 ≤  𝟒 𝑴𝑱 

𝑬𝒓𝒆𝒄𝒐𝒗𝒆𝒓𝒚 ≤ −𝟐 𝑴𝑱 

𝑷𝒌(𝒕) ∈ [−𝟏𝟐𝟎, 𝟏𝟐𝟎]   𝒌𝑾 
And, 

𝝉(𝒕) ∈ [𝟎, 𝟏𝟎𝟎]  

𝑻𝒃𝒓𝒌(𝒕) ∈ [𝟎, 𝑻𝒃𝒓𝒌,𝒎𝒂𝒙]   𝑵. 𝒎 

𝒊𝜽  ∈ [𝒊𝜽,𝟏𝒔𝒕 𝒈𝒆𝒂𝒓 , 𝒊𝜽,𝟖𝒕𝒉 𝒈𝒆𝒂𝒓 ] 

 

Solving optimization in GT-Suite 

The approach to solve optimization problem in GT-Suite is based on 
the work by [24]. Here the state space equations developed before are 
used to construct the cost function as provided in Figure 6.  The cost 
function model has three stages i.e., for fuel, MGU-K and MGU-H 
energy calculation. 

The model in Figure 6 is discretized into N cases, where N is the 
number of seconds in a lap drive cycle. In the optimizer the output of 
the cost function block is minimized while the throttle is assigned to 
be the input varied between 0 and 100. The optimizer runs calculation 
over each case and results in optimal throttle for each case. For the 
purpose of this study, both Discrete-grid [25] and Genetic algorithm 
[26] methods are used in the GT-optimizer settings to get optimal 
throttle. For base simulations, weightage parameters ∝1 and ∝2 are set 
to be 0.95 and 0.05, respectively. This will minimize battery 
consumption more than the fuel, which is useful as fuel flow energy is 
not restricted while the battery energy is limited by the regulations. 
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Figure 6 Cost function GT-Suite file used to calculate the impact of input on 
cost at each time step. 

The final step is implementation, which involves using the optimal 
throttle as input to the ‘optimized model’ as shown in Figure 7. This 
model also ensures that vehicle dynamics components which are not 
explicitly handled like maximum speed at corners does not exceed 
limits. 

 

Figure 7 Implementation of optimal throttle in the GT-Suite model by imposing 
throttle and brake pedal positions.  

Dynamic Programming in MATLAB 

Dynamic Programming is an exhaustive search method [5]. The 
optimization problem is solved by constructing a grid of points. The 
cost from moving from one node to another is thus called cost-to-go 
‘Y’. The action of moving from one node to another is solely 
determined by the input variable ‘u’. The input variable which results 
in minimum cost are called optimal inputs ‘u*’ and the cost is called 
as optimal cost ‘J*’ as in (32). 

𝐽∗ = min(𝐽) = min( 𝑀|𝑥0, 𝑡0 , 𝑥𝑓, 𝑡𝑓| + ∫ 𝐿|𝑥, 𝑢, 𝑡|
𝑡𝑓

𝑡0

𝑑𝑡) (32) 

And the optimal policy or control inputs which result in optimal cost 
can be summarized as in (33).  

𝑢∗ =
argmin(𝐽)

𝑢 ∈ 𝑈
=

argmin  
𝑢 ∈ 𝑈

(𝑀|𝑥0, 𝑡0 , 𝑥𝑓 , 𝑡𝑓| + ⋯

∫ 𝐿|𝑥, 𝑢, 𝑡|
𝑡𝑓

𝑡0

𝑑𝑡) (33)
 

Where argmin represents that the argument that J is minimum over the 
input u equates to the optimal 𝑢∗. The path, comprising of nodes, which 
leads to minimum cost is called as the optimal path.  

Table 4 Summary of calculations done in MATLAB to achieve dynamic 
programming-based optimization. 

