

Oxford Brookes University – Research Archive and Digital Asset Repository (RADAR)

Dangour, A, Whitehouse, P, Rafferty, K, Mitchell, S and Smith, L B-Vitamins and fatty acids in the prevention and treatment of Alzheimer's disease and dementia: A systematic review.

Dangour, A, Whitehouse, P, Rafferty, K, Mitchell, S and Smith, L (2010) B-Vitamins and fatty acids in the prevention and treatment of Alzheimer's disease and dementia: A systematic review. Journal of Alzheimer's Disease, 22 (1). pp. 205 - 224. doi: 10.3233/JAD2010090940

This version is available: <u>http://radar.brookes.ac.uk/radar/items/50b09cb8-78a8-9ea9-08a0-846466942db3/1/</u>

Available in the RADAR: November 2010

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.

This document is the postprint version of the journal article. Some differences between the published version and this version may remain and you are advised to consult the published version if you wish to cite from it.

Title

B-vitamins and fatty acids in the prevention and treatment of Alzheimer's disease and dementia: a systematic review

Authors

Alan D. Dangour Peter J. Whitehouse Kevin Rafferty Stephen A. Mitchell Lesley Smith Sophie Hawkesworth Bruno Vellas

Affiliations

Nutrition and Public Health Intervention Research Unit, Department of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK (ADD and SH) Case Western Reserve University, Fairhill Center, Cleveland, USA (PJW) Nutricia, Liverpool, UK (KR) Abacus International, Oxfordshire, UK (SM) School of Health and Social Care, Oxford Brookes University, Marston, UK (LS) INSERM U 558, Department of Geriatrics, CHU Toulouse, Purpan University Hospital, Toulouse, France (BV)

Running title

Effects of dietary factors on dementia

Corresponding author

Alan D Dangour Nutrition and Public Health Intervention Research Unit London School of Hygiene & Tropical Medicine Keppel Street London WC1E 7HT, UK Tel: 020 7958 8133 Email: <u>alan.dangour@lshtm.ac.uk</u>

ABSTRACT

Background

The increasing worldwide prevalence of dementia is a major public health concern. Findings from some epidemiological studies suggest that diet and nutrition may be important modifiable risk factors for development of dementia.

Objective

To systematically evaluate the strength of the available evidence of an association of dietary factors with dementia including Alzheimer's disease.

Methods

We systematically searched relevant publication databases and hand-searched bibliographies up to end July 2007. We included prospective cohort studies which evaluated the association of nutrient levels with the risk of developing dementia, and randomized intervention studies examining the treatment effect of nutrient supplementation on cognitive function.

Results

One hundred and sixty studies comprising ninety one prospective cohort studies and sixty nine intervention studies met the pre-specified inclusion criteria. Of these, thirty-three studies (19 cohort and 14 randomised controlled trials) investigated the effects of folate, B-vitamins and levels of homocysteine (a biomarker modifiable through B-vitamin supplementation) or fish/fatty acids and are the focus of the present report. Some observational cohort studies indicated that higher dietary intake or serum levels of folate and fatty acid/fish and low serum levels of homocysteine were associated with a reduced risk of incident AD and dementia, while other studies reported no association. The results of intervention studies examining the effects of folic acid or fatty acid supplementation on cognitive function were inconsistent.

Conclusions

Available evidence is insufficient to draw definitive conclusions on the association of B vitamins and fatty acids with cognitive decline or dementia, and further long-term trials are required.

Key words

Dementia, Alzheimer's disease, nutrition, Vitamin B, folate, fatty acids

INTRODUCTION

Alzheimer's disease (AD) is the leading cause of dementia in later life and manifests as a progressive, degenerative brain disorder resulting in cognitive and behavioral decline and functional and physical dependency. The prevalence of severe cognitive impairment is projected to quadruple from current levels to 81 million worldwide by 2040 [1], and treatment of dementia imposes a significant burden on patients, caregivers and healthcare systems worldwide [2, 3]. AD is a heterogeneous condition at the genetic, neurobiological and clinical levels and no specific marker has been identified that qualitatively distinguishes AD from "normal" aging processes.

At present, pharmacological therapies are not able to halt progression of dementia and only produce minimal symptomatic cognitive improvements for some patients [4-6]. Consequently there is an increasing interest in efforts to identify modifiable risk factors that may delay or prevent the risk of cognitive decline or dementia. These efforts recognize that many factors can promote brain health including maintenance of cognitive and social activity as well as physical exercise and healthy dietary practices [7-9].

Nutritional intake can directly influence the availability of nutrients to the brain. Specific dietary nutrients may be used for membrane and synapse formation and neurotransmitter production [10]. There is increasing evidence that nutrients stimulate neural plasticity and ameliorate neurodegenerative processes in animal models [10]. Diet and nutrition may be important modifiable risk factors in the cause and prevention of cognitive decline and functional impairment [10-14]. The development of dementia may in part be a consequence of exposure to, or low intake of, particular nutrients over several decades, beginning in middle age or late adult life.

The aim of this systematic review was to determine the strength of the available evidence that serum nutrient levels, dietary consumption or nutritional supplementation with nutrients were associated with the primary prevention or treatment of dementia. Our systematic search included a large range of nutrients; in this review we report on folate (either as folate in food or serum or as folic acid dietary supplements) with or without other B-group vitamins, serum homocysteine concentration, polyunsaturated fatty acids [PUFA] and fish as these nutrient/food groups have been highlighted as potentially important in previous reviews on nutrition and cognitive function [12-16].

MATERIALS AND METHODS

Research Design and Methods

The present report forms part of the findings of a large systematic search that assessed the strength of evidence linking a large number of nutrients with the treatment and prevention of dementia and AD [17]. The review has been reported according to the recent Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines [18].

Identification and retrieval of studies

Potentially relevant studies were identified by searching the following electronic databases: PubMed, Embase and Cochrane Library, accessed July 2007. Search terms used included both Medical Subject Headings (MeSH) and free text terms. Neurocognitive search terms included "Alzheimer's disease", "dementia", "cognitive decline" and "cognitive impairment". Nutrient search terms included the common and chemical names for the dietary factors of interest. The neurocognitive and nutrient search terms were combined with a search strategy for identifying randomised controlled trials (RCTs), non-controlled intervention studies and prospective cohort studies (see **Web Appendix 1** for full list of search terms). Bibliographies of identified relevant publications and previously published systematic and Cochrane review articles were handsearched for further references.

Study selection criteria, data extraction and outcome measures

Studies were eligible for inclusion if they were reports of randomized or non-randomized clinical trials or prospective cohort studies, where cognitive function was measured at both baseline and follow up. Case-control studies, cross-sectional studies or studies that provided only cross-sectional correlation data were excluded from the present review due to the various sources of bias in these study designs. In addition to selection bias, case-control studies are susceptible to recall bias, which may occur when trying to ascertain past eating habits [19]. Cross sectional studies only measure association not causation [20]. Studies examining the effects of both single and multi-nutrient status or supplementation were included in the review. No other restrictions were placed

on studies with regard to year of publication or language of publication (providing an English abstract was available).

Study participants were healthy older people or people with cognitive impairment/decline or any type of dementia (including vascular dementia and AD), regardless of nutritional status. In these studies, dementia or AD diagnosis was generally confirmed using commonly accepted criteria such as those of the International Classification of Diseases (ICD-10) [21], the Diagnostic and Statistical Manual of Mental Disorders (DSM) [22] and the National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer's disease and Related Disorders Association (NINCDS-ADRDA) [23]. Mild cognitive impairment (MCI) was generally diagnosed using clinical criteria [24]. Cognitive function was assessed using a large number of different psychometric tests.

This systematic review reports on the following nutrition-related exposures: single nutrients (folate/folic acid, other B-group vitamins, fatty acids), simple nutrient combinations (folic acid with other B-group vitamins), levels of homocysteine, and fish consumption (dietary source of the n-3 polyunsaturated fatty acids, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA)). These nutrient groups were specifically selected as they have been highlighted as potentially important in previous reviews [12-16]. The relevant outcome measures in this review were incident dementia or AD in cohort studies, and change in cognitive performance in intervention studies. Studies focusing on MCI exceeded the scope of the present review. It is of note that, while a relatively large number of reports on the prevention or treatment of dementia/AD with vitamin B12 were identified in the initial phase of the systematic review, the majority were excluded as they were case series/studies and were not a relevant study type for inclusion in the present review.

Following the identification of potentially relevant studies based on their title and abstract, full articles were obtained and evaluated by one researcher. A second independent assessor verified inclusion/ exclusion decisions. Disputes as to eligibility were referred to the author panel. Study

data were extracted by one member of the study team (SAM) and checked by a second member (SH).

Quality assessment

The methodological quality of RCTs was assessed using Cochrane Collaboration guidelines on randomization (method of generation and concealment of allocation), masking of treatment allocation and loss to follow-up [25].

RESULTS

Overall search findings

In total, 7,796 references were identified by the systematic literature search of which 7,543 were excluded on examination of their titles and abstracts. The full reports of 253 publications were assessed and of these 110 papers were excluded (see **Web Appendix 2**). Hand searching indentified a further 17 references and in total 160 papers met the inclusion criteria (**Figure 1**).

The present review is restricted to thirty-three studies that reported on folate, B-vitamins, homocysteine levels or fish/fatty acids. Results for other nutrients studied (antioxidants, dietary patterns, multivitamins) are not presented here. Of the 33 included papers, 19 were cohort studies including 11 on folate, other B-group vitamins and/or homocysteine [26-36] and eight on fish, DHA or EPA [37-44]. The remaining 14 were randomised controlled trials (RCTs) including ten on folic acid with or without other B-group vitamins [45-54], and four on mixed fatty acids [55-58].

Folate and other B-vitamins

Ten cohort studies (**Table 1**) evaluated the association of folate and other B-vitamins in cognitively intact or impaired aging participants with incident AD or dementia over a 3–9 year follow-up period [26-28, 30-36]. Only one study considered folate only [31], nine included vitamin B-12 [26-28, 30, 32-36] and four included vitamin B-6 [27, 30, 32, 35] in their assessment. Sample sizes ranged from 93 to 1405 participants. Three of the studies reported dietary intake (including supplement use) [27, 30, 32] and seven examined nutrient concentrations in blood samples [26, 28, 31, 33-36]. The incidence rates of AD or dementia were compared between individuals based on their folate and B-vitamin intake or their blood concentrations at enrollment into the study. Two out of the three studies which considered dietary intake reported a significantly decreased risk of developing incident AD with increased folate consumption [27, 30], one of which also observed the same association with vitamin B-6 consumption [27]. There was no association between dietary vitamin B12 consumption and incident AD or dementia [27, 30, 32].

One study reporting serum folate found that low folate concentrations increased the risk of developing dementia and AD [33], whilst a second reported an increased risk of conversion from mild cognitive impairment to dementia for individuals with low serum folate [34]. The remaining five studies reported no association between blood folate levels at enrollment and the risk of developing AD or dementia [26, 28, 31, 35, 36]. One study reported an increased risk of cognitive impairment (including dementia and cognitively impaired but not demented individuals) with increased levels of plasma vitamin B-12 [28]; the remaining five studies found no association between vitamin B-12 and risk of dementia or AD [26, 33-36], although one of these did report a combined effect of low serum vitamin B-12 together with low folate and increased risk of AD and dementia [36].

