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Abstract 

Communication between irradiated and un-irradiated (bystander) cells can cause 

damage in cells that are not directly targeted by ionizing radiation (IR); a process 

known as the bystander effect (BE). BE can also lead to genomic instability (GI) 

within the progeny of bystander cells, similar to the progeny of directly irradiated 

cells. The molecular factors that mediate this cellular communication can be 

transferred between cells via gap junctions or be released into the extracellular media/ 

microenvironment of cells and tissue following irradiation. Although GI is thought to 

be a critical step in the onset and progression of cancer, BE response contributions in 

such processes are still not clear. Therefore, this study was designed to investigate the 

risks or benefits associated with the induction of non-targeted effects especially BE 

following exposure to low LET X-ray radiation using two different cell types. 

Additionally, the project aims to achieve an increased understanding of the 

mechanisms of non-targeted effects of ionizing radiation by examining the molecular 

signalling via exosomes within the irradiated, bystander and progeny of irradiated and 

bystander cell population. 

Different cell combinations were established between tumour (MCF7) and non-

tumour (HMT-3522S1) human breast epithelial cells using a 6-well plate co-culture 

system. The cells were irradiated with two doses of X-ray; 0.1 Gy (a diagnostic 

procedure relevant dose) and 2 Gy (therapeutic dose) and a sham-irradiation dose of 0 

Gy (for control groups of experiment). The co-culturing time was 4 hours for all cell 

combination, whereupon a media transfer approach was used to induce BE within the 

cells in the exosome part of this study. The early and late cellular damage responses 

were evaluated by the following biological endpoints: cytogenetic/chromosomal 

analysis, apoptotic analysis, telomere length and telomerase activity measurements. In 

addition to these biological endpoints, the comet assay was utilised to estimate the 

initial and delayed DNA damage within the cells that had been treated with exosomes, 

previously extracted from the irradiated, bystander and control cell media.  

The results showed that 2 Gy direct irradated MCF7 and HMT cells were both able to 

induce early and late chromosomal damage in the bystander MCF7 and HMT cells. 

Furthermore, these bystander cells exhibited early and delayed telomeric instability, 

which could prompt further GI at later time-points. In comparison, 0.1 Gy direct 
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irradiated MCF7 cells were only able to induce initial and delayed chromosomal 

damage within the bystander MCF7, which also demonstrated a high level of 

telomeric instability at early and late time-points. While, bystander HMT cells did not 

show chromosomal damage after 1, 12 and 24 generations/population doublings 

following co-culture with 0.1 Gy direct irradiated MCF7 or HMT cells. 0.1 Gy 

bystander HMT cells did reveal a high level of apoptosis at early and late time points, 

which might be due the removal of cells with a high level of chromosomal damage. 

Interestingly, the 0.1 Gy bystander HMT cells exhibited significant levels of telomeric 

instability at early and late time points, which could contribute to chromosomal 

instability at later time-points.  

The investigation in to the mechanisms of molecular signalling via exosomes showed 

that the exosomes of irradiated cell conditioned media (ICCM) from MCF7 cells had 

the ability to induce BE within MCF7 and HMT cells similar to the effects of ICCM 

following 2 Gy X-ray. The exosomes that were isolated from the MCF7 bystander cell 

media had a similar effect as the ICCM on the MCF7 and HMT bystander cells. These 

exosome-bystander cells also showed GI within their progeny after 24 generations 

and retained the ability to induce cellular damage to fresh un-irradiated MCF7 cells, 

demonstrating an underlying mechanism for propagating the delayed damage 

responses. The inhibition of the exosome’s cargo molecules by RNase treatment and 

protein denaturating (boiling of exosmes) significantly abrogated BE and GI in both 

MCF7 and HMT bystander cells following 2 Gy X-ray. Thus data demonstrated 

crucial roles for exosome RNA and protein molecules in the non-targeted effects of 

IR induction.    

In summary, our investigations demonstrate that BE has detrimental consequences 

within the tumour and non-tumour breast epithelial cells (MCF7 and HMT3522S1) 

following low and high doses of X-ray irradiation, and these detrimental 

consequences are frequently mediated by exosomes that contain RNA and protein 

molecules. Inhibition of these molecules can abrogate BE and GI following a 

radiotherapy dose, which can potentially have an application in clinical radiotherapy. 
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Chapter 1: Introduction 

1.1 Direct and indirect action of ionizing radiation 

Ionizing radiation (IR) is part of human environment, discharges from the medical, 

environmental, occupational and radioactive sources. IR includes high linear energy 

transfer (LET) radiation such as α- particles (nuclei of helium atoms) and low LET 

radiation such as x and γ- rays (electromagnetic radiation), which emit from natural 

sources (Hall and Giaccia, 2006). LET widely varies depending on the speed and 

charge of the particle involved (Nias, 1990, Grosch and Hopwood, 1979). It has been 

well documented that IR induces DNA damage in biological material either by direct 

or indirect actions of radiation (Burdak-Rothkamm et al., 2009, Folle, 2008, 

Koturbash et al., 2006b, Abraham et al., 2003, Suzuki et al., 2003, MacDonald et al., 

2001, Bebb et al., 1998, Ikushima, 1987). IR produces a fast recoil electron that 

causes either direct damage by interaction with DNA directly or indirectly through 

free radicals production, which induce DNA damage (Hall and Giaccia, 2006).  

Cellular damage may occur directly when the radiation interacts with the critical 

target (DNA) directly, for example α− particles (Hall and Giaccia, 2006). In contrast, 

indirect action of radiation occurs when radiation interacts with other atoms of 

molecules in the cell particularly water, leading eventually to production of the free 

radicals such as OH• (Nias, 1990). Free radicals can induce DNA damage in vitro 

(Rao et al., 2008, Jagetia et al., 2003) and in vivo (Tanito et al., 2007, Mendiola-Cruz 

and Morales-Ramirez, 1999). In Summary, ‘direct’ action of IR refers to DNA hit 

directly by IR tracks, whilst ‘indirect’ action of IR occurs through production of free 

radicals that induce DNA damage. Biological effects can be induced by x or γ- rays 

directly or indirectly. About two-third of the biological damage by x-rays occurs by 

indirect action (Hall and Giaccia, 2006).  
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1.2 Targeted effects of IR 

The target theory assumes that cells must have at least one critical site or target that is 

hit by radiation to induce cellular damage or cell death (Marshall et al., 1970). The 

nuclear DNA is considered as the principle critical target for IR induced cell death, 

chromosomal or chromatid aberrations, mutation and cell transformations (Kraft et 

al., 1992, Radford et al., 1988). However, some evidence postulate that cell 

membranes might be a target for biological effects of IR, which induce cell death 

(Mishra, 2004, Ross, 1999, Alper, 1977).  

According to the target theory DNA damage occurs during or very shortly after 

irradiation. It can be also explained as potential biological consequences within one or 

two cell generations (Ward, 2002). The major types of DNA damage that are induced 

by IR are: i). Single-Strand Break (SSB), in which, only one of the two strands of 

DNA double helix is broken (Bryant et al., 2003, Bryant, 1998). SSB is not usually 

observed/visualised, because it is rapidly repaired using the opposite strand as a 

template (Bailey and Bedford, 2006, Bryant, 2004), ii) Double-Strand Breaks (DSB), 

these occur in both strands of DNA (Mozdarani and Bryant, 1987, Bryant, 1984), iii) 

DNA base damage, caused by IR damaging effect on purine and pyrimidine DNA 

bases (Klunglanda and Bjellandb, 2007, Ward, 1988) and iv) DNA-DNA and DNA- 

protein crosslink, which causes DNA replication arrest and cell death if the crosslink 

is not repaired (Ward, 1988). Ionizing radiation can also produce combinations of 

these lesions within a few base pairs, these are known as clustered or complex lesions 

(Goodhead, 1994) 

The critical lesion leading to chromosomal and chromatid aberrations or cell death is 

DSB which can be induced by both IR (Bryant, 1984) and free radicals (Frankenberg-

Schwager et al., 2008, Han et al., 2007). The DNA DSB can be repaired by two repair 
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mechanisms depending on the phase of the cell cycle: Non- homologous end joining 

(NHEJ), which usually occurs in the G1 phase of cell cycle, when such template is not 

available (Klug and Cummings, 2003), or by homologous recombination repair 

(HRR), this occurs predominantly during S and G2 phase of the cell cycle, when 

undamaged sister chromatid act as a template (Griffin and Thacker, 2004). Non- 

repair of DSB or misjoining of broken chromosomes leads to chromosomal 

aberrations, which fall into two types: a) Unstable chromosomal aberrations, which 

are considered lethal to cells such as dicentric chromosome (Hall and Giaccia, 2006) 

and b). Stable chromosomal aberrations, which are usually non- lethal, for example 

reciprocal translocation (Klug and Cummings, 2003). 

1.3 Non- targeted effects of IR 

As well as targeted effects of IR, which can be induced by deposition of energy in the 

nucleus of  irradiated cells, recent evidence has demonstrated that IR can cause 

biological effects in the un-irradiated cells, which have been in the vicinity of 

irradiated cells, in a response known as the bystander effect (BE) (Mothersill and 

Seymour, 2001, Mothersill et al., 2000), or in the progeny of irradiated cells radiation- 

induced genomic instability (GI) (Kadhim et al., 1995). Both BE and GI have been 

reported as a non-targeted effect of IR (Morgan, 2003). In addition, IR can induce 

another non- targeted effect known as the adaptive response, in which, cells that are 

exposed to a very low, priming dose, of IR prior to being challenged by a high (acute) 

dose of radiation, have increased protection compared to cells that are exposed to a 

challenged dose alone. The priming dose is called the adaptive response which 

induces cell resistance against high doses of IR (Mothersill and Seymour, 2006, 

Bonner, 2003, Barquinero et al., 1995, Khandogina et al., 1991, Schmid et al., 1989). 

As well as abscopal effect is considered as a non-targeted effect of IR.  Abscopal 
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effect is defined as the biological reaction within the un-irradiated cells that are far 

away (outside the field/zone of irradiation) from the irradiated cells following 

irradiation  (Peter et al., 2007). 

1.3.1 Bystander effect (BE) 

The bystander effect (BE) is defined as the induction of biological effects in the cells 

that are not directly hit by radiation, but are neighbours to irradiated cells (Little, 

2006, Mothersill and Seymour, 2001, Seymour and Mothersill, 1999, Mothersill and 

Seymour, 1998, Prise et al., 1998) (Figure 1.1). BE amplifies the consequences of IR 

and exaggerates the cellular damage in un-irradiated cells, such as sister chromatid 

exchange, gene mutation (Nagasawa and Little, 2002), apoptosis (Zhu et al., 2005), 

transformation (Weber et al., 2005) and chromosomal aberrations (Schollnberger et 

al., 2006, Lorimore et al., 1998). BE was initially demonstrated by Nagasawa and 

Little in 1992 (Nagasawa and Little, 1992). They exposed Chinese hamster ovary 

cells to a dose of α- particles where only 1% of cells population was traversed by an 

α- particle track. However, 30% of the cell population showed chromosomal damage, 

with a significant increase in the frequency of sister chromatid exchange. 

 

           
 
                       Figure 1.1: Scheme of radiation- induced bystander effect.  
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BE does not demonstrate a linear relationship to IR dose; that means BE is maximally 

induced by very low doses, suggesting a switch-on mechanism for its activation (Ding 

et al., 2005). Hickman at al., have reported that rat lung epithelial cells showed BE 

post- exposure with low doses (as low as 0.6 cGy) of α- particles, indicating a number 

of cells having increased level of p53 protein. There was no evidence of threshold α- 

particle caused an elevation in the level of p53 protein in bystander cells. This 

increase in the level of p53 also occurred in X-irradiated cells. However, no increase 

was observed in cells that were hit with less than 10 cGy of X- ray, indicating the 

existence of a higher DNA damage threshold for sparsely IR (Hickman et al., 1994). 

Lehnert and Goodwin have similarly irradiated human fibroblast cells with relatively 

low dose of α- particles, excessive sister chromatid exchanges were observed in 

bystander cells (Lehnert and Goodwin, 1997). Other studies have showed that 

radiation- induced bystander effect can be induced by a low dose of IR such as X-ray 

and α-particle (Lewis et al., 2001, Zhou et al., 2000, Deshpande et al., 1996). 

Generally, it has been demonstrated that BE can be induced very rapidly after 

irradiation. It has been well established that signal(s) from hit reporter cells can 

induce damage in non-hit cells (Nagasawa and Little, 1999, Mothersill and Seymour, 

1998), depending on the cell type (Hickman et al., 1994), and the cell density 

(Ballarini et al., 2006). Mothersill and Seymour demonstrated that media from 

irradiated human epithelial cell line can induce BE in un-irradiated cells. However, 

media from irradiated human fibroblast had no effect on un-irradiated epithelial cells 

(Mothersill and Seymour, 1997). Another experimental evidence has suggested that 

cell density is important in bystander mutagenesis and the oncogenic transformation 

frequency between irradiated and un-irradiated cells. BE was observed to be higher in 
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high density than low density cultures afterα- particle irradiation (Mitchell et al., 

2004). 

There is strong evidence to demonstrate that BE has a non- linear dose dependence 

(Brenner and Sachs, 2002, Brenner et al., 2001). Studies suggest that IR can give a 

no- threshold effect, whereas a low dose threshold was able to cause BE which, was 

maximally induced by very low doses (0.2Gy α- particle, and between 0.3- 0.5 Gy X- 

ray) (Schettino et al., 2005, Brenner et al., 2001). These studies have confirmed a 

binary all-or-nothing model of triggering the bystander response (Smilenov et al., 

2006, Schettino et al., 2005, Brenner et al., 2001), as shown in figure 1.2.  

 

 

 

 

 

Figure 1.2: Diagram of bystander all or nothing model. 

However, Studies by Portess et al. suggested that apoptotic levels were dose- 

dependent event in the rat bystander fibroblast cells using γ-ray and α-particles 

(Portess et al., 2007). Moreover, normal human blood lymphocytes showed a dose-

dependent apoptotic responses following different doses of γ-ray irradiation (Pandey 

et al., 2011). Much evidence has proved that BE responses can by dose dependent by 

measuring apoptotic levels as shown in figure 1.3 (Vinnikov et al., 2012, Buonanno et 

al., 2011). 
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        Figure 1.3: Diagram of bystander effect is a dose-dependent phenomenon. 

 

1.3.1.ii   Bystander- induced apoptosis  

Apoptosis or programmed cell death occurs in multicellular organisms (Potten and 

Wilson, 2004). It is well documented that apoptosis can be induced by bystander 

factors (Albanese and Dainiak, 2000, Banerjee et al., 2005, Ding et al., 2005, Brochu 

et al., 1999). Lyng et al. have shown that IR can cause loss of mitochondrial 

membrane and increase calcium level and ROS in human keratinocytes (HPV-G) post 

gamma irradiation. The latter events can initiate apoptosis in un-irradiated HPV-G 

cells, which are fed with media from irradiated HPV-G cells (Lyng et al., 2002). 

Other publications have suggested that the induction of similar bystander signalling 

using the microbeam can induce apoptosis in HPV-G cells (Lyng et al., 2006a). 

Belyakov et al. demonstrated that BE can induce apoptosis and micronucleated in 

primary urothelial explants (Belyakov et al., 2002). Recent publications have 

postulated that human normal blood lymphocytes showed different significant levels 

of apoptotic induction following low and high doses of γ-ray irradiation. The study 

suggested these differential responses of apoptosis were significantly associated with 
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the levels of intracellular reactive oxygen species (Pandey et al., 2011). Moreover, 

Vinnikov and other authors have reported that bystander primary human peripheral 

blood mononuclear cells displayed dose dependent apoptotic responses following γ-

ray irradiation (Vinnikov et al., 2012) 

1.3.1.i   Mechanisms of BE 

Experimental evidence has indicated that irradiated cells secret toxic factors that are 

transmissible to recipient un-irradiated cells through GJIC or irradiated cell cultured 

media. Several mechanisms to regulate BE, have been proposed, these include: 

secreted soluble factors and oxidative metabolism. However, the mechanisms of 

bystander signalling are still unclear (Ballarini et al., 2006, Azzam et al., 2004). 

