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The interior Dirichlet boundary value problem for the diffusion equation in
nonhomogeneous media is reduced to a system of boundary-domain integral
equations (BDIEs) employing the parametrix obtained in Portillo (2019).We fur-
ther extend the results obtained in Portillo (2019) for the mixed problem in a
smooth domain with L2(Ω) right-hand side to Lipschitz domains and partial dif-
ferential equation (PDE) right-hand side in the Sobolev space H−1(Ω), where
neither the classical nor the canonical conormal derivatives are well-defined.
Equivalence between the system of BDIEs and the original BVP is proved along
with their solvability and solution uniqueness in appropriate Sobolev spaces.
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1 INTRODUCTION
The popularity of the boundary integral equation (BIE)method is owed to the reduction of dimension of a boundary value
problem (BVP) with constant coefficients and homogeneous right-hand side defined on a domain of Rn. By applying the
BIE method, one can reformulate the original BVP in terms of an equivalent integral equation defined exclusively on
the boundary of the domain. This method has already been extensively studied for many boundary value problems, for
instance, Laplace, Helmholtz, Stokes, and Lamé.3-5 Thismethod requires an explicit formula for the fundamental solution
of the partial differential equation (PDE) operator in the BVP that is not always available when the BVP has variable
coefficients.2,6
The overcome this issue, one can construct a parametrix (Levi function)2, Section 3 for the PDEoperator anduse it to derive

an equivalent system of boundary-domain integral equations (BDIEs) following a similar approach as for the BIEmethod.
However, the reduction of dimension no longer applies as volume integrals will appear in the new formulation as a result
of the remainder term. This is also the case for nonhomogeneous problems with constant coefficients.3, Chapter 1 and 2

Abbreviations: BDIEs, boundary-domain integral equation; BVP, boundary value problem.
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In order to preserve the reduction of dimension, one can use the method of radial integration method (RIM) which
allows to transform volume integrals into boundary only integrals.7 This method has been successfully implemented to
solve BDIEs derived from BVPs with variable coefficients.8,9 This method is also able to remove various singularities
appearing in the domain integrals.
The recent developments on numerical approximation of the solution of BDIEs show that there are effective and fast

algorithms able to compute the solution. For example, the collocation method,10,11 which, although leads to fully pop-
ulated matrices, it can be further enhanced by using hierarchical matrix compression and adaptive methods as shown
in Grzhibovskis et al12 or in Ravnik et al13 to reduce the computational cost. Localised approaches to reduce the matrix
dimension and storage have also been developed,14,15 which lead to sparse matrices.
Moreover, reformulating the original BVP in the BDIE form can be beneficial, for instance, in inverse problems with

variable coefficients.16
On the one hand, the family of weakly singular parametrices of the form Py(x, y) for the particular operator

u(x) ∶=
3∑

i=1

𝜕

𝜕xi

(
a(x)𝜕u(x)

𝜕xi

)
, (1)

has been studied extensively studied.2,17-19 Note that the superscript in Py(x, y) means that Py(x, y) is a function of the
variable coefficient depending on y, this is

P𝑦(x, 𝑦) = P(x, 𝑦; a(𝑦)) = −1
4𝜋a(𝑦)|x − 𝑦| .

On the other hand,
Px(x, 𝑦) = P(x, 𝑦; a(x)) = −1

4𝜋a(x)|x − 𝑦| .
is another parametrix for the same operator. In this case, the parametrix depends on the variable coefficient a(x). This
parametrix was introduced in Portillo1 for the mixed problem in smooth 3D domains and in Mikhailov and Portillo20 for
the mixed problem in Lipschitz domains. Some preliminary results for the mixed problem in exterior domains have also
been obtained.21
However, most of the numerical methods to solve BDIEs aforementioned are tested for the Dirichlet problem.9-12 In

order to compare the performance of parametrices Px(x, y) and Py(x, y), one needs first to prove the equivalence between
the original Dirichlet BVP and the system of BDIEs as well as the uniqueness of solution (well-posedness) of the system
of BDIEs that corresponds to the main purpose of this paper.
The study of new families of parametrices is helpful at the time of constructing parametrices for systems of PDEs as

shown in Portillo1, Section 1 for the Stokes system. In this case, the fundamental solution for the pressure does not present
any relationship with the viscosity coefficient whereas the parametrix for the pressure depends on two variable viscosity
coefficients: one depending on y and another depending on x, see also Mikhailov and Portillo.22
The parametrix preserves a strong relation with the fundamental solution of the corresponding PDE with constant

coefficients. Using this relation, it is possible to establish further relations between the surface and volume potential
type operators for the variable-coefficient case with their counterparts for the constant coefficient case, see, for example,
Chkadua et al2, Formulae (3.10)-(3.13) and Mikhailov and Portillo.22, Formulae (4.6)-(4.11)
Different families of parametrices lead to different relationswith their counterparts for the constant coefficient case. For

the parametrices considered in this paper, these relations are rather simple, whichmakes it possible to obtain themapping
properties of the integral potentials in Sobolev spaces and prove the equivalence between the BDIE system and the BVP.
After studying the Fredholm properties of the matrix operator which defines the system, its invertibility is proved, what
implies the uniqueness of solution of the BDIE system.
In this paper,we extend the results obtained in other studies1,21,23 by considering the source termof the equationu = 𝑓

