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Abstract—Metrics play a crucial role in evaluating the perfor-
mance of machine learning (ML) models. Metrics for quantifying
the extent of errors, in particular, have been intensively studied
and widely used but only so far for regression models. This paper
focuses instead on classifier models. A new approach is proposed
in which datamorphic exploratory testing is used to discover the
boundary values between classes and the distance of misclassified
instances from that boundary is used to quantify the errors that
the model makes. Empirical experiments and case studies are
reported that validate and evaluate the proposed metrics.

Index Terms—Machine learning, Classifier, Performance met-
rics, Extent of errors, Datamorphic testing, Exploratory testing

I. INTRODUCTION

Assessing the quality of machine learning (ML) models
is increasingly important due to the rapid growth in their
use within computer applications [1], [2]. Such models are
intrinsically imperfect due to the nature of inductive inference
and the inherent uncertainty associated with ML algorithms.
Quality assurance requires testing [3]–[8] to evaluate the
model’s performance but finding robust measures is still a
formidable challenge despite great efforts in the AI research
community over several decades.

Existing metrics for classification ML models are of three
types:
• Statistical metrics, including accuracy, precision, recall,

F-score, etc; these are the most commonly used.
• Information theory based metrics, such as average and

relative information scores [9].
• Graph-based metrics, such as the areas under the receiver

operating characteristic (ROC) curves [10], the precision-
recall curves, and cost curves, etc. [11].

These metrics measure the frequency of errors, i.e. mis-
classifications, but not their extents. That is what this paper
addresses. Regression model metrics, in contrast, do concen-
trate on the extent of errors in predictions. One such metric
is the sum of squares of the differences between the expected
and actual output. Many more have been proposed, studied and
used in practice; see e.g. [12] for a recent review. Extending
this approach to classifier models is difficult however. Data
may be misclassified as one class α rather than another class
β, for example, but a difference cannot be calculated because
α and β are not numbers.

Some ML algorithms solve classification problems using
regression models, such as artificial neural networks. Such a
model produces a vector 〈r1, · · · , rk〉 of real numbers between
0 and 1 where ri represents the likelihood of the input data
belongs to class li, and then selects the class lc as the
classification if rc is the largest likelihood. The loss of the
classification on the input data is defined as 1 − rc. A loss
function, such as root of mean squares of errors (RMSE), on
a set of test cases can be defined based on the losses on each
individual test case. Many loss functions have been studied in
the research on ML algorithms and proven useful for training
ML models. However, loss does not correctly represent the
notion of error extent in the context of classification problems.
In particular, it is rare that rc = 1 even if the classification is
correct. Thus, even for correctly classify data, the loss is still
greater than 0, while the extent of error should be 0. Moreover,
a data of small loss could be seriously misclassified, while
data of big loss could be correctly classified. As far as we
know, all loss functions based on the notion of loss in the
literature, including RMSE and many others, such as hinge,
Huber, log, logistic, Lipschitz, ramp, surrogate, etc. [7], do not
represent the extents of errors. It is worth noting that the zero-
one loss function and all other loss functions based on it are
essentially the statistical performance metrics. Thus, they are
not metrics for measuring the extent of errors. Yet, for some
ML algorithms such as decision trees, a classifier model does
not produce the loss of classifications at all.

The notion of error extent is still important for model
evaluation as reflected in terminology such as “near misses”
and “serious errors”. Suitable metrics are needed, there are
none in the literature and formulating them remains an open
problem. Our approach is to calculate the boundary between
classes using datamorphic exploratory testing [13]–[15]. The
classifier model is then tested on a set of labelled test cases
and the distances of misclassified test cases from the nearest
boundary point can then be used to estimate the extent of
errors.

The paper is organised as follows. Section II is a brief
introduction to the basic notions and notations. Section III
formally defines the proposed metrics. Section IV reports an
empirical validation and evaluation of the proposed metrics.
Section V concludes the paper with a discussion of related
works and future works.



