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Abstract 
 

The effect of mean stress is a significant factor in design for fatigue, especially under high cycle 

service conditions. The incorporation of mean stress effect in random loading fatigue problems 

using the frequency domain method is still a challenge. The problem is due to the fact that all 

cycle by cycle mean stress effects are aggregated during the Fourier transform process into a 

single zero frequency content. Artificial neural network (ANN) has great scope for non-linear 

generalization. This paper presents artificial neural network methods for including the effect of 

mean stress in the frequency domain approach for predicting fatigue damage. The materials 

considered in this work are metallic alloys. The results obtained present the ANN method as a 

viable approach to make fatigue damage predictions including the effect of mean stress. Greater 

resolution was obtained with the ANN method than with other available methods.    
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1. Introduction 

The effect of mean stress is a significant factor in design for fatigue especially under high cycle 

service conditions. Various methods such as Goodman, Gerber and Soderberg, have been 

proposed for accounting for the effect of mean stress under predictable fatigue loading 

conditions [1]. The formulars relate the applicable stress amplitude to the mean stress and the 

strength of the material. Under random loading conditions, these methods are easily 

incorporated on a cycle by cycle basis in time domain cycle counting methods, especially using 

the rainflow counting method[1].  

The incorporation of mean stress effect in random loading fatigue problems on a cycle by cycle 

basis is not yet achievable using current frequency domain spectral based methods. This 

problem is due to the fact that all cycle by cycle mean stress effects are zero frequency content 

which are all aggregated in the Fourier transform process into one content. The attempts to 

incorporate the effect of mean stress in frequency domain method have therefore focussed on 

using the global stress history mean value to account for this effect. Petrucci and Zucarrello [2] 

developed an empirical fit approach to incorporate the joined probability distribution effects of 

stress and mean stress using 45 loading signals. There has hardly been an independent rigorous 

verification of the results of using the method in the literature.  

Dirlik’s method is undoubtedly the most cited frequency domain solution for random fatigue 

problems. It did not however explicitly incorporate the effect of mean stress. The effect is 

implicitly present in the model because the spectral moments used, particularly zero spectral 

moment, incorporates the zero frequency content. Kihl and Sarkani [3] introduced a mean stress 

effect in a spectral based random fatigue analysis but this was limited to narrowband loading 

cases. Nieslony et al [4, 5] recently proposed a method which can be described as a power 

spectral transformation approach for including the effect of mean stress. This method is 

explained further in the section on theory. There have also not been an independent verification 
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of the procedure. There have been applications of ANN to other types of fatigue problems in 

the literature. Bhadeshia[6] indicated that fatigue is one of the most difficult mechanical 

properties to predict and suggested that the application of ANN could assist with establishing 

relationships between, material and loading variables, and crack propagation life. Artymiak et 

al[7] demonstrated the use ANN for the prediction of S – N curves based on a database of 

fatigue properties for steel alloys.  Pujol and Pinto[8] used ANN to develop cumulative fatigue 

damage functions based on results of experiemental tests carried out on a steel alloy.  Iacoviello 

et al [9] introduced ANN as a tool for the analysis of the effect of stress ratio on fatigue 

propagation in a duplex steel. In the realm of random loading fatigue, Kim et al [10] showed 

the possibility for ANN to be able to identify a spectral type and use this with various models 

such as Wirsching-Light[11], Zhao-Baker[12], Benasciutti-Tovo[13] and Dirlik[14] to predict 

fatigue damage. 

This paper presents an alternative approach to those reviewed in the foregoing. Artificial neural 

networks have been known to provide greater scope for non-linear generalisation and have the 

ability to deal with a large number of input variables than direct application of optimisation 

methods [15], [16], [17]. The paper presents an artificial neural network frequency based 

approach for the analysis of random loading fatigue problems including the effect of mean 

stress. The materials considered in this work are metallic alloys. The method is based on the 

selection and use of input parameters that allow the artificial neural network to recognize signals 

and generalise for the solution of the problem. The input parameters include spectral moments, 

stress history – material properties. A broad range of spectral types, material properties, fatigue 

factor conditions and mean stress ranges were considered with up to 50,000 different signals. 

Effects of different input combinations and number of signals used for training were also 

considered. 
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2. Theory  

In a previous publication [18], theoretical background covering aspects such as characterisation 

of random loading, fatigue life, type of loading, material properties, and artificial neural 

network method were highlighted. This paper summarises these aspects to provide a 

background and then adds essential details necessary to account for the effect of mean stress in 

machine learning frequency domain random fatigue loading analysis context.  