in the Sobolev spaceH−1(Ω). This happens, for example, when the source term f is Dirac's delta distribution. Dirac's delta
is an example of distribution that does not belong to the space L2 but belongs to H−1 and is used in many applications
in physics, engineering, and other mathematical problems.24-26 This generalisation for the source term introduces an
additional issue on the definition of the conormal derivative which is needed to derive BDIEs.
The conormal derivative operator is usually defined with the help of first Green identity, since the function derivatives

do not generally exist on the boundary in the trace sense. However, this definition is related to an extension of the PDE
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and its right-hand side from the domainΩ,where they are prescribed, to the boundary of the domain, where they are not.
Since the extension is nonunique, the conormal derivative appears to be a nonunique operator, which is also nonlinear
in u unless a linear relation between u and the PDE right-hand side extension is enforced. This creates some difficulties
particularly in formulating the BDIEs.
To overcome these technical issues, we introduce a subspace of H1(Ω) which is mapped by the PDE operator into the

space H̃− 1
2 (Ω) for the right-hand side.27 This allows to define an internal conormal derivative operator, which is unique,

linear in u and coincides with the conormal derivative in the trace sense if the latter does exist. This approach is applied to
the formulation and analysis of direct segregated BDIEs equivalent to the stated Dirichlet BVP with a variable coefficient
and right-hand side from H̃−1(Ω).
Last but not the least, we generalise in this paper the results for the two-dimensional case and smooth boundary

domains.23

2 PARTIAL DIFFERENTIAL OPERATORS IN H̃−1(Ω)

Let Ω = Ω+ be a bounded simply connected open Lipschitz domain and let Ω−∶= R3∖Ω
+
be the complementary

(unbounded) domain. The Lipschitz boundary 𝜕Ω is connected and compact.
We shall consider the PDE

u(x) ∶=
3∑

i=1

𝜕

𝜕xi

(
a(x)𝜕u(x)

𝜕xi

)
= 𝑓 (x), x ∈ Ω, (2)

where the variable smooth coefficient a(x) ∈ 2(Ω) is such that

0 < amin ⩽ a(x) ⩽ amax < ∞, ∀x ∈ Ω, amin, amax ∈ R,

u(x) is the unknown function and f is a given distribution onΩ. It is easy to see that if a ≡ 1, then the operator becomes
Δ, the Laplace operator.
In what follows, (Ω) ∶= C∞

comp(Ω) denotes the space of Schwartz test functions, ∗(Ω) denotes the space of Schwartz
distributions, Hs(Ω), and Hs(𝜕Ω) denotes the Bessel potential spaces, where s ∈ R (see, e.g., other studies3,4 for more
details). We recall that the spaces Hs coincide with the Sobolev-Slobodetski spacesWs

2 for any nonnegative s. We denote
by H̃s(Ω) the subspace of Hs(R3), H̃s(Ω) ∶= {g ∶ g ∈ Hs(R3), supp g ⊂ Ω}. The space Hs(Ω) denotes the space of
restriction on Ω of distributions from Hs(R3), defined as Hs(Ω) ∶= {rΩg ∶ g ∈ Hs(R3)}, where rΩ denotes the restriction
operator on Ω. Let us define the dual topological spaces H−1(Ω) ∶= [H̃1(Ω)]∗ and H̃−1(Ω) ∶= [H1(Ω)]∗.
For u ∈ H1(Ω), the partial differential operator is understood in the sense of distributions. Using the usual notation

of distribution theory, equation (2) can be written as

⟨u, v⟩Ω = ⟨𝑓, v⟩Ω, ∀v ∈ (Ω). (3)

Using the differentiation properties of distributions, one can obtain the following identity:

⟨u, v⟩Ω = −⟨a∇u,∇v⟩Ω, ∀v ∈ (Ω)

To simplify the notation, we introduce the operator  defined as follows:

(u, v) ∶= ∫
Ω

a(x)∇u(x) · ∇v(x) dx,

which allows us to write equation (3) as

⟨u, v⟩Ω = −(u, v) = ⟨𝑓, v⟩Ω, ∀v ∈ (Ω). (4)
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Since the set(Ω) is dense in H̃1(Ω), formula (4) defines the continuous linear operator ∶ H1(Ω) → H−1(Ω), where

⟨u, v⟩Ω ∶= −(u, v), ∀u ∈ H1(Ω), v ∈ H̃1(Ω).

Let us also define the so-called aggregate operator27, Section 3.1 of, as ̌ ∶ H1(Ω) → H̃−1(Ω)

⟨̌u, v⟩Ω ∶= −(u, v), ∀u, v ∈ H1(Ω), (5)

where the bilinear functional  ∶ H1(Ω) ×H1(Ω) → R is defined as

(u, v) ∶= −∫
R3

Ë[a∇u](x) · ∇Ëv(x) dx = ⟨∇ · Ë[a∇u], Ëv⟩R3 , ∀u, v ∈ H1(Ω),

where Ë ∶ H1(Ω) → H̃1(Ω) denotes the operator of extension of functions, defined inΩ, by zero outsideΩ inR3. Note that
the functional ̌ is continuous due to its symmetry and, therefore, so does ̌. Now, we can provide an explicit definition
for the aggregate operator (5)

̌u ∶= ∇ · Ë[a∇u].

For any u ∈ H1(Ω), the functional ̌u belongs to H̃−1(Ω) and is an extension of the functional u ∈ H−1(Ω) whose
domain is thus extended from H̃1(Ω) to the domain H1(Ω).