II. PRELIMINARIES

A. Classifiers

A classifier C is a mapping on a given data space D 6= ∅
to a set of classes {l1, · · · , lk}, where k ≥ 2. When k = 2, C
is a binary classifier; otherwise, it is a multi-class classifier.

Let Ci = {x ∈ D|C(x) = li}. We assume that the classifier
C is complete and disjoint. That is, D =

⋃k
i=1 Ci and Ci ∩

Cj = ∅ for all i 6= j in {1, · · · , k}.
We also assume that there is a distance function ‖·, ·‖ :

D × D → R+ defined on the data space D, where R+ =
{x ∈ R | x ≥ 0} is the set of non-negative real numbers.
Therefore, 〈D, ‖·, ·‖〉 forms a metric space. In other words,
we have:
• ∀x ∈ D.(‖x, x‖ = 0);
• ∀x, y ∈ D.(‖x, y‖ ≥ 0);
• ∀x, y ∈ D.(‖x, y‖ = ‖y, x‖);
• ∀x, y, z ∈ D.(‖x, y‖+ ‖y, z‖ ≥ ‖x, z‖).
Distance functions are widely used by ML algorithms to

build classifier models. For example, they are used in cluster-
ing algorithms to measure the similarities between data points
[6]–[8]. Here, we use a distance function to define the notion
of error extent.

In the remainder of the paper, we use C to notate a
conceptual classifier and PC for an implementation of C, such
as a model built through ML. For the sake of simplicity, we
will omit the subscript when there is no risk of confusion.

B. Pareto Front And Borders Between Classes

We will further assume that in both the conceptual and
implemented models C and PC , the classes are separated by
borders. The extent of error can then be defined by how far
away an error is from the correct border, at least in theory.
However, the correct borders are usually either unknown,
even impossible to determine. The implemented borders can,
however, be computed with exploratory testing [13], [15] and
approximately represented as a Pareto front, a concept first
introduced in [14] and defined as follows.

Definition 1: (Pareto Front of Classification)
Let P : D → {l1, · · · , lk}, be a classifier, ‖·, ·‖ : D×D →

R+ be a distance metric defined on the input space D, and
δ > 0 be any given real number. A set {〈ai, bi〉 | ai, bi ∈
D, i = 1, · · · , n} of data pairs is a Pareto front between the
classes lu and lv (u 6= v) according to P with respect to
‖·, ·‖ and δ, denoted by Φu,v , if for all i = 1, · · · , n, P (ai) =
lu ∧ P (bi) = lv and ‖ai, bi‖ ≤ δ. We also write

ΦP =
⋃

u 6=v∈{1,··· ,k}

Φu,v.

ut
Fig. 1(a) shows an example of a classifier that classifies

the data space into three classes: red, blue and black; and (b)
depicts a Pareto front generated by datamorphic exploratory
testing. Each dot in Fig. 1(b) is a pair of points in the
Pareto front; the points in a pair are too close together to
be visually distinguished. The distance between the pair of

points represents a tolerable error margin δ that a Pareto front
is from the actual border.

(a) Classes defined by the Classifier

 

 

 

Start making seed test cases. 

-- Making seed test cases by using RandomValue100 

-- 100 test cases generated. 

Finished making seed test cases. 

== Total number of test cases in test pool: 100 

Start making seed test cases. 

-- Making seed test cases by using RandomValue100 

-- 100 test cases generated. 

Finished making seed test cases. 

== Total number of test cases in test pool: 200 

Start making seed test cases. 

-- Making seed test cases by using RandomValue100 

(b) Pareto Front Between The Classes

Fig. 1. Example of Pareto Front of Classifier

Empirical studies reported in [14], [15] demonstrated that
Pareto fronts to represent borders between classes can be
obtained efficient with any reasonable tolerable error margin
δ > 0.

C. Process of Testing and Measuring Extents of Errors

To measure the error extent in a classifier ML model, we re-
quire a labelled dataset T as the test cases, where each element
x ∈ T is associated with a class label L(x) = {l1, · · · , lk} that
x should belong to. The proposed process for model evaluation
has the following three steps, as illustrated in Fig. 2.
• test the classifier on a labelled dataset, so that the test

cases can be marked as true positive, false positive, true
negative and false negative as usual.