 

2.1 Characterisation of random processes and fatigue loading 

It is helpful because of a few subsequent steps that will be required to revisit the definition of 

the Fourier transform X(f) of a time domain signal x(t), which is given by equation (1).  

According to Parseval’s theorem [19] the energy under the time and frequency domains are the 

same, as expressed in equation (2).  

 

     (1) 

 

    (2) 

 

where t represents time and f represents frequency. The linearity property of Fourier transform 

is expressed as in equation (3) 

ℱ{𝑐1𝑥1(𝑡) +  𝑐2𝑥2(𝑡) } = 𝑐1𝑋1(𝑓) + 𝑐2𝑋2(𝑓)   (3) 

where  ℱ is a Fourier transform operator and c1 and c2 are constants that can be real or 

complex.  The input output relationships of random processes are more conveniently 

described using the frequency domain representation. The power spectral density (PSD) 

equation (4) describes the variation of the power content of a signal e.g. Sx, in real terms with 

frequency. 
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where )( fGx is the PSD and the symbol E is used to denote the expectation of the value in 

bracket. The value of )( fGx  used in this work was normalised with respect to the sampling 

frequency. For the composite function in equation (3) and assuming that c1 = c,  X1 = X and c2 

= 0, the PSD can be written as shown in equation (5) 

 

             (5)  

In the context of fatigue, the power input during loading into a component is related to the 

fatigue damage by parameters based on the PSD. The main parameters used are the moments 

of the PSD which are given by equation (6) .  

 

      (6) 

where mi is the i th moment of the PSD Gx(f); i = 0, 1, 2, 4 are used for fatigue loading 

characterisation. Other parameters derived from the moments such as given in equations (7) 

and (8)  

      (7) 

      (8) 

 

provide estimates for the number of upward mean crossing and the number of peaks in the 

signal per second respectively. The irregularity factor, , of the signal is given by equation (9)  

 
                    

 

    (9) 

reflects the spread of the process,     tending to a value of 0 or 1 corresponds to a broad band 

or a narrow band signal respectively. An alternative description of bandwidth characteristics of 

a signal is given by the Vanmarcke’s parameter [13]  
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2.2 Frequency domain damage prediction models 

The Miner’s linear cumulative damage rule for different fatigue loading states (Sai, Smi and ni) 

is given by equation (10) 

     (10) 

where E(D) is damage fraction, Sai, Smi and ni, in the case of stress fatigue loading analysis, are 

the amplitude, the mean stress and number of cycles representing the loading corresponding to 

state i. Ni is the number of cycles under the loading state that on its own will cause fatigue 

failure.  The life Ni is determined in terms of the fatigue properties of the material and the mean 

stress as highlighted in equations (11) and (12) 

   

        (11) 

 

     (12) 

 

where a and b are the fatigue strength and exponents values for the material based on stress 

amplitude. The parameter i  in equation (10) is the Goodman’s correction factor for 

accounting for the effect of mean stress and Su is the ultimate strength of the material. Other 

empirical relations such as Soderberg, Morrow, Gerber, Smith Watson Topper relations are also 

used to account for the effect of mean stress [1]. The Goodman’s relation which appears to have 

widespread usage is the basis of the approach used in this work. Instead of damage calculation 

based on the stress amplitude Sai, an alternative route is to use the equivalent stress amplitude 

Sa0 which from the Goodman’s relation is given by equation (13) 
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The frequency domain expression for fatigue damage prediction which includes Miner’s rule 

[20] is generally written as in equation (14)  

 

    (14) 

 

where T is the fatigue loading signal sampling time, E(P) = (m4 / m2)1/2 is the number of peaks 

in the signal per second as indicated in equation (8), S is the stress range variable, v = -1/b and 

k = (2a)-1/b and p(S) is the probability distribution function expressing the possibility of the 

occurrence of S.  Dirlik [14] in 1985 derived a probability distribution function p(S) based on 

the combination of statistical Rayleigh and Normal distributions. The parameters of the 

distribution were determined using optimisation and heuristic observations to match the form 

of the distribution with results that were obtained using rainflow counting method for 70 

different types of spectral. The form of the p(S) obtained is given in equation (15) 

 

  (15) 

 

where Z is the stress range normalised using the square root of the spectral moment m0. All 

other parameters R, Q, D1, D2 and D3 are intrinsically functions of the spectral moments mi, 

i=0,1,2 and 4. This model does not explicitly contain the effect of mean stress and there are no 

parameters in the model such as ratios of mean stress to the ultimate or yield strength.  