Lyng et al., used human papilloma virus- immortalized keratinocytes (HPV-G), which 

were cultured with irradiated cell-conditioned media (ICCM), to induce BE. They 

showed that ICCM caused a rapid increase in calcium, which was found to be an 

important modulator of bystander response (Lyng et al., 2006b). Lyng et al. also 

showed that pathways of the mitogen- activated protein kinase (MAPK) have been 

associated with growth factor- mediated regulation of cellular events such as 

proliferation, senescence, differentiation and apoptosis after cell exposure to ICCM 

(Lyng et al., 2006b). Another study has reported that calcium can modulate cell cycle 

functions, cell cycle regulation and can lead to apoptosis (Bygrave and Roberts, 

1995). Furthermore, Shao et al., working with T98G glioma cells and AG01522 

fibroblasts, exposed to ICCM, have demonstrated that the early response in radiation- 

induced BE, may be due to calcium signalling. Moreover, they observed that calcium 

fluxes and BE were inhibited when the irradiated T98G were treated with amino 

guanidine (an inhibitor of nitric oxide (NO) synthase), and when the irradiated 
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AG01522 cells were treated with Dimethyl sulphoxide (DMSO), a scavenger of 

reactive oxygen species (ROS). They reported that NO and ROS may be linked in the 

bystander response in their system (Shao et al., 2006) and it is well documented from 

many studies that both ROS and NO are involved in bystander responses (Little, 

2007, Shao et al., 2003b, Shao et al., 2002, Bishayee et al., 2001). Shao et al. have 

suggested that the concentration of NO in the co- culture media depends on the LET 

and dose of radiation. They showed a low concentration of NO can enhance cell 

proliferation, which has an important role in media- mediated BE (Shao et al., 2003a). 

Azzam and et al. have reported that micronucleus formation in bystander population 

from a confluent culture of irradiated normal human diploid fibroblast cells can be 

induced by superoxide and hydrogen peroxide (Azzam et al., 2002). However, other 

published data has suggested that increased ROS production in irradiated cells is not a 

substantial trigger of a bystander signal(s) (Kashino et al., 2007a). Much evidence has 

demonstrated that cytokines are implicated in the bystander response (Facoetti et al., 

2006, Lorimore et al., 2003, Lorimore and Wright, 2003). Shao et al. observed that 

TGF- beta 1 can be released from irradiated T98G cells and can cause BE through 

production of free radicals leading to DNA damage in un-irradiated cells (Shao et al., 

2008a). One such study reported an increase in the levels of expression of both 

replication protein A (RPA), which is involved in the DNA replication, repair and 

recombination, and apurinic/ apyrimidnic endonuclease (APE), which is implicated in 

the base excision repair pathway, in the bystander cells. The increased expression of 

RPA and APE might be due to DNA strand break and oxidised base lesion in the 

DNA of bystander cells (Balajee et al., 2004). More recent study has linked the 

mitochondrial DNA and induction of BE. The study suggested that BE is an energy 

dependent process. The authors used mitochondrial inhibitors rotenone and 
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oligomycin treated ICCM and ICCM without inhibitors with lymphoblastoid cells. 

They proved that cells treated with inhibitors ICCM did not exhibit an induction of 

BE compared to the ICCM without inhibitors treated cells. They suggested that 

mitochondrial ATP synthesis and entirely mitochondria function are necessary for BE 

generation (Rajendran et al., 2011). Furthermore, Kostyuk and other workers have 

postulated that extracellular DNA can play an important role in BE induction in 

human umbilical vein endothelial cells underlying ROS and NO-mediated BE 

(Kostyuk et al., 2012). 

As yet, the exact mechanism of BE is not fully known. However, interaction between 

hit and non- hit cells may happen in at least two separate pathways: through gap 

junction intercellular communication (GJIC) (Azzam et al., 1998) or by cell culture 

mediated factors (Hickman et al., 1994). 

a. Gap junction- mediated BE 

The gap junction or nexus is common to many types of cells, especially epithelial, 

cardiac, and smooth muscle cells and some nerve cells (Telford and Bridgman, 1995). 

Gap junction consists of a hexamer of multipass transmembrane proteins with a 

central 1.5nm hydrophilic pore which, form a unit called a connexon (Paulsen, 2000, 

Ross et al., 1995). Connexons extend across a 2nm gap between cell membranes like 

a small pipes (Vaughan, 2002) allowing small molecules with molecular weight 

below 1500 Daltons to pass between cells (Junqueira et al., 1995).  

There is much experimental evidence suggesting that BE can be induced through 

GJIC. Azzam et al., proposed that GJIC regulates radiation-induced BE (Azzam et al., 

2003). Bishayee et al. used Chinese hamster V79 cells, which were labelled with 

tritiated thymidine and mixed with unlabelled cells. They hit the labelled cells by 
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short- range β- particles. Cells were treated with dimethyl sulphoxide (DMSO), which 

is hydroxyl scavenger and lindane, a GJIC inhibitor. The results demonstrated that 

DMSO and lindane significantly protected unlabelled or bystander cells. In addition, 

they have suggested that BE can be induced through GJIC by free radicals (Bishayee 

et al., 2001). Zhou et al. have reported that the mutant yield significantly decreased in 

cells treated with lindane, post- irradiation. They confirmed that GJIC plays a critical 

role in the bystander phenomenon (Zhou et al., 2002). Other evidence using rat liver 

epithelial cells showed that the spatial proximity of cells is a crucial element for 

transmitting growth stimulation signals from irradiated cells to neighbouring un-

irradiated cells (Gerashchenko and Howell, 2003).  

b- Secreted transmissible factors-mediated BE 

As well as GJ- mediated BE evidence, several approaches such as media transfer and 

co-culture experiments have established that BE can be induced in un-irradiated cells 

by media from irradiated cells. Anzenberg and other authors have documented that 

media from irradiated DU-145 human prostate carcinoma cells are able to cause 

bystander phenomenon in both un-irradiated DU-145cells and AG01522 human 

fibroblast. The bystander response of both types of cells was different to the same 

media-mediated signal(s) (Anzenberg et al., 2008). Basker, et al. showed that 

irradiated media from different cell types, can induce BE in un-irradiated cells 

depending on radiation quality (Baskar et al., 2007). Yang et al. suggested that media 

from irradiated cells has toxic factors that can cause BE in un-irradiated cells (Yang et 

al., 2005). Kanasugi, et al. observed that media from normal human fibroblast cells 

(post- exposure to low and LET radiation) can induce BE in un-irradiated cells 

through nitric oxide (NO) production. They have concluded that irradiated cells 

secrete NO and other molecules, which transmit radiation effects to un-irradiated 
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cells, leading to chromosomal aberrations (Kanasugi et al., 2007). Furthermore, 

media- mediated bystander events have been also well documented in other 

publications (Azzam and Little, 2004, Coates et al., 2004, Mothersill and Seymour, 

2004). Some data has suggested that GJIC is not very important in mediating the 

bystander effect. Princen et al., observed that BE was not abolished in two type of cell 

lines (DHD/K12 and 9L), when they treated these cell lines with 18 alpha- 

glycyrrhetinic acid or 1- octanol (GJIC inhibitor). 9L cell line exhibited an extreme 

BE response, whilst, DHD/K12 showed a moderate BE. Some data suggests that BE 

is mediated by soluble factors from the cell line’s media (Princen et al., 1999). Recent 

evidence has reported that irradiated human melanoma cells could induce BE in the 

un-irradiated human fibroblast cells co-culture system following irradiation. The 

authors suggested that the irradiated cells could increase the ROS level in the 

bystander cells, leading to produce high level of MN and apoptosis (Widel et al., 

2012)  

1.3.1.ii   Bystander effect in vivo 

Several studies demonstrated that BE can be induced in vivo (Azzam et al., 2003, 

Brooks, 2004, Mancuso et al., 2008), Kassis observed that specific irradiation of 

human tumour cells in vivo can cause BE in subcutaneously growing tumours (Kassis, 

2004). Watson et al. transplanted a mixture of irradiated and labelled un-irradiated 

bone marrow cells of CBA/H mouse into female recipients; cytogenetic analysis 

results demonstrated a significant induction in the level of chromosome aberrations in 

the labelled un-irradiated cells. These results confirmed the induction of bystander 

effects in vivo (Watson et al., 2000). Similarly, BE has been observed in lead-

protected medical grade shield mouse spleens, following cranial X-irradiation in an 

investigation to determine levels of DNA damage, cellular proliferation, apoptosis and 
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p53 protein in bystander spleen tissue (Koturbash et al., 2008). The study 

demonstrated that cranial irradiation was able to increase DNA damage, p53 

expression, apoptosis and altered levels of cellular proliferation in bystander spleen 

tissue (Koturbash et al., 2008).  

1.3.2 Radiation- induced genomic instability (GI) 

It is well accepted that IR, when passed through biological tissue, induces cellular 

damage as a consequence of the deposition of energy (Hall and Giaccia, 2006, Dewey 

et al., 1995, Hickman et al., 1994). Additionally, there is evidence of an elevation in 

appearance of de novo chromosomal aberrations (Hofman-Huther et al., 2006), gene 

mutations (2005) and reproductive cell death (Belyakov et al., 1999) in the progeny of 

irradiated cells, which is defined radiation- induced genomic instability (GI), as 

shown in figure 1.4  

                           

Figure 1.4: Scheme of radiation- induced genomic instability. 

                                                                               

Kadhim et al. reported that type of radiation exposure, cell type and cell 
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irradiation also has an important effect on GI in V- 79 Chinese hamster cells, 
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irradiated by gamma- ray in dose of 0.5 Gy at powers of 0.48 Gy/min (an acute 

irradiation) and 0.0485 Gy/min as a prolonged irradiation. Micronuclei (MN) 

formation was employed as an endpoint and measured after 20 doublings in both 

acute and prolonged population cells. Frequency of MN in the prolonged population 

cells was high and remained at this high level during 40-60 generations. In contrast, 

the number of MN started to  reduce after 20 generations following acute irradiation 

(Antoshchina et al., 2005). Chang et al. observed a significant elevation in the 

percentage of MN in the immature reticulocytes (RET) and the mature normo-

chromatic erythrocytes (NCE) of three types of mice (wild- type, hemizygotes and 

nullizygotes) post- exposure to an acute dose of highly charged and energetic (Ohzeki 

et al.) iron radiation. The study also showed a significant increase in p53 levels in 

both cell types (RET and NCE) of all three types of animals compared to control 

groups. In addition, the elevation in the percentage of MN in RET of wild- type and 

hemizygotes returned to the control level after 9 days post- radiation. However, the 

MN level in the nullizygotes mice persisted for 56 days. The authors demonstrated 

that persistence of elevation of micronuclei number depends on the p53 genetic 

background of animals. They suggested that  p53 gene function  may impact in the 

iron particle radiation- induced genomic instability (Chang et al., 2000). Nevertheless, 

Kadhim et al. have concluded that α-particle-induced chromosomal instability is 

independent of the p53 status of the human lymphoblast cells (Kadhim et al., 1996). 

Other data showed that genomic stability can be maintained by telomeres; i.e. 

genomic instability and gene amplification can be implicated in the shortening or loss 

of telomeric repeats or altered telomere chromatin structure and this can be correlated 

with telomere dysfunction such as chromosome end-to-end associations (Misri et al., 

2008). Furthermore, folic acid deficiency can be involved in genomic instability 
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through increasing the cell sensitivity to radiation- induced genome damage (Fenech, 

2006, Beetstra et al., 2005).   

1.3.2.i   Genomic instability and carcinogenesis 
Most publications in the last two decades have suggested that GI can lead to initiation 

of cancer in vitro (Yan et al., 2006, Tawn, 2005, Preston, 2005, Chow and 

Choudhury, 2005). In this regard, Sabatier et al. suggested that GI can lead to genetic 

alterations that have an effect on chromosome structures, particularly telomeres. 

Telomeric instability has been shown in non-senescent cells from patients predisposed 

to cancer (Sabatier et al., 1995). Data from other evidence demonstrated that IR- 

induced ROS can cause DNA base modification in genomic DNA of lymphocytes of 

cancer patients exposed to radiotherapy. Some of these base modifications could lead 

to mutagenesis in critical genes and ultimately to secondary cancer such as leukaemia 

(Olinski et al., 1998). Piechowski suggested that GI is an important factor implicated 

under the rubric of malignant transformation (Piechowski, 2005). Some of the 

mechanisms, which are linked in the development of sporadic cancers, are linked with 

DNA DSB- induced gene translocation and GI, conferred by loss of DNA repair 

(Allan and Travis, 2005).  

1.3.2.ii   Mechanism of radiation-induced genomic instability 
The expression of GI is observed in a large proportion of irradiated cells (about 10-

20%) with low to moderate doses, compared to targeted mutation frequency which is 

typically less than 10-4 per Gy (Stewart et al., 2007). The observed high frequency of 

instability, as well as the lack of significant evidence of the involvement of DNA 

DSBs per cell in the initiation of instability, has led to the speculation that alterations 

in expression that disrupt cellular homeostasis may underlie induced instability 

(Baverstock, 2000). Evidence also points to the possible involvement of indirect, 

untargeted interactions between cells and complex cytokine-like signal transduction 
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processes (Natarajan et al., 2007, Moore et al., 2005). Instability might additionally 

arise through epigenetic mechanisms (Little, 1998), for example DNA methylation of 

a cytosine residue located within CpG dinucleotides. (Latchman, 1998). Methylation 

of cytosine is controlled by DNA methyltransferase (Turner, 2001), this molecular 

process  regulates gene expression without DNA sequence changes (Lee, 2007) and  

has an important role in tumour formation (Gaudet et al., 2003). Several studies have 

been conducted in order to investigate the possible involvement of DNA methylation 

in the mechanism of genomic instability induction (Kovalchuk and Baulch, 2008, 

Kovalchuk et al., 2004, Gaudet et al., 2003). Dodge et al. observed that DNA 

hypomethylation cells showed aneuploidy, polyploidy and chromosomal breakage. 

These results thus suggest that DNA hypomethylation can induce genomic instability, 

which in turn leads to spontaneous immortalization (Dodge et al., 2005). Another 

study found evidence for spread dysregulation of CpG methylation persisting up to 20 

population doublings following irradiation within the surviving progeny of directly 

irradiated cells and bystander cells, using an arbitrarily primed methylation sensitive 

PCR (Kaup et al., 2006). Fenech has suggested that DNA methyltransferase inhibition 

can lead to micronucleus formation either via chromosome breakage or chromosome 

loss (Fenech, 2006). Koturbash has investigated transgenerational genomic instability 

i.e. transgenerational carcinogenesis in offspring upon parental exposure. The 

offspring showed profound changes in DNA methylation, which led to genome 

instability and often served as a precursor for transgenerational carcinogenesis 

(Koturbash et al., 2006a). As well as epigenetic mechanisms and the role of miRNA 

can maintain the non-targeted effects of IR (Ilnytskyy and Kovalchuk, 2011). 

1.3.3.ii    Telomeres and genomic instability 
Telomeres are nucleoprotein complexes consisting of specialised non-coded DNA 

sequences (TTAGGG in vertebrates) at the ends of eukaryotic chromosomes 



18 
 

(Blackburn, 1991). The main function of telomeres is to protect the chromosomes 

from degradation and from fusion by capping the ends of chromosome (Song et al., 

2009, Misri et al., 2008), and also to provide the necessary templates for DNA 

polymerase during DNA lagging strand replication. The length of telomeres in human 

somatic cells is approximately 10 to 15 kb (Kipling, 1995), but they can  shorten by 

50 to 200 base pairs (bp) with each cell division (Huffman et al., 2000), because of  

end-replication problems (Levy et al., 1992). Thus, telomeres limit the replicative 

capacity of somatic cells, as well as playing a critical role in cancer-suppressor 

mechanisms through cell senescence; they therefore serve as a mitotic clock (Campisi, 

2001, Campisi et al., 2001, Wright and Shay, 1992). Telomeres are synthesised and 

maintained by a ribonucleoprotein enzyme called telomerase. The main sub-units of 

telomerase enzyme are telomerase reverse transcriptase (Bryant et al., 2002) and 

telomerase RNA(TR), which work to add TTAGGG repeats to 3' end of DNA strands 

(Chan and Blackburn, 2004).   

Much evidence has reported that telomeric instability and telomerase activity disorder 

frequently lead to chromosomal instability and can predispose to cancer formation 

(Keller et al., 2009a, Faure et al., 2008, Salin et al., 2008, Nasir et al., 2001, Dhaene 

et al., 2000, Norrback and Roos, 1997). Svenson et al. have reported from a study of 

711 female participants, using real-time PCR to measure telomere length, that long 

telomeres of peripheral blood cells can be involved in increased risk of breast cancer 

(Svenson et al., 2008).In contrast, other studies have shown that telomere shortening, 

due to loss of capping function, can be implicated in  chromosomal instability and 

cancer risk (Boukamp et al., 2005). The lack of capping function of telomeres can 

lead to end-to-end chromosomal fusion resulting in the formation of anaphase bridges, 

translocations, deletions and/or amplifications (Stewenius et al., 2007, Boukamp et 
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al., 2005, Stewenius et al., 2005). Jang et al. observed that lung cancer can be 

associated with telomere shortening and genomic instability in humans (Jang et al., 

2008). Furthermore, by using a telomere/centromere-fluorescence in situ hybridisation 

(T/C-FISH) technique, Lange et al. have suggested that telomere shortening relates to 

the generation of chromosomal instability (Lange et al., 2010). Moreover, telomere 

shortening causes non-reciprocal translocation and aneuploidy, and links with high 

rates of malignant diseases in humans (Calado, 2009). Evidence also suggests that 

telomeric instability can promote structural and numerical chromosome aberrations in 

human mammary epithelial cells (Dickey et al., 2009). 