• apply exploratory datamorphic testing to find a Pareto
front, marked here as pairs of red and green rings.

• use the Pareto front and error test cases (i.e. the false
positive and false negative test cases) to estimate the
distance between the conceptually correct border (marked
in blue) and the implemented border of the classifiers.

True negative tests

False positive tests

True positive tests

True negative tests

False positive tests

True positive tests

Pareto 
front

True negative tests

False positive tests

True positive tests
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front
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Fig. 2. Illustration of the Proposed Approach

Note that the conceptually correct border used by this
approach is not usually available for ML applications. The
distance between the two borders gives a measure of the extent
of errors and in the next section we will propose a set of
metrics based on it but first we will introduce some notations.



D. Notations

A labelled test set T can be partitioned according to the
labels associated to the test cases and also according to
the classifier P . For partitioning according to the labels,
we write Ti = {x ∈ T |L(x) = li}; thus we have that
T =

⋃k
i=1 Ti. We also write ti to denote |Ti|. Thus, we have

that
∑k

i=1 ti = |T |. For partitioning according to a classifier
P , we write that TP

i = {x ∈ T |P (x) = li}; thus we have
that T =

⋃k
i=1 T

P
i . We also write pi to denote |TP

i |. Thus,
we have that

∑k
i=1 pi = |T |.

For all i, j = 1, · · · , k, we write Ti,j to denote the subset
of test cases in T labelled as li but classified as lj by model
P . That is,

Ti,j = {x ∈ T |L(x) = li ∧ P (x) = lj}. (1)

Note that, for all x ∈ Ti,i, the classifier P ’s output on x
is correct with respect to its label in T . When i 6= j, for all
x ∈ Ti,j , the classifier P produces an incorrect classification
of x w.r.t. labels in T . Such an error will be called an i/j
error.

In particular, for binary classifiers that have labels p for
positive and n for negative, the p/n errors are false negative
errors. The n/p errors are false positive errors. The test cases
in the set Tp,p and Tn,n are true positive, and true negative
test cases, respectively.

Let Φi,j be a Pareto front of classifier P between classes li
and lj . For all i, j ∈ {1, · · · , k} and i 6= j, we define Ψi/j as
follows.

Ψi/j = {x| 〈x, y〉 ∈ Φi,j} (2)
= {y| 〈x, y〉 ∈ Φj,i} (3)

Informally, Ψi/j contains all data points in the Pareto front
Φi,j that are classified as in class li.

For i ∈ {1, · · · , k}, we also define Ψi/∗ as follows.

Ψi/∗ = {x| 〈x, y〉 ∈ Φ ∧ P (x) = li} (4)
∪ {y| 〈x, y〉 ∈ Φ ∧ P (y) = li} (5)

Informally, Ψi/∗ denotes the set of data points that belong
to class li and in Pareto front ΦP on the borders surrounding
class li.

By the definitions of Ψi/j and Ψi/∗, we have that for all
classes li,

Ψi/∗ =
⋃
j 6=i

Ψi/j . (6)

The distance from a given data point a to a set X of data
points, written ‖a,X‖, is defined as the minimal distance to
the elements of X . Formally,

‖a,X‖ = Minx∈X‖a, x‖. (7)

The distance from an error point a ∈ Ti,j , i 6= j, to a Pareto
front Φ, written ‖a,Φ‖, is defined as follows.

‖a,Φ‖ = ‖a,Ψi/j‖ (8)

For a ∈ Ti,j , we write W (a,Φ) to denote the subset of Ψi/j

whose elements are nearest to a. That is, W (a,Φ) contains
points x whose the distance to a equals ‖a,Φi,j‖. Formally,
W is defined as follows.

W (a,Φ) = {x ∈ Ψi/j |‖a, x‖ = ‖a,Ψi/j‖} (9)

The W function is extended to be on a set of error points
as follows.