Step 1: Initialize and Import data 

%Problem definition, assign constants, load data and initialize output matrix 

Step 2: Solve Dynamic Programming problem 
For T = Ts:  N 
    For t = tmin:  tmax 
        For i = 1:  101 
            %Calculate Pk, Ph 
            %Calculate mdotfuel 
            func1 = (Ph +Pk) 
            X1(T, i) = Ts. *func1 + X1(T-1, i). 
            func2 = (mdotf. *44 000. /3600); 
            X2(T, i) = Ts. *func2 + X2(T-1, i); 
            % Calculate Cost function like: 
            C= X1(T, i) + 0.05.*X2(T, i);  
            %Store minimum C in J (T, t+1) 
        End 
    End 
End 

Step 3: Sort data and Export 
For j= 1:1:801. 
    [minval, index] =min (J(j,:)); 
    throttle(j,1) =index 1. 
    value(j,1) =minval. 
End 

 

Dynamic programming problem is constructed and solved in 
MATLAB. The structure of code is divided into three steps as shown 
in Table 4. The first for-loop is responsible to run calculation for the 
duration of drive cycle. The second for-loop varies the throttle from 0 
to 100, while the third for-loop is responsible for calculating cost-to-
go. The minimum for each throttle is stored in a cost matrix which has 
cost at each stage along the rows and throttle value from 0 to 100 along 
the columns. The final part of code is responsible to sort the cost matrix 
and to select the minimum cost at each stage.  

Implementation and Analysis of EMS  

Validation of Mathematical Model.  

The mathematical model developed for the current work shows a great 
correlation with the high-fidelity powertrain model developed in GT-
Suite as in Figure 8 for torque output, velocity profile and power 
deployed by MGU-K. 

Optimization inside GT-Suite  

The optimization inside GT-Suite is done based on Discrete-Grid (DG) 
optimization and Genetic-Algorithm (GA) over the same cost function 
as discussed before with results shown in Figure 9 (b) and (c).  
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Figure 8 (a) Plot showing the validation of torque required to brake between the 
mathematical model and GT-Suite simulation when no Torque losses are 
considered. (b) Comparison of velocity calculated by mathematical model and 
the GT-Suite model (c) Comparison of Power to MGU-K from mathematical 
model and GT-Suite results. 

In terms of computational effort, it is found that DG finds the points 
that correspond to minimum cost in lesser time than the GA However, 
the statement is not conclusive as GA gives lesser energy deployment 
of 1.2 MJ. The reason is because GA runs simulation over several 
generations, selecting the best and proceeding with it forward for each 
time step. Note that the vehicle velocity of the optimization follows the 
target speed for the lap by being less than 1% average error in all cases. 

Since GA gives better results over higher generations or number of 
runs, it is worthwhile to examine the behavior of results for GA by 
varying the number of generations from low to high. This will indicate 
the sensitivity of the optimization problem and possibility of faster 
iterations by going with lesser no. of generations.  Each generation 
involve running almost 10 iterations in GT-Suite optimizer, with each 
iteration taking an average of 51 seconds. This would roughly equate 

to 8.5 min for each generation. The summary of this analysis is given 
in Table 5 which was stopped after 15 generations. The comparison 
suggests that to save computational effort, even 5 generations of 
iterations are enough to achieve satisfactory results. This conclusion 
will vary if the model complexity or the cost function is changed. 

Table 5 Comparison between different GA runs based on number of 
generations. * Simulation success is marked if the resulting throttle profile can 
achieve the target speed and performance on implementation. 

No. of 
Generations 

(designs) 

Computational 
Time (min) 

Simulation 
Success? * 

Energy 
Deployed 

(MJ) 

2 (20) 17 Yes 2.15 

5 (50) 45 Yes 1.196 

10 (100) 93 Yes 1.203 

15 (150) 136 Yes 1.189 

 

DP in MATLAB 

The results of optimization after applying dynamic programming 
suggest significant improvement in the deployed energy while still 
maintaining similar velocity profile (within 1%). The deployed energy 
can be seen to be of mere 1.13 MJ or 72% reduction of energy as in 
Figure 9 (d) compared to Rule-based method Figure 9 (a). 