Other studies have documented that high telomerase activity mediates genomic 

imbalance and cancer formation (Artandi and Cooper, 2009, Gumus-Akay et al., 

2009, Akimcheva et al., 2008, Al-Wahiby and Slijepcevic, 2005). In mice, deficient 

telomerase activity can lead to telomere shortening, which can initiate tumour 

formation by induction of chromosomal instability (Djojosubroto et al., 2003). In 

contrast, Brachner et al., have reported that excessive activation of telomerase, can 

result in a rapid elevation in the number of telomere sequence repeats. Additionally, 

aggressive growth in the number of telomere sequences can be induced by high 

hTERT (human telomerase reverse transcriptase) expression without changing the 

level of chromosomal instability (Brachner et al., 2006).  

a. Telomerase can be implicated in cancer  
Abundant evidence has proved the involvement of telomerase in cancer formation 

(Asai et al., 1998, Albanell et al., 1997). Bednarek et al. induced a premalignant 

papilloma in mouse skin using chemical carcinogenesis. A high induction level of 

telomerase activity was observed in the mouse skin papilloma cells after 30 weeks of 

treatment. In addition, aneuploidy and abnormal growth were detected as a delayed 

response  that might be linked to an increase in the telomerase activity (Bednarek et 
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al., 1995). Other researchers have suggested that the catalytic telomerase sub-unit, 

hTERT, expression can relate to human squamous cell carcinomas (Boldrini et al., 

2003). Moreover, it is well documented that telomerase activity is associated with 

hTERT gene expression in the ovarian cancer cell (Sun et al., 2007). In contrast, one 

study proved that hTERT can stimulate vascular endothelial growth factor (VEGF) in 

telomerase activity- independent, which might play an important role in aging and 

cancer (Zhou et al., 2009). 

b. Targeting telomerase as a cancer therapy 
Because of resistance of particular cancer cells to radiotherapy (Frosina, 2009),  many 

researchers have targeted the activity of telomerase in cancer therapy as a substitute 

for radiotherapy (Ahmed and Tollefsbol, 2003, Akiyama et al., 2002, Newbold, 

1999). Zhao et al. have reported that inhibition of hTERT using anti- hTERT siRNA 

can significantly hinder the proliferation and invasiveness of human glioma cells, 

through its effect on the telomere length (Zhao et al., 2007). Many in vivo studies 

using MCF7 cells that were incubated into the mice, have demonstrated a decrease in 

tumour weight and reduction in the metastasis following inhibition of telomerase by 

melatonin. Melatonin has also been shown to can inhibit TERT and TR sub-units in 

vitro (Leon-Blanco et al., 2003). Interestingly, in vivo research on breast cancer 

epithelial cells (MDA-MB-2231) demonstrated a high sensitivity to radiation 

following the inhibition of telomerase by GRN136L, a specific telomerase inhibitor 

(Gomez-Millan et al., 2007). 

1.3.2.iv   The link between bystander effect and genomic instability 
There is irrefutable evidence to suggest that ionizing radiation induces GI (Barber et 

al., 2006, Kadhim et al., 2004, Mazurik and Mikhailov, 2001).  Furthermore, there is 

strong evidence of GI in the bystander cells. Bowler et al. have reported that after 10-

13 population doublings post- irradiation, GI was observed in the progeny of 
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bystander cells and the delayed chromosomal damage in this population was similar 

to the level of initial radiation- induced chromosomal damage (Bowler et al., 2006). 

Much evidence has confirmed that IR can induce GI in the progeny of un-irradiated 

cells (bystander cells) (Lorimore et al., 2005, Lorimore et al., 1998). Hu and other 

workers observed GI within the progeny of bystander human hamster hybrid cells 

using multicolour banding technique (Hu et al., 2012). Moreover, GI had been 

observed within the bystander un-irradiated haemopoietic cells in vivo using bone 

marrow transplantation method (Watson et al., 2000) 
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Aims and objective of thesis 
 
The objective of this study is to investigate the risks or benefits associated with the induction 

of non-targeted effects, particularly BE following exposure to low LET X-ray radiation. Cell 

combinations between tumour (MCF7) and non-tumour (HMT-3522S1) human breast 

epithelial cells are established using the well defined cell communication approaches such as 

co-culture and media transfer systems. BE is considered beneficial if the bystander 

signals can induce apoptosis or auto-killing in the cancer cells, and these signals do 

not affect normal calls. Additionally, the project aims to achieve an increased understanding 

of the mechanistic link between radiation-induced genomic instability in irradiated and non-

irradiated bystander cells by examining the molecular signalling via exosomes within the 

irradiated, bystander and progeny of irradiated and bystander cell population. 

In order to fulfil these aims, the objectives of this project will be:  

1. Establish the induction of bystander effects (BE) using a 6 well-plate co-culture system and 

media transfer technique.  

2. Assess BE in bystander cells by chromosomal damage analysis. 

3. Evaluate apoptosis in bystander cells, which could lead to elimination the damaged cells. 

4. Assess telomere length and telomerase activity in order to determine telomere stability of 

bystander cells. 

5. Examine molecular signalling through the purification, identification and characterisation 

of exosomes released from irradiated and bystander cells into conditioned media, utilising 

several approaches including electron microscopy.  

8. Determine the role of exosomes in cell communication underlying the mechanism of non-

targeted effects of ionizing radiation using relevant biological endpoints. 
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Chapter 2: Materials and Methods 

2.1 Cell lines and tissue culture 

2.1.1 Cell lines:  

Two types of cell lines were employed in this study: non-tumour human epithelial 

cells (HMT-3522S1) and tumour metastatic human epithelial (MCF7) cells. Both of 

these cells were derived from breast epithelial cells of a female adult. 

2.1.1.i  HMT-3322S1 cell line 
Cells were purchased from the HPA tissue culture bank/repository at passage number: 

10 (p10). HMT-3522S1 is a subline derived from HMT-3522 after sub-culturing to 

passage 34 (Ohlsson et al., 1998). Originally, these cells were derived from normal 

breast epithelium of a 48 year old woman who had undergone malignant 

transformation (Ohlsson et al., 1998). Upon receipt, the cells were screened for 

mycoplasma- a negative test result was obtained.  

G-banding karyotype demonstrated that HMT-3522S1 had a deletion in chromosome 

1; translocations in chromosomes 8, 12, 14 and 17, as well as nullisomy of 

chromosome 6 (one copy of chromosome 6 was missing) i.e. the karyotype of HMT-

3522S1 was found to be 45XX,-6, 1p-,8p+,12p+,14p+,17p+.  

  Cells were grown in DMEM/ Ham’s F12 (1:1) (Gibco, 21331) supplemented with 2 

mM L-Glutamine (Gibco, 25030); 250 ng/ml insulin (Sigma, I0516); 10 µg/ml holo-

transferrin bovine (Sigma, T1283); 10 E-8M sodium selenite (Sigma, S5261); 10 E-

10M 17 β-estradiol (Sigma, E4389); 0.5 µg/ml hydrocortisone (Sigma, H0888); 5 

µg/ml ovine prolactin (Sigma, L6520); 10 ng/ml epidermal growth factor, EGF 

(Sigma, E9644)  and 1% (v/v) penicillin/ streptomycin solution (Sigma, P0781). 

Tissue culture flasks were coated with 10 µg/ml collagen IV (Sigma, C5533), were 

used to aid cell adherence. Cells were incubated in a humidified 5% CO2 incubator at 

37 ºC. Cells were sub-cultured when the confluence was 80% - 90%. Approximately  
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1.4 x 106 cells were seeded in 75 cm2 tissue culture flasks (T75). HMT-3522S1 cells 

grew as a mono-layer and had a population doubling time of 30 hours. 

a. Coating procedure  
To obtain 10 µg/ml collagen IV as a final working solution, 5 mg of collagen IV was 

dissolved in 500 ml 1X of Dulbecco’s phosphate buffered saline, PBS (Gibco, 

14190); 10 mM acetic acid was added. The working solution can be kept long-term 

refrigerated at 2-8 ºC. When required, 4 mls of collagen solution was aliquot into each 

T75 flask, the flask cap was replaced loosely and the flask set aside for 1 hr at room 

temperature in a Class 2 safety cabinet. Excessive collagen solution was then removed 

from the flasks and the caps were tightly replaced; the collagen coated flasks were 

able to be kept for several days, although if preferred the flasks could have been 

coated just prior to their use in cell culture.  

2.1.1.ii  MCF7 cell line 
MCF7 cells were kindly provided by Dr Joestin Dahle (Oslo University, Norway). 

MCF7 cells are a metastatic breast cancer epithelial cell line (Gelmann et al., 1992), 

and have a negative test result for mycoplasma.  

The number of chromosomes in any one particular metaphase preparation, ranged 

from hypertriploidy to hypotetraploidy. Although several marker chromosomes were 

observed, no double minutes were detected. 

Cells were cultured in DEMEM/ Ham’s F12 media supplemented with 13% 

inactivated foetal bovine serum, FBS (Sigma, F7524); 2 mM L-Glutamine (Gibco, 

25030) and 1% (v/v) penicillin/ streptomycin solution (Sigma, P0781) in a humidified 

5% CO2 incubator at 37 ºC. For cell sub-culture, 1.4 x 106 cells were seeded per each 

T75. MCF7 cells grew as mono-layer and had a population doubling time of 25-26 

hours.  
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a. Foetal bovine serum inactivation procedure 
The purpose of heat inactivation (Liao et al., 2011) of FBS is to destroy the 

complement system of immunoassay that may affect the parameters of tissue culture 

system (Johnson et al., 1975). Briefly, the FBS bottle was completely thawed from 

it’s storage at -20 °C. It was then inverted several times to mix before being 

completely submerged in a 56 ºC water bath for 30 minutes (e.g. the level of water in 

the water bath was higher than the level of FBS). The FBS was then aliquot into 

labelled 50 ml sterile tubes and stored in a -20 °C freezer. 

2.1.2 Recovery of cells from liquid nitrogen 

The cell line cryovials were routinely thawed by hand after sterilising cryovial with 

70% ethanol. Once cells had defrosted they were aseptically transferred to 15 ml 

falcon tubes containing 10 ml pre-warmed culture media to reduce the concentration 

of dimethyl sulfoxide (DMSO) in the freezing media. The tubes were inverted several 

times for mixing and centrifuged at 259 X g for 7 minutes. Supernatant was aspirated 

and each cell pellet was re-suspended in 7 ml pre-warmed culture media and then 

transferred to 25 cm2 tissue culture flasks (T25). Collagen IV coated tissue culture 

flasks were used for HMT-352S1 cell culture.  

The flasks were incubated in a humidified 5% CO2 incubator at 37 ºC. Routinely, 

after 2 hours incubation, the flasks were checked for cell attachment using an 

Olympus inverted phase contrast field microscope; if cells were viable they were shown 

to have successfully attached to the T25 base. Irrespective of cell attachment, all 

flasks were re-incubated for a further 24 hours; whereupon, flasks with no adherent 

cells, were safely discarded and new cell samples were set up from liquid nitrogen 

storage. 
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2.1.3 Maintenance of cells and cell sub-culturing / passage  

Cells were cultured in either T25 or T75 with their specific media; the media was 

refreshed every 48 hours to eliminate the cells’ metabolic waste and also to provide a 

supply of fresh nutritional media. Cells were subjected to sub-culturing when the cell 

confluence was 80% - 90%, as follows:  

2.1.3.i MCF7 cells sub-culturing 
Cells were cultured to 80% - 90% confluence. Media was removed from the tissue 

culture flask; attached cells were washed with sterile 1X PBS (2 ml for T25 and 5 ml 

for T75) for 1 minute to remove residual media/serum. PBS was discarded and cells 

were rinsed with 0.05% (w/v) trypsin-EDTA solution (0.05 gm 0f 1:250 trypsin 

(Gibco, 27250-180) and 100 ml of 0.02% ethylene diaminetetraacetic acid solution, 

EDTA (Sigma, E8008)), for 30-60 seconds. After trypsinisation, cells were incubated 

in a humidified 5% CO2 incubator at 37ºC for 5-10 minutes to allow cells to dissociate 

from flask base. Cells were re-suspended in 10 ml culture media to inactivate trypsin 

and to enable collection of detached cells from flask. Approximately, 1.5 x 106 cells 

were transferred to a new labelled flask which was then topped up to 15 ml with 

appropriate culture media. Flasks were re-incubated in a humidified 5% CO2 

incubator at 37ºC. 

2.1.3.ii HMT-3522S1 cells sub-culturing 
Cells were grown to 80% - 90% confluence. Media was aspirated from flask and cells 

were washed with sterile 1X PBS. Because of the extreme adhesion of HMT-3522S1, 

cells were incubated with 0.02% EDTA for 10 minutes at 37ºC prior to trypsinisation. 

EDTA was removed and cells were rinsed with 0.05% (w/v) trypsin-EDTA solution 

for 30-60 seconds. Cells were then re-incubated for 5-10 minutes and flask gently 

tapped to detach the cells. To inactivate the trypsin, cells were treated with 2 ml of 

0.025% (w/v) trypsin inhibitor-PBS solution (Trypsin inhibitor was from Sigma, 
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T0256) and 8mls of culture media were added to cells. The entire flask contents were 

then collected into a sterile 15ml falcon tube and centrifuged at 259 X g for 8 minutes. 

The supernatant was aspirated and the pellet was re-suspended in 10 ml pre-warmed 

culture media; approximately, 1.5 x 106 cells were transferred to a collagen IV coated 

T75. 

2.1.4 Testing of mycoplasma contamination 

Mycoplasma contamination has long been considered one of the main problems for 

basic scientific research; due to the ability of mycoplasma to affect cell culture system 

parameters (McGarrity et al., 1985, Hay et al., 1989). Therefore, mycoplasma tests 

were routinely performed for all of the cells lines used in this project.  

Firstly, cells were grown with antibiotic-free media for 2 sub-cultures (passages). The 

cells were trypsinised and seeded onto a 4 multi-well chamber slide (Sigma, C6932) 

at an optimum dilution depending on cell type (4 x 104 / well for the experimental 

cells). When the cell confluence of the slide chamber wells became 70% - 75%, media 

was discarded from the wells and the cells were washed three times with sterile 1X 

PBS. The cells were then ‘fixed’ for 10 minutes in 25% glacial acetic acid in methanol and 

washed three times with sterile 1X PBS. The slide chamber was incubated in the dark 

at room temperature with 0.05 µg/ml Hoechst 33258 (Sigma: H6024) in FBS-free and 

antibiotic- free growth media for 10 minutes. The cells were then washed three times 

with distilled water and the chamber was carefully removed from the slide. The slide 

was then mounted with citifluor anti-fade mounting media (Agar Scientific) and the 

cover-slip sealed with clear nail polish. 

 A Zeiss Axioplan Pol Universal fluorescent microscope fitted with UV filter was 

employed to locate the cells. Once located, an X40 objective was used to analyse the 

presence of Hoechst 33258 labelled materials i.e. the presence of mycoplasma 
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infection. When Hoechst 33258 is bound to DNA, it is excited at 352 nm (UV filter) 

and emits at 461 nm. Mycoplasma testing demonstrated that all the cell lines to be 

used experimentally were negative for mycoplasma. 

2.1.5 Cell counts using Erythrosin B viability stain 

A stock solution of erythrosin B stain was first prepared: 0.4 g erythrosin B (Sigma, 

E9259); 0.81 g sodium chloride, NaCl (Sigma); 0.06 g potassium phosphate 

monobasic (Sigma) and 100 ml Hank’s balanced salt solution, HBSS (Sigma) were 

placed in a glass beaker with a magnetic stirrer on a hotplate. The solution was 

brought to boil and 100–200 µl of 10 M NaOH (Sigma) was added until all 

compounds had dissolved. The solution was then left to cool at room temperature. 

To make up working solution of erythrosin B stain, 1ml of erythrosin B stock solution 

was added to 4 ml de-ionized water; therefore the final concentration of erythrosin B 

working solution was 0.8 mg/ml. Both stock and working solution of erythrosin B 

were stored in refrigerator at 4–8ºC. 

A Neubauer Haemocytometer (haemocytometer) with its associated cover-slip was 

utilised to count the number of cells in the experimental cell samples. The 

haemocytometer has two counting areas; each of which has a grid layout comprised of 

different size squares. For cell counting, the four large 1 mm X 1 mm corner squares 

(area of each is 1 mm2), each subdivided into 16 small squares, are used (Figure 2.1). 

When the cover-slip is securely placed onto the haemocytometer, a 0.1 mm height is 

left between the cover-slip and the haemocytometer; therefore, the total volume of 

each large square is 1 mm X 1 mm X 0.1 mm = 0.1 mm3 = 0.1 µl.  