W (Ti,j ,Φ) =
⋃

x∈Ti,j

W (x,Φ) (10)

We write WΦ
i,j to denote W (Ti,j ,Φ) for the sake of sim-

plicity.

E. Assumptions and Hypotheses

The proposed metrics rely on an intuition, usually valid but
not always, that we formalise as an admissibility condition
below:

Definition 2: (Admissibility Condition) Let C and P be
classifiers on data space D where C is the conceptual model
and P is an implementation of C. We say that P is admissible
with respect to C, if for all x ∈ D, x is an error of i/j type
with respect to C implies that the nearest point y to x on the
border between classes i and j as defined by P is also an i/j
error point. ut

In 2(c), the red arrow connects a false positive test case
to its the nearest point in the Pareto front. The admissibility
condition states that any point along that arrow should also be
a false positive.

When models C and P satisfy the admissible condition,
we can infer that the points in WΦ

i,j should also be errors.
Moreover, they are the worst cases of errors that the model P
could make as illustrated in Fig. 2(c). Therefore, WΦ

i,j is the
set of inferred worst errors of type i/j on Pareto front Φ.

The admissibility condition for P cannot be verified without
direct access to the conceptual classifier C, a requirement
that will not be met as the purpose of machine learning is to
formulate P as an approximation to an unknown C. However,
we believe the admissibility condition will hold in the majority
of cases, based on two hypotheses.

The first hypothesis concerns the continuity of the classifi-
cation models:

Definition 3: (Continuity Hypothesis) The continuity hy-
pothesis is that the classes of the conceptual classifier C and
its ML implementation model P are both formed from unions
of a finite number of continuous/consecutive sub-domains of
the data space. ut

This hypothesis implies that the error points of the classifier
P are in continuous (or consecutive) blocks (i.e. sub-domains)
of the input data space. Typically, this requires both models
C and P to have smooth curves or planes as borders between
classes. Whether this requirement is satisfied or not depends
heavily on the complexity of the application problem, i.e. the
conceptual model.

The second hypothesis concerns the competency of the data
scientist. This is needed for ML model P to be of high quality.



In other words, it is not too far away from the conceptual
classifier C in the sense that systematic errors only occur
around the borders between classes and the test dataset T does
not contain any label noise with respect to C.

Definition 4: (Competent Data Scientist Hypothesis)
The competent data scientist hypothesis assumes that the

ML model P and the test set T are well developed by
competent data scientists. ut

Note that ML models are intrinsically imperfect due to the
nature of inductive inference so they will have errors even if
the developers make no mistakes. In this sense, it is similar
to the competent programmer hypothesis that underlies the
mutation testing method, which similarly does not require the
program under test to be perfect. Imperfection in ML models
also arises from the uncertainty associated with ML algorithms
and the development and operation processes.

Here, we distinguish two types of mistakes that a data
scientist may make in the development of an ML model:
systematic errors, and random errors. Systematic errors are
methodological and technical errors made when developing
the classifier. For example, the wrong ML algorithm may be
chosen with the wrong parameters and the wrong methods may
be used when preparing and processing the datasets. Mistakes
of this sort can result in the ML model being significantly dif-
ferent from the conceptual model but competent data scientists
would not make them.

Random errors, in contrast, are neither methodological nor
technical; for example, assigning a wrong label to a test case
in the test data set. This causes label noise that can and should
be dealt with by noise detection and removal techniques; see
e.g. [8], [16].

The continuity hypothesis combined with the competent
data scientist hypothesis together imply that the errors in an
ML model will be continuous regions on the borders between
classes. Therefore, they imply that the admissible condition is
true.

In Section IV, we will conduct an experiment to evaluate
how likely it is that the admissible conditions will hold.

III. PROPOSED METRICS

In this section, we formally define the metrics for measuring
error extent first on individual errors, then on classes and then
on the whole ML model.