Four RCTs (**Table 2**) investigated the effect of folic acid supplementation alone, on cognitive function [45, 46, 48, 52]. The method used for randomization of participants was adequately reported in two studies [46, 52] and unclear in the remaining studies [45, 48]. Study groups were comparable at baseline and masking was adequately addressed in all studies. Three of the studies reported that folic acid supplementation resulted in a significant improvement in memory and cognitive function for some of the outcomes studied [45, 46, 48], although one also reported a decline in one cognitive domain [45].

A further six RCTs (Table 2) examined the effect of supplementation of folic acid in combination with other B-vitamins on cognitive function [47, 49-51, 53, 54]. The method used for randomization was adequate in four studies, [49, 50, 53, 54] unclear in one study [51] and inadequate in the remaining study [47]. The method used for masking was adequate in three [50, 53, 54] and unclear in three studies [47, 49, 51]. Study groups were comparable at baseline in five of six studies [47, 49, 50, 53, 54] and not reported in the remaining study [51]. None of the trials reported increased cognitive performance following supplementation with folic acid in combination with other B-vitamins and three trials reported a trend for increased performance or slower decline in the placebo compared to vitamin groups [47, 49, 50].

Homocysteine

Five cohort studies (Table 1) reported data on the relationship between levels of serum homocysteine and development of incident dementia and/or AD [26, 28, 29, 33, 35]. Four studies found a positive association between blood concentrations of homocysteine and incidence of cognitive impairment [26, 28, 33, 35], although in one the association was only apparent in the younger age group (mean age 60y) [26].

Fish and Fatty acids

Eight cohort studies (**Table 3**) examined the effects of n-3 fatty acids on the incidence of dementia and AD [37-44], seven of which assessed dietary intake of fish and/or general PUFAs [37, 39-44], one study also assessed serum concentrations of DHA [41] and a final study reported only serum DHA, EPA and n-3 PUFA [38]. One study reported a marginal reduced risk of dementia and AD with increased fish consumption [42], and a second study reported a reduced risk of AD with increased total n-3 fatty acids, DHA and fish consumption [40]. The remaining dietary studies reported no association between n-3 fatty acid intake and risk of dementia and/or AD with the exception of a reduced risk of dementia associated with moderate PUFA intake from spreads reported by one study [44].

Of the two studies investigating plasma fatty acids, one reported a reduced risk of dementia, but not AD, with higher compared to lower plasma DHA [41], while the second reported that individuals with dementia had higher concentrations of DHA and other n-3 PUFAs than individuals who did not develop the condition [38].

Four RCTs (**Table 4**) examined the effect of mixed fatty acid supplementation on cognitive functioning [55-58]. The method of randomization employed was adequate in all studies and masking was either adequate [55, 58] or not clearly reported [56, 57]. These studies are characterized by a high level of inter-study variation in the nature of the intervention and study duration (4 weeks to 1 year). Only one study [56], which enrolled a small number of participants (n=20) and was not placebo-controlled, reported an improvement in cognitive measures while a second study reported improvements in quality of life following treatment [58]. It should be noted

however that in neither of these trials was the statistical analysis of the treatment effect clearly reported. There was no effect of fatty acid supplementation on cognitive function tests in the two remaining trials [55, 57].

DISCUSSION

The potential effect of dietary factors in both the prevention and treatment of dementia has become a topic of increasing interest. Reviews conducted to date have not identified good evidence for specific recommendation of particular dietary interventions [12-16, 59]. Despite this lack of evidence some health providers continue to recommend dietary supplements which may not confer additional benefits to an adequate diet [60], and individuals who perceive themselves to be at increased risk of dementia frequently seek nutritional therapy [61].

This systematic review identified some evidence from cohort studies that lower dietary intakes of folate or low levels of serum folate were associated with an increased risk of developing AD. Trials of folic acid supplementation, either alone or in combination with other B-vitamins, had limited or no effect on measures of cognitive function. Older adults are likely to be at risk of low serum folate levels only in cases of low total energy intake [62], and over 50 countries currently implement mandatory fortification of flour with folic acid [63]. It should be noted that the relationship between dietary folate intake and serum folate levels is complex [64] and even where body stores of folate remain relatively constant, serum concentrations vary in line with changes in dietary folate intake and other physiological and health characteristics of study participants. The evidence from RCTs that provided folic acid supplementation in combination with other B vitamins is less supportive of a beneficial effect on cognitive function. The lack of any consistent beneficial effect on cognitive function B12 in healthy or cognitively impaired older participants has been confirmed in previous systematic reviews [16].

Three RCTs published subsequent to the searches performed for the present review do not provide support of the use of folic acid either individually or in combination with other B vitamins for the prevention of cognitive decline in older participants with or without diagnosed dementia [65-67]. This review identified some evidence that raised levels of homocysteine were associated with an increased incidence of AD and dementia. A recent review of case-control and cohort studies also reported that raised homocysteine levels were associated with an increase risk of AD but only included three of the five cohort studies in the current review [68] Several recent reviews consider the role of fish consumption or fatty acids in the prevention of dementia or AD and come to the conclusion that the current evidence is in support of a protective effect of fish and n-3 fatty acid consumption [69-71]. Fish oils, especially DHA, may have neuroprotective actions [72], and some recent in vitro experiments [73] also suggest that DHA may play an important role in preventing late-onset AD. In the current review, only two out of eight cohort studies that examined the effect of fish or DHA consumption reported reduced AD and dementia incidence in those participants with the highest intake levels. These findings have been confirmed in three recently published cohort studies [74-76], only one of which reported that higher plasma n-3 PUFA proportions predicted less decline in speed-related cognitive domains over three years follow-up [76]. In addition, two recently published RCTs provide no evidence of a benefit to cognitive function from supplementation with combinations of EPA and DHA among cognitively healthy older people [77, 78]

This systematic review has several strengths. The use of a comprehensive search strategy (electronic databases in addition to selected conference proceedings) maximized the likelihood of identifying all potentially relevant publications. In addition, it is the most up-to-date systematic review of the published literature in this field and has a broad scope, focusing on both single and multiple nutrients and including both cohort and RCT studies.

There are a number of factors which complicate interpretation of the results reported in studies included in this review. First, included studies used a wide variety of cognitive function tests to measure different or overlapping domains of cognitive function [79]. Second, the degree to which cohort studies controlled for confounding or modifying factors differed. Third, the presence of subclinical dementia in the population at baseline may have differed between studies which could affect the dietary habits or participant response during the course of the study. Fourth the robustness of the dietary data is dependent on the use of a validated dietary assessment instrument to collect data during the study. Fifth, the time from exposure to a dietary factor to outcome measurement is invariably short, contrasting with the fact that the degenerative process

often takes several years before a diagnosis is/can be made. Finally the number of incident cases of AD or dementia reported at follow up was small in some studies which may limit the power to detect any associations. We were unable to conduct meta-analyses of the included studies due to marked heterogeneity in study designs, an issue that has similarly hampered other systematic reviews in this field [80]. Results from the prospective cohort studies frequently conflicted with findings from intervention trials. This is not a novel finding [81, 82], but suggests that future cohort studies and RCTs would benefit from better standardization of protocols.

Multi-nutrient approaches have been proposed [10] and are supported by some [83] but not all available trial data [84]. Trials are underway among participants with early [85] and late-stage AD [86]. In addition, multi-domain interventions encompassing nutritional, physical and cognitive training may offer a potential synergistic effect in preventing cognitive decline in susceptible populations [87]. High-quality trials with clearly defined, well validated outcomes of interest are required to allow firm conclusions regarding the effects of either single nutrients or combinations of nutrients on neurodegenerative disorders. In addition, there is now increasing evidence to support the collection of genetic information from study participants to investigate potentially important nutrient gene interactions. Finally, future trials should be conducted in people with the earliest stages of cognitive impairment, since the window of opportunity for effective intervention from the onset of symptoms may be limited [88]. In conclusion, the available evidence base is currently insufficient to draw firm conclusions about the effects of individual dietary factors on the development or treatment of AD and dementia, and further large, well-designed RCTs of long duration need to be undertaken [89].

ACKNOWLEDGEMENTS INCLUDING SOURCES OF SUPPORT

Peter Whitehouse and Bruno Vellas have received a fee for serving as consultants for Nutricia. Peter Whitehouse has received a speaker's fee from Nutricia. Kevin Rafferty is an employee of Danone, which is the owner of Nutricia. Stephen Mitchell and Lesley Smith have undertaken paid consultancy work on behalf of Nutricia. Alan D Dangour and Sophie Hawkesworth have no conflict of interest arising from being named as authors on this manuscript.

REFERENCES

- 1. Ferri, C.P., Prince, M., Brayne, C., Brodaty, H., Fratiglioni, L., Ganguli, M., Hall, K., Hasegawa, K., Hendrie, H., Huang, Y., Jorm, A., Mathers, C., Menezes, P.R., Rimmer, E., and Scazufca, M. (2005) Global prevalence of dementia: a Delphi consensus study. *Lancet* 366, 2112-7.
- 2. Dementia UK, Report to the Alzheimer's Society, King's College London and London School of Economics and Political Science. 2007.
- 3. Brookmeyer, R., Gray, S., and Kawas, C. (1998) Projections of Alzheimer's disease in the United States and the public health impact of delaying disease onset. *Am J Public Health* 88, 1337-42.
- 4. Hansen, R.A., Gartlehner, G., Webb, A.P., Morgan, L.C., Moore, C.G., and Jonas, D.E. (2008) Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer's disease: a systematic review and meta-analysis. *Clin Interv Aging* 3, 211-25.
- 5. Klafki, H.W., Staufenbiel, M., Kornhuber, J., and Wiltfang, J. (2006) Therapeutic approaches to Alzheimer's disease. *Brain* 129, 2840-55.
- 6. Raina, P., Santaguida, P., Ismaila, A., Patterson, C., Cowan, D., Levine, M., Booker, L., and Oremus, M. (2008) Effectiveness of cholinesterase inhibitors and memantine for treating dementia: evidence review for a clinical practice guideline. *Ann Intern Med* 148, 379-97.
- van Gelder, B.M., Tijhuis, M.A., Kalmijn, S., Giampaoli, S., Nissinen, A., and Kromhout, D. (2004) Physical activity in relation to cognitive decline in elderly men: the FINE Study. *Neurology* 63, 2316-21.
- 8. Wilson, R.S., Scherr, P.A., Schneider, J.A., Tang, Y., and Bennett, D.A. (2007) Relation of cognitive activity to risk of developing Alzheimer disease. *Neurology* 69, 1911-20.
- 9. Fratiglioni, L., Paillard-Borg, S., and Winblad, B. (2004) An active and socially integrated lifestyle in late life might protect against dementia. *Lancet Neurol* 3, 343-53.
- 10. van der Beek, E.M. and Kamphuis, P.J.G.H. (2008) The potential role of nutritional components in the management of Alzheimer's Disease. *Eur J Pharmacol* 585, 197-207.
- 11. Solfrizzi, V., Panza, F., and Capurso, A. (2003) The role of diet in cognitive decline. *J Neural Transm* 110, 95-110.
- Gillette-Guyonnet, S., Abellan Van Kan, G., Andrieu, S., Barberger-Gateau, P., Berr, C., Bonnefoy, M., Dartigues, J.F., De Groot, L., Ferry, M., Galan, P., Hercberg, S., Jeandel, C., Morris, M.C., Nourhashemi, F., Payette, H., Poulain, J.P., Portet, F., Roussel, A.M., Ritz, P., Rolland, Y., and Vellas, B. (2007) IANA task force on nutrition and cognitive decline with aging. *Journal of Nutrition, Health & Aging* 11, 132-152.
- 13. Luchsinger, J.A. and Mayeux, R. (2004) Dietary factors and Alzheimer's disease. *Lancet Neurology* 3, 579-587.