3 TRACES, CONORMAL DERIVATIVES, AND GREEN IDENTITIES

From the trace theorem for Lipschitz domains, we know that the trace of a scalar function w ∈ Hs(Ω±), s > 1∕2, belongs
to the space Hs− 1

2 (𝜕Ω), that is, 𝛾±w ∈ Hs− 1
2 (𝜕Ω). Moreover, if 1

2
< s < 3

2
, the corresponding traces operators 𝛾± ∶= 𝛾±

𝜕Ω ∶
Hs(Ω±) → Hs− 1

2 (𝜕Ω) are continuous.29, Lemma 3.6
For u ∈ Hs(Ω), s > 3∕2, we can define on 𝜕Ω the conormal derivative operators, T±, in the classical sense

T±x u ∶=
3∑
i=1
n±i (x)𝛾±(a(x)𝜕iu(x)), x ∈ 𝜕Ω

where n+(x) is the exterior unit normal vector directed outwards the interior domain Ω at a point x ∈ 𝜕Ω. Respectively,
n−(x) is the unit normal vector directed inwards the interior domain Ω at a point x ∈ 𝜕Ω. Sometimes, we will also use
the notation T±x u or T

±
𝑦 u to emphasise the differentiation variable. When the variable of differentiation is obvious or is a

dummy variable, we will simply use the notation T±u.
It is well-known that the classical conormal derivative operator is generally not well-defined if u ∈ H1(Ω).27, Appendix

A28,29 Consequently, to correctly define a conormal derivative, one can draw on the first Green identity. This is the case
for the generalised conormal derivative and the canonical conormal derivatives.28, Definition 3.1 and 3.6

Definition 1. Let u ∈ H1(Ω) and u = rΩ𝑓 in Ω for some 𝑓 ∈ H̃−1(Ω). Then, the generalised conormal derivative
T+(𝑓, u) ∈ H− 1

2 (𝜕Ω) is defined as

⟨T+(𝑓, u),w⟩
𝜕Ω ∶= ⟨𝑓, 𝛾−1w⟩Ω + (u, 𝛾−1w) = ⟨𝑓 − ̌u, 𝛾−1w⟩Ω, ∀w ∈ H

1
2 (𝜕Ω).

If u, v ∈ H1(Ω), u satisfying u = rΩ𝑓 in Ω for some 𝑓 ∈ H̃−1(Ω), then the first Green identity holds in the
following form: ⟨T+(𝑓,u), 𝛾+v⟩

𝜕Ω = ⟨𝑓, v⟩Ω + (u, v) = ⟨𝑓 − ̌u, v⟩Ω, ∀v ∈ H1(Ω). (6)

In order to appropriately define the canonical co-normal derivative,30, Definition 6.5 we introduce the following space:

Definition 2. Let s ∈ R and∗ ∶ Hs(Ω) → ∗(Ω) be a linear operator. For t ≥ − 1
2
, we introduce the space

Hs,t(Ω;∗) ∶= {g ∶ g ∈ Hs(Ω) ∶ ∗g|Ω = 𝑓g|Ω , 𝑓g ∈ H̃t(Ω)}
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endowed with the norm

||g||Hs,t(Ω;∗) ∶=
(||g||2Hs(Ω) + ||𝑓g||2H̃t(Ω)

) 1
2
.

In this paper, ∗ will refer to either  or Δ in the above definition. Also, we remark, that H1,− 1
2 (Ω;) = H1,− 1

2 (Ω;Δ)
due tou − aΔu = ∇a · ∇u ∈ L2(Ω) for any u ∈ H1(Ω).

Definition 3. For u ∈ H1,− 1
2 (Ω;), we define the canonical conormal derivative T+u ∈ H− 1

2 (𝜕Ω) as

⟨T+u,w⟩
𝜕Ω ∶= ⟨Ãu, 𝛾−1w⟩Ω + (u, 𝛾−1w) = ⟨Ãu − ̌u, 𝛾−1w⟩Ω, ∀w ∈ H

1
2 (𝜕Ω),

where Ãu ∶= Ë(u).
The canonical conormal derivatives T+u is independent of (nonunique) choice of the operator 𝛾−1; independent of the

source term 𝑓 , unlike to generalised conormal derivative defined in (6); it is linear with respect to u and has the following
continuous mapping property: the operator T+ ∶ Ht,− 1

2 (Ω;) → H− 1
2 (𝜕Ω) when t ≥ − 1

2
27, Theorem 3.9,.18, Theorem 2.13

Furthermore, if u ∈ H1,− 1
2 (Ω;) and v ∈ H1(Ω), then the first Green identity for the canonical conormal derivative

holds in the following form (cf. Chkadua et al19, Theorem 2.13):

⟨T+u, 𝛾+v⟩𝜕Ω = ̌(u, v) + ⟨Ãu, v⟩Ω. (7)

Furthermore, if u ∈ H1,− 1
2 (Ω;) and v ∈ H1(Ω), then the first Green identity for the canonical conormal derivative

holds in the following form19, Theorem 2.13:

⟨T+u, 𝛾+v⟩𝜕Ω = (u, v) + ⟨Ãu, v⟩Ω.
In the particular case of u ∈ H1,0(Ω;) and v ∈ H1(Ω), then the first Green identity takes the form

⟨T+u, 𝛾+v⟩𝜕Ω = (u, v) + ⟨u, v⟩Ω. (8)

