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Abstract 

The use of artificial intelligence especially based on artificial neural networks (ANN) is now prevalent 

in many fields of data analysis and interpretation. There have been a number of papers published in the 

literature on the use of ANN for fatigue characterisation. Most of these have however been developed 

for rather focussed application with limited capability for fatigue life prediction for a broad scope of 

material and loading conditions. The authors recently presented a uniquely generalised ANN model that 

is capable of making fatigue life prediction for a broad range of material fatigue properties and loading 

spectral forms. The model was developed using simulated data albeit subject to conceivable constraints 

between possible materials properties and load forms. This paper presents a validation of the ANN 

model using a Society of Automotive Engineers (SAE) random fatigue loading experimental test data. 

The capabilities and potentials of the model are demonstrated by comparison with the SAE random load 

fatigue test results and with results obtained from other predictive methods. The performance of the 

ANN is highly encouraging as a general tool for random loading fatigue analysis.  
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1 Introduction 

ANN has been known to provide greater scope for non-linear generalisation and ability to deal with a 

high number of input variables than direct application of optimisation methods [1-4] . It has therefore 

seen application in various fields of analysis, prediction and classification.  Bhadeshia[5] indicated that 

fatigue is one of the most difficult mechanical properties to predict and suggested that the application 

of ANN could assist with the establishment of relationships between, material and loading variables 

especially for crack propagation life prediction. There have been a number of ANN models developed 

to solve different types of fatigue problems. Artymiak et al[6] demonstrated the use of ANN for the 

prediction of S – N curves based on a database of fatigue properties for steel alloys only.  Pujol and 

Pinto[4] used ANN to develop cumulative fatigue damage functions based on results of experimental 

tests carried out on a steel alloy.   

Iacoviello et al [7] introduced ANN as a tool for the analysis of the effect of stress ratio on fatigue crack 

propagation in a duplex steel. Marquardt and Zener [8] showed that ANN could be used to make better 

fatigue damage predictions by using fatigue life properties and the form of loading directly without 

using classical damage accumulation models. The work was based on a database of 825 experimental 

tests, more than half of which were carried out on ferrous materials. Kang et al [9] showed how ANN 

could be used to reduce computational time for fatigue damage calculation under multiaxial random 

loading for a component. Recently, Martinez and Ponce [10] showed that ANN could be used to predict 

the effect of temperature on fatigue damage during different sequences of loading of a component. In 

the realm of random loading fatigue, Kim et al [1] showed the possibility of using ANN to determine 

the stress range probability density function for two peak spectral load data type indicating that better 

performance is obtained compared to those developed by Wirsching-Light[11], Zhao-Baker[12], 

Benasciutti-Tovo[13], Tovo[14] and Dirlik[15]. As highlighted in the above review, the scope of the 

use of ANN in references [1,4,6,7]  is rather in terms of the possibilities of range of materials, load type 

and fatigue component conditions. 
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A recent publication by the authors [16] presented a novel generalised ANN frequency domain based 

method for random loading fatigue analysis. The model which cover a wide range of materials, load 

forms and component conditions. This was done by considering material fatigue properties that cover 

virtually all metallic alloy property range and all conceivable component conditions such as different 

sizes, surface conditions, stress concentration and realistic loading spectra load forms. The 

generalisation was achieved by investigating and identifying the input parameters which were necessary 

to make generalisation for fatigue damage prediction possible under the broad scope of conditions 

considered. A further developed generalised model [17] which built on the previous work in [16] 

included the effect of mean stress due to loading. 

The model developed by the authors [17] was tested previously only on simulated data. Every effort 

was of course made to ensure that the simulated data represented real data as much as possible.  This 

was achieved by ensuring during the data generation stage that various choices of metal alloy, tensile 

strength, fatigue strength coefficient and exponent values and the root mean square value of PSD shapes 

were all consistent so that the corresponding fatigue damage was realistic. For unseen data, the proposed 

model [17] was able to generate good correlation between predicted and simulated damage for the 

combination of material and signal options highlighted. The model [17] gave better agreement with the 

rainflow cycle counting time domain approach [15] than the existing frequency domain methods [15] 

[19]. The correlation and regression coefficients between the ANN [17] predictions and the time domain 

method [15] predictions were all over 0.997 for the logarithmic damage outputs. Although this was very 

encouraging, it is essential to demonstrate that the models will make good predictions when used on 

actual experimental data. This was the motivation for this work.  