- 14. Issa, A.M., Mojica, W.A., Morton, S.C., Traina, S., Newberry, S.J., Hilton, L.G., Garland, R.H., and Maclean, C.H. (2006) The efficacy of omega-3 fatty acids on cognitive function in aging and dementia: a systematic review. *Dement Geriatr Cogn Disord* 21, 88-96.
- 15. Balk, E.M., Raman, G., Tatsioni, A., Chung, M., Lau, J., and Rosenberg, I.H. (2007) Vitamin B6, B12, and folic acid supplementation and cognitive function: a systematic review of randomized trials. *Arch Intern Med* 167, 21-30.
- 16. Malouf, R. and Grimley Evans, J. (2008) Folic acid with or without vitamin B12 for the prevention and treatment of healthy elderly and demented people. *Cochrane Database Syst Rev* CD004514.
- George, D.R., Dangour, A.D., Smith, L., Ruddick, J., Vellas, B., and Whitehouse, P.J. (2009) The role of nutrients in the prevention and treatment of Alzheimer's disease: methodology for a systematic review. *Eur J Neurol* 16 Suppl 1, 8-11.
- 18. Moher, D., Liberati, A., Tetzlaff, J., and Altman, D.G. (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *BMJ* 339, b2535.
- 19. Coughlin, S.S. (1990) Recall bias in epidemiologic studies. J Clin Epidemiol 43, 87-91.
- 20. Mann, C.J. (2003) Observational research methods. Research design II: cohort, cross sectional, and case-control studies. *Emerg Med J* 20, 54-60.
- 21. WHO (1994) *The International Classification of Diseases*.[10th edition]. World Health Organization: Geneva.
- 22. American Psychiatric Association (2000) *Diagnostic and Statistical Manual of Mental Disorders*.[Fourth Edition]. American Psychiatric Association: Washington DC.
- 23. McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., and Stadlan, E.M. (1984) Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. *Neurology* 34, 939-44.
- 24. Petersen, R.C., Smith, G.E., Waring, S.C., Ivnik, R.J., Tangalos, E.G., and Kokmen, E. (1999) Mild cognitive impairment: clinical characterization and outcome. *Arch Neurol* 56, 303-8.
- 25. Higgins, J. and Green, S. (2006) *The Cochrane Handbook for Systematic Reviews of Interventions 4.2.6.* Wiley: Chichester.
- 26. Annerbo, S., Wahlund, L.O., and Lokk, J. (2006) The significance of thyroid-stimulating hormone and homocysteine in the development of Alzheimer's disease in mild cognitive impairment: a 6-year follow-up study. *American Journal of Alzheimer's Disease & Other Dementias* 21, 182-8.
- 27. Corrada, M.M., Kawas, C.H., Hallfrisch, J., Muller, D., and Brookmeyer, R. (2005) Reduced risk of Alzheimer's disease with high folate intake: The Baltimore Longitudinal Study of Aging. *Alzheimer's & Dementia* 1, 11-18.

- 28. Haan, M.N., Miller, J.W., Aiello, A.E., Whitmer, R.A., Jagust, W.J., Mungas, D.M., Allen, L.H., and Green, R. (2007) Homocysteine, B vitamins, and the incidence of dementia and cognitive impairment: results from the Sacramento Area Latino Study on Aging. *Am J Clin Nutr* 85, 511-7.
- 29. Luchsinger, J.A., Tang, M.X., Shea, S., Miller, J., Green, R., and Mayeux, R. (2004) Plasma homocysteine levels and risk of Alzheimer disease. *Neurology* 62, 1972-6.
- 30. Luchsinger, J.A., Tang, M.X., Miller, J., Green, R., and Mayeux, R. (2007) Relation of higher folate intake to lower risk of Alzheimer disease in the elderly. *Archives of Neurology* 64, 86-92.
- 31. Maxwell, C.J., Hogan, D.B., and Ebly, E.M. (2002) Serum folate levels and subsequent adverse cerebrovascular outcomes in elderly persons. *Dementia & Geriatric Cognitive Disorders* 13, 225-34.
- 32. Morris, M.C., Evans, D.A., Schneider, J.A., Tangney, C.C., Bienias, J.L., and Aggarwal, N.T. (2006) Dietary folate and vitamins B-12 and B-6 not associated with incident Alzheimer's disease. *Journal of Alzheimer's Disease* 9, 435-43.
- 33. Ravaglia, G., Forti, P., Maioli, F., Martelli, M., Servadei, L., Brunetti, N., Porcellini, E., and Licastro, F. (2005) Homocysteine and folate as risk factors for dementia and Alzheimer disease. *Am J Clin Nutr* 82, 636-43.
- 34. Ravaglia, G., Forti, P., Maioli, F., Martelli, M., Servadei, L., Brunetti, N., Pantieri, G., and Mariani, E. (2006) Conversion of mild cognitive impairment to dementia: predictive role of mild cognitive impairment subtypes and vascular risk factors. *Dementia & Geriatric Cognitive Disorders* 21, 51-8.
- 35. Seshadri, S., Beiser, A., Selhub, J., Jacques, P.F., Rosenberg, I.H., D'Agostino, R.B., Wilson, P.W., and Wolf, P.A. (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. *New England Journal of Medicine* 346, 476-83.
- Wang, H.X., Wahlin, A., Basun, H., Fastbom, J., Winblad, B., and Fratiglioni, L. (2001) Vitamin B(12) and folate in relation to the development of Alzheimer's disease. *Neurology* 56, 1188-94.
- Solfrizzi, V., Colacicco, A.M., D'Introno, A., Capurso, C., Parigi, A.D., Capurso, S.A., Argentieri, G., Capurso, A., and Panza, F. (2006) Dietary fatty acids intakes and rate of mild cognitive impairment. The Italian Longitudinal Study on Aging. *Experimental Gerontology* 41, 619-627.
- 38. Laurin, D., Verreault, R., Lindsay, J., Dewailly, E., and Holub, B.J. (2003) Omega-3 fatty acids and risk of cognitive impairment and dementia. *Journal of Alzheimer's Disease* 5, 315-22.
- 39. Engelhart, M.J., Geerlings, M.I., Ruitenberg, A., Van Swieten, J.C., Hofman, A., Witteman, J.C., and Breteler, M.M. (2002) Diet and risk of dementia: Does fat matter?: The Rotterdam Studty. *Neurology* 59, 1915-21.

- 40. Morris, M.C., Evans, D.A., Bienias, J.L., Tangney, C.C., Bennett, D.A., Wilson, R.S., Aggarwal, N., and Schneider, J. (2003) Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. *Archives of Neurology* 60, 940-6.
- 41. Schaefer, E.J., Bongard, V., Beiser, A.S., Lamon-Fava, S., Robins, S.J., Au, R., Tucker, K.L., Kyle, D.J., Wilson, P.W., and Wolf, P.A. (2006) Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham Heart Study. *Archives of Neurology* 63, 1545-50.
- 42. Barberger-Gateau, P., Letenneur, L., Deschamps, V., Peres, K., Dartigues, J.F., and Renaud, S. (2002) Fish, meat, and risk of dementia: cohort study. *BMJ* 325, 932-933.
- 43. Huang, T.L., Zandi, P.P., Tucker, K.L., Fitzpatrick, A.L., Kuller, L.H., Fried, L.P., Burke, G.L., and Carlson, M.C. (2005) Benefits of fatty fish on dementia risk are stronger for those without APOE epsilon4. *Neurology* 65, 1409-14.
- 44. Laitinen, M.H., Ngandu, T., Rovio, S., Helkala, E.L., Uusitalo, U., Viitanen, M., Nissinen, A., Tuomilehto, J., Soininen, H., and Kivipelto, M. (2006) Fat intake at midlife and risk of dementia and Alzheimer's disease: a population-based study. *Dementia & Geriatric Cognitive Disorders* 22, 99-107.
- 45. Bryan, J., Calvaresi, E., and Hughes, D. (2002) Short-term folate, vitamin B-12 or vitamin B-6 supplementation slightly affects memory performance but not mood in women of various ages. *J Nutr* 132, 1345-56.
- 46. Durga, J., van Boxtel, M.P., Schouten, E.G., Kok, F.J., Jolles, J., Katan, M.B., and Verhoef, P. (2007) Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomised, double blind, controlled trial. *Lancet* 369, 208-16.
- 47. Eussen, S.J., de Groot, L.C., Joosten, L.W., Bloo, R.J., Clarke, R., Ueland, P.M., Schneede, J., Blom, H.J., Hoefnagels, W.H., and van Staveren, W.A. (2006) Effect of oral vitamin B-12 with or without folic acid on cognitive function in older people with mild vitamin B-12 deficiency: a randomized, placebo-controlled trial. *Am J Clin Nutr* 84, 361-70.
- 48. Fioravanti, M., Ferrario, E., Massaia, M., Cappa, G., Rivolta, G., Grossi, E., and Buckley, A.E. (1997) Low folate levels in the cognitive decline of elderly patients and the efficacy of folate as a treatment for improving memory deficits. *Archives of Gerontology & Geriatrics* 26, 1-13.
- 49. Lewerin, C., Matousek, M., Steen, G., Johansson, B., Steen, B., and Nilsson Ehle, H. (2005) Significant correlations of plasma homocysteine and serum methylmalonic acid with movement and cognitive performance in elderly subjects but no improvement from shortterm vitamin therapy: a placebo-controlled randomized study. *Am J Clin Nutr* 81, 1155-62.
- 50. McMahon, J.A., Green, T.J., Skeaff, C.M., Knight, R.G., Mann, J.I., and Williams, S.M. (2006) A controlled trial of homocysteine lowering and cognitive performance. *NEJM* 354, 2764-72.
- 51. Obeid, R., Fink-Geisel, U., Eckert, R., and Herrmann, W. (2005) Effect of the B-vitamins on cognitive function in elderly people with mild cognitive dysfunction. *Clin Chem Lab Med* 43, A28.