A. Lower Bound Estimations of Error Extent

Consider an i/j error detected by testing a model P on a
test case x. The distance from x to the segment Φi,j of Pareto
front Φ on the border between classes i and j gives a lower
bound between the correct border and the implemented border
as illustrated in Fig. 2(c) where the distance is shown by the
red arrow. This test case provides evidence that the extent
of errors that the model may produce is at least ‖x,Φi,j‖.
When there are many error points detected by the test, we
can use the maximal value of the distances and the average of
the distances to give different estimation of the error extent.

Thus, we have the following two metrics ME and AE. Let
i 6= j ∈ {l1, · · · , lk}.

Definition 5: (Metrics as Lower Bound Estimations)
The metric of maximal extent of i/j errors on test set T with

respect to a Pareto front Φ, written MEi/j(T,Φ), is defined
as follows.

MEi/j(T,Φ) =


0, Ti,j = ∅
∞, Ti,j 6= ∅ ∧ Φi,j = ∅
max
x∈Ti,j

{‖x,Φi,j‖}, Ti,j 6= ∅ ∧ Φi,j 6= ∅

The metric of average extent of i/j errors on test set T with
respect to a Pareto front Φ, written AEi/j(T,Φ), is defined
as follows.

AEi/j(T,Φ) =


0, Ti,j = ∅
∞, Ti,j 6= ∅ ∧ Φi,j = ∅∑
x∈Ti,j

‖x,Φi,j‖

|Ti,j |
, Ti,j 6= ∅ ∧ Φi,j 6= ∅

ut

B. Upper Bound Estimations of Error Extent

Given a point a ∈ Ti,j of i/j type of errors detected by
testing on T and a Pareto front Φ, we can infer that points in
W (a,Φ) are also errors and they are the worst cases of i/j
type of errors; see discussion in Section II-E. Using the set of
test cases on which the model is correct, we can also make
an upper bound estimation of the error extent as illustrated
by the blue arrow in Fig. 2(c). It is the minimal value of the
distances from the point b ∈ W (a,Φ) on Pareto front Φi,j

to correctly classified points in class i. When considering all
points in WΦ

i,j , we can calculate the maximal and average
values of such distances as upper bound estimations of the
maximal error extent and average error extent. Thus, we have
the following two metrics MC and AC.

Definition 6: (Metrics of Upper Bound Estimations)
The metric of maximal distance from points on Pareto

front Φ to the set of correct points in test set T , written
MCi/j(T,Φ), is defined as follows.

MCi/j(T,Φ) =


∞, Ti,i = ∅
0, Ti,i 6= ∅ ∧WΦ

i/j = ∅
max

x∈WΦ
i/j

{‖x, Ti,i‖}, Ti,i 6= ∅ ∧WΦ
i/j 6= ∅

The metric of average distance from i/j Pareto front Φ to
the set of correct points in test set T , written ACi/j(T,Φ), is
defined as follows.

ACi/j(T,Φ) =


∞, Ti,i = ∅
0, Ti,i 6= ∅ ∧WΦ

i/j = ∅∑
x∈WΦ

i/j

(‖x,Ti,i‖)

|WΦ
i/j

| , Ti,i 6= ∅ ∧WΦ
i/j 6= ∅

ut

C. Middle Estimation of Error Extent

Having defined the upper and lower bound estimations
of error extents, we now define the middle estimation of
error extent by taking the averages of the upper and lower



estimations. Thus, we have the following two metrics WEE
and AEE.

Definition 7: (Metrics of Worst and Average Extents of
Errors)

The metric of worst extent of errors for i/j errors as
demonstrated by test set T and Pareto front Φ, written
WEEi/j(T,Φ), is defined as follows.

WEEi/j(T,Φ) =
MEi/j(T,Φ) +MCi/j(T,Φ)

2
.

The metric of average extent of errors for i/j errors
as demonstrated by test set T and Pareto front Φ, written
AEEi/j(T,Φ), is defined as follows.