The experimental data used in this work for validation was obtained from the SAE test programme 

which was reported in reference [20]. The data was a result of a fairly comprehensive random fatigue 

loading test programme. The programme considered three component load forms, three levels of 

loading and two material types. The load histories represented averagely negative, positive and zero 

mean stress conditions and were applied to the specimens under low, medium and high load levels. The 

published data is a filtered form of the experimental data which means that some effect could have been 
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lost. It nevertheless has provided basis for investigation by some authors [21]. It has served a similar 

purpose in this work; in this case, for validation of the ANN model.  The validation was carried out by 

using the SAE fatigue test data and material properties in the ANN model presented in [17] and 

comparing the predictions obtained with actual fatigue life obtained in the SAE [20] experimental test 

programme.  The results of the application of the model are also compared with those obtained using 

other existing non ANN predictive models such as Dirlik’s model [15] and Nieslony [15]. This was to 

provide a basis of comparison of the effectiveness of the model presented in [17]. 

2 The ANN model 

This section presents an outline of the bases and methods used for the ANN model being validated. The 

structure of the ANN used, the types of signals considered, the input-output parameters used, the 

numerical training, validation and testing of the model is highlighted in this section. 

2.1 ANN architecture 

Three layers of neuron as illustrated in Figure 1 which is generally accepted as sufficient to represent 

any non-linear function approximation [21] was used as the architecture of the ANN.  The number of 

input, hidden and output neurons used were 11, 25 and 1 respectively. The 11 input parameters are 

listed later in this work in section 2.3. The result from the single output neuron was the logarithmic 

value of the fatigue damage. The number of hidden layer neurons tested ranged from 10 to 80 and 25 

was found to be adequate. The recommendation to use about 20 times the total number of neurons [22] 

provided some guidance for the number of signals constructed for the ANN training and testing in the 

study. In order to study the effect of the density of the coverage of the sampling space, the numbers of 

signals constructed and tested ranged from 100 to 50,000.  

2.2 Signal generation 

The signals used to train the network were constructed from twelve forms of spectral shapes illustrated 

in Figure 2. The spectral forms included those used by Dirlik [15], Tovo 11] and Benasciutti and Tovo 
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[13]. In Figure 2, the frequency values q1, q2, fi, i = 1, 6; spectral amplitudes di, i=1, 3 and shape 

modification parameters d4 and d5 were chosen using the Latin Hypercube Sampling (LHS) [23] 

experimental design approach [24]. This facilitated effective coverage of the fatigue loading space. The 

range of the material properties, i.e. the ultimate tensile strength, Su, fatigue strength coefficient a and 

strength exponent b; and the limits of the spectral moment values mi, i = 0,1,2,4 considered in the work 

are highlighted in Table 1.   

As highlighted in the foregoing, different sample sizes ranging from 100 to 50000 were analysed in the 

course of the study.  The materials considered in this work were metallic alloys. Fatigue material 

properties Su, a and b were sampled in the range 200 – 2000 MPa, 1.17 Su to 13.61 Su and -0.0850 to -

0.333 respectively. The range for the strength accommodates most alloys known from copper to 

maraging steels; both the fatigue strength exponent b and strength coefficient a covered all typical or 

plausible values [17]. These a and b values are dependent on factors such as size, surface finish, type 

of loading and notch factor. For every combination of spectra parameters, the corresponding time 

domain signal for the selected spectrum was generated using equation (1) [25],  

     (1) 

Where, n is the sample number, N is the number of discretisation of the power spectral densities (PSD) 