To obtain the secondGreen identity for u ∈ H1,− 1
2 (Ω;) and v ∈ H1(Ω), we use the first Green identity for the canonical

conormal derivative for u, that is, identity (7) and subtract it from the first Green identity for the generalised conormal
derivative for v, this is, swapping u by v in formula (6). Hence, supposing that rΩv = rΩ𝑓 with 𝑓 ∈ H̃−1(Ω), we obtain
the following second Green identity

⟨𝑓,u⟩Ω − ⟨Ãu, v⟩Ω = ⟨T+(𝑓, v), 𝛾+u⟩𝜕Ω − ⟨T+u, 𝛾+v⟩𝜕Ω. (9)

If u, v ∈ H1,− 1
2 (Ω;), then we arrive at the familiar form of the second Green identity for the canonical extension and

canonical conormal derivatives

⟨u,Ãv⟩Ω − ⟨v,Ãu⟩Ω = ⟨T+v, 𝛾+u⟩𝜕Ω − ⟨T+u, 𝛾+v⟩𝜕Ω.
In the particular case, when u, v ∈ H1,0(Ω;), the previous identity becomes

⟨u,v⟩Ω − ⟨v,u⟩Ω = ⟨T+v, 𝛾+u⟩𝜕Ω − ⟨T+u, 𝛾+v⟩𝜕Ω. (10)

4 PARAMETRICES AND REMAINDERS

We aim to derive boundary-domain integral equation systems for the following Dirichlet boundary value problem. This
is finding u ∈ H1(Ω) satisfying

u = 𝑓, in Ω, (11a)
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𝛾+u = 𝜑0, on 𝜕Ω, (11b)

where 𝜑0 ∈ H
1
2 (𝜕Ω) and f ∈ H−1(Ω). Let us recall that this BVP is uniquely solvable in H1(Ω).5, Theorem 4.3

To obtain a system of boundary-domain integral equations for the boundary value problems (11a) and (11b), we intend
to use boundary integralmethod (BIM) approach.5 However, thismethod requires an explicit fundamental solutionwhich
is not always available when the PDE differential operator has variable coefficients, as it is the case for the operator. To
overcome this problem, one can introduce a parametrix.1,2,6

Definition 4. A distribution P(x, y) in two variables x, 𝑦 ∈ R3 is said to be a parametrix or Levi function for a
differential operator Ax differentiating with respect to x, if the following identity is satisfied:

AxP(x, 𝑦) = 𝛿(x − 𝑦) + R(x, 𝑦). (12)

where 𝛿(.) is the Dirac distribution and R(x, y) is remainder.

A parametrix for a given operator Ax might not be unique. This is the case, for example, for the operator . One
parametrix2,13 is given by

P𝑦(x, 𝑦) = 1
a(𝑦)

PΔ(x − 𝑦), x, 𝑦 ∈ R
3,

where

PΔ(x − 𝑦) = −1
4𝜋|x − 𝑦|

is the fundamental solution of the Laplace equation. The remainder corresponding to the parametrix Py is given by

R𝑦(x, 𝑦) =
3∑
i=1

1
a(𝑦)

𝜕a(x)
𝜕xi

𝜕

𝜕xi
PΔ(x − 𝑦) , x, 𝑦 ∈ R

3.

In this paper, for the same operator defined in (2), we will use another parametrix1

P(x, 𝑦) ∶= Px(x, 𝑦) = 1
a(x)

PΔ(x − 𝑦), x, 𝑦 ∈ R
3, (13)

which leads to the corresponding remainder

R(x, 𝑦) = Rx(x, 𝑦) = −
3∑
i=1

𝜕

𝜕xi

(
1
a(x)

𝜕a(x)
𝜕xi

PΔ(x, 𝑦)
)

= −
3∑
i=1

𝜕

𝜕xi

(
𝜕 ln a(x)

𝜕xi
PΔ(x, 𝑦)

)
, x, 𝑦 ∈ R

3.

(14)

Note that both remainders Rx and Ry are weakly singular, that is,

Rx(x, 𝑦), R𝑦(x, 𝑦) ∈ (|x − 𝑦|−2).
This is due to the smoothness of the variable coefficient a(·).

5 INTEGRAL OPERATORS

5.1 Volume potentials
Following the steps of the boundary-domain integral method,2 we will later on replace u by the parametrix (13) in the
first Green identity (7). This will give an integral representation formula of the solution u in terms of surface and volume
potential-type integral operators. In this section, we define these surface and volume integral operators and study their
mapping properties which will be applied to prove the main results of this paper.
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For the function 𝜌 defined onΩ ⊂ R3, for example, 𝜌 ∈ (Ω) the volume potential and the remainder potential operator,
corresponding to parametrix (13) and remainder (14) are defined as

P𝜌(𝑦) ∶= ⟨P(·, 𝑦), 𝜌⟩R3 = ∫
R3

P(x, 𝑦)𝜌(x) dx, 𝑦 ∈ R
3 (15)

𝜌(𝑦) ∶= ⟨P(·, 𝑦), 𝜌⟩Ω = ∫
Ω

P(x, 𝑦)𝜌(x) dx, 𝑦 ∈ Ω (16)

𝜌(𝑦) ∶= ⟨R(·, 𝑦), 𝜌⟩Ω = ∫
Ω

R(x, 𝑦)𝜌(x) dx, 𝑦 ∈ Ω (17)

From (13) and (14), we can see that both, parametrix and remainder, can be written as a function of the fundamental
solution of the Laplace operator. Therefore, one can represent the corresponding volume potential for the parametrix and
remainder in terms of the analogous volume potential associated with the Laplace operator (operator  with a = 1) as
shown as follows:

P𝜌 = P△

(𝜌
a

)
, (18)

𝜌 = Δ

(𝜌
a

)
, (19)

𝜌 = ∇ · [Δ(𝜌 ∇ ln a)] − Δ(𝜌 Δ ln a). (20)

For 𝜌 ∈ Hs(Ω), s ∈ R, the operator (15) is understood as P𝜌 = P△

(
𝜌

a

)
, where the Newtonian potential operator P△

for the Laplace operatorΔ is well-defined in terms of the Fourier transform, on any spaceHs(R3). For 𝜌 ∈ H̃s(Ω), and any
s ∈ R, definitions (16) and (17) can be understood as

𝜌 = rΩP△

(𝜌
a

)
, 𝜌 = rΩ (∇ · [PΔ(𝜌 ∇ ln a)] − PΔ(𝜌 Δ ln a)) . (21)

For the case, 𝜌 ∈ Hs(Ω),− 1
2
< s < 1

2
, as (21) with 𝜌 replaced by Ẽ𝜌 where Ẽ ∶ Hs(Ω) → H̃s(Ω),− 1

2
< s < 1

2
is the unique

continuous extension operator related with the operator Ë of extension by zero.27, Theorem 2.16
The result18, Lemma 3.1 provides the mapping properties of the operator PΔ, which when applied to relations (18) to

(21) provides us with the following result.

Theorem 1. Let Ω be a bounded Lipschitz domain in R3. Then, the operators

𝜇P ∶ Hs(R3) → Hs+2(R3), s ∈ R, ∀𝜇 ∈ (R3) (22)

 ∶ H̃s(Ω) → Hs+2(Ω), s ∈ R, (23)

∶ Hs(Ω) → Hs+2(Ω),−1
2
< s < 1

2
, (24)

 ∶ H̃s(Ω) → Hs+1(Ω), s ∈ R, (25)

∶ Hs(Ω) → Hs+1(Ω),−1
2
< s < 1

2
′ (26)

∶ H1(Ω) → H1,0(Ω;A) (27)

are bounded.

Since Ω is a bounded domain, then the compact embedding theorem for Sobolev spaces4, Chapter 2 can be applied to
the remainder operators (25) to (27) of the previous theorem to obtain the following corollary.
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Corollary 1. For 1
2
< s < 3

2
, the following operators are compact:

 ∶ Hs(Ω) → Hs(Ω),

𝛾+ ∶ Hs(Ω) → Hs− 1
2 (𝜕Ω),

T+ ∶ Hs(Ω) → Hs− 3
2 (𝜕Ω).

5.2 Surface potentials
The single-layer potential operator and the double-layer potential operator associated with the Laplace equation Δu = 0
are defined as

VΔ𝜌(𝑦) ∶= −∫
𝜕Ω

PΔ(x, 𝑦)𝜌(x) dS(x),

WΔ𝜌(𝑦) ∶= −∫
𝜕Ω

T+
ΔPΔ(x, 𝑦)𝜌(x) dS(x),

where T+
Δ is the normal derivative operator (i.e., T+ with a(x) ≡ 1 in (3)). Similarly, one can define the corresponding

potentials parametrix-based for 𝑦 ∈ R3 and y ∉ 𝜕Ω as

V𝜌(𝑦) ∶= −∫
𝜕Ω

P(x, 𝑦)𝜌(x) dS(x), (28)

W𝜌(𝑦) ∶= −∫
𝜕Ω

T+
x P(x, 𝑦)𝜌(x) dS(x). (29)

Due to (13) and the fact that

T+P(x, 𝑦) = T+
(

1
a(x)

PΔ(x, 𝑦)
)

= PΔ(x, 𝑦)T+
(

1
a(x)

)
+ T+

ΔPΔ(x, 𝑦),

the operators V and W can be also expressed in terms the surface potentials and operators associated with the Laplace
operator,

V𝜌 = VΔ

(𝜌
a

)
, (30)

W𝜌 = WΔ𝜌 − VΔ

(
𝜌
𝜕 ln a
𝜕n

)
. (31)

Since the mapping properties in Sobolev spaces of the single-layer potential and double-layer potential for the Laplace
equation are well known,19,29 one can easily derive analogous mapping properties for the operators V andW as a conse-
quence of the relations (30) and (31), along with theorems 3.3 to 3.7 proved in Chkadua et al.19 These mapping properties
are reflected in the following results which are included for completeness of the paper as some are key to prove the
main results.

Theorem 2. Let Ω be a bounded Lipschitz domain, and let 1
2
< s < 3

2
. Then, the following operators are bounded:

𝜇V ∶ Hs− 3
2 (𝜕Ω) → Hs(R3), ∀𝜇 ∈ (R3);

𝜇W ∶ Hs− 1
2 (𝜕Ω) → Hs(Ω);

𝜇rΩ−W ∶ Hs− 1
2 (𝜕Ω) → Hs(Ω−), ∀𝜇 ∈ (R3);

rΩV ∶ H− 1
2 (𝜕Ω) → H1,0(Ω−;A);

𝜇rΩ−V ∶ H− 1
2 (𝜕Ω) → H1,0(Ω−;A), ∀𝜇 ∈ (R3);

rΩW ∶ H
1
2 (𝜕Ω) → H1,0(Ω−;A);
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𝜇rΩ−W ∶ H
1
2 (𝜕Ω) → H1,0(Ω−;A), ∀𝜇 ∈ (R3);

𝛾
±V ∶ Hs− 3

2 (𝜕Ω) → Hs− 1
2 (𝜕Ω);

𝛾
±W ∶ Hs− 1

2 (𝜕Ω) → Hs− 1
2 (𝜕Ω);

T±V ∶ Hs− 3
2 (𝜕Ω) → Hs− 3

2 (𝜕Ω);

T±W ∶ Hs− 1
2 (𝜕Ω) → Hs− 3

2 (𝜕Ω).