- 52. Sommer, B.R., Hoff, A.L., and Costa, M. (2003) Folic acid supplementation in dementia: a preliminary report. *Journal of Geriatric Psychiatry & Neurology* 16, 156-9.
- 53. Stott, D.J., MacIntosh, G., Lowe, G.D., Rumley, A., McMahon, A.D., Langhorne, P., Tait, R.C., O'Reilly, D.S., Spilg, E.G., MacDonald, J.B., MacFarlane, P.W., and Westendorp, R.G. (2005) Randomized controlled trial of homocysteine-lowering vitamin treatment in elderly patients with vascular disease. *Am J Clin Nutr* 82, 1320-6.
- 54. Clarke, R., Harrison, G., Richards, S., and Vital Trial Collaborative, G. (2003) Effect of vitamins and aspirin on markers of platelet activation, oxidative stress and homocysteine in people at high risk of dementia. *Journal of Internal Medicine* 254, 67-75.
- 55. Freund Levi, Y., Eriksdotter Jönhagen, M., Cederholm, T., Basun, H., Faxén Irving, G., Garlind, A., Vedin, I., Vessby, B., Wahlund, L.O., and Palmblad, J. (2006) Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: a randomized double-blind trial. *Archives of Neurology* 63, 1402-8.
- 56. Terano, T., Fujishiro, S., Ban, T., Yamamoto, K., Tanaka, T., Noguchi, Y., Tamura, Y., Yazawa, K., and Hirayama, T. (1999) Docosahexaenoic acid supplementation improves the moderately severe dementia from thrombotic cerebrovascular diseases. *Lipids* 34, S345-6.
- 57. Jorissen, B.L., Brouns, F., Van Boxtel, M.P., Ponds, R.W., Verhey, F.R., Jolles, J., and Riedel, W.J. (2001) The influence of soy-derived phosphatidylserine on cognition in ageassociated memory impairment. *Nutritional Neuroscience* 4, 121-34.
- 58. Yehuda, S., Rabinovtz, S., Carasso, R.L., and Mostofsky, D.I. (1996) Essential fatty acids preparation (SR-3) improves Alzheimer's patients quality of life. *International Journal of Neuroscience* 87, 141-9.
- 59. Luchsinger, J.A., Noble, J.M., and Scarmeas, N. (2007) Diet and Alzheimer's disease. *Curr Neurol Neurosci Rep* 7, 366-72.
- 60. Marra, M.V. and Boyar, A.P. (2009) Position of the American Dietetic Association: nutrient supplementation. *J Am Diet Assoc* 109, 2073-85.
- 61. Vernarelli, J.A., Roberts, J.S., Hiraki, S., Chen, C.A., Cupples, L.A., and Green, R.C. Effect of Alzheimer disease genetic risk disclosure on dietary supplement use. *Am J Clin Nutr* 91, 1402-7.
- 62. Mulligan, J.E., Greene, G.W., and Caldwell, M. (2007) Sources of folate and serum folate levels in older adults. *J Am Diet Assoc* 107, 495-9.
- 63. Morbidity and Mortality Weekly Report (2008) *Trends in Wheat-Flour Fortification with Folic Acid and Iron Worldwide, 2004 and 2007.* <u>http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5701a4.htm</u> [accessed on: 24 November 2008].
- 64. Gibson, R. (2005) Principles of nutritional assessment. Oxford University Press: Oxford.
- 65. Sun, Y., Lu, C.J., Chien, K.L., Chen, S.T., and Chen, R.C. (2007) Efficacy of multivitamin supplementation containing vitamins B6 and B12 and folic acid as adjunctive treatment with

a cholinesterase inhibitor in Alzheimer's disease: a 26-week, randomized, double-blind, placebo-controlled study in Taiwanese patients. *Clin Ther* 29, 2204-14.

- 66. Aisen, P.S., Schneider, L.S., Sano, M., Diaz-Arrastia, R., van Dyck, C.H., Weiner, M.F., Bottiglieri, T., Jin, S., Stokes, K.T., Thomas, R.G., and Thal, L.J. (2008) High-dose B vitamin supplementation and cognitive decline in Alzheimer disease: a randomized controlled trial. *JAMA* 300, 1774-83.
- 67. Connelly, P.J., Prentice, N.P., Cousland, G., and Bonham, J. (2008) A randomised doubleblind placebo-controlled trial of folic acid supplementation of cholinesterase inhibitors in Alzheimer's disease. *Int J Geriatr Psychiatry* 23, 155-60.
- 68. Van Dam, F. and Van Gool, W.A. (2009) Hyperhomocysteinemia and Alzheimer's disease: A systematic review. *Arch Gerontol Geriatr* 48, 425-30.
- 69. Cunnane, S.C., Plourde, M., Pifferi, F., Begin, M., Feart, C., and Barberger-Gateau, P. (2009) Fish, docosahexaenoic acid and Alzheimer's disease. *Prog Lipid Res* 48, 239-56.
- 70. Fotuhi, M., Mohassel, P., and Yaffe, K. (2009) Fish consumption, long-chain omega-3 fatty acids and risk of cognitive decline or Alzheimer disease: a complex association. *Nat Clin Pract Neurol* 5, 140-52.
- Solfrizzi, V., Frisardi, V., Capurso, C., D'Introno, A., Colacicco, A.M., Vendemiale, G., Capurso, A., and Panza, F. (2010) Dietary fatty acids in dementia and predementia syndromes: Epidemiological evidence and possible underlying mechanisms. *Ageing Res Rev* 9, 184-99.
- 72. Uauy, R. and Dangour, A.D. (2006) Nutrition in brain development and aging: role of essential fatty acids. *Nutr Rev* 64, S24-33; discussion S72-91.
- 73. Ma, Q.L., Teter, B., Ubeda, O.J., Morihara, T., Dhoot, D., Nyby, M.D., Tuck, M.L., Frautschy, S.A., and Cole, G.M. (2007) Omega-3 fatty acid docosahexaenoic acid increases SorLA/LR11, a sorting protein with reduced expression in sporadic Alzheimer's disease (AD): relevance to AD prevention. *J Neurosci* 27, 14299-307.
- 74. Devore, E.E., Grodstein, F., van Rooij, F.J., Hofman, A., Rosner, B., Stampfer, M.J., Witteman, J.C., and Breteler, M.M. (2009) Dietary intake of fish and omega-3 fatty acids in relation to long-term dementia risk. *Am J Clin Nutr* 90, 170-6.
- 75. Kroger, E., Verreault, R., Carmichael, P.H., Lindsay, J., Julien, P., Dewailly, E., Ayotte, P., and Laurin, D. (2009) Omega-3 fatty acids and risk of dementia: the Canadian Study of Health and Aging. *Am J Clin Nutr* 90, 184-92.
- 76. Dullemeijer, C., Durga, J., Brouwer, I.A., van de Rest, O., Kok, F.J., Brummer, R.J., van Boxtel, M.P., and Verhoef, P. (2007) n 3 fatty acid proportions in plasma and cognitive performance in older adults. *Am J Clin Nutr* 86, 1479-85.
- 77. van de Rest, O., Geleijnse, J.M., Kok, F.J., van Staveren, W.A., Dullemeijer, C., Olderikkert, M.G., Beekman, A.T., and de Groot, C.P. (2008) Effect of fish oil on cognitive performance in older subjects: a randomized, controlled trial. *Neurology* 71, 430-8.

- 78. Dangour, A.D., Allen, L.H., Elbourne, D., Fasey, N., Fletcher, A.E., Hardy, P., Holder, G.E., Knight, R., Letley, L., Richards, M., and Uauy, R. (2010) Effect of 2-y n-3 long-chain polyunsaturated fatty acid supplementation on cognitive function in older people: a randomized, double-blind, controlled trial. *Am J Clin Nutr* doi: 10.3945/ajcn.2009.29121,
- 79. Vellas, B., Andrieu, S., Sampaio, C., Coley, N., and Wilcock, G. (2008) Endpoints for trials in Alzheimer's disease: a European task force consensus. *Lancet Neurol* 7, 436-50.
- Raman, G., Tatsioni, A., Chung, M., Rosenberg, I.H., Lau, J., Lichtenstein, A.H., and Balk, E.M. (2007) Heterogeneity and lack of good quality studies limit association between folate, vitamins B-6 and B-12, and cognitive function. *J Nutr* 137, 1789-94.
- 81. Lawlor, D.A., Davey Smith, G., Kundu, D., Bruckdorfer, K.R., and Ebrahim, S. (2004) Those confounded vitamins: what can we learn from the differences between observational versus randomised trial evidence? *Lancet* 363, 1724-7.
- 82. Clarke, R.J. and Bennett, D.A. (2008) B vitamins for prevention of cognitive decline: insufficient evidence to justify treatment. *Jama* 300, 1819-21.
- 83. Scheltens, P., Kamphius, P.J.G.H., Verhey, F.R.J., Olde Rikkert, M.G.M., Wurtman, R.J., Wilkinson, D., Twisk, J.W.R., and Kurz, A. (2010) Efficacy of a medical food in mild Alzheimer's disease: A randomized, controlled trial. *Alzhemer's & Dementia* 6, 1-10.
- 84. McNeill, G., Avenell, A., Campbell, M.K., Cook, J.A., Hannaford, P.C., Kilonzo, M.M., Milne, A.C., Ramsay, C.R., Seymour, D.G., Stephen, A.I., and Vale, L.D. (2007) Effect of multivitamin and multimineral supplementation on cognitive function in men and women aged 65 years and over: A randomised controlled trial. *Nutrition Journal* 6, 10.
- 85. Chan, A., Paskavitz, J., Remington, R., Rasmussen, S., and Shea, T.B. (2008) Efficacy of a vitamin/nutriceutical formulation for early-stage Alzheimer's disease: a 1-year, open-label pilot study with an 16-month caregiver extension. *Am J Alzheimers Dis Other Demen* 23, 571-85.
- 86. Remington, R., Chan, A., Paskavitz, J., and Shea, T.B. (2009) Efficacy of a vitamin/nutriceutical formulation for moderate-stage to later-stage Alzheimer's disease: a placebo-controlled pilot study. *Am J Alzheimers Dis Other Demen* 24, 27-33.
- 87. Gillette-Guyonnet, S., Andrieu, S., Dantoine, T., Dartigues, J.F., Touchon, J., and Vellas, B. (2009) Commentary on "a roadmap for the prevention of dementia II. Leon Thal Symposium 2008." The Multidomain Alzheimer Preventive Trial (MAPT): a new approach to the prevention of Alzheimer's disease. *Alzheimers Dement* 5, 114-21.
- 88. Martin, D.C., Francis, J., Protetch, J., and Huff, F.J. (1992) Time dependency of cognitive recovery with cobalamin replacement: report of a pilot study. *J Am Geriatr Soc* 40, 168-72.
- 89. Hennekens, C.H. and Demets, D. (2009) The need for large-scale randomized evidence without undue emphasis on small trials, meta-analyses, or subgroup analyses. *Jama* 302, 2361-2.
- 90. Valente, C., Maione P, and A, L. (1992) Validation of the Mini-Mental State Examination (MMSE) as a screening instrument for dementia in an Italian population. *Giorn Gerontol* 40, 161-5.

- 91. Carlesimo, G.A., Caltagirone, C., and Gainotti, G. (1996) The Mental Deterioration Battery: normative data, diagnostic reliability and qualitative analyses of cognitive impairment. The Group for the Standardization of the Mental Deterioration Battery. *Eur Neurol* 36, 378-84.
- 92. Teng, E.L. and Chui, H.C. (1987) The Modified Mini-Mental State (3MS) examination. *J Clin Psychiatry* 48, 314-8.
- 93. American Psychiatric Association (1987) *Diagnostic and Statistical Manual of Mental Disorders*.[Third Edition]. American Psychiatric Association: Washington DC.
- 94. Folstein, M.F., Folstein, S.E., and McHugh, P.R. (1975) "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. *J Psychiatr Res* 12, 189-98.
- 95. Institute of Medicine. (1998) *Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin and choline: a report of the panel on flate, other B vitamins and choline*. National Academy Press: Washington DC.
- 96. Jolles, J., Houx, P., van Boxtel, M.P., and Ponds, R.W. (1995) *The Maastricht aging study: determinants of cognitive aging*. Neuropsych Publishers: Maastricht.
- 97. Randt, C. and Brown, E. (1983) *Randt Memory Test: Administration Manual*. Life Science Associates: Bayport, NY.
- 98. Mohs, R.C., Knopman, D., Petersen, R.C., Ferris, S.H., Ernesto, C., Grundman, M., Sano, M., Bieliauskas, L., Geldmacher, D., Clark, C., and Thal, L.J. (1997) Development of cognitive instruments for use in clinical trials of antidementia drugs: additions to the Alzheimer's Disease Assessment Scale that broaden its scope. The Alzheimer's Disease Cooperative Study. *Alzheimer Dis Assoc Disord* 11 Suppl 2, S13-21.
- 99. Graham, J.E., Rockwood, K., Beattie, B.L., Eastwood, R., Gauthier, S., Tuokko, H., and McDowell, I. (1997) Prevalence and severity of cognitive impairment with and without dementia in an elderly population. *Lancet* 349, 1793-6.
- 100. Katz, S. and Akpom, C. (1976) A measure of primary sociobiological functions. *Int J Health Serv* 6, 493-507.
- 101. Spinnler, H. and Tognoni, G. (1987) Standardizzazione e taratura italiana di test neuropsicologici. *Ital J Neurol Sci* 6, 12-120.