 

2.2.1 Mean stress effect in frequency domain fatigue analysis 

A cycle by cycle mean stress parameter is not an available option in the frequency domain 

method as highlighted in the introduction. This is based on the fact that all mean stress effects 

are lumped together in the power spectral density as the zero frequency content.   
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Petrucci and Zuccarello [2] presented a fatigue damage formula in the form shown in equation 

(16). 

   (16) 

 

The function       are also functions of the spectral 

moments mi, i=0,1,2 and 4 , the parameter 𝛾𝑝 =  𝑆𝑚𝑎𝑥/𝑆𝑢  derived from the use of the 

Goodman’s formula for accounting for the effect of mean stress. Smax is the maximum stress 

in the stress history,  and k is a fatigue material property.  

 

Nieslony et al recently presented a method for transforming a zero mean centre PSD to 

include the effect of mean stress. The transformed PSD could then be used with any spectral 

based probability distribution function such as the Dirlik’s formula [14]. The presentation was 

based in the context of use of a transfer function [21]. The transformation could also be seen 

to result from the linearity of the Fourier transform method as highlighted in equation (3) and 

the PSD based on this as in equation (5). The approach may be summarised as follows. First 

the global mean stress of the spectrum loading, Sm, is determined.  The global Goodman 

correction factor KG is then given by equation (17) 

 

𝐾𝐺 = 1/ (1 −
𝑆𝑚

𝑆𝑢
)     (17) 

  

The mean stress, 𝑆𝑚,  is then subtracted from every data point in the Sx stress history to give 

𝑆𝑥𝑜 = 𝑆𝑥 − 𝑆𝑚 , i.e thus shifting the spectrum to a global zero mean state. Denoting the 𝐺𝑥𝑜 as 

the power spectral density of the shifted signal  𝑆𝑥𝑜, the modified power spectral density 

accounting for the effect of the mean stress as in equation (5) is given by 𝐺𝑥𝑚 =  𝐾𝐺
2𝐺𝑥0 . This 
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0,1,2,4 to be used for the fatigue characterisation including the effect of mean stress. Nieslony 

also introduced other possible definitions of 𝐾𝐺 .  

This paper presents an artificial neural network frequency based approach which incorporates 

the effect of mean stress. As highlighted in the introduction, the method is based on the 

selection and use of input parameters that allows the artificial neural network to recognize 

signals and generalize for the solution of random loading fatigue problems that include the 

effect of mean stress.  Various ANN models were developed and tested. Table 1 gives a 

summary of the inputs and output of the main ANN models considered. The additional 

parameters that were introduced as inputs during the development are given in equations (18) 

and following 

𝛼𝑚 = (1 −
𝑆𝑚

𝑆𝑢
)    for  𝑆𝑚 > 0    (18a) 

𝛼𝑚 = 1   for 𝑆𝑚 < 0       (18b) 

and   𝛼𝑐 =     
𝑆𝑚

𝑆𝑢
⁄ ;   𝛾𝑛 =  

𝑆𝑚𝑖𝑛
𝑆𝑢

⁄ ; where 𝑆𝑚𝑖𝑛 is the minimum value of Sx;  𝛾𝑝 was 

previously introduced as part of the Petrucci Zuccarello’s method description.  

 

As to be expected the fatigue properties of the material and the spectral moments 𝑚𝑖, i = 0,1,2,4 

were essential inputs for fatigue analysis. The Goodman parameter 𝛼𝑚 was also essential to 

account for the mean stress effect. Further exploration showed that the complementary 

parameter  𝛼𝑐 improved the ability of the ANN to make predictions with greater accuracy and 

consistency. The parameters 𝛾𝑝 and 𝛾𝑛 were also found to be helpful in reducing the statistical 

spread of the predictions, in other words, they improved the precision of the prediction.  The 

moments 𝑚𝑜𝑖, i = 0,1,2,4 and the KG  parameter were considered in order to implement the 

Nieslony’s transformation approach [4] for the modification of Dirlik’s formula [14]. Of course 

the Dirlik formula was not used in the ANN approach. The logarithmic value of the damage 
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E(D) was used as the output target value. This helped to reduce the impact of the spread of the 

damage values which was different by several orders. Data leading to damage values lower than 

10-6 were rejected in order to avoid dilution of the training process with insignificant 

contributions to the training.  

 

 Although it has been suggested that half the sum of input and output neuron [22], [23] is 

adequate as the number to be set for the hidden layer neurons, experimentation with this number 

in this work did not show good prediction. The number of hidden layer neurons tested ranged 

from 10 to 80 and 20 was found to be adequate. The recommendation to use about 20 times the 

total number of neurons [23] provided some guidance for the number of signals constructed for 

the ANN training and testing in this study. In order to include extreme conditions, the numbers 

of signals developed and used ranged from 1000 to 50,000.  