Comparing Optimal Profile and Search Algorithms 

Here the 4 throttle profiles are compared obtained by namely, Rule 
based, DG, GA-5 (i.e., till 5th generation), and DP. Performing 
percentile analysis on the optimal profile results in Figure 10. This 
follows with a few important deductions towards the actuation of 
throttle in a real-world scenario: 

• RB strategy follows a mostly bang-bang control with either 0% 
or 100% throttle and only around 15th percentile of throttle points 
are as part-throttle (in between the extremes). Also, the 50th 
percentile or most common operating point is 100% throttle.  

• DG algorithm dominantly forces part-throttle for around 60th 
percentile of operating points. This is seen as a very gradual 
throttle profile with an approximate 50/50 split between throttle 
points that are above and below 50% throttle.  

• GA-5 and DP follow approximately similar trajectory. The 50th 
percentile of operating point is around 98% throttle for both GA-
5 and DP. However, the DP one is observed to have the highest 
percentile among all optimization profiles to have the 0% and 
100% throttle. This is fundamentally true as DP appears to reduce 
the power consumption of MGU-K the most. 

• The throttle percentile increases exponentially for GA- 5 and DP 
for more than 70% throttle. This corresponds to high variations of 
throttle up till 100% throttle.  

From the discussion above, optimization results in improved savings 
for energy deployment by MGU-K. In general, gradual increment in 

(a) 

(b) 

(c) 

x 10 

x 10 

x 10 
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throttle from 0% to 100%, optimized maximum throttle value and 
varying throttle based on model optimization, collectively result in 
reduction of energy deployed by the battery. DP being a global search 
method results in the minimum energy consumption.  

 

 

 

 

Figure 9 Comparison of energy deployment results for different EMS.(a) Rule-
Based, (b) Discrete Grid , (c) Genetic Algorithm and (d) Dynamic 
Programming. All based on under 1% error to vehicle speed target. 

The summary of the search algorithms and their usefulness has been 
summarized as a merit matrix in Table 6. 

 

 

Figure 10 Comparison of percentile of throttle points for various control 
strategies. 

Table 6 Merit matrix of the three optimal search algorithms compared. *Higher 
value means better. 

Search 
Method 

Compu-
tational 
Effort* 

Energy 
Savings* 

Complexity 
of Model* 

Overall 
Score* 

Discrete Grid 5.0 8.0 4.0 17.0 

Genetic 
Algorithm 

3.0 8.5 4.0 15.5 

Dynamic 
Programming 

7.0 9.0 6.0 22.0 

 

Variations in Power-split Ratio 

In all the preceding discussion and development of model itself, the 
cost function was left unchanged. The weightage parameters ∝1 and 
∝2 were kept 0.95 and 0.05 before for all the calculations. It is apparent 
that more weightage to certain component (battery energy or fuel 
energy) will result in more consumption of either of the two 
components. For example, changing ∝1 and ∝2 to 0.5 each will mean 
equal weightage to reduction in energy of fuel and battery to achieve 
the same vehicle speed over the lap. In fact, the combination of the 
weightage parameters ∝1 and ∝2 decide the power-split ratio between 
the battery and engine (fuel power). A similar concept has been 
previously explored in literature to achieve optimal torque split based 
on cost function being optimized [27].  

Note that the power supplied by battery is limited to ±120 kW, hence 
there will be a threshold for the weightage parameter values above 
which model will no longer be able to optimize. Also note that here 
only DG-based results will be studied as the rest would not add more 
to the understanding of power-split in cost function. 

(a) 

(b) 

(c) 

(d) 
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The results from optimization are presented in Table 7. The results 
indicate that the weightage ratios can be set as a tunable parameter on 
the steering wheel or as pre-defined modes. This can enable driver to 
tune car to use more or less MGU-K or engine based on 
unpredictability on track, for instance to gain competitive advantage in 
a lap.  

Table 7 Comparison of different weightage parameter values to see relation 
with consumption values after optimization. 