After cell trypsinisation, cells were collected in 10ml pre-warmed culture media in a 

15 ml falcon tube. A 100 µl aliquot of cell suspension (well mixed) was added to 100 

µl aliquot of erythrosin B working solution in an eppendorf tube; thereby making a 
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dilution factor of 2 (1 volume to 1 volume). From this well mixed 200 µl sample, a 10 

µl aliquot was loaded underneath the haemocytometer cover-slip of one of the 

chambers and an Olympus inverted phase contrast field microscope was used to count 

the cells. As mentioned previously, cells were counted within the four large 1 mm X 1 

mm corner squares; dead cells were observed as red and live cells were clear in 

appearance. The number of cells in 1ml was calculated using the following formula: 

(Number of cells in the four large corner 1 mm
2
 squares / 4) X dilution factor X 10

4
 

[(Number of cells in the four large corner 1 mm2 squares / 4) X dilution factor] 

represents the number of cells in 0.1 µl of sample, which is then multiplied by 104 (1 

ml = 1000 µl) to obtain the number of cells in 1 ml. 

 

 

                                       

                              

                                    Live cells                 counted cell               Dead cells 

Figure 2.1: Scheme of one of the counting chambers from a Haemocytometer 
demonstrating ‘live’ and ‘dead’ cells in the counting procedure. 
 

2.1.6 Cryopreservation of cells 

The concept of cryopreservation is to maintain the longevity of cells by long-term 

storage in liquid nitrogen. Cells were prepared for liquid nitrogen storage by 

1mm 

1mm 
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preparing T75 cell cultures to 80% - 90% confluence. Cell suspensions for each cell 

type were prepared as previously described and these were then centrifuged at 259 X 

g for 10 minutes. The supernatants were aspirated and the pellets re-suspended in 

freezing media, depending on the number of cells. Ideally, 2-3 x 106 cells were re-

suspended in 1ml freezing media and this was then transferred to a pre-labelled sterile 

cryovial, which was quickly moved to a -20 ºC freezer for 1-2 hours. The cryovials 

were then transferred to a -80 ºC freezer for 4-12 hours and subsequently transferred 

to liquid nitrogen storage. 

Freezing media was prepared by adding 10% dimethal sulfoxide, DMSO (Sigma, 

D2650) to 90% culture media.  

2.1.7 Cell karyotyping 

Cells were subjected to a G-banding technique, to ascertain the exact karyotype of the 

experimental cells. 

Cells were harvested for metaphase preparation (see chapter 2, section 2.1.11), when 

the confluence of cells was 60%. The cells were ‘dropped’ onto clean slides (see 

chapter 3, section 3.2.2), and left to air-dry at room temperature. The solutions 

required for trypsin G-banding method was prepared as following: 

• 0.005% (w/v) trypsin-EDTA solution: 35 mg trypsin 1:250 (Difco) dissolved 

in 70 ml of PBS. The solution was left for approximately one day to stabilize. 

• Phosphate buffered saline 1X (Gibco, 14190)  

• Phosphate buffer (pH 6.8): One tablet buffer (pH 6.8, VWR, 363112P) was 

dissolved in 1 litre distilled water. 

• Phosphate buffered saline 1X (Gibco, 14190) 
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• 0.005% (w/v) trypsin-EDTA solution, which was made up by dissolving 35 

mg trypsin 1:250 (Difco) in 70 ml of PBS. The solution was left for 

approximately one day to stable. 

• Giemsa stain: 2.5 ml Giemsa stain (Gurr’s) added to 45 ml phosphate buffer 

(pH 6.8). 

• De-ionized water 

Slides were incubated for 20-40 seconds in 0.005% (w/v) trypsin-EDTA solution. 

They were then rinsed thoroughly with cold / refrigerated phosphate buffered saline 

1X (PBS) and placed in the Giemsa stain for 5 minutes. Finally they were rinsed in 

de-ionized water and left to dry overnight at room temperature. The slides were then 

mounted with entellan mounting media (VWR, 1.07961.0100). A transmitted bright 

field microscope was used to analyse each cell’s karyotype. Details of each 

experimental cell’s karyotype can be found in section 2.1.1. 

2.1.8 Cell co-culturing and irradiation of cells 

 A tissue culture 6 well-plate co-culture system (Falcon, 353502, 353092) was utilised 

in the experiments. This co-culture system consisted of a 6-well cell culture plate 

(Falcon, 353502) and associated cell culture insert (Falcon, 353092) (Figure 2.2). 

Cells were seeded in both the 6-well cell culture plates (herein referred to as ‘Base 

dishes’) and associated cell culture inserts, (herein referred to as ‘Insert dishes’). The 

two cell populations were physically separated but communication was allowed 

between them via a porous translucent polyethylene terephthalate membrane (pore 

size diameter of 3.0 µm) which formed the bottom of the Insert dish (Hill et al., 

2006).  
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All the irradiations were performed at the Gray Institute for Radiation Oncology & 

Biology, Department of Oncology, University of Oxford, utilising MXR321 X-ray 

machine operating at 250 kV constant potential and 14 mA was used for irradiation. 

Due to the nature of the Low LET ionizing radiation X-ray irradiation, every cell in 

the ionization track path receives some irradiation, although at a reduced dose as the 

energy deposited is sparse and uniform, just prior to X-ray irradiation/sham-

irradiation, the companion Insert dishes were incubated separately from their 

associated Base dishes and temporarily placed onto media only Base dishes (without 

cells) and left in a humidified 5% CO2 incubator at 37ºC. The cells in the Base dishes 

were meanwhile exposed to X-ray irradiation/sham-irradiation and were thus 

considered as ‘direct irradiated’ or ‘direct sham-irradiated’ cells. Immediately, after 

X-ray irradiation, the Insert dishes were then carefully placed  into their associated 

sham/irradiation companion Base dishes so allowing communication between the two 

populations; i.e. the Insert cells, thus were able to receive soluble factors from the  X-

irradiated / sham-irradiated cell’s  media;  these Insert cell population are considered 

as ‘bystander cells’.  

                                        

Figure 2.2: 6 well plate base and insert of co-culture system. 

 

Inserts 

Bases 
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2.1.9 Experimental cell combinations 

As described above, only cells in the Base dishes were sham/X- ray irradiated. Two 

doses of ionizing radiation were used: 0.1 Gy X-ray (a relevant dose for diagnostic 

procedures) and 2 Gy X-ray (a therapeutic dose).  

Four cell combinations were established between MCF7 (tumour cells) and HMT-

3522S1 (non-tumour cells). The first combination was between ‘direct irradiated’ 

tumour (Base dish cells) and ‘bystander’ non-tumour (Insert dish cells). The second 

cell combination was between ‘direct irradiated’ tumour cells and ‘bystander’ tumour 

cells. The third cell combination was between ‘direct irradiated’ non-tumour cells and 

‘bystander’ tumour cells and the fourth cell combination was between ‘direct 

irradiated’ non-tumour cells and ‘bystander’ non-tumour cells. Control groups were 

established in parallel for all combinations. From these four cell combinations, several 

experimental groups were set up as shown in table 2.1: 
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Table 2.1: Experimental groups 

Cell 
combi-
nations 

Experimental 
groups 

Definition 

1st MCF7 Dir Irr 
control 

Tumour MCF7 cell were irradiated by 0Gy X-ray and considered as a 
control group of irradiated MCF7 cells of the second combination. 

1st MCF7 Dir 
0.1Gy 

MCF7 cells were directly exposed to 0.1 X-ray irradiation. 

1st MCF7 Dir 
2Gy 

MCF7 cells were directly irradiated with 2Gy X-ray. 

1st HMT BE 
control 

Non-tumour HMT-3522S1 cells were incubated with 1st MCF7 Dir Irr 
control for 4 hrs, to be the control group of HMT-3522S1 of the first 
combination. 

1st HMT BE 
0.1Gy 

HMT-3522S1 cells were communicated with 1st MCF7 Dir 0.1Gy 
cells for 4 hrs (insert was placed in base). 

F
ir

st
 c

om
bi

na
ti

on
 

1st HMT BE 2Gy HMT-3522S1 cells were incubated with 1st MCF7 Dir 2Gy. 
2nd MCF7 Dir Irr 

control 
MCF7 cell were irradiated with 0Gy X-ray and considered as a control 
group of irradiated MCF7 cells of the second combination. 

2nd MCF7 Dir 
0.1Gy 

MCF7 cells were directly exposed to 0.1 X-ray irradiation. 

2nd MCF7 Dir 
2Gy 

MCF7 cells were directly irradiated with 2Gy X-ray. 

2nd MCF7 BE 
control 

MCF7 cells were incubated with 2nd MCF7 Dir Irr control for 4 hrs, to 
be the control group of HMT-3522S1 of the second combination. 

2nd MCF7 BE 
0.1Gy 

MCF7 cells were communicated with 2nd MCF7 Dir 0.1Gy cells.  

S
ec

on
d 

co
m

bi
na

ti
on

 

2nd MCF7 BE 
2Gy 

MCF7 cells were incubated with 2nd MCF7 Dir 2Gy. 

3rd HMT Dir Irr 
Control 

HMT-3522S1 cells were exposed to 0Gy X-ray irradiation and 
considered the control group of direct irradiated HMT-3522S1 groups 
of the third combination. 

3rd HMT Dir 
0.1Gy 

HMT-3522S1 cells were directly irradiated with 0.1Gy X-ray. 

3rd HMT Dir 2Gy HMT-3522S1 cells were directly hit with 2Gy X-ray. 
3rd MCF7 BE 

control 
MCF7 cells were incubated with 3rd HMT Dir Irr control cells for 4 hrs 
and considered a control groups of 3rd MCF7 bystander cells. 

3rd MCF7 BE 
0.1Gy 

MCF7 cells were communicated with 3rd HMT Dir 0.1Gy cells for 4 
hrs.  

T
hi

rd
 c

om
bi

na
ti

on
 

3rd MCF7 
BE2Gy 

MCF7 cells were incubated with 3rd HMT Dir 2Gy for 4 hrs. 

4th HMT Dir Irr 
Control 

 HMT-3522S1 cells were exposed to 0Gy X-ray irradiation and 
considered the control group of direct irradiated HMT-3522S1 groups 
of the fourth combination. 

4th HMT Dir 
0.1Gy 

HMT-3522S1 cells were directly irradiated with 0.1Gy X-ray. 

4th HMT Dir 
2Gy 

HMT-3522S1 cells were directly hit with 2Gy X-ray. 

4th HMT BE 
control 

HMT-3522S1 cells were incubated with 4th HMT Dir Irr control cells 
for 4 hrs and considered the control groups of 4th HMT-3522S1 
bystander cells. 

4th MCF7 BE 
0.1Gy 

HMT-3522S1 cells were communicated with 4th HMT Dir 0.1Gy cells 
for 4 hrs. 

F
ou

rt
h 

co
m

bi
na

ti
on

 

4thMCF7 BE2Gy HMT-3522S1 cells were incubated with 4th HMT Dir 2Gy for 4 hrs. 
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Immediately post- sham/irradiation of Base dishes; the companion Insert dishes were 

co-cultured with the Base dishes and incubated for four hours to allow the ‘bystander’ 

cells (insert cells) to receive the short and the long-lived bystander signals from the 

‘direct irradiated’ / direct ‘sham-irradiated cells. Cells from both direct and bystander 

groups were separately cultured and analysed for cytogenetics, apoptosis, telomere 

length (Q-FISH) and telomerase activity measurement (TRAP assay) at time-points. 

For each passage 1.4 million cells were seeded in a T75 flask using fresh 

(unconditioned) media and grown to 80% confluence (the 12 passages represented 

approximately 24 cell-doublings). 

2.1.10  Experimental design  

One cryovial from each cell line was propagated in T75s for several passages (see 

below) to enable sufficient number of cells for experiment. The experimental design 

is shown in figure 2.3. Briefly, HMT-3522S1 cells were propagated until passage 34 

(p34) when they entered the experiment; 7 x 105 cells in 2ml culture media, were 

seeded into each Base dish and Insert dish, the two dishes were then co-cultured and 

re-incubated in a humidified 5% CO2 incubator at 37ºC until they reached 80% 

confluence. In contrast, MCF7 cells were propagated until p29 when they entered the 

experiment and 6 x105 cells were seeded per Base and Insert dish. For both cell lines, 

Base dishes were then either sham / X-irradiated (as above), and insert dishes added 

to allow communication for 4 hours in a humidified 5% CO2 incubator at 37ºC. 

Samples of cells from both Insert and Base for all experimental groups, were then 

either subjected to apoptotic analysis or put into individually labelled T25s and re-

incubated in a humidified 5% CO2 incubator at 37ºC, cells were now considered to be 

at passage 0 of experiment. 
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Figure 2.3: Schematic of the experiment, showing communication between ‘direct 
irradiated’ and ‘bystander’ populations.  
Cells were irradiated with 0 Gy (for control/sham irradiated), 0.1 Gy (diagnostic dose) and 2 Gy (therapeutic dose) 
X-ray using 6-well plate co-culture system. Whilst bystander cells were incubated with irradiated cells for 4 hours. 
Both direct irradiated and bystander cells were analysed for apoptosis after 4 hours (before cell sub-culturing) 
following irradiation. Cells were then sub-cultured for the first population doubling and subjected to the 
cytogenetic, apoptotic analyses, telomere length and telomerase activity measurements. Irradiated and bystander 
cells were then propagated for late time points (12 and 24 generations following irradiation) and subjected to the 
cytogenetic, apoptotic analyses, telomere length and telomerase activity measurements.  

 
As described previously, samples of cells from all the experimental groups were 

initially analysed for apoptosis after 4-6 hours post irradiation. They were also 

assayed for apoptosis at first population doubling following irradiation, and in 

addition all experimental groups were analysed for indications of early damage 

response by cytogenetic analysis, telomere length measurement and telomerase 

activity measurement. Intermediate analysis to enable the subsequent propagation of 

cell damage, was undertaken after 12 population doublings and incidence of genomic 
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instability and delayed response was assessed after 24 population doubling following 

direct X-ray irradiation and co-cultured condition.  

2.1.11 Cytogenetic analysis 

Cytogenetics is branch of genetics, deals with chromosomes using light microscopy 

study (Wolstenholme, 1992). In 1956 Tjio and Levan reported that human 

chromosome number was 46 not 48, which urged several laboratories to engage in 

human chromosome study (Shaffer et al., 2009). Aneuploidy, which is gain or loss of 

whole chromosome(s), was reported by Jacobs and other authors who described the 

abnormal numerical karyotype in human lymphocytes (Jacobs et al., 1961). The 

invention  of cytogenetic staining techniques such as Giemsa, quiacrine and 

fluorescence microscopy technique (Fluorescence in situ hybridisation) makes the 

cytogenetic analysis a robust technique to assess and determine the structural and 

numerical abnormalities of chromosomes (Baker et al., 2009, Schrock et al., 1996). 

It is very well documented that IR can induce chromosomal aberrations (Toyokuni et 

al., 2009, Gowans et al., 2005, Kadhim et al., 1992). As well as chromosomal 

analysis was widely used to assess the effect of IR directly and indirectly on cells (Li 

et al., 2008, Kadhim et al., 1998).  

More recent chromosomal analysis evidence has utilised cytogenetic analysis to 

evaluate the effect of IR on peripheral blood lymphocyte chromosomal and the 

chromosomal instability following therapy. Cytogenetic analysis in this study 

included numerical and structural chromosomal aberrations and showed structural 

chromosomal damage in the progeny of irradiated cells (Salas et al., 2012). Moreover,  

chromosome aberrations are well documented to be one of the manifestations of the 

non-targeted radiation exposure, including BE and GI (Kadhim et al., 1992). 

Ponnaiya and co-workers detected chromosomal aberrations in irradiated and un-
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irradiated human bronchi epithelial cells using cytogenetic analysis. In addition, they 

verified that chromosomal instability was observed in the progeny of irradiated and 

un-irradiated epithelial cells after 50 population doublings using chromosomal 

analysis (Ponnaiya et al., 2011). Therefore, chromosomal analysis was used in this 

study to determine the early and delayed effects of IR and bystander signals on 

experimental cells. 