First	Study population	N	Duration	Exposure	Cognitive	Statistical analysis	Outcomes / major results
author,		(loss to	(mean		measure		
year		follow-up)	follow-				
			up)				
Annerbo,	Males and females	93	6 years	Routine	AD diagnosis	Independent t-test	32 cases of incident AD.
2006 [26]	Mean age: 65.4y	(retro-		hospital	based on	comparing risk factors	Homocysteine levels higher for
	Community-	spective		measures of	criteria of the	(homocysteine, folate	converters (18.4µmol/l) compared to non-
	dwelling (hospital-	cohort, no		serum	DSM-IV and	and vitamin B-12)	converters (16.8µmol/l) (P: 0.034).
	recruited)	loss to		homocysteine,	ICD-10.	between converters (to	No significant difference in folate (19.0 vs
	Mild cognitive	follow-up		folate and		AD) and non-	16.4nmol/l) or vitamin B-12 (275 <i>vs</i>
	impairment (MCI)	stated)		vitamin B-12		converters.	305pmol/l) between groups.
	(defined by MMSE			collected at		Logistic regression	No main effect of homocysteine in
	score 21-27 and			admission		used to assess impact	adjusted model but interaction with age:
	clinical evaluation)					of homocysteine on	higher homocysteine in lower age group
						AD conversion	(mean: 60y) associated with increased
						adjusted for MMSE,	odds of AD (adjusted OR: 1.29; 95% CI:
						thyroid-stimulating	1.03, 1.61) (OR at 65y: 1.09; 95%CI:
						hormone and age.	0.99, 1.37)
Corrada,	Males and females	579	9.3y	Folate, vitamin	Battery of	Cox regression model,	57 cases of incident AD
2005 [27] ¹	>60y	(37%:		B-6 and B-12	neuro-	comparing risk of AD	Higher intake of folate associated with
	Community-	variables		intake from	psychological	by nutrient intake	decreased risk of AD (≥ RDA (median
	dwelling	associated		foods and	tests.	above or below RDA	619.0 μg/d) <i>vs</i> <rda (median<="" td=""></rda>
	Free of AD at	with loss to		supplements	AD diagnosis	(reference: below	250.9µg/d); adjusted RR: 0.41; 95% CI:
	baseline	follow-up		assessed by	based on	RDA).	0.22, 0.76)
		not		7-day record	criteria from	Adjusted for: age,	Higher intake of vitamin B-6 associated
		reported)			NINCDS-	gender, education,	with decreased risk of AD (≥ RDA

Table 1. Summary of cohort studies relating homocysteine, folate and other B-vitamins to risk of incident AD and dementia.

					ADRDA,	total caloric intake	(median 2.4mg/d) vs <rda (median<="" th=""></rda>
					included		1.1mg/d); adjusted RR: 0.41; 95% CI:
					participants		0.2, 0.84).
					with		No association between vitamin B-12
					diagnosis		intake and risk of AD (≥ RDA (median
					'consistent		7.2µg/d) <i>vs</i> <rda (median="" 2.0µg="" d);<="" td=""></rda>
					with AD'		adjusted RR: 0.6; 95%CI: 0.26, 1.36)
Haan,	Males and females	1405	4.5y	Plasma	Battery of	Proportional hazards	62 cases of incident all cause dementia
2007 [28] ²	≥ 60y	(21%:		homocysteine	neuro-	models examining the	and 55 cases of incident CIND.
	Community-	variables		and vitamin B-	psychological	association between	Higher homocysteine (mean level:
	dwelling	associated		12, red blood	tests.	exposures and	10.78µmol/l) associated with increased
	Primarily Mexican	with loss to		cell (RBC)	Dementia	combined incidence of	risk of cognitive impairment (adjusted
	American	follow-up		folate.	defined by	all cause dementia and	HR: 2.39; 95% CI: 1.11, 5.16).
	Free of dementia or	not			criteria of	CIND (combined	Higher vitamin B-12 (mean: 452.59pg/ml)
	CIND at baseline	reported)			DSM-III,	incidence termed	associated with increased risk of
					NINCDS or	'cognitive impairment').	cognitive impairment (adjusted HR: 1.07;
					ADRDA.	Adjusted for: age,	95% CI: 1.02, 1.11).
					CIND defined	education, sex and	No association between RBC folate
					by failing	vitamin B-12 or	(mean: 504.69 ng/ml) and cognitive
					(<10%) a	homocysteine	impairment (unadjusted HR: 0.85; 95%
					cognition test		Cl: 0.57, 1.24).
					but not		
					diagnosed as		
					having		
					dementia		
Luchsinger	Males and females	679	3206	Plasma	Battery of	Cox proportional	101 cases of incident AD
2004 [29] ³	≥ 65y (mean: 76.2)	(25%: more	person-	homocysteine	neuro-	hazard model	In adjusted analysis, no association

	Community-	likely to be	years		psychological	comparing risk of AD	between plasma homocysteine (highest
	dwelling	white rather			tests.	by quartile of plasma	quartile (mean 27.4µmol/l) vs lowest
	Free of AD and	than			AD diagnosis	homocysteine	quartile (mean 10.75µmol/l) and risk of
	dementia at	Hispanic)			based on	(reference: lowest	AD (adjusted HR: 1.3; 95% CI: 0.8, 2.3).
	baseline				criteria from	quartile).	
					NINCDS-	Adjusted for: age, sex,	
					ADRDA.	education, APOE- ε4	
						and stroke.	
Luchsinger	Males and females	965	6.1y	Folate, vitamin	Battery of	Cox proportional	192 cases of incident AD
2007 [30] ³	≥ 65y (mean: 75.8)	(34%: more	(SD 3.3)	B-6 and	neuro-	hazard model	Higher intake of folate associated with
	Community-	likely to be		vitamin B-12	psychological	comparing risk of AD	decreased risk of AD (highest folate
	dwelling	older)		intake	tests.	by quartile of nutrient	intake (> 487.9µg/d) <i>vs</i> lowest folate
	Free of AD and			(adjusted for	AD diagnosis	intake (reference:	intake (≤ 292.9 μg/d); adjusted HR: 0.5;
	dementia at			energy intake)	based on	lowest quartile).	95% CI: 0.3, 0.9)
	baseline			from foods and	criteria from	Adjusted for: age, sex,	No association between vitamin B-6
				supplements	NINCDS-	ethnic group,	intake and risk of AD (highest B-6 intake
				assessed by	ADRDA.	education, APOE-ɛ4,	(>4.5mg/d) vs lowest B-6 intake
				semi-		history of diabetes,	(<2.3mg/d); adjusted HR: 1.3; 95%CI:
				quantitative		hypertension, current	0.7, 2.3)
				FFQ		smoking, heart disease	No association between vitamin B-12
						and stroke, and levels	intake and risk of AD (highest B-12
						of Vitamin B6 and B12.	intake (>13.5µg/d) <i>vs</i> lowest B-12 intake
							(<3.5µg/d); adjusted HR: 1.1; 95% CI:
							0.7, 1.7).
Maxwell,	Males and females	226	5у	Serum folate	Screened	Logistic regression	49 cases of incident AD.
2002 [31] ⁴	≥ 65y (mean: 80.1)	(57%: more			using 3MS	comparing odds of AD	No association between baseline folate
	Community	likely to be			and clinical	between quartiles of	status and incident AD (lowest folate

	dwelling and	younger,			examination.	serum folate	quartile (median 11.3nmol/l) vs highest
	institutionalized	less			Dementia	(reference: lowest	folate quartile (median 25.0nmol/l);
	participants	educated			diagnosis	quartile).	adjusted OR: 2.17; 95% CI: 0.85, 5.53)
	Free from AD and	and			based on	Adjusted for age and	
	dementia at	community			criteria from	sex	
	baseline but with	dwelling			DSM-III. AD		
	3MS score <78				diagnosis		
					based on		
					criteria from		
					NINCDS-		
					ADRDA.		
Morris,	Males and females	1041	median	Folate, vitamin	Structured	Logistic regression	161 cases of incident AD.
2006 [32] ⁵	≥ 65y	(83%:	3.9y	B-6 and	clinical	comparing the odds of	No association between risk of
	Community	variables		vitamin B-12	evaluations.	incident AD for quintile	developing AD and quintiles of total
	dwelling	associated		intake from	AD diagnosis	of nutrient intake	folate intake (highest folate intake
	Free of AD, with	with loss to		foods and	based on	(reference: lowest	(median 752.7 µg/d) <i>vs</i> lowest folate
	range of good to	follow-up		vitamin	criteria from	quintile).	intake (median 202.8 μg/d); adjusted OR:
	poor cognitive	not		supplements	NINCDS-	Adjusted for: age, time	1.6; 95% CI: 0.5, 5.2).
	performance at	reported)		assessed by	ADRDA.	period of observation,	No association between risk of
	baseline			FFQ		indicator variable for	developing AD and quintiles of total
						quintiles of nutrient	vitamin B-6 intake (highest B-6 intake
						intake sex, race,	(median 5.5mg/d) <i>vs</i> lowest B-6 intake
						education, APOE-ε4,	(median 1.2mg/d); adjusted OR: 0.7;
						intake of vitamin E	95% CI: 0.2, 2.4)
						from food sources,	No association between risk of
						frequency of	developing AD and quintiles of total

						participation in	vitamin B-12 intake (highest B-12 intake
						cognitive activities,	(median 20.6µg/d) <i>v</i> s lowest intake
						total intake of niacin	(median 3.1µg/d); adjusted OR: 0.6;
							95%CI: 0.2, 1.6)
Ravaglia,	Males and females	816	3.8y	Plasma	Italian	Cox proportional	112 cases of incident all cause dementia
2005 [33] ⁶	≥ 65y (mean: 73.6)	(13%:	(SD: 0.8)	homocysteine,	version of	hazard model	(70 of which were AD)
	Community	variables		serum folate	MMSE [90]	comparing risk of	Hyperhomocysteinemia (homocysteine
	dwelling	associated		and vitamin B-	and Mental	dementia and AD for	>15µmol/l) associated with increased risk
	Free of dementia at	with loss to		12	Deterioration	low (below median)	of dementia and AD (adjusted HR for all
	baseline	follow-up			Battery [91].	compared to high	cause dementia: 2.18; 95%CI: 1.37,
		not			Dementia	serum folate and	3.48; adjusted HR for AD: 2.08; 95%CI:
		reported)			diagnosis	vitamin B-12 or for	1.15, 3.79)
					based on	those with or without	Low folate associated with increased risk
					criteria from	hyperhomocysteinemia	of dementia and AD (low folate (\leq
					DSM-IV.	Adjusted for: age, sex,	11.8nmol/l)); adjusted HR for all cause
					AD diagnosis	education, APOE-ε4,	dementia: 1.87; 95% CI: 1.21, 2.89;
					based on	stroke, serum	adjusted HR for AD: 1.98; 95% CI: 1.15,
					criteria from	creatinine, smoking	3.40).
					NINCDS-	status, diabetes,	No association between serum B-12 and
					ADRDA.	hypertension,	risk of dementia and AD
						cardiovascular disease	(adjusted HR for all cause dementia:
						and BMI. Additionally	0.83; 95% CI: 0.56, 1.24; adjusted HR for
						adjusted for	AD: 0.66; 95% CI: 0.40, 1.09)
						homocysteine, folate	
						or B-12 depending on	
						outcome of interest.	
Ravaglia,	Males and females	165	2.8y	Serum folate	Battery of	Cox proportional	48 cases of incident dementia (of which