Gx, with fkfk ∆−= )5.0( and nk ,φ  are mutually independent random phase angles distributed 

uniformly over the range 0 to 2π. The maximum frequency considered for the fatigue data in the study 

was 200 Hz. The sampling frequency used varied from the corresponding Nyquist frequency of 400 Hz 

to 6.40 kHz. The higher sampling frequencies were considered in the light of recent findings [26]. Up 

to 5000 discretisation of the frequency range and 32000 time steps were considered. In order to 

introduce a mean stress effect, the signal was then randomly shifted along the stress ordinate so that in 

general 𝑆𝑆𝑚𝑚   ≠   0 [17].  The final x(t) obtained was then scaled so that the highest peak or deepest 

valley lied within 5 to 83% of the ultimate tensile strength value. The mean stress values incorporated 

ranged from -0.6 to 0.6Su. This scaling reduced the possibility of any of the time data leading to 

extremely low values of oscillation that would not be representative of a fatigue phenomenon. This 
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process provided a pool of input and output data for the training of the ANN as described in section 2.3. 

The signals were analysed using ANN structures described in the foregoing as well as using an in-house 

rainflow cycle counting routine for fatigue damage predictions. For each signal and corresponding 

material fatigue properties, the corresponding fatigue damage intensity (i.e. damage per second) for was 

determined using the rainflow cycle counting and Miner’s cumulative damage rule as the target result 

values.  

2.3 ANN Input - output 

The number of inputs used for the neural network was 11 in total. This included fatigue material 

properties, a and b and the ultimate tensile strength, Su ; four spectral moments 𝑚𝑚𝑖𝑖, i = 0,1,2,4; the 

Goodman parameter  𝛼𝛼𝑚𝑚  that accounts for the mean stress effect in a global sense; a mean 

complementary parameter  𝛼𝛼𝑐𝑐 = 1 −  𝛼𝛼𝑚𝑚; and two crest parameters 𝛾𝛾𝑝𝑝 and 𝛾𝛾𝑛𝑛. The crest parameters 

were respectively equal to the ratios of maximum and minimum stress in the signal to the ultimate 

tensile strength of the material. Further description of these parameters can be found in reference [17]. 

The logarithmic value of the damage E(D) was used as the output target value. This helped to reduce 

the impact of the spread of the damage values which was broad by several orders.  

2.4 Training, validation and testing 

The training process used in the work was based on the feedforward – backpropagation multilayer 

perceptron (MLP) method. The training proceeds by feeding known inputs into the network and 

obtaining its corresponding predictions for the output.  In this process, each internal and output neuron 

received a weighted sum of the input from the preceding neurons. The output from each neuron was 

transformed by an activation function before being used as an input for the next layer of neurons. The 

sigmoid function which is numerically desirable in the perceptron model because it ensures that all 

values passing to the next neuron lie in a range such as  [0,1] was used between the input and hiding 

layer. The output layer used a linear transfer function, to ensure that erroneous outputs were easy to 

identify rather than being tempered by the sigmoid transfer function effect. 
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The output from an ANN does not in general match the known output corresponding to the inputs used 

from the data set, at least in the first feedforward through process. The mis-match error is a function of 

the weights associated with the neurons. The aim of the training is to determine the weights associated 

with the neurons that minimise the error. The minimisation process was carried out iteratively in many 

stages. Various error reduction backpropagation algorithms have been devised for the training of 

networks. One of the methods used in this work was based on the +Rprop algorithm which is known to 

have excellent convergence characteristics [27]. The parameters required for the optimal convergence 

of the training in this approach has been identified for most problems and are not dependent on trial and 

error [27]. For research flexibility purposes, the implementation of the ANN in this work was also 

carried out using a set of in house routines developed in a MATLAB [28] environment. The Levenberg 

Marquardt error backpropagation and weight correction method in MATLAB ANN tool box was used. 

The use of MATLAB provided faster processing of data and the prediction was also equally good as in 

the in-house programs.  