2.1.11.i  Preparation of cells for harvesting of metaphases 
Chromosomal preparation for Giemsa solid staining technique was carried out as 

described by Kadhim and other authors (Kadhim et al., 2004). At specific time-points 

post sham/irradiation, experimental cells were routinely cultured in T75s to 60% 

confluence. Flasks were then checked for the required presence of rounded/dividing 

cells, using an inverted phase contrast field microscope (Nikon TS 100). Cells were 

treated with 20 ng/ml demecolcine (Sigma, D0125) for 1.5 hours in a humidified 5% 

CO2 incubator at 37 ºC. Demecolcine is a mitotic spindle fibre formation inhibitor 

(Brinkley et al., 1967), therefore its addition arrested cells in the metaphase stage of 

the cell cycle so enabling later visualisation of the fixed chromosomes  with a 

transmitted bright field light microscope  

Post-incubation with demecolcine, each experimental flask had its media collected in 

an individually labelled, sterile 30 ml universal tube. Cells were then washed with 1X 

PBS for 1 minute; this PBS was then added to its corresponding labelled universal 

tube. Cells were dissociated from each flask by addition of 0.05% trypsin-EDTA 

solution for 30 – 60 seconds. The trypsin-EDTA solution was then collected in the 

associated universal tubes. Detached cells were collected using 10 ml of the 

corresponding universal tubes contents (flask’s media, PBS and trypsin-EDTA 

solutions) and returned to their corresponding universal tubes. All universal tubes 

were centrifuged at 259 X g for 10 minutes; the supernatants were discarded and the 
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remaining pellets re-suspended by flicking tubes. 10ml of hypotonic solution, ((75 

mM potassium chloride solution (KCl, Sigma, P5405)) was subsequently added to 

each universal tube in a drop- wise manner for the first 1ml. The hypotonic solution’s 

role was to make the cells swell and consequently fragile, therefore, that helped in the 

observation of the chromosomes spread easily. The cell - KCl suspensions were all 

transferred to 15ml falcon tubes and these were incubated in a 37°C water bath for 20 

minutes. Three drops of 25% glacial acetic acid in methanol (3:1 fixative) was then 

added to each tube; all tubes were inverted once and centrifuged at 180 X g for 10 

minutes. The supernatants were discarded, pellets re-suspended by flicking tubes and 

10 ml of 3: 1 fixative were added to each tube (drop-wise). The fixed cells were 

incubated for 10 minutes at room temperature prior to centrifugation at 259 X g for 10 

minutes. Supernatants were removed and the pellets re-suspended, 10 ml of 3: 1 

fixative were added to each tube (drop-wise) and tubes were left at room temperature 

for 30 minutes. Cells were further centrifuged at 259 X g for 10 minutes; supernatants 

discarded and pellets re-suspended in 1- 2 ml of 3: 1 fixative, depending on the pellet 

size. Samples from all experimental groups were then ‘dropped’ (metaphase slides 

prepared) onto individually labelled, clean/degreased microscope slides (see 3.2.2). 

Note: The fixed cell suspension was additionally able to be kept at -20ºC for long 

term storage after addition of 10 ml of 3: 1 fixative, to enable metaphase slide 

preparation at a later date. 

2.1.11.ii  Chromosomal slide preparation 
Metaphase chromosomes were prepared from most of the experimental groups 

immediately after the harvesting procedure; for those groups that did not, the fixed 

samples were removed from -20 ºC storage and warmed to room temperature for 

approximately 1 hour.  
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The samples were centrifuged at 259 X g for 10 minutes, supernatant removed and 

pellets re-suspended in 1- 2 ml of 3: 1 fixative, depending on the pellet size.  

Clean/de-greased microscope slides were obtained by soaking clean, frosted 

microscope slides in 1:1, diethyl ether: methylated spirit (or methanol) for 24 hrs prior 

to use. Residual dirt was removed by wiping the slides with a ‘Kimwipe’ tissue. 

Individual Fine-tip mini pastettes (alpha laboratories, LW4231) were used to drop 

each experimental sample onto individual de-greased slides from a height of 15-20 

cm. Metaphases preparations were checked after each sample drop, using a 

transmitted bright field light microscope. The slides were left to dry/age overnight at 

room temperature. 

2.1.11.iii  Staining of slides 
Giemsa solid staining is a simple technique used to stain chromosomes; it is a 

preferable method for detecting chromosome/ chromatid type aberrations. 

A phosphate buffer (pH 6.8) solution was prepared by dissolving one buffer tablet 

(pH 6.8, VWR, 363112p) in one litre of de-ionized water. Giemsa solid stain solution 

was made up by adding 4 ml Giemsa stain solution (Gurr’s, VWR, 350864X) to 60ml 

phosphate buffer (pH 6.8) in a Coplin jar. Two Coplin jars were filled with phosphate 

buffer (pH 6.8). 

Aged metaphase slide preparations were placed in the Coplin jar containing Giemsa 

stain – phosphate buffer 6.8 solution, for 3 minutes. The slides were then agitated in 

the Coplin jars filled with phosphate buffer, each for few seconds and left to dry for 

12- 24 hours at room temperature. 

2.1.11.iv  Mounting of slides with cover-slips 
This procedure was performed in an Astecair 3000E cabinet. Briefly, the  slides were 

placed into Coplin jars containing xylene (Fisher Scientific, X/0250/17) for a 

minimum of 10 minutes, maximum 1 hour, to remove the excessive stain from slides 
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and to aid the dispersal of mounting media onto the slides. Slides were removed from 

xylene and laid flat onto a filter paper; two drops of entellan mounting media (VWR, 

1.07961.0100) were dropped onto each slide from a glass pipette. A 22 x 50 mm 

cover-slip was then carefully placed onto each microscope slide and the cover-slip 

gently blotted with filter paper to remove air bubbles and excessive entellan 

mounting. The slides were left 12 - 24 hours to dry at room temperature before 

analysis.  

2.1.11.v  Analysing of slides 
A Zeiss Axioskop transmitted bright field light microscope was used to analyse the 

mounted experimental slides at 100X oil immersion objective. At least, 100 

metaphases were scored for each group. 

2.1.12 Preparation of cells for apoptotic analysis 

The method used to determine the presence of apoptotic cells has been described by 

Schwartz and co-authors (Schwartz et al., 1995). Cells were cultured in T75 flasks to 

80% confluence. The media was collected in 30 ml universal tubes (to ensure that all 

the cells, floating and detached cells, were collected). The cells in the flask were then 

washed with 5 ml of sterile 1X PBS for 1 minute and the PBS was collected in the 

same universal tube. The cells were disassociated from the flask by rinsing them with 

2 ml of 0.05% (w/v) trypsin-EDTA solution for 30-60 seconds and this was then 

collected within the same universal tube. The cells were then collected with 10 ml of 

the saved media, PBS and trypsin-EDTA solution and all was returned to the 

universal tube. The tube was centrifuged at 259 X g for 8 minutes. The supernatant 

was aspirated and 10 ml of 25% acetic acid in methanol (fixative) solution was added 

to the re-suspended cell pellet in a drop-wise manner. The cell-fixative suspension 

was incubated for 10 minutes at room temperature. A further centrifugation was 

carried out at 259 X g for 10 minutes. The supernatant was discarded, whilst the cell 
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pellet was re-suspended in 10 ml of fixative (drop-wise manner) for 15 minutes. Then 

the cell suspension was centrifuged at 259 X g for 10 minutes. The supernatant was 

removed and 1-3 ml fixative (depending on the pellet size) was added to the cell 

pellet. The cell suspension was dropped onto clean labelled slide and left 10-15 

minutes to dry at room temperature. 

2.1.12.i  Staining and analysing of slides 
When the slides were fully dried, they were laid flat on the bench in the dark. The 

slides were then stained and mounted by adding 25 µl Prolong Gold anti-fade reagent 

with DAPI (Invitrogen, P36931) onto each slide and a cover-slip was gently placed on 

top. To check the cells for apoptosis, a Zeiss Axioplan Pol Universal fluorescent 

microscope fitted with UV filter was used. One thousand cells were analysed for each 

group. The normal cell nucleus was uniformly stained with DAPI (figure 4.1), whilst 

the apoptotic nuclei were recognised as pycnotic (apoptotic) bodies as shown in figure 

2.4. 

Cells were analysed for apoptosis after 4-6 hours, first population doubling, 12 

population doublings and 24 population doublings following X-ray irradiation and co-

cultured condition. 

 

 

Figure 2.4: Normal and apoptotic human epithelial cell nuclei (stained with Prolong 
Gold reagent with DAPI). 
 

  Apoptotic cell nuclei 

  Normal cell nucleus 
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2.1.13 Telomere stability analysis 

As very well documented that telomere length has a crucial role in the chromosomal 

stability maintenance (Berardinelli et al., 2011, Salin et al., 2008, Skrobot Vidacek et 

al., 2007). Short telomeres can cause chromosomal fusion, instigating chromosomal 

instability (Murnane, 2012). As well as, telomerase dysfunction frequently lead to 

telomere shortening and then causing GI (Meyer and Bailis, 2008). Therefore, 

telomere stability analysis in this project included telomere length measurement (Q-

FISH) and telomerase activity measurement (TRAP assay). 

2.1.13.i Telomere length measurement, Q-FISH (quantitative fluorescence 

in-situ hybridisation) 
The technique of Q-FISH or quantitative fluorescence in-situ hybridisation has been 

established from FISH (fluorescence in-situ hybridisation) and was used to measure 

telomere length in chromosomes by means of a PNA (peptide nucleic acid) probe. 

PNA is synthetic oligonucleotides, which has a high affinity for telomere repeat 

sequences. Synthetic DNA mimics (PNA and telomere repeat sequences) can be 

labelled by a fluorescent dye (routinely with FITC), and these can be easily detected 

by using fluorescence microscopy and analysis software (Poon and Lansdorp, 2001). 

Q-FISH is a reliable and accurate method for measuring chromosomal telomere 

length in interphase or metaphases of cell cycle (Slijepcevic, 2001). 

a. Preparation of cells for Q-FISH assay 
Preparation of cells for Q-FISH was similar to the method used for preparation of 

cells for harvesting of metaphases in chapter 2, sections 2.1.11. In brief, for each 

experimental group, cells were routinely cultured in T75 flasks to 60% - 70% 

confluence. They were then incubated with 20 ng/ml colcemid for 1.5 hours and 

subsequently collected in universal tubes. The tubes were centrifuged at 259 X g for 

10 minutes. A hypotonic solution (75 mM potassium chloride) was added to each cell 
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pellet for 20 minutes. Then cells were fixed twice with 25% acetic acid in methanol 

solution prior to being dropped onto clean labelled microscope slides. 

Slides were left to dry at room temperature for 30 minutes (to give the sample time to 

spread). Then the slides were aged by baking them on a hot plate at 55ºC for 3 days. 

Slides were aged in order to make the sample more resistant to the harsh Q-FISH 

melting agents such as formamide.  

b. Rehydration of slide 
A heating block was set up to a temperature of 70ºC (it was important that the 

temperature of the heating block did not fall below 70ºC or exceed 80ºC).  

Preparation of solutions: 

•••• Formaldehyde solution (4%): 4 mls of formaldehyde solution for molecular 

biology 36.5% (Sigma, F8775) was added to 96 ml double distilled water 

(ddH2O), this gave enough for 2 Coplin jars. 

•••• Acidified water (pH 2): 0.5 ml HCl (1N) was added to 50 ml ddH2O. 

•••• Pepsin solution (1 mg/ml): This was prepared by adding 0.5 ml stock solution 

(100 mg/ml) pepsin (Sigma, P7000) to 49.5 ml acidified water (pH 2). The 

solution was freshly prepared in the Coplin jar and put into the water bath at 

37 ºC. 

•••• 20X Salt sodium citrate (SSC): 1.752 g sodium chloride (VWR, 10241AP) 

and 0.882 g tri-sodium citrate (VWR, 102424L) were dissolved in 20 ml 

dH2O. 

•••• Formamide solution (70%): 70 ml formamide (Fisher scientific, F1550/ PB17) 

was added to 10 ml 20X SSC and 20 ml ddH2O. 

Note: A maximum of six slides were prepared at a time. 

Slides were rehydrated by placing them in the Coplin jar, filled with 1X PBS. The 

Coplin jar was placed on shaker (200/minutes) for 15 minutes. The PBS was 
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discarded and the slides were fixed with 4% formaldehyde solution for 2 minutes 

without shaking. The formaldehyde solution was aspirated. Then the slides were 

washed three times with 1XPBS for 5 minutes per wash with shaking (using shaker). 

The slides were then transferred to the pepsin solution Coplin jar for 10 minutes at 

37ºC water bath. Pepsin solution was disposed and the slides were washed twice with 

1X PBS for 2 minutes with shaking. The slides were fixed again with 4% 

formaldehyde solution for 2 minutes without shaking. Formaldehyde solution was 

discarded and the Coplin jar was filled with 1X PBS to wash for 5 minutes with 

shaking. The 1X PBS was aspirated and the wash procedure repeated twice more.  

c. Dehydration of slide 
Slides were laid flat and dehydrated in a series of ethanol concentrations (70%, 90% 

and 100%) i.e. 1 ml of each ethanol concentration (starting with 70% and finishing 

with 100%) was put onto each slide for 30-60 seconds. The slides were then air-dried 

at room temperature. 

d. Hybridisation 
Once slides were dry, they were laid flat. A 20 µl aliquot of hybridisation probe, 

(peptide nucleic acid FITC (PNA FITC, Sigma)) was put on each slide. Then 

coverslips (22 X 50 mm) were used to spread the hybridisation probe on the slides. 

The slides were heated at 70ºC on hot block for 2 minutes and then incubated in a 

dark humid chamber for 2 hours at room temperature. Post-hybridisation, the cover-

slips were carefully removed and the slides were placed in a dark Coplin jar (i.e. the 

Coplin jar and lid were covered completely with foil). The Coplin jar was filled with 

70% formamide solution to wash the slides for 15 minutes without shaking. The 

formamide was aspirated and another wash was performed with formamide for 15 

minutes without shaking. The formamide was discarded and the slides were washed 

three times with 1X PBS for 5 minutes per wash with shaking. 
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e. Dehydration 
This procedure was identical to the dehydration procedure carried out in section 

5.2.1.iii, in which the slides were dehydrated in different series of ethanol 

concentration (70%, 90% and 100%) by adding 1ml of each ethanol concentration 

onto each slide for 30 to 60 seconds. The slides were air-dried at room temperature. 

f. Mounting of slides with DAPI mounting media 
The slides were laid flat and 20 µl of Vectorshield mounting media with DAPI 

(Vector Laboratories, H-1200) was placed onto each. Cover-slips (24 x 50 mm) were 

then carefully placed on top of each slide.  

g. Image capture and analysis 
The analysis work was performed in Brunel University, using the smart capture 

software, IP-Lab software was additionally used to analyse the telomere fluorescent 

signals. The software had been supplied by digital scientific Cambridge. At least 20 

cells were analysed per group. 

                                      

Figure 2.5: Telomere fluorescent images of tumour MCF7 cell nuclei (DAPI is on the 
left and FITC is on the right).  
Cell nuclei were first imaged with DAPI, selecting separate individual nuclei (non-clumped nuclei). 
Then FITC images were utilised to measure telomeric fluorescence intensity (Telomere length).  
      

2.1.13.ii Telomere repeat amplification protocol (TRAP assay) 
The TRAP assay is a very accurate technique used to measure telomerase enzymatic 

activity, described by Fajkus (Fajkus, 2006). In this technique, telomerase (from each 

experimental cell extraction) extends TS primer with telomere repeat sequences by 

adding deoxyribonucleotide triphosphate (dNTP) to the 3’ end of the TS primer. The 
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extended products of telomerase-TS primer are then amplified by real-time PCR with 

ACX reverse primer as shown in figure 2.5. 

TS primer  
5’-AATCCGTCGAGCAGAGTT   +                                    + dNTP 
 
 
TS primer                                                     telomere repeats � 
5’-AATCCGTCGAGCAGAGTTAGGGTTAGGGTTAGGGTTAGGGTT    
 
 
TS primer  
5’-AATCCGTCGAGCAGAGTTAGGGTTAGGGTTAGGGTTAGGGTT    
                                                                                           AATCCCATTCCCATTCCC 

                         Taq DNA polymerase             +                -------------------------- ACX reverse primer 
 
 
 
TS primer                                      ……………………………………………………… 
        ……………………………………………………….    --------------- ACX reverse primer 
 
TS primer                                      ……………………………………………………… 
        ……………………………………………………….    --------------- ACX reverse primer 
 
 
TS primer                                      ……………………………………………………… 
        ……………………………………………………….    --------------- ACX reverse primer 
 
Figure 2.6: Scheme of TRAP assay for telomerase activity measurement (adapted 
from Fajkus J, 2006: Clinca chimica Acta, 371).  
  
 
a. Preparation of samples for TRAP assay 
Experimental cells were cultured in T75 flasks to 80% confluence. Then the cells 

were trypsinised and collected in 15ml falcon tubes. Counting of cells was carried out 

and 2 x 106 cells were collected in RNase free eppendorf tubes (0.5 ml). The 

eppendorf tubes (with cell suspension) were centrifuged at 3220 X g for 6 minutes. 

The supernatant was removed, whilst the pellet was re-suspended in 50µl CHAPS 

lysis buffer (Sigma, C5070) containing 500 IU RNase inhibitor (Invitrogen, 10777-

019). The cell pellet was pipette up and down several times with CHAPS lysis buffer 

and incubated for 30 minutes at 4 ºC. Then the suspension (cell pellet and lysis buffer) 

was centrifuged at 259 X g for 30 minutes at 4 ºC. The supernatant (containing cell 

proteins) was then collected and stored at -80ºC.  