 

2.3 Machine learning artificial neural network implementation 

As in previous work [18], three layers of neuron which is generally accepted as sufficient to 

represent any non-linear function approximation was used.  Each of the hidden and output 

layer neuron is connected to the neurons in the preceding layer. The preceding layer to the 

output layer is the hidden layer and correspondingly the preceding layer to the hidden layer is 

the input layer. The strengths of the connections between neurons are described as weights. 

 

Before an ANN can be used, it needs to be trained on data for which the inputs and the 

corresponding target outputs are known. The training process used in this work was based on 

the feedforward – backpropagation multilayer perceptron (MLP) method. The training proceeds 

by feeding known inputs into the network and obtaining its corresponding predictions for the 

output.  In this process, each internal and output neuron receives a weighted sum of the input 

from the preceding neurons. The output from each neuron is transformed by an activation 
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function before being used as an input for the next layer of neurons. The sigmoid function which 

is numerically desirable in the perceptron model as it ensures that all values passing to the next 

neuron lie in the range [0,1] was used between the input and hiding layer. The parameters used 

in the ANN which consistently gave good prediction in a previous work can be found in 

reference [18].  The output layer used a linear transfer function, to ensure that erroneous outputs 

were easy to identify. 

 

The output from the ANN will not in general match the known output corresponding to the 

inputs used from the data set, at least in the first feedforward through process. The mis-match 

error, usually the mean square error value, is then used in the backpropagation process to adjust 

or modify the weights so that better prediction can be made by the network in the next 

feedforward iteration process. A number of iterations of feedforward – backpropagation are 

required before the weights become useful and able to make a right prediction on the current 

data and subsequently on a previously unseen input data. Various backpropagation algorithms 

have been devised for the training of networks. One of the methods used in this analysis was 

based on the +Rprop algorithm which is known to have excellent convergence characteristics 

[15], [24]. The parameters required for the optimal convergence of the training in this approach 

has been identified for most problems and are not dependent on trial and error. For research 

flexibility purposes, the implementation of the ANN in this work was carried out using a set of 

in house routines developed in a MATLAB [25] environment. The Levenberg Marquart 

backpropagation method in MATLAB which generates equally good prediction as in the in-

house programs but faster was later used.  

 

2.4 Overall procedure 

The description of the overall procedure used in this work is very similar to that presented with 

a flowchart in Durodola et al [18]. The analysis starts with the composition of trial space of 
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many different spectral forms as illustrated in Figure 1. Twelve different forms of spectra 

including those used by Dirlik, 1985 [14], Tovo [26] and Benasciutti and Tovo [13] as 

illustrated in Figure 1 were used in this study. The frequency values q1, q2,  fi  , i = 1,6;  spectral 

amplitudes di, i=1,3 and shape modification parameters d4 and d5 were chosen using the Latin 

Hypercube Sampling (LHS) [27] experimental design approach [28]. This facilitates maximum 

coverage of the fatigue loading space. The ranges of the material properties, i.e. the ultimate 

tensile strength, Su, and fatigue strength and fatigue strength exponents a and b; and the limits 

of the spectral moment values mi, i = 0,1,2,4 considered in the work are highlighted in Table 2.   

As highlighted in the foregoing, different sample sizes ranging from 1000 to 50000 were 

analysed in the course of the study.  The materials considered in this work are metallic alloys. 

Fatigue material properties Su, a and b were sampled in the range 200 – 2000 MPa, (1.17 – 

13.61) Su and -0.0850 to -0.333 respectively.  The range for the strength accommodates most 

alloys known from copper to maraging steels; both the fatigue slope b and strength coefficient 

a cover all typical or plausible values [2] which are dependent on factors such as size, surface 

finish, type of loading and notch factor.  

For every combination of spectra parameters, the corresponding time domain signal for the 

selected spectrum was generated using equation (19) [29],  

     (19) 

where n is the sample number, N is the number of discretisation of the spectrum (PSD), with 

fkf k  )5.0( and nk ,  are mutually independent random phase angles distributed 

uniformly over the range 0 to 2. The maximum frequency considered for the fatigue data in 

the study was 200 Hz. The sampling frequency used varied from the corresponding Nyquist 

frequency of 400 Hz to 6.40 kHz. The higher sampling frequencies were considered in the light 

of recent findings  [30]. Up to 5000 discretisation of the frequency range and 32000 time steps 
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were considered. In order to introduce a mean stress effect, the signal was then randomly shifted 

along the stress ordinate so that in general 𝑆𝑚   ≠   0.  The final x(t) obtained was then scaled 

so that the highest peak or deepest valley lied within 5 to 83% of the ultimate tensile strength 

value. The mean stress values incorporated ranged from -0.6 to 0.6Su. This scaling reduced the 

possibility of any of the time data leading to extremely low values of oscillation before final 

fatigue damage occurs. This process provided a pool of input output for the training of the ANN 

described in section 2.3. The signals were analysed using ANN structures described in the 

foregoing as well as in house rainflow counting routine. The analysis used the material fatigue 

properties to determine corresponding damage intensity (i.e. damage per second) for each of 

the signals generated.  