After experimenting with various proportions, the percentages of data finally used for training, 

validation and testing were 70, 15 and 15% respectively. The training process was based on 70% of the 

total data generated. A validation set which was 15% of the total number of signals, was used to 

independently check the performance of the ANN weights obtained in the training process. This was to 

ensure that the ANN model had not simply over fitted or memorised the relationship between the 

training data and the output but actually developed the capability to make a prediction for an unseen set 

of data. The validation set was used to detect when the tendency for overfitting was about to set in and 

the training process was stopped at this stage. The final 15% data set was used to provide an independent 

test of the ANN model. The data used in this process was different from the data used for the training 

and validation steps. It should be noted that the validation discussed here is part of the common 

terminology used for ANN model development in the literature. It is not validation using experimental 

test data which is the main objective of this paper. It should furthermore be stated that in some ANN 

development cases however, all the data used for training, validation and testing could be completely 
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or partly experimental. No experimental data was used in the development of the ANN model presented 

in [17].   

3 Experimental data 

The validation in this work was based on experimental data obtained by the Society of Automotive 

Engineers [20]. The data came out of an initiative of the SAE Fatigue Design and Evaluation Committee 

to test component under real load histories and to compare the experimental results to those of 

cumulative damage fatigue life estimates procedures. While it was not the intention of the committee 

to produce standard load histories or spectral for components, the load histories selected were typical 

for ground vehicle industry and admittedly limited. The aim of the program was to provide a database 

that can be used generally to evaluate methods of fatigue life prediction methods.   

The tests consisted of two different notched hot rolled steel specimens made of  Man-Ten and RQC-

100 steel alloy materials. The material properties of Man-Ten and RQC-100 are listed in Table 2. The 

time loading histories consist of (i) that of a mounting bracket with 5936 reversals, predominantly a 

zero mean signal and represents a narrow-band signal; (ii) a vibration loading history of a transmission 

torque of a tractor with 1705 reversals, a positive mean with radical changes in the mean load; and (iii) 

a time load history of an automobile suspension component with 2056 reversals having highly 

compressive mean stress.  The total number of reversals in each spectrum was considered as one block 

of loading and the fatigue life in the study was the number of blocks loading till of the component 

failure occurred. Figure 2 shows the three time histories developed by SAE, which were used in this 

study.  

3.1 Geometry and description of the fatigue test experiment 

Drawing on six months of discussions, the SAE Fatigue and Design Evaluation committee came up 

with a test specimen, which was relatively stiff and had a notch for consideration of stress concentration 

effects. The specimen also had negligible critical dimensions with all surfaces in the as received 

condition and permitted the study of both crack initiation and propagation [20]. The geometry of the 
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SAE notched specimen is shown in Figure 3. The experiments were conducted by applying the load on 

the specimen through a monoball fixture which facilitated compression and tension loading, Figure 4 

shows the experimental assembly of the notched specimens. 

3.2 Fatigue strength coefficients and exponents 

The S – N curves of materials were generally determined using small plane specimens with excellent 

surface condition and without geometric factors that could cause stress concentration. The properties 

obtained in this way are usually modified in order to be applicable to components with real features 

such as fillets, notches and holes that cause stress concentration. Three nominal stress methods 

considered by Dirlik [15] to account for the effect of stress concentration for the SAE tests specimens 

were applied in this study. The modification of the plain specimen fatigue properties a and b to account 

for the stress concentration effect are presented in Tables 3 and 4. The methods were described as 

Nominal Stress Methods 1, 2 and 3 and are henceforth referred to in this work  as NS-1, NS-2 and NS-

3 methods. Table 4 contains the modified S – N curve properties a’ and b’ in terms of the stress 

concentration factor Kt for the test specimens and the original fatigue properties a and b given in Table 

3.  

4 FEA Fatigue analysis 

4.1 Fatigue damage analysis using nominal fatigue life parameters 

The SAE Notched specimen was modelled in SolidWorks software package [29] and it was exported 

to ANSYS Workbench [30] environment for analysis. Material properties of both Man-Ten and RQC-

100 were put in the ANSYS Workbench material library. The model applied load using bearing contact 

option for the three holes on the component. The directions of the force between the pivot point of the 

mono-ball joint and the three holes on the component were specified by the direction from the centre of 

the holes to the centre of the pivot. This loading option methods are available in ANSYS and 

SolidWorks packages. The same loading method was applied at the two ends of the compact tension 

component. Rigid body motion under this loading condition was avoided by selecting the ‘ inertia relief’ 
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option. This means that no displacement boundary conditions were required in order to allow the solver 

to complete the analysis. The SAE fatigue test used three load levels 71.2, 35.6 and 15.6 KN for bracket 

and transmission load histories and 71.2, 40.0 and 26.7 KN for suspension load histories respectively.  