AEEi/j(T,Φ) =
AEi/j(T, |Φ) +ACi/j(T,Φ)

2
.

ut

D. Metrics of Error Extent on A Class and A Model

Given a class li of an ML classifier model, there may be
many types of errors, i.e. i/j errors for j 6= i. The extent of
errors on class li can be calculated via the following metrics
based on the error type specific metrics defined above.

Let µ be any of ME, AE, MC, AC, WEE, and AEE.
Definition 8: (Metrics of Errors Extent for A Class)
The metrics of the worst and average extents of errors for

class i, denoted by µMax
i and µAvg

i respectively, are defined
as follows.

µMax
i (T,Φ) = Maxj 6=i{µi/j(T,Φ)}

µAvg
i (T,Φ) =

∑
j 6=i(µi/j(T,Φ))

k − 1

ut
Now, we define the metrics to estimate the overall error

extents of a model P based on testing on T as follows.
Definition 9: (Metrics of ML Model’s Overall Error Extent)
The metrics of a model’s overall worst and average error

extent are denoted by µMax and µAvg respectively and defined
as follows.

µMax(T,Φ) = Maxki=1{µMax
i (T,Φ)}

µAvg(T,Φ) =

∑K
i=1(µAvg

i (T,Φ))

k

where µi is an error extent metrics of class i defined in
Definition 8. ut

IV. EMPIRICAL EVALUATION AND VALIDATION

This section reports the evaluation of the metrics with
controlled experiments using manually-coded examples and
empirical case studies using real-world datasets. We will
address the following research questions.

RQ1: How likely is it that the admissible condition will
hold?

RQ2: Do the metrics actually measure the performance of
the ML classifiers?

A. Evaluating the Admissible Condition
Research question RQ1 cannot be answered without the

knowledge of the conceptual classifiers. Therefore, we con-
ducted a controlled experiment with a set of 10 manually
coded classifiers as the subjects; shown in Fig. 3. They are all
on the same input data space of two-dimensional real numbers
in the region of [0, 2π]× [−1, 1].

(1) Box 1 (2) Box 2

(3) Circle 1 (4) Circle 2

(5) Line 1 (6) Line 2

(7) Sin 1 (8) Sin 2

(9) Tri 1 (10) Tri 2

Fig. 3. Manually Coded Classifiers

The experiment consists of the following steps for each
coded classifier.

1) Generate a dataset of 5000 labelled data by random
sampling of the data space with the uniform distribution,
where the labels are generated from the coded target
classification models.

2) Build a set of 9 ML models for each dataset by using
different ML techniques given in Table I. A total of 90
models were built.

3) Generate a Pareto front for each ML model using the
Morphy automated test tool [17] to perform datamorphic
exploratory testing via 5000 random walks.

4) Validate the hypotheses for each ML model by testing
the model on 5000 random test cases to find test cases
that are incorrectly classified. The nearest point on the
Pareto front from each error test case is checked for the
admissibility condition, i.e. whether it is also incorrectly
classified using the manually coded classifier as the
standard classification. If yes, it validates the admissible
condition; otherwise it is regarded as an invalidating
case.

5) Statistical analysis of data. The validity rate of the
admissible condition on each model is calculated from
the number of valid cases and the total number of cases.
The results are shown in Table II.



TABLE I
MACHINE LEARNING TECHNIQUES USED IN THE EXPERIMENTS

Name ML Techniques Used
DNN Deep neural network
DT Decision tree
KNN K-Nearest neighbors
LR Logistic regression
NB Naive Bayes
SVM Supporting vector machine
HV Ensemble via hard voting
SV Ensemble via soft voting
Stack Ensemble via stacking

It was found that the Pareto front was empty for two of
the models. This means that exploratory testing found no
borders between classes. The models were then investigated
with intensive random testing. This confirmed that there were
no borders to be found as the models did not classify the
data space into two classes. These two models were therefore
excluded from the validity calculation. Also excluded were
two more in which error test cases were not found. All four
exclusions are marked as - in Table II. The average validity
rate over 86 models is 94.84%.