∝𝟏 ∝𝟐 
Consumption Values 

Battery Energy 
(MJ/Lap) 

Fuel 
 (g/Lap) 

1 0 1.638 1531 

0.8 0.2 2.23 1462 

0.6 0.4 2.77 1366 

0.4 0.6 3.015 1350 

0.2 0.8 4 1283 

0 1 4 1285 

Implementing Optimal Throttle on Track 

The following methods could be used to implement optimal throttle on 
track. Firstly, Optimal throttle profile relates to battery energy 
consumption. Since battery energy and SOC are directly proportional, 
the optimal SOC profile can be implemented by PID controller on track 
to ensure vehicle battery depletion follows similar trajectory as the 
optimally computed one. For instances where non-optimal design 
would be feasible, like change in track conditions, the gain of PID can 
be tuned. This can enable driver to switch from optimal and non-
optimal in real-time. Secondly, an electronic circuitry which enables 
modification of bang-bang throttle input to a gradual one in real-time 
can be used. Last, yet not least, the aforementioned options can have 
an additional toggle on steering to control the power-split between 
MGU-K and engine. This can enable driver to respond to uncertainty 
on track and gain competitive advantage as needed. 

Conclusions 

In this study, an energy efficient control strategy was developed using 
energy management system. During this process, a mathematical 
model for F1 powertrain was developed and validated. Thereafter, 
energy management strategies including discrete-grid, genetic 
algorithm, and dynamic programming were implemented in a 
validated GT-Suite based F1 powertrain model. 

The use of energy management strategies led to a significant reduction 
in energy deployed by the battery compared to conventional rule-based 
strategy by implementing optimal throttle input in high-fidelity GT-
Suite based F1 powertrain simulator. All the optimal strategies were 
found to follow the target vehicle speed within 1% error. Among 
different strategies, dynamic programming was found to give the 
minimum consumption in energy while still being computationally 
efficient, while discrete-grid and genetic algorithm being directly 
implementable inside GT-Suite. The weightage factors in cost function 
were found to be directly responsible for power-split between engine 
and battery, and tunable by the driver based on track-side conditions.  

In terms of implementation of the optimal strategy by F1 teams, 
optimal throttle could be fed into controls using PID controller, while 
the relaxation of bang-bang type throttle could be added using 
electronic circuitry. Additionally, adjustable power-split between 
engine and motor could be implemented to balance the energy 
deployment based on trackside conditions. Since powertrain 
architecture would be more or less similar between different teams, 
similar approach could lead to faster model development using their 
data for vehicle, engine maps etc. The real-world implementation of 
strategy would obviously vary with inclusion of several other 
constraints like noise, the procedure highlighted in the work would 
regardless be implementable with better flexibility by added tunable 
constraints like power-split.  

Overall, the developed method and findings were found to contribute 
to achieving better performance on track whilst reducing energy 
consumption compared to non-optimal or rule-based control strategy.  
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Nomenclature 

𝐸̂  Normalized Energy 

𝑃̂  Normalized Power 

𝑚̇𝑓𝑢𝑒𝑙  Mass flow of Fuel 

𝑟 𝑓
 Radius of Flywheel 

𝑟 𝑘
 Radius of MGU-K Gear 

𝑟 𝑤
 Radius of Wheel 

𝜔̇  Angular Acceleration 

𝐶𝑑 Drag Coefficient 

𝐸𝑏𝑎𝑡𝑡  Energy of Battery 

𝑄𝐻𝑉  Heating Value of Fuel 

𝑉𝑜𝑐  Open Circuit Voltage 

𝑓𝑟 Rolling Resistance 

𝑖𝑘  MGU-K Gear Ratio 

𝑖𝜃  Gear Ratio 

𝑟  Radius 

𝜔  Angular Speed 

u Input Variable 

x State Variable 

𝐴 Frontal Area 

𝐼 Current 

𝐼 Inertia 

𝐾 Final Drive Ratio 

𝑃 Power 

𝑄 Charge of Battery 

𝑆𝑂𝐶 State of Charge 

𝑇 Torque  

𝑉 Voltage 

𝑔 Gravitational Acceleration 

𝑚 Mass 

𝑡 Time 

𝒗 Velocity 

𝜂 Efficiency 

𝜌 Density 

 