 

3.  Results  

This section presents the results obtained in the process of developing the ANN and 

demonstrates the levels of accuracy that was obtained in comparison with the use of the rainflow 

counting method directly to predict damage. The level of accuracy obtainable is first 

demonstrated and then comparison is made with the results of the Dirlik’s method and Dirlik’s 

method with transformed PSD [4]. The effects of varying the numbers of signals used in the 

training of the ANN are also highlighted. As in the previous work [18], several spectrum shapes 

and an extensive range of material property values were considered. It is helpful to highlight 

the three levels of process involved in generating the results obtained. These are called ‘trial’, 

‘batch’ and ‘signal’ in the description of the analysis and results. ‘Trial’ was the highest level, 

a trial consisted of a batch or batches of tests, each batch contained a number of signals. A batch 

normally contained many signals and a trial consisted of many batches. The reason for these 

levels of analysis is to try to investigate the consistency of predictions from many independent 

studies. Consistency of results in the broad scope and instances of data demonstrates that the 

generalisation of the ANNs developed are statistically stable in terms of predictions. 
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 3.1  ANN prediction of damage including effect of mean stress  

The aim of this section is to demonstrate the agreement of the ANN prediction with rainflow 

counting method. The results shown here are based on an ANN4, see Table 1, developed using 

50000 stress histories all generally including  𝑆𝑚   ≠   0 states that were randomly effected. 

Two typical stress histories with different mean stress levels are shown in Figures 2(a) and (b). 

Figures 2(c) and d) show that the sampling used in the investigations covered narrow to 

broadband signals as well as values of the fatigue property a comprehensively. The value of b 

also cover the full range of -0.333 to -0.085 comprehenesively too. The development used 70, 

15 and 15% proportions of the stress history population for training, validation and testing 

respectively. Figures 3 (a) – (d) show the correlation between the logarithmic values of damage 

predicted using ANN4 and rainflow counting results for training, validation, testing and all 

signals combined respectively. As can be seen in the results, a broad range of values of damage 

fraction between 10-25 and 1 was tested in each case. The inputs to the network  included, the 

four spectral moments mi, i = 0, 1, 2 and 4; three material properties a, b and Su and four other 

parameters αm,  αc, γn and γp. The output was the logarithm of the damage value E(D). The ANN 

developed on this bases was then used to analyse new set of cases generated data. One trial was 

used which contained two batches and each batch contained 500 signals or patterns. Miner’s 

rule with rainflow counting was used to analyse the same stress histories and materials. Figures 

4(a) and (b) show the plot of the results from both ANN and rainflow counting method for the 

two batches. The correlation and coefficient of fit displayed on the plots are 0.8544 and 0.9804; 

and 0.9923 and 0.9945 respectively.  Tables 3(a) and (b) also show the comparison of the 

logarithmic value of the damage for 10 signals for each of the two batches for the ANN and the 

rainflow counting methods.  The results can be seen in both the plots and tables to be quite close 

to the rainflow counting method results. 
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3.2 Comparison of prediction with other methods 

This section compares the performance of the ANN4 prediction with Dirlik’s method and 

Dirlik’s method with the power spectral density modified by using the Goodman’s relation. The 

Goodman’s factor was based on global mean stress as highlighted in the foregoing. ANN4 was 

used to analyse freshly generated stress histories. Ten trials were carried out, with each 

containing ten batches of tests and each batch contained 500 signals or patterns. The ten trials 

and ten batches allowed 100 correlation tests to be carried out for the comparisons. This process 

led to the generation of 50,000 signals for testing that were independent of the original 50,000 

that were used for training and validation of the neural network. The coefficient of fit between 

rainflow counting and predicted results were determined. Figures 5(a) to (c) gives plot of results 

for one random trial and batch. As can be seen in the plots the results from ANN, Dirlik and 

modified Dirlik showed good to excellent correlation and coefficients of fit with the rainflow 

counting method. The differences lied primarily in the scatter of the results which are described 

by the correlation and the coefficient of fit for each methods. Figures 6(a) to (c) give the 