The following result follows from relations (30) to (31) and the analogous jump properties for the harmonic surface
potentials.19, Theorem 3.6

Corollary 2. Let 𝜕Ω be a compact Lipschitz boundary. Let𝜑 ∈ Hs− 1
2 (𝜕Ω) and 𝜓 ∈ Hs− 3

2 (𝜕Ω) with 1
2
< s < 3

2
. Then,

𝛾+V𝜓 − 𝛾−V𝜓 = 0, 𝛾+W𝜑 − 𝛾−W𝜑 = −𝜑; (32)

T+V𝜓 − T−V𝜓 = 𝜓, T+W𝜑 − T−W𝜑 = −(𝜕na)𝜑. (33)

The mapping properties in Theorem 2 and Corollary 2 imply the following result about the mapping properties of the
operators related to the traces and conormal derivatives of the single- and double-layer parametrix-based operators (28)
and (29). Alternatively, the proof directly follows fromChkadua et al,19, Theorem 3.3 relations (28) and (29), the trace theorem.
and mapping properties of the conormal derivative.

Corollary 3. Let Ω ⊂ R3 with 𝜕Ω compact Lipschitz boundary, 1
2
< s < 3

2
. Then, the operators

 ∶= 𝛾+V = 𝛾−V ∶ Hs− 3
2 (𝜕Ω) → Hs− 1

2 (𝜕Ω);

 ∶= 1
2
(𝛾+W + 𝛾−W) ∶ Hs− 1

2 (𝜕Ω) → Hs− 1
2 (𝜕Ω);

 ′ ∶= 1
2
(T+V + T−V) ∶ Hs− 3

2 (𝜕Ω) → Hs− 3
2 (𝜕Ω);

 ∶= 1
2
(T+W + T−W) ∶ Hs− 1

2 (𝜕Ω) → Hs− 3
2 (𝜕Ω).

are bounded.

The operators  , , and ′ can be represented as integral operators with parametrix-based kernel

𝜌(𝑦) ∶= −∫
𝜕Ω

P(x, 𝑦)𝜌(x) dS(x), 𝑦 ∈ 𝜕Ω,

𝜌(𝑦) ∶= −∫
𝜕Ω

TxP(x, 𝑦)𝜌(x) dS(x), 𝑦 ∈ 𝜕Ω,

 ′𝜌(𝑦) ∶= −∫
𝜕Ω

T𝑦P(x, 𝑦)𝜌(x) dS(x), 𝑦 ∈ 𝜕Ω.

By Corollary 3 and relations (30) to (31), the operators  , , ′, and  can be expressed in terms of the volume and
surface potentials and operators associated with the Laplace operator.21

𝜌 = Δ

(𝜌
a

)
, (34)

𝜌 = Δ𝜌 − Δ

(
𝜌
𝜕 ln a
𝜕n

)
, (35)

 ′𝜌 = a ′
Δ

(𝜌
a

)
, (36)

𝜌 = aΔ𝜌 − a ′
Δ

(
𝜌
𝜕 ln a
𝜕n

)
. (37)

Furthermore, by the Liapunov-Tauber Theorem29, Lemma 4.1 for Lipschitz domains, Δ𝜌 = T+
ΔWΔ𝜌 = T−

ΔWΔ𝜌.
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6 INTEGRAL REPRESENTATION OF THE SOLUTION IN TERMS OF THE
SURFACE AND VOLUME POTENTIALS

In this section, we will obtain an integral representation formula for the solution u of the original BVP (11a) to (11b).
These results will be useful to construct a system of BDIEs equivalent to the original Dirichlet BVP. We will follow a
similar approach as in Chkadua et al19 but using the new parametrix (13).

Theorem 3. Let u ∈ H1(Ω). Then,

(i) The following integral representation formula holds:

u +u +W𝛾+u = Ǎu in Ω,

where Ǎu ∶= −(u,P).
(ii) Let rΩu = 𝑓 with 𝑓 ∈ H̃−1(Ω). Then, the integral representation formula

u +u − VT+(𝑓, u) +W𝛾+u = 𝑓 in Ω, (38)

holds.
(iii) The trace of u, that is, 𝛾+u, can be represented in terms of the surface and volume potentials as follows:

1
2
𝛾+u + 𝛾+u − T+(𝑓, u) +𝛾+u = 𝛾+𝑓, on 𝜕Ω. (39)

Proof. Let us prove item (i). First, we consider the first Green identity (7) with the roles of u and v interchanged

⟨T+v, 𝛾+u⟩𝜕Ω = (u, v) + ⟨u, v⟩Ω. (40)

In order to apply the first Green identity, we needed u ∈ H1(Ω) and v ∈ H1,0(Ω;). Let us take v ∶= P(x, y) as the
parametrix. Let us remark that as P is the parametrix, then

⟨P,u⟩Ω = u +u. (41)

For every distribution u ∈ H1(Ω), ⟨P,u⟩Ω ∈ H1(Ω), and hence in L2(Ω) due to the mapping properties of the
operator  given in Theorem 1. This implies that, as a distribution, P ∈ H1,0(Ω;) Then, identity (40) can now be
reformulated in terms of the surface and volume integral operators as