These load sets were used in the validation studies. 

As highlighted in Section 3.2, the analysis carried out was based on an S-N approach with the stress 

concentration accounted for by the modification of the fatigue properties. This is the usual approach for 

the application of the S-N curve and the empirical procedures behind the method. The stress 

concentration factor of 3.05, given by SAE was based on a nominal stress calculated by assuming that 

the test specimen was a simple beam subjected to an offset load causing a combination of axial and 

bending stress.  In order to avoid double accounting for the stress concentration effect, the nominal 

loads applied in the FEA analysis were based on the loading forces divided by the stress concentration 

factor of 3.05.  The element used in the ANSYS analysis by were a mixture of solid tetrahedral and 

hexahedral type elements of the quadratic order of displacement approximation. Focussed element mesh 

was used around the notch while free mesh was used elsewhere. Mesh effect test analysis was carried 

out to ensure that the stress at the root of the notch converged.  The element dimension around the notch 

was approximately 0.5 mm for the converged results around the notch. The elements remote to this 

region were about 5 mm side length. The converged value of the stress at the root of the notch was 

34.6MPa / KN.  The data points in the three SAE time histories were given in a normalised form to lie 

between -1 and 1. The actual stress history in any case was obtained by multiplying the normalised SAE 

time history by the maximum stress obtained at the root of the notch from the FEA linear elastic static 

analysis. The time scale was represented by a nominal unit of 1 s, corresponding to 1 Hz. 

5 Results 

In this section, the procedures developed and used in the work were first validated against published 

data and against the results obtained using the ANSYS FE commercial package. This is followed by the 

assessment of the performance of the ANN model obtained from different training processes. The 

performance of the ANN model with various options are then compared with the SAE experimental 
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fatigue results as well as with the results of predictions making us of other methods such as Dirlik 

frequency domain model [15] and Nieslony’s mean stress effect modification method [19]. This latter 

approach is henceforth referred to as Nieslony’s method. 

5.1 Verification of time domain procedures   

It is helpful to verify the time domain rainflow cycle counting and Miner’s damage accumulation 

calculation procedures developed and used in this work. This is essential because the time domain 

predicted damage values were used as the target value for the training of the ANN. The problems 

considered here for the verification were based on the SAE test specimen illustrated in Figures 3 and 4. 

The specimens were subjected to the three test histories shown in Figure 2 and three load levels of 

between 15.60 kN and 71.20 kN. The two materials, MAN-TEN and RQC – 100 used by the SAE were 

considered. The fatigue material properties used are as given in Tables 3 and 4.  This problem was 

solved by Dirlik [15] using the direct time domain rainflow cycle counting and Miner’s damage 

accumulation method. The same problem was analysed herein using FE Fatigue in ANSYS. Figure 5(a) 

shows the von Mises stress distribution obtained for the RQC-100 material and bracket stress history 

using ANSYS and also the corresponding fatigue results based on the time domain rainflow cycle 

counting and Miner’s rule for a load of 71.2 kN. The life obtained in blocks is plotted in Fig 5(b). 

Similarly, results for the transmission stress history under the same conditions as in Figure 5 are shown 

in Figure 6. The time domain rainflow cycle counting and Miner’s rule method results obtained by (i)  

Dirlik [15] for the loading condition and those obtained in the present work (ii) using the ANSYS FE 

Fatigue [30] and (iii) time domain routines developed in Matlab in this work are compared in Table 5. 

The results obtained using the different life – stress, NS-1, NS-2 and NS-3 formulas given in Table 3 

vary but are all reasonably close at least in the context of scatter of fatigue life results.      