There are five ML models with a very poor validity rate,
however. Fig. 4 compares them in the right column against
the manually coded classifiers in the left column and it can
be seen that they are very different. Error points in these ML
models are not near to the borders between classes so they
do not satisfy the competent data scientist hypothesis. When
these five models are removed, the overall validity rate rises
to 99.05%.

Fig. 5 for contrast shows nine models of Box 2. They are
of high validity rate. The errors are in the continuous areas
next to the borders, thus satisfying the hypothesis.

In summary, the admissibility condition holds in more than
99% of cases where the ML model is well developed. Poor
quality models can easily be detected as their ME values will
exceed their MC values or their AE values will exceed their
AC values or both.

B. Validating The Metrics as Performance Measurements

To answer RQ2, we have used both manually coded clas-
sifiers and real world datasets to demonstrate a correlation
between our proposed metrics and existing statistical metrics.
These include accuracy, precision (also called purity), recall
(also called sensitivity and true positive rate), specificity (also
called true negative rate), false positive rate, and the F-Score.
These are the most widely used performance metrics.

Ten datasets were selected at random from the well-known
Kaggle collection and are summarised in Table III. Column
Size is the number of records in the dataset and column Cls is
the number of classes in the classification. Columns DF, NF
and CF are the numbers of discrete non-numerical features,
discrete numerical features and continuous numerical features,
respectively.

Pareto Front of Invalid Models (Generated via 5K Random Walks) 

   
 Box1-Original  Box1-LR 

   
 Circle1-Original  Circle1-LR 

   
 Line2-Original Line2-NB 

   
 Sin2-Original Sin2-NB 

   
 Tri-Original Tri1-LR  

 
 
  
 
 

 

Fig. 4. Models where continuity hypothesis is broken

Pareto Front of Box2 Models (Generated via 5K Random Walks) 

  
 Original DNN 

  
 DT  HV 

  
 KNN  LR 

  
 NB  Stack 
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Fig. 5. Pareto fronts of Box2 models



TABLE II
SUBJECT MODEL’S VALIDITY RATE

Model Box1 Box2 Circle1 Circle2 Line1 Line2 Sin1 Sin2 Tri1 Tri2 Average
DT – 1 0.9677 0.9885 0.9828 0.9844 1 0.9894 1 0.9634 0.9862
HV 1 1 1 0.9804 0.9778 0.9891 1 0.9271 1 0.9891 0.9863
KNN 1 0.9789 1 1 1 0.9944 1 1 1 0.9663 0.9940
LR 0.0413 1 0.2475 1 1 1 1 1 0.1418 1 0.7431
NB 1 1 1 1 1 0.139 1 0.5744 1 0.979 0.8692
Stack – 1 1 1 1 1 1 1 1 0.9737 0.9971
SV 1 1 1 0.9726 1 0.9934 0.9753 1 1 0.9857 0.9927
SVM 1 0.9948 1 1 1 1 1 1 – 0.8325 0.9808
DNN 1 1 1 1 1 1 1 1 – 0.8719 0.9858
Average 0.8630 0.9971 0.9128 0.9935 0.9956 0.9000 0.9973 0.9434 0.8774 0.9513 0.9484

TABLE III
SUMMARY OF DATASETS

Dataset Size Cls DF NF CF
Beer Ranking 5558 0 14 1 11
Bank Churners Prediction 10127 5 11 3 2
DDoS Detection 40000 0 48 24 3
Diabetes Diagnoses 390 1 10 3 2
Ethereum Fraud 9012 0 12 25 2
Hacker of Bank Accounts 23674 0 15 0 2
Heart Attack Likelihood 303 0 12 1 2
Mushroom Edibility 8124 22 0 0 2
Red Wine Quality 1599 0 0 11 10
Water Potability 2012 0 0 9 2

The experiments consists of the following steps.
1) Build a set of 9 ML models from each dataset using the

ML techniques listed in Table I.
2) Test each model and evaluate its performance using the

statistic metrics.
3) Generate a Pareto front for each model by datamorphic

exploratory testing via 5000 random walks.
4) Measure model performances using the proposed met-

rics.
5) Calculate the Pearson correlation coefficients between

the statistic metrics and proposed metrics. The overall
results are summarised in Fig. 6.