probability and cumulative probability distribution plots for the coefficient of fits for all the 100 

independent batches tested. The probability distribution plot for the coefficient of fit shows that 

the ANN values varied between 0.90 and 1.03. The corresponding values for the Dirlik and 

modified Dirlik were 0.74 and 1.11, and 0.97 and 1.19 respectively. The unmodified Dirlik 

method showed the greatest spread, followed by the modified Dirlik and ANN showing the 

lowest spread. Dirlik’s method under predicts by 30% in some cases and over predicts by 11% 

in some cases. ANN under predicts by 10% in some cases and over predicts by 3% in some 

cases. Modified Dirlik under predicted by 3% in some cases and over predicts by 19%. The 

limits indicated here relate to the 10 trials used for this results.  Further trials were carried out 

as indicated in section 3.3. As in the case of section 3.1, Tables 4(a) and (b) show the 

comparison of the logarithmic value of the damage for 10 signals for each of two batches of 

500 signals or patterns using ANN4 and rainflow counting, Dirlik and modified Dirlik methods.  
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The results can be seen in the tables to be quite close to the rainflow counting method results 

especially for the ANN4. For numerical comparison purposes, Tables 5(a) and (b) give the 

coefficients of fit for two trials out of the 10 trials used in total, for the different damage 

prediction methods. The predictions are generally very good to excellent especially for the 

ANN4 method.  

 
3.3 Effect of input characteristics  

The effect of input parameters on the performance of prediction is analysed in this section. The 

input parameters are those characterising ANN1, ANN2, ANN3 and ANN5 having presented 

results for ANN4 in sections 3.1 and 3.2. Ten trials were carried for the analysis of each of the 

ANN method, each trial consisted of ten batches and each batch consisted of 500 signals as in 

the case of section 3.2. Also as in that case this process led to the generation of independent 

50,000 signals for each of the methods tested. Figures 7 to 10 give the probability and 

cumulative probability distribution plots for the coefficient of fits for the 100 independent 

batches tested in each case. As can be seen in the plots, the unmodified Dirlik showed the most 

spread in the coefficient of fit for predictions. It can be seen that ANN1 which is based on 

minimal information of the mean stress effect showed good performance. There was 

progressive improvement in the results obtained as the number of inputs increased in ANN2 

and ANN3. ANN5 which is based on the transformation of the spectral density also showed 

very good performance but appears to lead to occasionally unexpectedly high deviations. This 

trait also shows in the modified Dirlik method.   

 

3.4 Effect of number of signals used for training the ANN  

The trials in this case were based on the ANN4 network. The numbers of patterns used for the 

training of the network were 500, 1000, 2000, 5000, 10000, 20000 and 50000 as indicated in 

Table 5. As in section 3.1, 70, 15 and 15% proportion of the stress history population were used 

for training, validation and testing respectively for the development of the networks. The 
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networks were then tested using one trial each; each trial consisted of ten batches with each 

batch consisting of 500 signals or patterns. The mean coefficient of fit and the root mean square 

error for the ten batches for the different predictions methods are shown in Table 5(a). The 

mean values appear very good for all cases but values of the root mean square errors can be 

seen to be high for the low number of signal cases.  The standard deviation of the coefficient of 

fit and of the root mean square error values shown in Table 5(b) also indicate the general 

improvement in trend with increasing number of signals used for training the network.  

4. Discussion 

Although ANN1 type performed excellently well for the cases of zero mean stress effect [18] 

there was no expectation for it to give good performance in the case that mean stress effect is 

present. Preliminary investigation with a large training data set 50000 with ANN1 showed 

direct correlation between prediction and rainflow counting results. The resolution was 

however the general issue. The difference between predicted and rainflow result derived from 

the coefficients of fit in some cases were as high 30%. ANN2 performed much better with 

possible percentage difference of about 11%. The plots in Figures 6 to 10 show that ANN4 was 

the most consistent in yielding a maximum difference of 10%. This led to the acceptance of the 

ANN4 as the best model. Although ANN5 based on modified spectral moments showed 

generally good performance, it was found to be susceptible to occasional significant difference 

between predicted and target values. This issue was also found with the modified Dirlik method.  

 

One of the known issues that could happen in ANN modelling is the possibility of over fitting 

during learning. In this circumstance the ANN is able to give very accurate predictions with 

seen data but will be incapable of the same performance on unseen data. The problem is straight 

forward to detect. When new unseen data is used to test an ANN with over fitting learning 

defect, the prediction from the network will deviate significantly from expectation. As  can been 

seen in section 3, several new independent trials with large population of signal of size 50000 
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in many cases were used in this work to verify the ANNs developed. No over fitting learning 

issues were detected.  