W𝛾+u = (u,P) + u. (42)

Since (u,P) = −⟨P,u⟩Ω andP = 𝛿 + R for being P a parametrix, we obtain

W𝛾+u = −u −u + u. (43)

which implies the result.
Let us prove now item [(ii)]. Since rΩu = 𝑓 with 𝑓 ∈ H̃−1(Ω), then we need to use the generalised second Green

identity (9), again swapping the roles of u and v,

⟨𝑓, v⟩Ω − ⟨Ãv,u⟩Ω = ⟨T+(𝑓,u), 𝛾+v⟩𝜕Ω − ⟨T+v, 𝛾+u⟩𝜕Ω. (44)

As before, make v = P(x, y) to obtain a new representation formula in terms of the parametrix-based surface and
volume potentials

𝑓 − ⟨ÃP,u⟩Ω = −VT+(𝑓, u) +W𝛾+u. (45)

9826



FRESNEDA-PORTILLO ANDWOLDEMICHEAL

Taking into account that ÃP = 𝛿 + R and rearranging terms, we obtain

u +u − VT+(𝑓,u) +W𝛾+u = 𝑓. (46)

Item (iii) directly follows from item (ii) by taking the trace of (46), keeping in mind the jump property 𝛾+W𝛾+u =
− 1
2
𝛾+u +𝛾+u given by Corollary 2 and the mapping properties given in Corollary 3.

To derive the boundary-domain integral equation systems, we will use the integral representation formulas obtained in
the previous theorem. However, we will substitute that both the trace and generalised conormal derivatives are indepen-
dent from u. Hence, we will use the distributions Ψ and Φ in their place as unknowns alongside u and consider the new
boundary domain integral equation

u +u − VΨ +WΦ = 𝑓, in Ω. (47)

We will show now that any triple (u,Ψ,Φ) satisfying the previous relation solves PDE (11a).
The following two statements are a generalisation of lemmas 9 and 10 in Mikhailov and Portillo20 to the case where

𝑓 ∈ H−1(Ω).

Lemma 1. Let u ∈ H1(Ω),Ψ ∈ H− 1
2 (𝜕Ω),Φ ∈ H

1
2 (𝜕Ω), and 𝑓 ∈ H̃−1(Ω) satisfy equation (47). Then,

(i) u solves Au = rΩ𝑓 , in Ω,
(ii) rΩV(Ψ − T+(𝑓, u)) − rΩW(Φ − 𝛾+u) = 0, in Ω.

Proof. Take equation (47) and subtract it from the third Green identity (38) applied to u to obtain (47) to obtain

W(𝛾+u − Φ) − V(T+(𝑓, u) − Ψ) = (̌u − 𝑓 ). (48)

Let us apply relations (19), (30), and (31) to (48),

VΔ

(
𝑓,u) − Ψ

a

)
−WΔ(𝛾+u − Φ) + VΔ

(
𝜕 ln a
𝜕n

(𝛾+u − Φ)
)
= Δ

(̌u − 𝑓
)

Then, apply the Laplace operator to both sides to obtain

̌u − 𝑓 = 0, (49)

which implies that rΩ̌u = u = rΩ𝑓 from where it follows item (i). Finally, substituting (49) into (48), we prove
item (ii).

The following Lemma is a direct consequence of the invertibility of the direct value of the single layer potential for the
Laplace equation.4, Corollary 8.13 A proof of the Lemma is available in Mikhailov and Portillo.19

Lemma 2. Let Ψ∗ ∈ H− 1
2 (𝜕Ω).

VΨ∗(𝑦) = 0, 𝑦 ∈ Ω (50)

then Ψ∗(y) = 0.

7 BDIE SYSTEM FOR THE DIRICHLET PROBLEM

We aim to obtain a segregated BDIE system for Dirichlet BVP (11). Corresponding formulations for the mixed problem
for u ∈ H1,0(Ω;Δ) with f ∈ L2(Ω) were introduced and analysed in other studies.1,2,22 Let 𝑓 ∈ H̃−1(Ω) be an extension of
f ∈ H−1(Ω), (i.e., 𝑓 = rΩ𝑓 ), which always exists, see Mikhailov.28, Lemma 2.15 and Theorem 2.16 Let us represent the generalized
conormal derivative and the trace of the function u as T+(𝑓, u) = 𝜓, 𝛾+u = 𝜑0, and we will regard the new unknown
function 𝜓 ∈ H− 1

2 (𝜕Ω) as formally segregated of u. Thus, we will look for the couple (u, 𝜓) ∈ H1(Ω) ×H− 1
2 (𝜕Ω).
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To obtain one of the possible BDIE systems, we will use equation (47) in domain Ω and equation (39) on 𝜕Ω. Then, we
obtain the following system (A1) of two equations for two unknown functions:

u +u − V𝜓 = F0 in Ω, (51a)

𝛾+u − 𝜓 = 𝛾+F0 − 𝜑0 on 𝜕Ω, (51b)

where

F0 = 𝑓 −W𝜑0. (52)

Note that for 𝜑0 ∈ H
1
2 (𝜕Ω), we have the inclusion F0 ∈ H1(Ω) if 𝑓 ∈ H̃−1(Ω) due to the mapping properties of the

surface and volume potentials given in Theorem 1, Theorem 2, and Corollary 3.
System (A1), given by (51a) to (51b), can be written in matrix notation as

1 = 1,

where represents the vector containing the unknowns of the system,

 = (u, 𝜓)⊤ ∈ H1(Ω) ×H− 1
2 (𝜕Ω),

the right-hand side vector is

1 ∶= [F0, 𝛾+F0 − 𝜑0]⊤ ∈ H1(Ω) ×H
1
2 (𝜕Ω),

and the matrix operator1 is defined by the following:

1 =
[
I + −V
𝛾+ −

]
.