As can be seen in Table 5, the results from the rainflow cycle counting fatigue analysis carried out in 

this work agrees closely with those obtained using ANSYS. The same nominal stress analysis methods 

and material properties were of course used in both cases. The minor discrepancies between the results 

could be due to the differences in the intermediate steps used in the interpretation of the rainflow cycle 
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counting algorithm. The results of the rainflow cycle counting analysis carried out herein and those of 

the ANSYS package agree generally well with those previously obtained by Dirlik [15]. The areas of 

differences are primarily where low loads were applied. As can be seen in Table 5, the results of the 

three nominal methods NS-1,2,3 are generally conservative relative to the experimental results. The 

NS-2 method is the least conservative with respect to the SAE [20] experimental results than the other 

two methods. For efficient design considerations, the fatigue life parameters, based on NS – 2, which 

are given in Table 3 were used for the fatigue life prediction in all the results following.   

The agreement of the results obtained from the developments in this work with those obtained by Dirlik 

[4] previously and those obtained from ANSYS provided basis for confidence in the procedures 

developed for the analysis carried out.  

5.2 Effect of the number of samples used in training ANN 

As indicated in reference [17], the weights obtained by training the ANN with over 5000 signal samples 

gave more consistent results when tested against un-seen signals than for lower number of signals. Up 

to 50,000 signals were used in the reference. Preliminary tests carried out on validation against 

experimental data in this work showed that weights obtained from training with 10,000 signals or more 

gave consistent agreement with experimental results. In view of this observation, five set of ANN 

weights were obtained from signal sizes of 10,000 to 50000 in increments of 10,000. ANN procedures 

include statistical operations such as the initial randomisation of the starting weights. This means that 

different weights were obtained each time the training process was carried out. This therefore meant 

that different results were obtained when weights from different training processes were used for 

prediction. The results obtained from using different weights were in most cases reasonably close. There 

were nevertheless instances where the differences were significant. The committee of machines 

approach [31] which involves statistical averaging is a method of avoiding the effect of outlier 

predictions that can occur from ANN predictions.  In this work two committee of machines averaging 

methods were used. In the first case, ANNr, an average of the logarithmic damage values from the five 

weight sets were taken before getting the antilog to obtain the actual damage value. In the second case, 
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ANNs, a simple average of the damage obtained from the five weight sets was taken to be representative. 

The predictions obtained using the five sets of weights and those obtained using the committee of 

machines are summarised in Table 6. All SAE data for the two materials, three load levels and three 

mean stress levels were considered.  

It can be seen in Table 6 that the ANNr predictions generally agreed better with the experimental results 

than the ANNs method. ANNs results compared well with experimental results especially for the high 

and medium loads but less so for the low loads except for the bracket spectrum. This is partly due to 

the fact that low loads can give rise to high number of cycles to failure. It can be seen that the results 

are more sensitive to outlier predictions from the sets using the ANNs predictions.  The ANNr procedure 

which involves taking the average of the log of damage and then converting to actual value showed less 

sensitivity to extreme values from the predictions of individual ANN predictions. The ANNr averaging 

approach was therefore adopted in subsequent analysis as basis for comparison of predictions with 

experimental results. 

5.3 Comparison of results of ANN with other methods and SAE experimental results 

The aim of this section is finally to compare the results obtained from ANNr prediction with the SAE 

experimental fatigue test results for three different loads levels, three signal types and two materials. 

This gives a total of 18 result cases. In these 18 cases however only in 14 cases were there two or three 

repeat tests results available. The results obtained in this work are also compared with those computed 

using rainflow cycle counting and Miner’s rule and use of Dirlik [15] frequency domain and Nieslony’s 

method [19].   

The results from the different fatigue prediction methods are presented in Table 7.  The table gives 

numerical values that allow comparison of the predictions against the full experimental results from 

SAE. For ease of visualisation of trends, it was found helpful to plot the results from ANNr against 

those from other methods and SAE experimental results in Figures 7 and 8. The error bar in Figures 7 

and 8 represents lower and upper one standard deviation from the mean of the SAE experimental results 

[20]. As can be seen in Table 7, this range covers the range of the experimental results presented very 
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well. As can be seen from the table and especially the figures, the results from Dirlik’s method [15] 

were generally very conservative and the results of Nieslony’s method [19] were generally not 

consistent with experimental results.  