 

The results from the number of signals used for training showed that 5000 data sets upwards 

gave about the same level of standard deviation in the coefficient of fit. It was also found that 

the performance convergence characteristics during training were more consistent when large 

data sets were used. From Figure 6, 90% of the ANN4 predictions lied between a factor of  94% 

and 101% of the rainflow counting target values. Also from the figure, it can be seen that 100% 

of the predictions was between 90% and 103% of the rainflow counting results. In the case of 

modified Dirlik an over prediction of 20 to 30% is possible. In general, the ANN approach 

developed herein provides a new viable avenue for random fatigue damage prediction even for 

the cases where mean stress effect is present. 

 
It is helpful to highlight the limits of the analysis carried out in this paper. The spectral and 

material properties considered have been limited to those practically feasible values shown in 

Table 1. The limits can however be changed to cover any application that may be found to fall 

out of the existing scope. An ANN model is usually only used to solve similar problems as 

those used for its training.  

5. Conclusions 

Artificial neural network approach has been presented as a new viable spectral based method 

for the analysis of random fatigue loading problems including the effect of mean stress. 

Excellent correlation factors and coefficients of fit were obtained when compared to the 

rainflow counting method. The method yields better agreement and resolution with time domain 

results compared to recent frequency domain methods that include the effect of mean stress. 

The correction required for ANN4 to match rainflow counting is less than 6% with a probability 

confidence level of 90%. Existing methods can deviate by up to 33% from rainflow counting 



19 
 

results. Future work will be considering performance of ANNs on non Gaussian random fatigue 

loading signals.  
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ANN 
type

No of 
inputs

Input output

ANN1 7 m0, m1 , m2, m4, a, b, Su

Log[E(D)]

ANN2 8 m0, m1 , m2, m4, a, b, Su,𝛼𝑚

ANN3 9 m0, m1 , m2, m4, a, b, Su, 𝛼𝑚 , 𝛼𝑐 ,

ANN4 11 m0, m1 , m2, m4, a, b, Su, 𝛼𝑚 , 𝛼𝑐 , 𝛾𝑝, 𝛾𝑛

ANN5 8 mo0, m01 , m02, mo4, a, b, Su,𝐾𝐺

Prop Su(MPa) a (MPa) b m0 m1 m2 m4

Min 200 261 -0.333 1.86E+01 6.71E+02 1.49E+04 2.85E+06

Max 2000 26543 -0.085 4.13E+05 3.89E+07 5.27E+09 1.07E+14

Table 1

Table 2



Signal RFC ANN4 Signal RFC ANN4

1 -1.6235 -1.6273 11 -0.5320 -0.5546

2 -4.2077 -4.1976 12 -4.3904 -4.4466

3 -1.2419 -1.2246 13 -1.2854 -1.3617

4 -3.4617 -3.4271 14 -2.0673 -2.0033

5 -2.9667 -2.9542 15 -2.8691 -2.8299

6 -4.8385 -5.0301 16 -2.1123 -2.0044

7 -3.6356 -3.5645 17 -1.0356 -1.0150

8 -2.7532 -2.7815 18 -2.0217 -1.9996

9 -5.3277 -5.1328 19 -3.4093 -3.5487

10 -3.5928 -3.6411 20 -4.1959 -3.7849

Signal RFC ANN4 Signal RFC ANN4

1 -1.3476 -1.3517 11 -1.3832 -1.4041

2 -3.0961 -3.0989 12 -3.6364 -3.6554

3 -4.9092 -4.9056 13 -4.2279 -4.1279

4 -3.9604 -3.8810 14 -1.8428 -1.8204

5 -3.9281 -3.9611 15 -2.3793 -2.4285

6 -2.4174 -2.5214 16 -1.6329 -1.6657

7 -1.9736 -1.9532 17 -4.7976 -4.7679

8 -0.4431 -0.4798 18 -2.6371 -2.6608

9 -4.1736 -4.2710 19 -2.2660 -2.2759

10 -1.3544 -1.3911 20 -3.5004 -3.5154

(a)

Table 3

(b)



Signal RFC ANN4 Dirlik Dirlik(M)

1 -3.7915 -3.7785 -3.6619 -3.6931

2 -3.7202 -3.6828 -3.7382 -3.5634

3 -1.6697 -1.6793 -1.5527 -1.5836

4 -4.3951 -4.4030 -4.3156 -4.1834

5 -2.4100 -2.3833 -1.3760 -2.3865

6 -1.2419 -1.1878 -1.1647 -1.1661

7 -5.0037 -4.8730 -4.4391 -4.5923

8 -5.1035 -5.0605 -4.8552 -4.9499

9 -4.4168 -4.3236 -3.0497 -4.2218

10 -3.2446 -3.2332 -3.0723 -2.8670

Signal RFC ANN4 Dirlik Dirlik(M)