We note that the mapping properties of the operators involved in the matrix imply the continuity of the operator

1 ∶ H1(Ω) ×H− 1
2 (𝜕Ω) → H1(Ω) ×H

1
2 (𝜕Ω).

Let us prove that the Dirichlet boundary value problem (11) in Ω is equivalent to the system of the BDIEs (51a) to (51b).

Theorem 4. Let 𝜑0 ∈ H
1
2 (𝜕Ω), f ∈ H−1(Ω), and 𝑓 ∈ H̃−1(Ω), such that rΩ𝑓 = 𝑓 .

i) If a function u ∈ H1(Ω) solves the Dirichlet BVP (11), then the couple (u, 𝜓)⊤ ∈ H1(Ω) ×H− 1
2 (𝜕Ω), where

𝜓 = T+(𝑓,u), on 𝜕Ω, (53)

solves the BDIE system (A1).
ii) If a couple (u, 𝜓)⊤ ∈ H1(Ω) × H− 1

2 (𝜕Ω) solves BDIE system (A1), then u solves the BVP and the functions 𝜓
satisfy (53).

iii) System (A1) is uniquely solvable.

Proof. i). Let u ∈ H1(Ω) be a solution of the boundary value problem (11). Then, from Definition 1, the generalised
conormal derivative is well-defined for the pair (𝑓,u). Hence, let 𝜓 ∶= T+(𝑓,u) ∈ H− 1

2 (𝜕Ω). Replacing the pair (u, 𝜓)
in (51a) to (51b), we arrive to the third Green identities for u and 𝛾+u given in Lemma 1. Therefore, the pair (u, 𝜓)
solves the BDIEs (51a) to (51b).
ii). Let now the couple (u, 𝜓)⊤ ∈ H1(Ω) × H− 1

2 (𝜕Ω) solve the BDIE system. Taking the trace of equation (51a) and
substract it from the equation (51b), we obtain

𝛾+u = 𝜑0, on 𝜕Ω. (54)
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that is, u satisfies the Dirichlet condition (11b). Equation (51b) and Lemma 1 with Ψ = 𝜓,Φ = 𝜑0 imply that u is a
solution of PDE (11a) and

rΩV(𝜓 − T+(𝑓, u)) − rΩW(𝜑0 − 𝛾+u) = 0. (55)

Since 𝛾+u = 𝜑0, then 𝛾+u − 𝜑0 = 0. Hence, equation (55) becomes

V(𝜓 − T+(𝑓, u)) = 0 in Ω. (56)

Applying now Lemma 2 with Ψ∗ = 𝜓 − T+(𝑓,u), then implies Ψ∗ = 0. This implies that 𝜓 = T+(𝑓, u). Thus, u
obtained from the solution of BDIE system (A1) solves the Dirichlet problem.
Item (iii) immediately follows from the equivalence between the BDIE system and the BVP. Since the Dirichlet

boundary value problems (11a) to (11b) are uniquely solvable,5, Theorem 4.3 so these are the BDIE systems (51a) to (51b).

Let us now prove the invertibility of the operator1

Theorem 5. The operator

1 ∶ H1(Ω) ×H− 1
2 (𝜕Ω) → H1(Ω) ×H

1
2 (𝜕Ω).

is invertible.

Proof. To prove the invertibility, let1
0 be the matrix operator defined by

1
0 ∶=

[
I −V
0 −

]
.

As a result of compactness properties of the operators  and 𝛾+ (cf. Corollary 1), the operator 1
0 is a compact

perturbation of operator 1. The operator 1
0 is an upper triangular matrix operator and invertibility of its diagonal

operators I ∶ H1(Ω) → H1(Ω) and  ∶ H− 1
2 (𝜕Ω) → H

1
2 (𝜕Ω) (cf. Theorem20, Section 4). This implies that

1
0 ∶ H

1(Ω) ×H− 1
2 (𝜕Ω) → H1(Ω) ×H

1
2 (𝜕Ω)

is an invertible operator. Thus,1 is a Fredholm operator with zero index. Hence, the Fredholm property and the
injectivity of the operator1, provided by item iii) of Theorem 4, imply the invertibility of operator1.

8 CONCLUSIONS

Anewparametrix for the diffusion equation in nonhomogeneousmediawith Lipschitz domain and source term inH−1(Ω)
allows us to obtain an equivalent and uniquely solvable system of BDIEs.
Hence, further investigation about the numerical advantages of using one family of parametrices over another will

follow. Now, numerical methods can be applied when the source term belongs to H−1(Ω).23-25
Further work will consist of extending the results presented in this paper to unbounded domains, nonsmooth coeffi-

cients, or other BVP problems with different boundary conditions as well as providing a localised version of the BDIEs
(A1) presented in this paper, inspired by other works,.2,13
We highlight again that analysing BDIEs for different parametrices, that is, depending on the variable coefficient a(x)

or a(y), is crucial to understand the analysis of BDIEs derived with parametrices that depend on the variable coefficient
a(x) and a(y) at the same time, as it is the case for the Stokes system.1,21
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