Telomerase from 
cell extraction 

Telomerase 

Telomerase extends TS 
primer with telomere 

repeats 

Telomerase 

Telomerase is 
inactivated by 

heating 

Annealing 
reverse primer 

Real-time 
amplification 
using TS and 
ACX primers 



49 
 

b. Estimation of protein concentration for TRAP assay 
Before starting the procedure, the bench, gloves, racks, glassware and surfaces were 

all wiped with RNase away (Molecular Bioproducts, 7003) to ascertain that there was 

no RNase contamination. In addition, RNase- and DNase-free filtered Gilson tips and 

eppendorf tubes were also used. For protein estimation assay, the CB-XTM protein 

assay kit with albumin was used. In brief, routinely triplicate standards of bovine 

serum albumin (BSA) were prepared at the following concentrations: 0, 0.2, 0.4, 0.6, 

0.8 and 1 µg/ml with CHAPS lysis buffer in 1.5ml eppendorf tubes. 1ml of pre-chilled 

CB-XTM was added to each tube to precipitate proteins and to remove contamination. 

The tubes were mixed using a bench top vortex machine. The tubes were then 

centrifuged at 16000 X g for 5 minutes at 12 ºC. The supernatant was discarded and 

50 µl CB-XTM solubilisation buffer I and 50 µl CB-XTM solubilisation buffer II were 

added to each tube (to pellet) and vortexed to dissolve the protein pellet. The tubes 

were incubated for 5 minutes at room temperature. To each tube, 1ml of CB-XTM dye 

was added and the tubes were then incubated for 5 minutes at room temperature. 

Alongside this procedure, the experimental samples and a telomerase positive cell 

extraction (PC3 prostate cancer cell line) were analysed to ascertain their protein 

concentrations. Briefly, 5µl of each sample was put into a 1.5 ml RNase-free 

eppendorf tube. Then 1 ml of pre-chilled CB-XTM was added to all of eppendorf tubes 

and the samples were mixed by vortex. The eppendorf tubes were then centrifuged at 

16000 X g for 5 minutes at 12 ºC. The supernatant was discarded and 50 µl CB-XTM 

solubilisation buffer I and 50 µl CB-XTM solubilisation buffer II were added to each 

tube, tubes were mixed by vortex. Then 1ml of CB-XTM dye was added and the tubes 

incubated for 5 minutes at room temperature.  

For estimation of protein concentration, samples were read by micro-plate reader (LT-

4000, Labtech) at 600 nm wave length.  
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The results were loaded onto an excel sheet. The standard curve was generated from 

the reading of standard samples, whilst the protein concentration of samples was read 

off against the standard curve.  

c. TRAP assay 
For each reaction well, a SYBR green master-mix was prepared as follows: 

• 12.5 µl SBER green 2 X (Applied Biosystems Europe: 4364344). 

• 1 µl TS primer (0.1 µg (19.96 pmol) / µl, 40nM) (5’-

AATCCGTCGAGCAGAGTT-3’, Sigma) 

• 1 µl ACX primer (0.05 µg (5.53 pmol) / µl, 10nM) (5’-

GCGCGG(CTTACC)3CTAACC-3’, Sigma) 

• 1-4 µl protein sample (containing 250 ng protein), routinely 2 µl of 

each sample was used.  

• DEPC water (Millipore, 90411), each sample was approximately 8.5 µl 

(these were topped up to 25 µl with DEPC water) 

The assay was run in triplicate for each sample. Prostate epithelial cancer cells (PC3), 

which are positive for telomerase activity (high telomerase activity), were used for 

standard samples (standard curve calculating). The standard, (PC3 cell extraction), 

was carried out at the following concentrations: 2.4 µg/2 ml, 1.2 µg/2 ml, 0.6 µg/2 ml, 

0.3 µg/2 ml, 0.15 µg/2 ml, 0.075 µg/2 ml and 0.0375 µg/2 ml. A negative control 

(PC3 cell extraction) was prepared by heating the cell extract on a heating block at 

98ºC for 10 minutes and then cooling it with ice. The standards, experimental 

samples, negative and positive (PC3 cell extraction) controls were loaded into a white 

96 well plate (Thermo scientific, AB-2800/w). In addition, three wells were loaded 

with DEPC water alone, (non-template controls) and CHAPS lysis buffer was loaded 

in a further three wells as extra non-template controls. The TRAP assay was 
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performed using a real time PCR machine (CFX96 real-time system, C1000 thermal 

cycle, Bio RAD). 

The real time PCR programme was 25ºC/20min, 95ºC/10min, (95ºC/30sec, 

60ºC/90sec) 40 cycles. The reaction mixture was first incubated at 25ºC for 20 

minutes (stage one) allowing the telomerase in the cell extraction to extend the TS 

primer by adding TTAGGG (telomere repeats). Then the telomerase was denaturised 

by heating in the second stage (95ºC/10 minutes) of real-time PCR programme, this 

was followed by reverse primer annealing and real time PCR amplification for forty 

cycle at 95ºC/30sec and 60ºC/90sec (stages 3 and 4) as shown in figure 2.6.  

Telomerase arbitrary units were calculated from the raw data as shown in appendix I. 

In brief, the logarithm of the protein concentrations of the standard samples was used 

to calculate standard curve of the real-time PCR data, utilising Microsoft Excel. Then 

the sample values were calculated using R-squared value equation.  

2.1.14 Comet assay 

Single-cell gel electrophoresis or comet assay is a sensitive method to quantify total 

DNA damage (double-strand breaks, single-strand breaks and base damage) in 

individual cells (Chandna, 2004, Collins, 2004). The comet assay was performed as 

described by (Natarajan et al., 2007, Olive, 2009). Microscope slides were coated 

with 1% normal melting point agarose (NMPA, Sigma A9539) by dipping the clean 

slide in agar and wiping the back of the slide. The slides were allowed to dry at room 

temperature overnight.  An 80% confluent flask was trypsinised, and cell count was 

carried out. A 1 X 104 /50 µl cell suspension was placed in 1.5 ml eppendorf tube and 

located in ice. The coated slides were then placed on a metal tray on ice. The 1 x 104 

cell suspension was re-suspended with 200 µl of 0.6% low melting point agarose 

(LMPA, FisherBiotech BP165) and placed immediately onto chilled pre-coated slides. 
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The cell-LMPA suspensions were flattened with cover slips, which were removed 

after 5-10 minutes. The slides were then transferred to a Coplin jar, which was filled 

with cold lysis buffer (2.5 M NaCl, 100 mM EDTA pH 8.0, 10 mM Tris-HCl pH 7.6,  

and 1% Triton X-100, pH >10). The jar was kept at 4 ºC over night in the dark. The 

slides were then moved to a horizontal electrophoresis tank filled with electrophoresis 

buffer (0.3 M NaOH and 1 mM EDTA, pH 13) at 4ºC for 40 minutes. The 

electrophoresis was run for 30 minutes, at 19V, 300A. Slides were neutralised with 

neutralising buffer (0.4 M Tris-HCl, pH 7.5), washed with distilled water, and 

immediately stained with a 1:10,000 dilution of SYBR Gold (Molecular 

Probes/Invitrogen, Carlsbad, CA). The slides were analysed using Komet 5.5 Image 

Analysis Software (Kinetic Imaging Technology/Andor, Germany). 

2.1.16 Statistical analysis 

Samples and slides were coded and analysed in a ‘blind fashion’ (i.e. slides were 

coded by a colleague in the research group). Raw data from all experimental groups 

was used to compare and calculate p values. Standard error of mean was calculated to 

generate Y error bars for all experimental groups. For cytogenetic results; data was 

subjected to Fisher’s exact test. Two proportions z-test (Minitab 15) was used to 

calculate p value of apoptotic and telomerase activity data. Whilst p value of telomere 

length assay was calculated by student t test (GraphPad Instat 3). Comet data was 

subjected to Mann-Whitney test (SPSS statistics 17.0) to measure p value.  
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Chapter 3: Early and delayed effects of IR on tumour and non-

tumour cells 

3.1 Introduction 

It has been well established that IR can induce cellular damage in track of ionizing 

radiation. This cellular damage can be caused directly by high speed electrons such as 

alpha particles (Hall and Giaccia, 2006) or through indirect action by ionizing water 

molecules generating free radicals. These free radicals are predominant with low 

linear energy transfer (LET) radiation such as X-ray and gamma ray (Nias, 1990). The 

main target of IR that lead to cellular damage is DNA, and the main effect of IR is 

DNA breaks (Desai et al., 2005). 

More recent evidence has documented that a very low dose of X-ray can cause 

metaphase chromosomal aberrations and DNA damage in the oral mucosa cells using 

comet assay (Ribeiro, 2012).  Drissi and other authors have suggested that IR can 

induce DNA damage in normal human fibroblast, and this damage was telomere 

length dependent. They speculated that short telomeric fibroblast cells are more 

susceptible to IR than long telomeric fibroblast cells (Drissi et al., 2011). Another 

study showed that high LET α-particles and high dose of γ-ray can lead to DNA 

double strand breaks (DSB) in the SW-1573 lung tumour cells. These DSB detected 

by γ-H2AX scoring (Franken et al., 2012). Moreover, high LET α-particles can 

increase cell reproductive death ration in the SW-1573 lung tumour cells (Franken et 

al., 2011). 

In addition, much evidence has proved that chromosomal instability can be observed 

within the progeny of irradiated cells (Amato et al., 2009, Noda et al., 2007, Kadhim 

et al., 1995). Recent evidence has demonstrated that IR can generate short DNA 

fragments, which might significantly play an important role in responses of non-

malignant human mammary epithelial MCF10A cells to IR. Furthermore this study 
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suggested that these short fragments of DNA can affect non-homologous end-joining 

DNA repair mechanism leading to GI post irradiation (Pang et al., 2011). As well as 

GI had been detected in skin of Hiroshima and Nagasaki atomic bombs survivors 

from 1968 to 1999. Findings of 53BP1 expression showed significant increase in the 

rate of basal cell carcinoma as a delayed response of atomic bomb radiation in vivo 

(Naruke et al., 2009). 

In this study, it was first necessary to evaluate the effect of low and high X-ray doses 

on tumour MCF7 and non-tumour HMT-3522S1 (HMT) cells to confirm that IR 

could cause cellular damage in the MCF7 and HMT cell. Therefore, early and late 

direct effects of X-ray on the MCF7 and HMT cells were measured using 

chromosomal analysis, apoptosis analysis, telomere length and telomerase activity 

measurements following 0.1 and 2 Gy X-ray irradiation.  

 3.2 Materials and methods 

3.2.1 Cell culture 

 Tumour human breast epithelial cells (MCF7) and non-tumour human breast 

epithelial cells (HMT-3522S1) were utilised in the study. Both cell types were 

cultured and maintained as described in sections 2.1.1.i and 2.1.1.ii. In brief, cells 

were grown in their media for several population doublings in T75 tissue culture 

flasks. For MCF7 and HMT-3522S1 cell sub-culture, 1.4 x 106 cells were seeded per 

each T75, and sub-cultured at 80% confluence using unconditioned (fresh) media 

(One passage represented approximately 2 cell population doublings).  

3.2.2 Cell irradiation 

Cells were cultured in 6-well plate dishes as described in section 2.1.10. Cells were 

exposed to 0.1 Gy and 2 Gy X-ray irradiation and incubated for 4 hours in their 

media. After 4 hours, a fraction of cells were subjected to apoptotic analysis, whilst 
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other fractions were sub-cultured and incubated to further population doublings. Cells 

were analysed for chromosomal, telomere length and telomerase activity after 1, 12 

and 24 population doublings. Control groups (sham/0 Gy irradiated cells) were 

established in parallel. 

 3.2.3 Chromosomal analysis 

Direct irradiated (0, 0.1 and 2 Gy) MCF7 and HMT-3522S1 cells were analysed for 

early chromosomal damage after 1 population doubling post irradiation, and after 12 

and 24 population doublings for the perpetuation and delayed damage responses 

respectively. Giemsa solid staining technique was used to determine chromosomal 

aberrations in the ‘direct irradiated’ cells as described in section 2.1.11. Briefly, cells 

were arrested at metaphase of the cell cycle using 20 ng/ml demecolcine. Cells were 

collected and treated with 75 mM potassium chloride solution for 20 minutes. Then 

cells were washed twice with 25% acetic acid in methanol and dropped onto clean 

microscope’s slides. Slides were stained with Giemsa and covered by cover slipp.  

3.2.4 Apoptotic analysis 

Apoptotic levels were measured in the direct irradiated cells after 4 hours, 1, 12 and 

24 population doublings for initial, perpetuation and delayed responses following 

irradiation respectively. The method of apoptosis was described in section 2.1.12, 

using prolong gold anti-fade reagent with DAPI. The normal cell nucleus uniformly 

stains with DAPI, whilst the apoptotic cell nucleus shows apoptotic bodies down the 

fluorescent microscope.  

3.2.5 Telomere length measurement 

Tumour MCF7 and non-tumour HMT-3522S1 telomeres were measured by utilising 

Q-FISH technique as described in section 2.1.13. Briefly cells were collected, fixed 

and dropped onto clean slides. The slides were rehydrated, fixed with formaldehyde, 
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then incubated with pepsin and hybridised using peptide nucleic acid FITC. The slides 

were then mounted with Vectorshield mounting media with DAPI. The smart capture 

and IP-Lab software was used to analyse the telomere fluorescent signals.  

3.2.6 Telomerase activity measurement 

Initial and delayed telomerase activity of MCF7 and HMT-3522S1 cells were 

measured after irradiation as illustrated in section 2.1.14 using real-time PCR. 

Concisely, cells were lysed by CHAPS lysis buffer, cell extractions were loaded with 

master mix into 96 well plates. Then 96 well plates were placed in real-time PCR to 

measure the activity of telomerase. 

3.3 Results 

In order to establish the responses of Tumour and non-tumour breast epithelial cells 

(MCF7 and HMT cells respectively) to ionizing radiation X-ray, cells were exposed 

to 0.1 Gy (low dose) and 2 Gy (high dose) X-ray. Dose responses were measured by 

chromosomal and apoptotic analysis, telomere length and telomerase activity 

estimating initial and delayed responses following irradiation.  

3.3.1 Direct irradiated tumour breast epithelial MCF7 cells 

following 0.1 Gy X-ray 

Low dose of X-ray (0.1 Gy) is considered as a diagnostic relevant dose, a full body 

CT scan (BER, 2010), as well as, 0.1 Gy X-ray is established as a fractionated dose to 

a high therapeutic dose of radiation in cancer treatment (Joiner, 1987). Therefore, 

cellular damage such as chromosomal aberrations, apoptosis and telomeric instability 

was evaluated; in order to estimate the effect of low dose of X-ray (0.1 Gy) at 

different time points, after 4hours, 1, 12 and 24 population doublings (early and late 

cellular responses to IR exposure). 
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Direct irradiated MCF7 cells showed a significant increase in the number of 

chromosome and chromatid aberrations (p≤0.0001) after 1 population doubling 

following 0.1 Gy X-ray irradiation (Figures 3.1, panel A) compared to the 

corresponding control groups. The mean aberrations per 0 Gy irradiated MCF7 cells 

(control) was 0.28±0.068, which significantly increased to 1.07±0.79 following 0.1 

Gy irradiation. However, apoptotic level was observed only after 4 hours (before sub-

culturing) in the 0.1 Gy direct irradiated cells (2.8%±0.02), which was statistically 

higher (p≤0.0001) than the control (1.12%±0.02). Direct irradiated MCF7 cells did 

not demonstrate induction of apoptosis after 1 generation post irradiation, suggesting 

that the apoptotic cells could be removed during the first cell sub-culture process. The 

level of apoptosis in the direct irradiated cells (0.79%±0.012) returned the normal 

level (0.88%±0.012) as shown in figure 3.1 panel A. Moreover, low dose of X-ray 

(0.1 Gy) was significantly able to shorten telomeres of 0.1 Gy direct irradiated MCF7 

cells (p≤0.005). The intensity of telomeric fluorescence in the MCF7 direct irradiated 

control cells was 24.87±2.7, which was reduced to 15.52±1.7 by 0.1 Gy X-ray after 1 

population doubling (figure 3.1, panel B). Furthermore, direct irradiated MCF7 cells 

exhibited a significant reduction in the telomerase activity (p≤0.0001) after 1 

generation post 0.1 Gy X-ray irradiation (see figure 3.1, panel B). Low dose of X-ray 

reduced telomerase arbitrary unit (TAU) of direct irradiated MCF7 cells from 

86636.7±2252.65 to 52003.3±825.29. Data suggested that low dose of IR can cause 

insufficient telomerase activity leading to telomeric shortening, which can instigate 

chromosomal aberrations as initial responses in the MCF7 cells.  