1 -5.1683 -5.1402 -3.7306 -5.9750

2 -3.3922 -3.4292 -2.8478 -3.2523

3 -2.7254 -2.6775 -2.6843 -2.6212

4 -5.3526 -5.6698 -5.1473 -5.1473

5 -2.2710 -2.3523 -2.1428 -2.1597

6 -1.5106 -1.3653 -1.7361 -1.3976

7 -5.1224 -5.0853 -2.2117 -4.9353

8 -5.3422 -5.3669 -4.2380 -5.1366

9 -5.9307 -5.9963 -5.8906 -5.8596

10 -3.6099 -3.5784 -3.4930 -3.4510

(a)

(b)

Table 4



Batch
Coefficient of fit RMS error

ANN4 Dirlik Dirlik(M) ANN4 Dirlik Dirlik(M)

1 0.9891 0.9093 1.0882 0.0004 0.0023 0.0011

2 0.9622 0.7992 1.1083 0.0009 0.0036 0.0010

3 0.9448 0.9646 1.0435 0.0008 0.0017 0.0019

4 0.9778 0.9683 1.0975 0.0006 0.0015 0.0010

5 0.9807 0.9361 1.0975 0.0003 0.0012 0.0006

6 0.9567 1.0046 1.1393 0.0009 0.0007 0.0004

7 1.0149 0.9550 1.1352 -0.0001 0.0013 0.0001

8 0.9633 0.8967 1.0534 0.0005 0.0012 0.0016

9 0.9776 0.9297 1.0977 0.0005 0.0018 0.0008

10 0.9199 0.7937 1.0473 0.0014 0.0046 0.0020

Mean 0.9687 0.9157 1.0908 0.0006 0.0020 0.0011

Std 0.0259 0.0700 0.0338 0.0004 0.0012 0.0006

Batch
Coefficient of fit RMS error

ANN4 Dirlik Dirlik(M) ANN4 Dirlik Dirlik(M)

1 0.9650 0.8805 1.0676 0.0115 0.0162 0.0121

2 0.9744 0.9422 1.0765 0.0098 0.0166 0.0112

3 0.9911 0.9456 1.1409 0.0132 0.0273 0.0225

4 0.9734 0.9377 1.0980 0.0100 0.0148 0.0135

5 0.9778 0.9147 1.0998 0.0092 0.0159 0.0143

6 0.9876 0.9061 1.1226 0.0149 0.0231 0.0223

7 0.9571 0.8226 1.0611 0.0121 0.0150 0.0139

8 0.9773 0.8772 1.1309 0.0133 0.0309 0.0283

9 0.9609 0.8447 1.1105 0.0099 0.0185 0.0147

10 0.9607 0.8935 1.1107 0.0112 0.0161 0.0146

Mean 0.9725 0.8965 1.1018 0.0115 0.0194 0.0167

Std 0.0115 0.0414 0.0268 0.0019 0.0057 0.0056

(a)

(b)Table 5



Signals ANN4 Dirlik Dirlik(M) ANN4 Dirlik Dirlik(M)

500 1.1582 0.9478 1.1224 0.0663 0.0198 0.0174

1000 0.9506 0.9220 1.0937 0.0182 0.0207 0.0174

2000 1.0425 0.9409 1.1150 0.0242 0.0190 0.0172

5000 1.0005 0.9272 1.1103 0.0145 0.0196 0.0166

10000 0.9758 0.8933 1.0943 0.0108 0.0164 0.0143

20000 0.9661 0.8942 1.0841 0.0112 0.0171 0.0153

50000 0.9729 0.9261 1.1030 0.0117 0.0193 0.0173

Signals ANN4 Dirlik Dirlik(M) ANN4 Dirlik Dirlik(M)

500 0.2024 0.0267 0.0327 0.0451 0.0051 0.0039

1000 0.0358 0.0523 0.0356 0.0044 0.0073 0.0037

2000 0.0419 0.0644 0.0262 0.0099 0.0041 0.0042

5000 0.0265 0.0412 0.0276 0.0024 0.0030 0.0031

10000 0.0287 0.0747 0.0322 0.0032 0.0035 0.0025

20000 0.0220 0.0747 0.0392 0.0024 0.0047 0.0041

50000 0.0272 0.0788 0.0404 0.0046 0.0036 0.0041

(a)

(b)

Table 3