There are 18 SAE experimental result cases from 3 component types, 3 load levels and two material 

types. There are 16 cases with at least 2 or 3 repeat test results. The performance of ANNr is compared 

for these 16 cases with those of Dirlik [15], Nieslony [19] and the rainflow counting methods [15] 

methods in terms of how many predictions were within the range of experimental results, under 

predicted or over predicted the number of blocks to failure.  As can be seen in Table 8, the ANNr results 

fell within the experimental range more than for the Dirlik and Nieslony predictions. The percentage of 

the results within the range were 37.50 and 18.75 and 18.75% respectively. The rainflow counting 

method predictions were within the range of experimental results for 43.75% of the cases but over 

predicted in 37.50 % of the experimental test cases with repeat results. The ANNr results over predicted 

in 12.50% of the cases compared to 18.75% for Nieslony’s method.  Dirlik’s method under predicted 

in 81.25% compared to 50% and 18.75% respectively for the ANNr and rainflow counting methods. 

The work in references [16,17] shows that Dirlik’s prediction could also over predict in some cases. 

This observation is also supported by the work of Quigley and Lee [32] who reported up to 30% over 

prediction of fatigue life. These results show that further wide experimental validation testing is 

required for all the methods in order to establish appropriate factor of safety that will lead to efficient 

design rather than excessively over conservative.  

6 Discussion 

As can be seen in Figures 7 and 8, the ANNr results correlate well with the experimental results and 

generally lower than the experimental results. The results also show that ANN has given closer 

prediction to rainflow counting and experimental results than other existing frequency domain methods.  

It was surprising that the time domain rainflow cycle counting method using Miner’s rule to determine 

damage showed some undesirable features. It over predicted life in 37.50 % of the experimental cases 



Page 15 of 18 
 

and under predicted in 18.75 % of the cases with repeat results.  This observation was surprising because 

the rainflow cycle counting method is the most acclaimed time domain method for fatigue prediction 

[33].  The implication of this is that more caution is required in the use of the method alone for design 

because of lack of certainty with regards to the conservativeness of the prediction results in comparison 

to likely experimental performance. Dirlik’s prediction were consistently  

As in Dirlik’s results [15], the choice of the method used to account for stress concentration effect in 

life stress calculation leads to variabilities in predictions. No single method among the three cases NS-

1, NS-2 and NS-3 gave consistently closer result to the experiment for all signal types, load levels and 

material types. In this study as in Dirlik’s [15], the choice of a helpful approach may depend on 

experience of actual component failure tests. The choice may then be useful for subsequent analysis 

and design.  

The ANN results as can be seen in section 5.3 agreed more generally with experimental results than 

those from frequency domain based methods such as Dirlik and Nieslony methods. The agreement of 

ANN in this work with experimental results for two materials, three component types and three load 

levels has provided some validation for the ANN model.  

It should be noted that the closeness between the ANNr results and time domain rainflow counting 

results was lower than anticipated. The present thought about this is that the SAE data is a filtered data 

[20] which might have had some of the underlining frequency content removed. Although present 

results are encouraging, further elaborate experimental work will need to be carried out to demonstrate 

the full potential of the ANN approach.   

7 Conclusion 

The paper presents the results of validation studies carried to verify the likely performance of ANN 

analysis procedures developed by the authors. The results of the ANN prediction agreed reasonably 

well and consistently with experimental SAE results under various materials, component type and load 

levels which were considered.  The predictions of fatigue life by ANN model were generally lower 



Page 16 of 18 
 

compared to experimental results. Although rainflow cycle counting results appear to be closer to 

experimental results in magnitude, the performance however showed both conservative and non-

conservative predictions. The ANN results generally agreed better with the rainflow and experimental 

results than the Dirlik and Nieslony’s prediction methods. It is remarkable that the ANN model results 

agree well with experimental testing results even though the spectral types do not explicitly match the 

spectral patterns used for the ANN model development. The results of the validation show that the ANN 

model along with other methods is a viable life prediction method for consideration for random fatigue 

loading problems. Further testing needs to be carried out for all the prediction methods in order to 

establish choice of factors of safety that will lead to efficient fatigue design of components. This work 

has shed further light on likely performance of ANN and those of existing methods by using the SAE 

random loading fatigue results.  
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