2006 [34]	>60y	(13%: more	(SD: 1.6)	and vitamin B-	neuro-	hazards ratio for risk of	34 were AD).
	Community	likely to be		12	psychological	conversion to all cause	Low serum folate associated with
	dwelling	older,			tests.	dementia from MCI for	increased risk of conversion to all cause
	Mild cognitive	female,			Dementia	low (below 25 th	dementia (low folate (≤10.4nmol/l);
	impairment (MCI)	lower			defined as ≥2	percentile) compared	adjusted HR: 3.11; 95% CI: 1.49, 6.47).
	classified by	MMSE			cognitive	to high serum folate or	Serum vitamin B-12 not associated with
	Petersen's criteria	score at			domains	vitamin B-12.	risk of conversion to all cause dementia
	[24] and the Italian	baseline)			severe	Adjusted for: age,	(low B-12 (≤ 217pmol/l); HR adjusted for
	version of MMSE				enough to	gender, education,	age, gender and education only: 0.6;
	[90]				affect	high (≥ 26) MMSE,	95% CI: 0.26, 1.39).
					functional	MCI subtype, diastolic	
					abilities	BP, atrial fibrillation	
						and BMI categories	
Seshadri,	Males and females	1092	Median:	Plasma	Dementia	Cox proportional	111 cases of incident dementia (of which
2002 [35] ⁷	Mean age: 76 (SD:	(58%:	8y	homocysteine,	diagnosis	hazards models to	83 were AD).
	6)	variables		folate, vitamin	based on	assess relationship	Higher homocysteine (mean for men:
	Free of dementia at	associated		B-12 and	criteria of	between exposures	13.1µmol/l; for women: 13.0µmol/l)
	baseline	with loss to		vitamin B-6	DSM-IV as	and incidence of all	associated with increased risk of
		follow-up			well as a	cause dementia and	dementia and AD (adjusted RR for all
		not			duration of	AD.	cause dementia: 1.4; 95% CI: 1.1, 1.9;
		reported)			symptoms >6	Adjusted for: age, sex,	adjusted RR for AD: 1.8; 95% CI: 1.3,
					months and	APOE genotype,	2.5).
					a score of ≥	history of stroke,	Folate, vitamin B-12 and vitamin B-6 not
					1 of severity	smoking status,	associated with risk of dementia or AD
					on the	alcohol intake,	(data not shown)
					Clinical	diabetes mellitus, BMI,	

					Dementia	systolic BP.	
					Rating scale.	Additionally adjusted	
					AD defined	for homocysteine,	
					based on	folate, B-12 or B-6	
					criteria from	depending on outcome	
					NINCDS-	of interest.	
					ADRDA.		
Wang,	Males and females	370	Зу	Serum folate	Dementia	Cox proportional	78 cases of incident dementia (of which
2001 [36] ⁸	>75y	(0%)		and vitamin	diagnosis	hazard model	60 were AD).
	Community			B-12	based on	comparing risk of	Low serum folate (≤ 10nmol/l) was not
	dwelling				criteria from	dementia and AD for	associated with risk of dementia or AD.
	Free of dementia				DSM-III, or	low (deficient)	(adjusted RR for all cause dementia: 1.6;
	but cognitively				from hospital	compared to high	95% CI: 0.9, 2.9; adjusted RR for AD:
	impaired (MMSE				records for	serum folate or vitamin	1.7; 95% CI: 0.9, 3.2) Low serum B-12 (≤
	score <24)				those who	B-12.	150pmol/l) was not associated with risk
					had died (n:	Adjusted for: age, sex	of dementia or AD (adjusted RR for all
					86)	and education	cause dementia: 1.3; 95% CI: 0.7, 2.3;
							adjusted RR for AD: 1.6; 95% CI: 0.9,
							2.8).
							Combined low serum folate or low serum
							B-12 was associated with increased risk
							of dementia and AD (adjusted RR for all
							cause dementia: 1.8; 95% CI: 1.1, 2.8;
							adjusted RR for AD: 2.1; 95% CI: 1.2,
							3.5)

3MS = Modified Mini-Mental State (3MS) examination [92]; 95% CI = 95% Confidence Interval; AD = Alzheimer's Disease; BMI = Body Mass Index; BP = Blood Pressure; CIND = Cognitively Impaired but Not Demented; DSM-III/IV= Diagnostic and Statistical Manual of Mental Disorders, 3rd Edition [93]/ 4th Edition [22]; FFQ = Food Frequency Questionnaire; HR = Hazard Ratio; ICD-10 = International Classification of Diseases, 10th Edition [21]; MMSE = Mini-Mental State Evaluation [94]; NINCDS-ADRDA = National Institute of Neurological and Communicative Disorders and Stroke – Alzheimer's Disease and Related Disorders Association [23]; OR = Odds Ratio; RDA = Reference Dietary Allowance according to US Institute of Medicine [95]; RR = Risk Ratio; SD = Standard Deviation ¹Baltimore Longitudinal Study of Aging (BLSA); ²Sacramento Area Latino Study on Aging (SALSA); ³Washington Heights-Inwood Columbia Aging Project (WHICAP); ⁴Canadian Study of Health and Aging (CSHA); ⁵Chicago Health and Aging Project (CHAP); ⁶Conselice Study of Brain Aging (CSBA); ⁷The Framingham Heart Study; ⁸The Kungsholmen Project

First	Study population	Ν	Intervention ¹	Duration	Cognitive measure	Outcome / main results
author,						
year						
Bryan,	Women only	211	4 trial arms:	35 days	Cognitive performance assessed at	Supplementation reduced verbal
2002 [45]	Three age bands: 20-		a. folate		baseline and after treatment.	fluency performance (P: <0.05).
	30y; 45-55y and 65-92y		(750µg/d);		Cognitive performance tests: speed of	When stratifying by age,
	Community-dwelling		b. vitamin B-12		processing (boxes test, digit symbol-	supplementation improved Rey
	Non-smoking, not		(15µg/d);		coding and symbol search); working	auditory-verbal learning test in older
	pregnant or lactating,				memory (digit span-backwards and	(65-92y) participants (P: <0.05).
	no oral contraceptives		c. vitamin B-6		letter-number sequencing); memory	
	or hormone		(75mg/d)		(Rey auditory-verbal learning test, recall	
	replacement and no		d. placebo		of digit-symbol-coding and activity	
	medication likely to				recall); executive function (neuro-	
	affect mental				psychological test); verbal ability	
	performance or mood.				(vocabulary and spot-the-word).	
					Statistical analysis of the intervention	
					effect focused on the interaction	
					between treatment x age x time of	
					testing (pre and post intervention)	
Durga,	Males and females	818	800µg/ day folic	3 years	Cognitive function assessed at baseline	Folic acid improved global cognitive
2007 [46]	50-70y (mean: 60)		acid <i>vs</i> placebo		and after treatment.	function (average of 5 domains) (mean
	Community-dwelling				Cognitive tests from Maastricht Aging	difference in cognitive change Z-score:
	Excluded individuals				Study [96], characterizing following	0.05; 95% CI: 0.004, 0.096; P: 0.033).
	with low (< 13µmol/l) or				domains: memory; sensorimotor speed;	Domain-specific analysis: information
	raised (> 26µmol/l)				complex speed; information processing	processing speed declined in both
	homocysteine				speed and word fluency.	groups but less in folic acid group

Table 2. Summary of RCTs examining folic acid intervention (with or without B vitamins) on cognitive function.

	No B-vitamin				Test components: word learning test,	(mean difference: 0.087; 95% CI:
	supplements				concept shifting test, Stroop color-word	0.016, 0.158; P: 0.016).
					test, verbal fluency test and letter digit	Memory improved in both groups with
					substitution test	a bigger improvement in folic acid
						group (mean difference: 0.132; 95%CI:
						0.032, 0.233; P: 0.01).
						Sensorymotor speed declined in both
						groups but less in folic acid group
						(mean difference: 0.064; 95% CI: -
						0.001, 0.129; P: 0.055)
Eussen,	Males and females	162	3 trial arms:	24	Cognitive function assessed at baseline	No effect of vitamin B-12 alone or in
2006 [47]	≥ 70y (mean: 82)		a. vitamin B-12	weeks	and after treatment.	combination with folic acid on cognitive
	Community and		(1mg/d);		Battery of neuopsychologic tests	function.
	Institutional-dwelling				assessed sensorymotor speed,	Only memory domain showed
	Mild vitamin B-12		b. B-12 (1mg/d) +		construction memory, executive	significant difference between trial
	deficiency (serum B-12		folic acid		function, attention and memory.	groups (time x treatment interaction: P:
	100-200pmol/l or 200-		(400µg/d);		MMSE also conducted	0.014), although each group improved,
	300pmol/l plus		c. placebo			the greatest improvement was in the
	methylmalonic acid					placebo group.
	≥ 0.32µmol/l and					
	creatinine ≤ 120µmol/l)					
	No vitamin B-12 or folic					
	acid supplementation					
	MMSE score ≥ 19					
Fioravanti,	Males and females	30	15mg folic acid/d vs	60 days	Cognitive status assessed at baseline	Folic acid improved attention efficiency
1997 [48]	70-90y (mean: 80.2)		placebo		and after treatment.	score (P <0.05).
	Community-dwelling				Cognitive function assessed by Randt	When taking into account baseline