The results, shown in Table IV, are that the WEE and AEE
metrics have the highest average correlation coefficients with
statistic metrics of model performance and they also have the
lowest average standard deviations: 0.7031 for WEEMax and
0.7290 for AEEMax.

Therefore, we can conclude that the proposed metrics are
valid measurements of the performance of an ML model.

V. CONCLUSION

A. Related Work

In this paper, we have proposed a set of metrics for
measuring the extent of errors in ML classifiers based on
datamorphic exploratory testing. The metrics are validated and
evaluated via both controlled experiments and real dataset case
studies. The results show that the proposed metrics are highly
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Fig. 6. Distribution of Correlation Coefficients

TABLE IV
OVERALL AVERAGES AND STDEVS OF CORRELATION COEFFICIENTS

Averages of Correlation Coefficients
Real Dataset Coded Average Real Dataset Coded Average

ME Max 0.5623 0.6926 0.6275 0.3879 0.2593 0.3236
MC Max 0.7510 0.4806 0.6158 0.1598 0.4800 0.3199
WEE Max 0.6211 0.7851 0.7031 0.2451 0.2195 0.2323
AE Max 0.3596 0.7561 0.5579 0.3468 0.2356 0.2912
AC Max 0.6572 0.6258 0.6415 0.2092 0.4433 0.3262
AEE Max 0.6267 0.8313 0.7290 0.2396 0.1996 0.2196
ME Avg 0.6131 0.6682 0.6407 0.3456 0.2484 0.2970
MC Avg 0.5853 0.3078 0.4466 0.4304 0.5614 0.4959
WEE Avg 0.5540 0.7176 0.6358 0.3715 0.2626 0.3170
AE Avg 0.4145 0.6962 0.5554 0.3663 0.2571 0.3117
AC Avg 0.5467 0.4420 0.4943 0.3663 0.5144 0.4403
AEE Avg 0.5204 0.7198 0.6201 0.3874 0.2535 0.3205
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correlated to the performances of the ML models as measured
by a set of statistical metrics. As far as we know, there are no
such metrics for ML classifiers proposed and studied in the
literature, even though the metrics for regression models are
all concerned with the error extents.

The existing metrics for ML classifiers have been the subject
of comparison and analysis in a large volume of research
efforts. The following are some of the most well known.

In [18], Huang et al proposed two formal criteria for
comparing metrics: (a) the degree of consistency and (b) the
degree of discrimination. They also used these criteria to
create new metrics of better discrimination power and guide
training models. Seliya et al [19] analysed the relationships
between performance metrics. In [20], Sokolova and Lapalme
assessed performance metrics on their capability to deal with
data imbalance and class skews. The notion of class skew is
represented by transformations on confusion matrices. A set of
statistical metrics were then assessed based on their invariance
to such transformations. In [21], Raze et al conducted a
statistical evaluation of 24 performance metrics on classifier
ML models. They used three datasets to build classifier ML
models with balance and unbalanced training data by applying
11 different ML algorithms. They observed that those most
commonly used performance metrics are not the best ones. In
a recent review paper [12], Naser and Alavi listed 38 Error
metrics for regression ML models and 40 performance metrics
for classifier ML models. They discussed the limitations of
each metric in the context of their application in science and
engineering. Huang et al. [22] assessed 14 metrics on their
degree of discrimination in performance evaluation of ML
models in the context of risk predictions for clinical decision-
making. They demonstrated that commonly reported metrics
may not have sufficient sensitivity to identify improvement of
machine learning models.

B. Future Work

In addition to the work reported in this paper, we are
conducting further experiments and case studies with the
metrics on their power of discrimination. Another future work
is to investigate their resilience to class skews and class
imbalance of the test dataset. An observation that we have
made in our experiment and case study is that the metrics
seems useful to detect models that does not meet the continuity
hypothesis. It is worthy further research.
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