Propagation of delayed damaged responses was monitored after 12 and 24 population 

doublings following irradiation. Data showed that progeny of 0.1 Gy direct irradiated 

MCF7 cells exhibited a significant chromosomal damage (p≤0.005) after 12 
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population doublings. The mean chromosomal aberrations of these progeny was 

0.52±0.085, whilst the control mean chromosomal aberrations was 0.24±0.47 (figure 

3.2, panel A). Nevertheless, these progeny did not demonstrate a significant induction 

of apoptotic level compared to the control (Figures 3.1, panel A). Although the 

progeny of 0.1 Gy direct irradiated MCF7 cells did not show a significant decrease in 

the telomerase activity, Telomere shortening was significantly observed in these 

progeny (p≤0.05) as shown in figures 3.1, panel B. Findings suggested that active 

telomerase can keep cell dividing even with short telomeres, leading to high 

chromosomal instability, with absence of apoptosis.  

After 24 population doublings following irradiation, the progeny of 0.1 Gy direct 

irradiated MCF7 cells continued to demonstrate significant chromosomal and 

chromatid damage (p≤0.05) compared with the corresponding controls (Figures 3.1, 

panel A). The mean chromosomal aberrations of the progeny of sham/control direct 

irradiated MCF7 cells was 0.23±0.054, which significantly elevated to 0.50±0.096 

following 0.1 Gy X-ray irradiation. However, apoptotic level was not significantly 

observed in these progeny after 24 population doublings following irradiation (figure 

3.1, panel A). The Telomeres were significantly shorter (p≤0.001) in the progeny of 

direct irradiated MCF7 cells than the control cells after 24 population doublings post 

0.1 Gy X-ray irradiation. However, these progeny showed a normal level of 

telomerase activity as a delayed response as shown in figures 3.1, panel B. Hence, 

findings suggested that the telomeric instability in the 0.1 Gy direct irradiated MCF7 

cells can trigger chromosomal instability in the absence of apoptotic induction. 
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Figure 3.1: Chromosome aberrations, apoptosis, telomere length and telomerase 
activity in tumour breast epithelial MCF7 cells after 4 hours, 1, 12 and 24 population 
doublings following 0.1 Gy X-ray irradiation. 
Cells were exposed to 0.1 Gy X-ray at 80% confluence. Then cells were harvested to chromosomal analysis, 
apoptotic analysis, telomere length and telomerase activity measurement. Panel A showed a significant induction 
of apoptosis (***p≤0.0001) only after 4 hours post irradiation, compared to the control this level of apoptosis 
returned to the normal level after 1 generation. However these cells revealed a high chromosomal damage 
(***p≤0.0001) after 1 generation following irradiation compared to the control. MCF7 cells continued to displayed 
chromosomal instability (*p≤0.05) after 12 and 24 generations (p≤0.05) following irradiation, in absence of 
apoptosis. Data reported that low dose of X-ray can induce initial and delayed chromosomal damage in the tumour 
MCF7 cells, if there is no delayed induction of apoptosis. Panel B: represent telomere instability in 0.1 Gy direct 
irradiated MCF7 cells, involving telomere length and telomerase activity. Cells revealed a significant telomerase 
insufficiency (***p≤0.0001) after one generation following 0.1 Gy X-ray irradiation. Moreover these cells showed 
a significant telomeric shortening (**p≤0.005) at the same time point. Although 0.1 Gy direct irradiated MCF7 
cells exhibited a normal level of telomerase activity, telomere length was significantly shorter thank the controls 
after 12 (*p≤0.05) and 24 (**0.005) generations delayed telomere shortening. Hence, evidence that active 
telomerase could stimulate cell to proliferate even with short telomeres, which could lead to chromosomal 
instability. 
Experiment was performed in 3 technical repeats.   
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3.3.2 Direct irradiated tumour breast epithelial MCF7 cells 

following 2 Gy X-ray 

To evaluate the cellular response and sensitivity of MCF7 cells to therapeutic dose, 

the cells were exposed to 2 Gy X-ray irradiation and analysed at early and delayed 

time post irradiation for chromosomal analysis, apoptotic analysis, telomere length 

and telomerase activity measurement. 

A significant chromosome and chromatid aberrations (p≤0.0001) were observed in 

MCF7 cells after 1 population doubling following 2 Gy X-ray irradiation compared to 

the control as shown in figure 3.2, panel A). Mean chromosomal aberrations of 2 Gy 

direct irradiated MCF7 cells was 1.38±0.14, which was significantly higher than 0.1 

Gy direct irradiated MCF7 (0.72±0.14). Hence, the chromosomal damage responses 

were dose-dependent in MCF7 cells, i.e. high level of chromosomal damage 

associates with high dose of IR, and vice versa. Direct irradiated MCF7 displayed 

induction of apoptosis ((p≤0.0001) only after 4 hours following 2 Gy irradiation. The 

percentage of apoptosis in the sham/control irradiated cells was 1.12±0.02, which 

reached to 2.6±0.03 post 2 Gy irradiation. However, the apoptotic level returned to 

the normal level after 1 generation (after one cell sub-culture) as shown in figure 3.2, 

panel A. Telomere shortening was significantly detected in 2 Gy direct irradiated 

MCF7 cells after 1 generation as an initial response IR. The telomere length of the 

sham/control irradiated cells was 24.87±2.7, which decreased to 10.13±0.92 in 

irradiated cells (Figure 3.2, panel B). Moreover, MCF7 cells demonstrated a 

significant decrease in the telomerase activity (p≤0.0001) after 1 population doubling 

following 2 Gy X-ray irradiation compared to the control. The sham/control irradiated 

MCF7 cells exhibited 86636.7±2252.65 TAU of telomerase activity, which 

significantly reduced to 39170±3980.37 (See figure 3.2, panel B). The findings 
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hypothesized that IR can cause telomerase insufficiency, leading to telomere 

shortening and chromosome aberrations, in the absence of apoptosis. 

Results of delayed responses after 12 population doublings reported that MCF7 cells 

continued to exhibit a high induction of chromosome aberration (p≤0.005) in their 

progeny following 2 Gy X-ray irradiation. These progeny showed 0.59±0.09 mean 

chromosomal aberrations, which was significantly higher than the control mean 

chromosomal aberrations (0.24±0.047).  However, these progeny did not exhibit 

induction of apoptosis compared to the control after 12 generations. The percentage of 

apoptotic level of direct irradiated MCF7 progeny cells (0.95±0.011) was very closed 

to the control progeny cells (0.88±0.12) as shown in figure 3.2, panel A. After 12 

generations following irradiation, telomerase activity level of progeny of irradiated 

MCF7 cells returned to normal level compared to the control, nevertheless, these 

progeny showed a significant telomere shortening (12.43±2.34, p≤0.05) compared to 

the control (23±2.46) as shown in figure 3.2, panel B. Data showed that progeny cells 

with active telomerase and instable telomeres could display chromosomal instability 

in absence of apoptosis. 

Delayed chromosomal damage within progeny of 2 Gy direct irradiated MCF7 was 

significantly observed (p≤0.005) after 24 population doublings following irradiation 

compared with the control. However, these progeny did not display a significant 

apoptotic level compared to the control (Figure 3.2, panel A). Although, normal level 

of telomerase activity was detected in the progeny of irradiated MCF7 cells, these 

progeny consistently continued to exhibit a short/instable telomere length. The 

telomere length of direct irradiated MCF7 progeny cells was 10.74±1.32, which was 

significantly shorter (p≤0.0001) than telomeres of the control progeny cells (Figure 



63 
 

3,2, panel B). A similar speculation was reported that instable telomeres can cause 

chromosomal instability in the absence of apoptosis and active telomerase. 
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Figure 3.2: Initial and delayed chromosome aberrations, apoptosis, telomere length 
and telomerase activity in MCF7 cells following 2 Gy X-ray irradiation. 
MCF7 cells at 80% confluent were irradiated by 2 Gy X-ray and harvested at dearly and delayed time points for 
chromosomal damage analysis, apoptotic analysis, telomere length and telomerase activity measurement. Panel A: 
High dose of X-ray (2 Gy) induced significant initial chromosomal damage and apoptosis (***p≤0.0001) in MCF7 
cells. Chromosome aberrations were observed after 1 generation following irradiation; whilst induction of 
apoptosis was detect only after 4 hours following irradiation. MCF cells also showed chromosomal instability 
(**p≤0.005) after 12 and 24 population doublings post irradiation. However, delayed apoptotic response was 
insignificant in these cells compared to the controls. Panel B: The ability of 2 Gy X-ray to cause significant 
telomeric shortening and insufficient telomerase activity (***p≤0.0001) in MCF7 cells after 1 generation 
following irradiation. Although telomerase activity returned to the normal levels in 2 Gy MCF7 cells after 12 and 
24 generations, These cells continued to show a significant telomeric shortening after 12 (*p≤0.05) and 24 
(***p≤0.0001) generations post irradiation. Active telomerase could promote cell proliferation instigating 
chromosomal instability due to telomeric shortening and absence of apoptosis.  
Experiment was performed in 3 technical repeats. 
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3.3.3 Direct irradiated non-tumour breast epithelial HMT-3522S1 

cells following 0.1 Gy X-ray 

Normal/non-tumour cells are frequently exposed to low doses of IR during diagnostic 

procedure (BER, 2010). As well as, normal cells, which are in the track of IR beam 

during radiotherapy, can obtain a low dose of IR (Joiner, 1987). Therefore, non-

tumour breast epithelial HMT-3522S1 cells (HMT) were analysed for initial and 

delayed chromosomal damage≤ apoptotic response and telomeric instability following 

0.1 Gy X-ray irradiation. 

Direct irradiated HMT cells showed induction of chromosome aberrations (p≤0.05) 

after 1 generation post 0.1 Gy X-ray irradiation compared with the control (Figure 

3.3, panel A). The mean chromosomal aberrations of sham/control cells was 

0.14±0.037, which became 0.26±0.042 following irradiation. Apoptotic level was 

significantly (p≤0.0001) observed in the direct irradiated HMT only after 4 hours 

following irradiation. The percentage of apoptosis in the sham/control cells was 

1.09±0.01, which elevated almost three and a half folds (3.6±0.028) after irradiation. 

Nevertheless, these cells did not reveal induction of apoptosis after 1 population 

doubling (Figure 3.3, panel A).  Conversely, the progeny of 0.1 Gy direct irradiated 

HMT cells did not exhibit significant chromosomal aberrations after 12 and 24 

population doublings compared to the corresponding control. Whilst the apoptotic 

levels were significantly observed (p≤0.05) within these progeny after 12 and 24 

generations as delayed responses as shown in figure 3.3 panel A. Hence, findings 

reported that there is an inverse relationship between apoptosis and chromosomal 

instability. i.e. high level of apoptosis can eliminate the damaged cells. 

Direct irradiated HMT cells demonstrated a significant telomere shortening (p≤0.005) 

after 1 generation post 0.1 Gy irradiation. These cells showed 9.47±0.96 telomeric 
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fluorescence intensity, which significantly shorter than the control (12.71±1.14). 

Moreover, telomerase activity was significantly reduced (p≤0.0001) from 

60266.7±3530.97 TAU in the control cells to 33833.3±2598.29 TAU in the 0.1 Gy 

direct irradiated cells after 1 population doubling (Figure 3.3, panel B). The progeny 

of 0.1 Gy direct irradiated HMT cells continued to reveal shortening (p≤0.05) in their 

telomere length after 12 and 24 population doublings (10.59±1.1 and 9.89±0.93 

respectively) compared to the corresponding controls. Nonetheless, these progeny did 

not display a significant telomerase insufficiency after 12 and 24 population 

doublings post irradiation compared with the controls (Figure 3.3, panel B). Thus, 

active telomerase could lead to cell division, even with short telomeres. Due to the 

short telomeres and active telomerase, findings suggested there is a potential risk of 

chromosomal/genomic instability; although these progeny did not reveal a significant 

chromosomal damage. Data suggested that it might be with further population 

doublings, cells can produce chromosomal instability later. 
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Figure 3.3: Initial and delayed chromosome aberrations, apoptosis, telomere length 
and telomerase activity in non-tumour breast epithelial HMT-3522S1 cells following 
0.1 Gy X-ray irradiation. 
HMT cells were irradiated by 0.1 X-ray at 80% confluence. Cells were then analysed for chromosomal damage 
analysis, apoptotic analysis, telomere length and telomerase activity measurement at early and late time points. 
Panel A illuminated the chromosomal damage and apoptotic responses in HMT cells to the low dose of X-ray. 
Cells demonstrated a significant initial chromosomal damage (*p≤0.05) after 1 generation and initial induction of 
apoptosis (***p≤0.0001) only after 4 hours following irradiation compared too the control. Surprisingly 0.1 Gy 
HMT cells did not reveal a significant delayed chromosomal damage after 12 and 24 generations post irradiation. 
Nonetheless, these cells exhibited a high induction of apoptosis (*p≤0.05) after 12 and 24 generations following 
irradiation. High apoptotic level could eliminate the damaged cells leading to a reduction in chromosomal 
instability. Panel B: Direct irradiated HMT cells showed initial and delayed induction of telomeric shortening 
(**p≤0.005 and p≤0.05 respectively) following 0.1 Gy X-ray irradiation. Nevertheless, these cells displayed a 
significant reduction in the telomerase activity (***p≤0.0001) only after 1 generation following 0.1 Gy irradiation. 
This level of telomerase activity returned to the normal level after 12 and 24 generations post irradiation as a 
delayed response. Due to the short telomeres and active telomerase, there is a potential risk of 
chromosomal/genomic instability. i.e. progeny of 0.1 Gy direct irradiated HMT cells can reveal 
chromosomal/genomic instability with further population doublings. Experiment was performed in 3 technical repeats. 

0

0.5

1

1.5

2

2.5

4hrs 1 PD 12 PD 24 PD 4hrs 1 PD 12 PD 24 PD

HMT Direct irradiated  control HMT 0.1Gy Direct irradiated

M
e
a
n
 c

h
ro

m
o
s
o
m

a
l 
a
b
e
rr

a
ti
o
n
s
 p

e
r 

c
e
ll

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

P
e
rc

e
n
ta

g
e
 o

f 
a
p
o
to

s
is

Chromosome aberrations Percentage of apoptosisA

***

* *

*

0

5

10

15

20

25

30

1 PD 12 PD 24 PD 1 PD 12 PD 24 PD

HMT Direct irradiated control HMT 0.1Gy Direct irradiated 

T
e
lo

m
e
ri
c
 f

lu
o
re

s
c
e
n
c
e
 i
n
te

n
s
it
y

0

20000

40000

60000

80000

100000

120000

140000

T
e
lo

m
e
ra

s
e
 a

rb
it
ra

ry
 u

n
it

Telomere length Telomerase activityB

***

*
** *



68 
 

3.3.4 Direct irradiated non-tumour breast epithelial HMT-3522S1 

cells following 2 Gy X-ray 

Non-tumour cells or tissue, which adhere or are in vicinity of cancer cells or tissues, 

can receive high doses of IR during radiotherapy. Therefore, to estimate the response 

and sensitivity of non-tumour cells to high dose of IR, HMT cells were exposed by 2 

Gy X-ray, then early and delayed chromosomal damage, apoptosis and telomeric 

instability were measured. 

Similarly to 0.1 Gy direct irradiated HMT cells, HMT cells were showed a high 

induction of chromosomal damage (p≤0.0001) after 1 population doubling following 

2 Gy X-ray irradiation compared to the control. The mean chromosomal aberrations 

of sham/control HMT cells was, 0.14±0.037, which significantly increased to 

0.94±0.16 post irradiation (Figure 3.4, panel A). Chromosomal damage response was 

dose-dependent in HMT cells. The mean chromosomal aberrations of HMT cells was 

0.26 following 0.1 Gy X-ray irradiation, and (0.94) post 2 Gy irradiation. High 

induction of apoptosis (p≤0.0001) was detected in 2 Gy direct irradiated HMT 

(3.45±0.026) only after 4 hours following irradiation compared to the control 

(1.09±0.01). However, the apoptotic level returned to the normal level after 1 

generation following irradiation compared to the control as shown in figure 3.4, panel 

A). Moreover, the 2 Gy direct irradiated HMT cells demonstrated a significant 

telomeric shortening (p≤0.005) and reduction in the telomerase activity (p≤0.0001) 

after 1 population doubling post irradiation compared with the controls (Figure 3.4, 

panel B). Telomeric fluorescence intensity and telomerase activity were 12.71±1.14 

and 60266.7±3530.97 TAU respectively in sham/control HMT cells, which decreased 

to 8.84±0.99 and 31066.7±2305.31 following 2 Gy X-ray irradiation.  
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After 12 population doublings following irradiation, interestingly HMT cells did not 

exhibit induction of chromosome aberrations. However, these cells showed an 

elevation in apoptotic level, which was statistically insignificant (p≤0.061) compared 

to the control (See figure 3.4, panel A). Data suggested that the high level of apoptosis 

could remove the damage cells, which can be another confirmation of inverse 

relationship between apoptosis and chromosomal instability. Although the progeny of 

2 Gy direct irradiated cells did not display a significant telomerase insufficiency. 

These progeny continued to show a significant induction (p≤0.05) of telomeric 

shortening (9.53±1.12) after 12 generations post irradiation compared to the control 

(13.82±1.66) as shown in figure 3.4, panel B. 