	Mild to moderate				Memory Test (RMT) [97].	folate status, folic acid improved
	severity of cognitive				Test components: acquisition and recall;	acquisition and recall (P<0.007);
	decline (GDS)				delayed recall; memory index; encoding	delayed recall (P<0.007), memory
	MMSE score 16-24				factor; cognitive efficiency; attention	index (P<0.002) and encoding
	Serum folate <3ng/ml				efficiency	(P<0.005)
Lewerin,	Males and females	179	Vitamin tablet	4 months	Cognitive testing at baseline and after	Cognitive test scores improved for both
2005 [49]	Mean age: 76y	-	(0.5mg vitamin B-		treatment.	arms and were only different between
[]	Community-dwelling		12, 0.8mg folic acid		Tests included: digit span forward, digit	placebo and vitamin arms for identical
			and 3mg vitamin B-		span backward, identical forms, visual	forms (P: 0.039) and synonyms (P:
			6)/d <i>vs</i> placebo		reproduction, synonyms, block design,	0.017) tests, both of which had greater
			(Vitamin tablet		digit symbol 90s, Thurstone's Picture	improvement in the placebo arm.
			provided to 64% of		Memory test and figure classification	
			participants)			
McMahon,	Males and females	253	Vitamin tablet (1mg	2 years	Cognitive function assessed at baseline,	Combined treatment score for all 8
2006 [50]	≥ 65y (mean: 74)		folate, 0.5mg		1 year and 2 years.	tests was poorer in vitamin compared
	Community-dwelling		vitamin B-12 and		Global cognitive function assessed by	to placebo group (-0.11 SD scores
	No suspected dementia		10mg of vitamin B-		MMSE.	poorer; 95% CI: -0.22, 0.00; P: 0.05).
	No medications that		6)/d <i>v</i> s placebo		Other tests included: memory and	Significant difference between trial
	interfere with folate				learning capacity, paragraph-recall,	arms only observed for paragraph
	metabolism				learning and recall ability, verbal	recall test (mean difference: -1.19;
	No B-vitamin				fluency, semantic fluency, information-	95%CI: -2.30, -0.04; P: 0.03, but no
	supplementation				processing speed and reasoning ability.	longer significant if adjusted for sex
	Fasting homocysteine					and education) and retain trail marking
	≥ 13µmol/l					test, part B (mean difference: -7%;
	Normal plasma					95% CI: -13, -2; P: 0.009) with both
	creatinine (≤ 133µmol/l					poorer in vitamin group.

	in men;					
	≤ 115µmol/l in women)					
Obeid,	Males and females	69	Daily subcutaneous	45 days	Cognitive function assessed at baseline	No treatment effects reported, only
2005 [51]	Mean age: 81y		injection: vitamin		and after treatment.	within-group difference in performance
	Glomerular filtration		(1mg vitamin B-12,		Function assessed by MMSE and	
	rate >30ml/min		5mg vitamin B-6		Structured Interview for Diagnosis of	
	MMSE score >15		and 1.1mg folate)/d		Dementia of Alzheimer Type, Multi-	
			vs placebo for 3		infarct Dementia and Dementia	
			weeks followed by			
			daily tablet			
			ingestion (same			
			composition) for 3			
			weeks.			
Sommer,	Males and females	7	Folic acid (10mg)	10	Cognitive function assessed at baseline	No difference in change in test scores
2003 [52]	≥ 65y (mean: 76.7)		vs placebo twice	weeks	and after treatment.	between folic acid and placebo groups.
	Community-dwelling		daily		Tests included: MMSE and a test	Trend for folic acid to reduce
	With dementia				battery assessing: intellectual function,	performance on the associate learning
	(diagnosed by DSM-III)				confrontation naming, verbal fluency,	subtests (P: 0.08) (a measure of short-
	Serum folate 2-5µg/l				verbal memory, visuospatial memory,	term verbal memory) and Trail B
	Red blood cell folic acid				visual scanning, conceptual flexibility	marking test (P: 0.08) (a measure of
	127-452µg/l				and motor speed.	speed and concentration).
	Normal vitamin B-12					
	(>200ng/l)					
Stott,	Males and females	167	2 x 2 x 2 factorial	12	Cognitive function assessed at baseline,	No effect on change in cognitive
2005 [53]	≥ 65y (mean: 75)		design:	weeks	and 12 months after randomization.	function
	Hospital-based		a. folic acid		General cognitive function assessed by	

		(2.5mg) +	1	TICSm.	
disease ²		vitamin B-12		Face-to-face interviews also assessed	
MMSE score ≥ 19		(0.5mg) <i>vs</i>		attention and speed of information	
No B-vitamin treatment		placebo		processing	
Normal folate (red blood cell folate ≥ 280ng/ml) Normal vitamin B-12 (≥ 250pg/ml)		 b. vitamin B-6 (25mg) vs placebo c. riboflavin (25mg) vs placebo. 			
Males and females	128	2 x 2 x 2 factorial	12	Cognitive function assessed at	No effect of treatment on cognitive
	-				function
		-			
- ,					
		b. folic acid (2mg)			
		+ vitamin B-12			
		(1mg) <i>v</i> s			
		placebo			
		o vitamin E			
		placebo			
	No B-vitamin treatment Normal folate (red blood cell folate ≥ 280ng/ml) Normal vitamin B-12	No B-vitamin treatmentNormal folate (redblood cell folate ≥280ng/ml)Normal vitamin B-12(≥ 250pg/ml)Males and femalesCommunity-dwellingDementia (diagnosedby DSM-IV) and MMSEscore 12-26 or TICSm	No B-vitamin treatmentplaceboNormal folate (redbblood cell folate ≥280ng/ml)Normal vitamin B-12(≥ 250pg/ml)(≥ 250pg/ml)Males and females1282 x 2 x 2 factorialCommunity-dwellingDementia (diagnosedby DSM-IV) and MMSEscore 12-26 or TICSmscore <27	No B-vitamin treatment Normal folate (red blood cell folate ≥ 280ng/ml) Normal vitamin B-12 (≥ 250pg/ml)vitamin B-6 (25mg) vs placeboMales and females Community-dwelling Dementia (diagnosed by DSM-IV) and MMSE score 12-26 or TICSm score <27	No B-vitamin treatment placebo placebo Normal folate (red b. vitamin B-6 (25mg) vs placebo Normal vitamin B-12 c. riboflavin (25mg) vs placebo (≥ 250pg/ml) c. riboflavin (25mg) vs placebo Males and females 128 2 x 2 x 2 factorial 12 Cognitive function assessed at Community-dwelling a. aspirin (81mg) weeks randomization and after treatment. Dementia (diagnosed vs placebo b. folic acid (2mg) and ADAS-Cog score 12-26 or TICSm b. folic acid (2mg) + vitamin B-12 and ADAS-Cog score <27

ADAS-Cog = cognitive part of Alzheimer's Disease Assessment Scale [98]; DSM-III/IV= Diagnostic and Statistical Manual of Mental Disorders, 3rd Edition [93]/ 4th Edition [22]; MMSE = Mini-Mental State Examination [94]; TICSm = Telephone Interview for Cognitive Status

¹All are randomized double-blind, placebo-controlled trials

²Ischemic vascular disease defined as one or more of: history of angina pectoris, previous acute myocardial infarction, evidence of major ischemia or previous acute myocardial infarction on the basis of a 12-lead electrocardiogram, ischemic stroke, transient ischemic attack, intermittent claudication or surgery for peripheral arterial disease.

First	Study population	Ν	Duration	Exposure	Cognitive	Statistical	Outcomes / major results
author,		(loss to	(mean		measure	analysis	
year		follow-up)	follow-				
			up)				
Barberger-	Males and females	1674	7 years	Fish or	MMSE score	Cox proportional	170 cases of incident dementia (of which
Gateau,	≥ 68	(15.4%:		seafood	and diagnosis	hazards model	135 were AD).
2002 [42] ¹	Community-dwelling	variables		consumption	of dementia	comparing risk of	Marginal association between
	Free from dementia	associated		assessed by	based on	dementia according	consumption of fish or seafood at least
	at baseline	with loss to		FFQ	criteria from	to fish or seafood	once a week and a reduced risk of
1		follow-up			DSM-III (AD	consumption group	dementia and AD (adjusted HR for all
		not			diagnosis	(once a day/at least	cause dementia: 0.73; 95% CI: 0.52,
		reported)			criteria not-	once a week (but	1.03; adjusted HR for AD: 0.69; 95% CI:
					specified)	not every day)/from	0.47, 1.01).
						time to time (but not	
						weekly)/never	
						(reference group))	
						Adjusted for age,	
						sex and education	
Engelhart,	Males and females	5395	6у	Intake of n-3	Screened	Cox proportional	197 cases of incident dementia (of which
2002 [39] ¹	≥ 55y (mean: 68)	(16%: more	(SD: 1.3)	PUFAs	using MMSE	hazards model	146 were AD).
	Community-dwelling	likely to be		assessed by	and clinical	comparing risk of	No association between n-3 PUFA intake
	Free from dementia	older,		semi-	examination	dementia or AD in	and dementia or AD (adjusted HR for all
	at baseline	males and		quantitative	Dementia	relation to standard	cause dementia: 1.07; 95% CI: 0.94,
		to have		FFQ	diagnosis	deviation of fat	1.22; adjusted HR for AD: 1.07; 95% CI:
		less			based on	intake (linear	0.91, 1.25)
		education)			criteria from	variable)	

Table 3. Summary of cohort studies included in analysis relating fish, DHA, EPA, n-3 PUFAs intake to risk of incident AD and dementia

					DSM-III. AD	Energy-adjusted	
					diagnosis	intake	
					based on	Adjusted for age,	
					criteria from	sex, education,	
					NINCDS-	intake of vitamin E	
					ADRDA.	and total energy	
						intake	
Huang,	Males and females	2233	5.4y	Fish intake	Dementia	Cox proportional	378 cases of incident dementia (of which
2005 [43] ³	≥ 65y	(23.4%:		assessed by	diagnosed	hazards model	190 were AD).
	Community-dwelling	variables		semi-	according to	comparing risk of	No association between fried fish
	Free from dementia	associated		quantitative	criteria of	dementia for group	consumption and risk of dementia or AD
	or MCI at baseline	with loss to		FFQ	DSM-IV. AD	of fish (fried fish or	(highest intake (≥ 2 servings/wk)
		follow-up			diagnosis	tuna and other fish)	adjusted HR for all cause dementia: 0.97;
		not			based on	intake. Fried fish	95% CI: 0.69, 1.35; adjusted HR for AD:
		reported)			criteria from	intake grouped into	0.95; 95% CI: 0.60, 1.52).
					NINCDS-	three categories	Despite a univariate association, in fully-
					ADRDA	(<0.25 servings/wk:	adjusted models there was no
						reference), tuna	association between tuna and other fish
						and other fish	consumption and risk of dementia or AD
						grouped into four	(highest intake (≥ 4 servings/wk)
						categories (<0.25	adjusted HR for all cause dementia: 0.79;
						servings/wk:	95% CI: 0.53, 1.20; adjusted HR for AD:
						reference)	0.69; 95% CI: 0.91, 1.22)
						Adjusted for age,	
						minority status, sex,	
						APOE-ε4, total	
						energy intake, BMI,	

						region, education	
						and income.	
Laitinen,	Males and females	1449	21y	PUFA intake	Screening via	Logistic regression	117 incident cases of dementia (of which
2006 [44] ⁴	Mean age at	(27.5:	(SD: 4.9)	from spreads	MMSE and	models comparing	76 were AD).
	baseline: 50.4y (SD:	variables		derived from	dementia	odds of dementia	Moderate PUFA intake was associated
	6.0)	associated		self-	diagnosis with	and AD for quartiles	with decreased risk of dementia but not
	Community-dwelling	with loss to		administered	criteria of	of PUFA intake	AD (second quartile (0.5-0.8g) vs first
	Free from dementia	follow-up		questionnaire	DSM-IV. AD	(lowest quartile:	quartile (<0.5g) adjusted OR for all cause
	at baseline	not		with short	diagnosis	reference).	dementia: 0.4; 95% CI: 0.17, 0.94;
		reported)		quantitative	based on	Adjusted for: age,	adjusted OR for AD: 0.53; 95% CI: 0.21,
				section on	criteria from	sex, education,	1.37). No association between higher
				spreads used	NINCDS-	follow-up time,	intakes and risk of dementia or AD.
				on bread	ADRDA.	APOE-ε4, other fat	
						intake, baseline	
						systolic BP, BMI,	
						cholesterol,	
						smoking, history of	
						myocardial	
						infarction, stroke	
						and diabetes.	
Laurin,	Males and females	79	5 years	Serum	Screening via	t-test comparing	16 cases of incident CIND and 11 cases
2003 [38] ⁵	≥ 65y (mean: 76.9)	(81.4%:		concentrations	MMSE, CIND	fatty acid	of dementia.
	Community and	variables		of EPA, DHA	according to	concentration	Individuals with CIND had 31% higher
	institutional-dwelling	associated		and n-3 PUFA	modified	between individuals	mean relative concentration of EPA (P:
	Free from dementia	with loss to			Zaudig's	developing CIND or	0.01) compared to unimpaired
	at baseline	follow-up			criteria [99]	dementia and those	individuals.
	Participants chosen	from the			and dementia	without.	Individuals with all cause dementia had

	from large national	425			diagnosis with	Adjusted for: age,	30% higher mean relative concentrations
	cohort of which only	individuals			criteria of	sex, education,	of DHA (P: 0.07), and 21% higher n-3
	4% provided blood	with blood			DSM-IV.	smoking, alcohol	PUFAs (P: 0.04) than unimpaired
	sample	samples				intake, BMI, history	individuals
		not				of cardiovascular	There were no other differences relating
		reported)				disease and	to EPA, DHA or n-3 PUFAs.
						APOE-ε4.	
Morris,	Males and females	815	3.9y	Fish, total n-3	AD diagnosis	Logistic regression	131 cases of incident AD.
2003 [40] ⁶	≥ 65y	(35%:		fatty acid, DHA	based on	models comparing	Higher intake of total n-3 fatty acids was
	Community-dwelling	variables		and EPA	criteria of	odds of AD with	associated with reduced risk of AD
	Free from dementia	associated		intake	NINCDS-	quintiles of energy-	(highest quintile (median: 1.75g/d) <i>vs</i>
	or with mild cognitive	with loss to		assessed by	ADRDA	adjusted n-3 fatty	lowest quintile (0.9g/d) adjusted RR: 0.4;
	impairment at	follow-up		self-	(demented	acid intake (first	95% CI: 0.1, 0.9).
	baseline	not		administered	cases without	quintile: reference).	Higher intake of DHA associated with
		reported)		FFQ	AD were	Logistic regression	reduced risk of AD (highest quintile
					analyzed as	models comparing	(median: 0.1g/d) <i>v</i> s lowest quintile
					non-cases)	frequency of fish	(median: 0.03g/d) adjusted RR: 0.3; 95%
						consumption with	Cl: 0.1, 0.9).
						risk of AD (never:	No association between EPA intake and
						reference).	risk of AD (highest quintile (median:
						Adjusted for: age,	0.03g/d) <i>vs</i> lowest quintile (0.0g/d)
						sex, education,	adjusted RR: 0.9; 95% CI: 0.4, 2.3).
						APOE-ε4, race x	Frequent fish consumption associated
						ΑΡΟΕ-ε4	with reduced risk of AD (highest
						interaction, period	frequency (≥ 2/wk) <i>vs</i> never adjusted RR:
						of observation.	0.4; 95% CI: 0.2, 0.9)

Schaefer,	Males and females	488	9.1y	Plasma DHA	Dementia	Cox proportional	99 cases of incident dementia (of which
2006 [41] ⁷	≥ 55y	(75%: more		and EPA.	diagnosis	hazards models	71 were AD).
	Community-dwelling	likely to be		Dietary fish	based on	comparing risk of	Highest DHA concentration associated
	Free from dementia	older; other		and DHA	criteria of	dementia with	with reduced risk of all cause dementia
	at baseline	variables		intake also	DSM-IV as	quartiles of plasma	(highest quartile (>4.2%) <i>vs</i> quartiles 1-3
		associated		assessed by	well as a	DHA (quartiles 1-3:	combined adjusted RR: 0.53; 95% CI:
		with loss to		self-	duration of	reference).	0.29, 0.97).
		follow-up		administered	symptoms >6	Similar analysis	No association between DHA
		not		semi-	months and a	was conducted for	concentration and risk of AD (adjusted
		reported)		quantitative	score of ≥ 1 of	baseline DHA and	RR: 0.61; 95% CI: 0.31, 1.18).
				FFQ.	severity on the	fish intakes.	No association between plasma levels of
					Clinical	Adjusted for: age,	EPA and risk of dementia or AD (data not
					Dementia	sex, APOE-ɛ4,	shown).
					Rating scale.	homocysteine	No association between dietary DHA or
					AD defined	concentration,	fish consumption with dementia or AD.
					based on	education	
					criteria from		
					NINCDS-		
					ADRDA.		
Solfrizzi,	Males and females	278	622	Dietary intake	MCI assessed	Proportional hazard	18 cases of incident MCI.
2006 [37] ⁸	≥ 65y (mean: 73)	(61%: more	person-	of PUFA	by MMSE	models comparing	No association between PUFA intake
	Community and	likely to be	years	assessed by	score, memory	risk of MCI by	and risk of MCI in adjusted analysis,
	institutional-dwelling	older and		semi-	status (BSRT)	quartile of PUFA	(highest quartile (≥ 9g/d) <i>v</i> s lowest
		with less		quantitative	and functional	intake.	quartile (≤ 5g/d) adjusted HR: 0.62; 95%
		education)		FFQ	capacity	Adjusted for: age,	Cl: 0.34, 1.13).
					(ADL). MCI	education and total	
					defined as	energy intake	

			MMSE			
			adjusted score			
			<1.5SD from			
			the mean age-			
			and education			
			adjusted			
			MMSE score			
			for non-			
			demented			
			individuals.			
			Total BRST			
			score in lowest			
			10 th percentile			
			and disabilities			
			compromising			
			ADL			
		Į	ļ	<u> </u>	l	

95% CI = 95% Confidence Interval; AD = Alzheimer's Disease; ADL = Activities of Daily Living scale [100]; BMI = Body Mass Index; BP = Blood Pressure; BSRT = Babcock Story Recall Test [101]; CIND = Cognitively Impaired but Not Demented; DHA = Docosahexaenoic Acid; DSM-III/IV= Diagnostic and Statistical Manual of Mental Disorders, 3rd Edition [93]/ 4th Edition [22]; EPA = Eicosapentaenoic Acid; FFQ = Food Frequency Questionnaire; HR = Hazard Ratio; MCI = Mild Cognitive Impairment; MMSE = Mini-Mental State Evaluation [94]; NINCDS-ADRDA = National Institute of Neurological and Communicative Disorders and Stroke – Alzheimer's Disease and Related Disorders Association [23]; PUFA = Polyunsaturated Fatty Acids; SD = Standard Deviation ¹Personnes Agees QUID study (PAQUID); ²The Rotterdam Study; ³Cardiovascular Health Cognition Study (CHCS); ⁴Cardiovascular risk factors, Aging and Incidence of Dementia study (CAIDE); ⁵Canadian Study of Health and Aging (CSHA); ⁶Chicago Health and Aging Project (CHAP); ⁷The Framingham Heart Study; ⁸The Italian Longitudinal Study on Aging (ILSA);

Table 4. Summary of RCTs examining fatty acid intervention on cognitive function.

First	Study population	Ν	Intervention ¹	Duration	Cognitive measure	Outcome / main results
author,						
year						
Freund- Levi, 2006 [55]	Males and females Mean age: 74y With AD according to DSM-IV criteria MMSE score 15-30 Living in own home Receiving treatment with acetylcholine esterase inhibitors	174	4 tablets daily containing: 430mg DHA + 150mg EPA <i>vs</i> placebo Intervention for 6 months followed by open treatment with n-3 supplements for all participants for further 6 months	12 months	Cognitive function assessed at baseline, 6 and 12 months by MMSE and ADAS-COG	MMSE declined and ADAS-COG increased from baseline to 6 and 12 months in both groups but with no significant difference between treatment groups (values not reported).
Jorissen, 2001 [57]	Males and females >57y Community-dwelling With mild to moderate cognitive deterioration as assessed by AAMI MMSE score >24	120	Three trial arms: a. 300mg Soya bean Phosphatidyl- serine (S-PS) b. 600mg S-PS c. Placebo (S-PS contains 28% PUFA)	12 weeks	Cognitive function assessed by battery of neuropsychological tests at baseline, 6 weeks and 12 weeks. Tests included: visual verbal learning, memory scanning, verbal fluency, Stroop color word, signal detection, motor choice reaction time, concept shifting and tower of London test.	No effect of treatment on primary outcome of long-term memory performance (assessed by visual verbal learning test). No treatment effects on secondary cognitive outcomes.
Terano,	Males and females	20	Intervention group:	1 year	Cognitive function assessed at	HDS-R and MMSE scores improved in

1999 [56] ²	Mean age: 83y		0.72g DHA/d		baseline, 3, 6 and 12 months.	the supplementation group whereas the
	Institutional-dwelling		Control groups		Cognitive function assessed by	control group remained unchanged.
	MMSE score 15-22		Control group:		MMSE, HDS-R and clinical evaluation	However, treatment effect statistics not
	HDS-R score 15-22		nothing			reported.
Yehuda,	Males and females	100	Fatty acid	4 weeks	Cognitive function assessed by a 12	Greater improvement in intervention arm
1996 [58]	50-73y		preparation (n-3: n-		item questionnaire completed by	compared to placebo for all of the
	Community-dwelling		6 ratio of 1:4)		patient's guardian or care-giver and	components of quality of life
	Complaints of		known as SR-3		rating (5-point scale) various aspects	questionnaire with the exception of
	disorientation and		provided as 2ml/d		of quality of life. Questionnaire	bladder control (statistical analysis of
	cognitive deficit		vs placebo		assessed at baseline and after	treatment effect not reported).
	Low score on MMSE				treatment.	
	(mean sample score:				Components: space orientation,	
	7.8)				cooperation, mood, appetite,	
	No multi-infarction				organization, short-term memory, long-	
	dementia, post-				term memory, sleep problems, daytime	
	depressive dementia or				alertness, hallucinations, self-	
	post-traumatic				expression and bladder control	
	dementia					

AAMI = Age-Associated Memory Impairment; AD = Alzheimer's Disease; ADAS-COG = Alzheimer Disease Assessment Scale [98]; DHA = Docosahexaenoic Acid; DSM-III/IV= Diagnostic and Statistical Manual of Mental Disorders, 3rd Edition [93]/ 4th Edition [22]; EPA = Eicosapentaenoic Acid; HDS-R = Hasegawa's Dementia rating scale; MMSE = Mini-Mental State Evaluation [94]; PUFA = Polyunsaturated Fatty Acids

¹All studies are randomized double-blind, placebo-controlled trials unless stated otherwise

²This trial was not double-blind and the control group did not receive a placebo

Figure 1. Flow chart of included and excluded papers in the literature search.

Footnote:

¹Details of excluded studies from step 2 are in web appendix 2

²A number of cohort studies included relevant data on folate, other B-vitamins and

homocysteine