After 24 generations post irradiation, the progeny of 2 Gy direct irradiated HMT cells 

demonstrated a high induction of chromosomal instability (p≤0.0001) compared to the 

control. These progeny showed 0.57±0.097 mean chromosomal aberrations; whilst the 

mean chromosomal aberrations of sham irradiated progeny cells was 0.17±0.042 

(figure 3.4, panel A). The progeny of 2 Gy direct irradiated did not expressed 

induction of apoptosis after 24 generations following irradiation, which can be 

considered another evidence of inverse relationship between apoptosis and 

chromosomal instability (figure 3.4, panel A). A consistently telomeric shortening 

was significantly observed (p≤0.05) in the progeny of 2 Gy direct irradiated HMT 

cells after 24 population doublings following irradiation, although these progeny did 

not reveal induction of telomeric insufficiency (Figure 3.4, panel B). A similar 

suggestion was reported that 2 Gy X-ray could cause telomeric instability instigating 

to chromosomal instability, in the absence of apoptosis and active telomerase. 
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Figure 3.4: Effect of high dose (2 Gy) X-ray irradiation on HMT-3522S1 cells. 
At 80% confluence, HMT cells were exposed to 2 Gy X-ray irradiation. Cells were subjected to chromosomal 
analysis, apoptotic analysis, telomere length and telomerase activity measurement at early and late time points. 
Panel A: Chromosome aberrations were significantly observed (***p≤0.0001) in HMT cells after 1 generation 
following 0.1 Gy X-ray irradiation. However, these cells showed a high induction of apoptosis (***p≤0.0001) only 
after 4 hours following irradiation as an early response. After 12 population doublings following irradiation, cells 
did not demonstrate a significant chromosomal damage; nevertheless, cells exhibited an elevation in apoptosis, 
which was statistically insignificant (p=0.061). Data suggested that the high level of apoptosis could remove the 
cells with high chromosomal damage. HMT cells showed a high induction of chromosomal instability 
(***p≤0.0001) with insignificant level of apoptosis after 24 generations following 2 Gy irradiation. Panel B 
illuminated the ability of 2 Gy X-ray to induce an early induction of telomeric shortening (**p≤0.005) and 
insufficient telomerase activity (***p≤0.0001) in HMT cells compared to the controls. Cells continued to reveal a 
significant telomeric shortening after 12 (*p≤0.05) and 24 (**p≤0005) generations following irradiation. However, 
telomerase activity returned to the active level after 12 and 24 generations post irradiation, which could stimulate 
cells proliferation even with short telomeres. Hence, cells could exhibit more chromosomal/genomic instability in 
absence of apoptosis. 
Experiment was performed in 3 technical repeats. 
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3.4 Discussion and conclusions 

Low and high doses of X-irradiation can cause chromosomal damage in normal and 

tumour cells by depositing energy, directly or indirectly, in the nuclei of cells (Bryant, 

1988, Hall and Giaccia, 2006, Guerci et al., 2004). Our results have revealed high 

initial chromosomal damage in both tumour MCF7 and non-tumour HMT-3522S1 

cell population following direct X-irradiation with 0.1 Gy and 2 Gy. Similar results, 

i.e. chromosomal and chromatid aberrations post X-irradiation, have been reported in 

normal and cancer bronchial epithelial cells by Konopacka and Rogolinsk 

(Konopacka and Rogolinski, 2010). In addition, a recent study has suggested that low 

and high LET can interrupt NHEJ pathway enhancing chromosomal radio-sensitivity 

in human cancer epithelial cells (MCF10A). In this study, micronucleus (MN) 

formation was used as an endpoint to evaluate radio-sensitivity of chromosomes 

(Vandersickel et al., 2010). 

Our study has demonstrated that different doses of irradiation induced differing levels 

of initial chromosomal and chromatid aberrations in the irradiated groups. The 2 Gy 

irradiated MCF7 cells significantly demonstrated higher induction of early 

chromosomal and chromatid damage compared to the 0.1 Gy irradiated MCF7 cell 

group. Similar results were also observed in directly irradiated HMT-3522S1 cells 

(Figures 3.1 A, 3.2 A, 3.3 A and 3.4 A). Therefore, our data suggests that radiation-

induced initial direct damage can be a dose-dependent response; i.e. the level of 

chromosomal and chromatid aberrations significantly elevate with increased radiation 

dose as an initial direct response. However, more studies at different doses are needed 

for this suggestion. This data is supported by the work of  Mosesso et al. who have 

demonstrated that high doses of IR increase the duration of chromosomal aberration 

recovery (Mosesso et al., 2010).  
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Apoptotic analysis study showed that IR frequently induced apoptosis in both MCF7 

and HMT-3522S1 direct irradiated cells after 4 hours following 0.1 and 2 Gy X-

irradiation (Figures 3.1 A, 3.2 A, 3.3 A and 3.4 A). Much evidence has reported that 

non-lethal and lethal doses of radiation can make cells more amenable to commit 

apoptosis (Ifeadi and Garnett-Benson, 2012, Portess et al., 2007). Vogelstein and co-

authors have suggested that DNA damage can activate p53, which frequently cause 

apoptosis by activating Bcl-2 family members (pro-apoptotic factors) such as Puma, 

Noxa, Bim, etc. (Vogelstein et al., 2000). Moreover, Protein phosphatise 2 (PP2A) 

plays an important role in p53 dephosphorylation by IR leading to apoptosis (Mi et 

al., 2009). In addition, Lyng, et al. have suggested that irradiation can decrease in 

mitochondrial membrane potential causing an increase in the Bcl-2 and cytochrome c 

secretion (Lyng et al., 2006a), which can lead to intrinsic apoptosis or mitochondrial 

pathway of apoptosis (Czerski and Nunez, 2004). In this apoptotic pathway 

(mitochondrial apoptosis) can happen in 2 pathways. The first pathway is that caspase 

8 cleavs Bcl-2 interacting protein (BID) leading to enhance the mitochondria to 

increase cytochrome c release. Cytochrome c binds to apoptotic protease activating 

factor 1 (APAF 1), which with dATP activates caspase 9. Caspase 9 cleaves pro-

caspase 3 leading to activate caspase 3 then commit the cells to apoptosis. In the 

second pathway, caspase 8 directly cleaves pro-caspase 3, and then activates caspase 

3 causing apoptosis (Kim et al., 2006, Alladina et al., 2005). Abundant evidence 

supported our apoptotic findings, which suggested that IR can induce apoptosis in 

direct irradiated tumour and non-tumour cells ((Ilyenko et al., 2011, Wang et al., 

2008). However, apoptosis returned to the normal level after one cell sub-culturing 

(one population doubling) in both MCF7 and HMT-3522S1 direct irradiated cells as 

shown in figures 3.1 A, 3.2 A, 3.3 A and 3.4 A). The data suggested that the damaged 
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and unhealthy cells with non-transmissible chromosomal damage had been eliminated 

by cell sub-culture; or the time point was inadequate to catch the apoptotic cells after 

one population doubling following irradiation.   

Telomeric data demonstrated that IR could significantly perturb telomerase activity 

and telomere length in both MCF7 and HMT-3522S1 direct irradiated cells after one 

generation following irradiation (See figures 3.1 B, 3.2 B, 3.3 B and 3.4 B). The 

findings suggested that the dysfunction of telomerase causing by IR led to shortening 

in the telomere length for irradiated MCF7 and HMT-3522S1 cell. Our investigation 

has been supported by Kovalenko and co-workers. They have documented that 

targeting and disorder hTERT (the catalytic sub-unit of telomerase) can cause DNA 

damage at telomeric and extra-telomeric sites. These telomeric DNA damage 

frequently increase in the sensitivity of prostate cancer epithelial (LnCaP)cells and 

Human epithelial carcinoma (Gaytan et al., 1996) cells  (Kovalenko et al., 2010). 

In addition to investigate the initial effects of IR on the MCF7 and HMT cells, it well 

documented that radiation induces GI in the irradiated cells (Kadhim and Wright, 

1998, Kadhim et al., 1992). Delayed chromosomal damage was significantly observed 

within the progeny of MCF7 direct irradiated cells after 12 and 24 population 

doublings following 0.1 and 2 Gy X-ray irradiation compared to the controls. 

However, the apoptotic results did not reveal induction level of apoptosis in this 

progeny (Figure 3.1 A and 3.2 A). These data was supported by abundant evidence 

that pointed to ionizing radiation-induced chromosomal instability (Huang et al., 

2007, Kadhim et al., 2004). Drissi and other authors have demonstrated that telomeric 

shortening within cells can lead to histone acetylation and methylation (Drissi et al., 

2011) leading to genomic instability as a delayed response of IR (Aypar et al., 2011). 

Moreover, alternative lengthening of telomeres (ALT) can enhance cancer stem cells' 
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ability to continue long term proliferation, as a result of telomerase activity (Silvestre 

et al., 2011). The results illustrated that telomerase activity can be increased within 

survival cells following IR (Aravindan et al., 2011). In addition, the increase in 

telomerase activity can be linked to the increased GI levels (Bednarek et al., 1995). 

Our data showed the ability of telomerase of progeny of direct irradiated MCF7 cells 

to maintain cell proliferation instigating chromosomal/genomic instability, due to 

short telomeres. Furthermore, uncapped (dysfunctional) telomere can lead to 

telomere-telomere fusion and ionizing radiation-induced telomere-DSB fusion 

causing GI. Dysfunctional telomeres frequently affected non-homologous end-joing 

(MHEJ) DNA repair mechanism leading to instability following irradiation (Williams 

et al., 2009, Williams et al., 2002).  The lack of capping function of telomeres can 

produce end-to-end chromosomal fusion resulting in the formation of anaphase 

bridges, translocations, deletions and/or amplifications as a delayed response 

(Stewenius et al., 2007). Moreover, non-reciprocal translocation and aneuploidy can 

be observed in cells with short telomeres, and associates with high rates of malignant 

diseases in humans (Calado, 2009). Although, the high chromosomal damage was 

detected within the progeny of MCF7 direct irradiated cells; these cells did not 

demonstrate a significant delayed response of apoptosis compared to the controls 

(Figures 3.1 A and 3.2 A). The experimental findings suggested that there is an 

inverse relationship between chromosomal instability and apoptosis. In other words, a 

high level of apoptosis will eliminate and diminish the level of chromosomal damage 

and vice versa. This suggestion was clearly proved by the late results of progeny of 

HMT-3522S1 0.1 Gy direct irradiated cells. This group did not show induction of 

chromosomal aberrations. However, significant levels of apoptosis were observed 

after 12 and 24 generations (p≤0.05) following 0.1 Gy X-ray irradiation. The high 
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level of apoptosis in this progeny might eliminate the damaged cells with high rate of 

chromosomal aberration, and that proved our suggestion above. Furthermore progeny 

of HMT-35 22S1 2 Gy irradiated cells demonstrated insignificant chromosomal 

aberrations and high level of apoptosis (it was not quite significant, p=0.061), which 

can be considered another prove that apoptosis and chromosomal instability have an 

inverse relationship. The high level of apoptosis in the irradiated HMT-3522S1 cells 

could be instigated by the short telomeres. Ilyenko and other authors illustrated that 

blood lymphocytes from Chornobyl radiation workers showed a short telomeres 

compared to healthy donors. The authors proved that cells with short telomeres after 

low doses displayed induction level of apoptosis (Ilyenko et al., 2011). 

The progeny of HMT-3522S1 2 Gy direct irradiated cells showed the same scenario 

of progeny of MCF7 direct irradiated cells, which is high level of chromosomal 

damage and insignificant induction of apoptosis (Figure 3.4 A). As well as, a 

significant telomeric shortening (p≤0.005) and normal level of telomerase activity 

were observed in this progeny as shown in figure 3.4 B.  

Moreover, MCF7 cells were particularly more susceptible to ionizing radiation (IR) 

than HMT-3522S1 cells, which it can be two reasons behind the high sensitivity of 

MCF7 cells to IR in comparison with HMT-3522S1 cells. The first reason is HMT-

3522S1 cells showed higher induction of apoptosis than MCF7 following 0.1 and 2 

Gy X-ray irradiation (Figures 3.1, 3.2, 3.5 and 3.6). Thus, apoptosis might eliminate 

the cells with high chromosomal damage, to restore the homeostasis status of cell 

culture (Tesfaigzi, 2006). In addition, apoptotic bodies can link with inflammatory 

mediators leading to decrease in pro-inflammatory cytokines and controlling 

inflammation (Ren et al., 2008, Tesfaigzi, 2006), causing less chromosomal 

aberrations as delayed responses to the IR (Martin et al., 2011). The second reason is 
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MCF7 cell is aneuploidy (from 70 to more than 100), whilst HMT-3522S1 cell 

nucleus has 45 chromosomes. Therefore, the number of chromosomes in the 

ionization track path per each MCF7 cell nucleus is higher than the HMT cell 

nucleolus. Consequently, this could explain the high chromosomal damage in MCF7 

cells following irradiation compared to HMT-3522S1 cells.   

Data demonstrated that delayed chromosomal damage was a non-dose-dependent 

response in both direct irradiated MCF7 and HMT-3522S1 cells. However, other 

genomic instability manifestations, which are apoptosis, telomere length and 

telomerase activity, were dose-dependent responses as shown in figures 3.1 A and B, 

3.2 A and B, 3.3 A and B and 3.4 A and B. These data suggested cells can survive and 

proliferate with a limitation in the number of chromosomal damage. In other words, 

cells with high multi chromosomal aberrations will be removed by apoptosis. 

Conversely, cells with transmissible or non-lethal aberrations can move to another 

generation with these chromosomal aberrations without committing apoptosis. Thus 

to explain why chromosomal damage is a non-dose-dependent, and apoptosis is a 

dose-dependent reaction. 
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Conclusions 

  1. IR can induce initial cellular damage in both tumour (MCF7) and non-tumour 

(HMT-3522S1) breast epithelial cells following low and high doses of X-ray 

irradiation. 

2. Delayed chromosomal damage was observed in direct irradiated MCF7 cells 

following 0.1 and 2 Gy irradiation and in 2 Gy direct irradiated HMT-3522S1 cells. 

However, 0.1 Gy direct irradiated HMT-3522S1 cells did not show a delayed 

induction of chromosomal damage. 

3. Delayed apoptotic induction was detected only in the 0.1 Gy direct irradiated 

HMT-3522s1 cells. 

4. There was an inverse relationship between apoptosis and chromosomal instability 

within direct irradiated MCF7 and HMT following 0.1 and 2 Gy X-ray irradiation. 

5. Telomerase activity level returned to the normal in both types of cells after few 

generations following the low and high doses of irradiation. Thus to suggest that these 

active telomerase enzymes could maintain cell dividing even with short telomeres 

causing more instability in the progeny. 

6. Tumour MCF7 cells have been documented more susceptible to IR than non-

tumour HMT-3522S1 cells. 

7. Findings demonstrated that initial chromosomal damage was a dose-dependent. 

However, delayed chromosomal aberrations were in a non-dose-dependent manner in 

direct irradiated MCF& and HMT-3522S1 cells following 0.1 and 2 Gy irradiation. 

8. Initial and delayed apoptotic levels, telomere length and telomerase activity were 

dose-dependent responses. 
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Chapter 4: Radiation-induced bystander effects in tumour and 

non-tumour breast epithelial cells 

4.1 Introduction 

Communication between irradiated and un-irradiated cells can cause damage in cells 

that are not directly targeted by ionizing radiation (IR) underlying the requisite of 

Radiation-induced bystander effects (BE) (Morgan and Sowa, 2007). BE can also lead 

to chromosomal/genomic instability within the progeny of bystander cells, similar to 

those observed in the progeny of direct irradiated cells (Bowler et al., 2006). The 

factors that mediate this cellular communication can be transferred between cells via 

gap junctions (Hu et al., 2012) or by their release into the extra-cellular media 

(Mothersill et al., 2006).  

Cell type, cell density and irradiation dose and quality can play important roles in BE 

induction (Buonanno et al., 2011, Ballarini et al., 2006, Hickman et al., 1994). 

Mothersill and Seymour  have shown that bystander signals in irradiated cell 

conditioned media (ICCM) from human epithelium can induce BE in neighbouring 

un-irradiated human fibroblast cells, but have no effect on human epithelial cells 

(Mothersill and Seymour, 1997). Other studies have also demonstrated that ICCM 

from irradiated normal fibroblasts can increase the level of micronuclei (MN) in un-

irradiated tumour giloma cells implying that this bystander response could have 

beneficial consequences in radiotherapy treatment. The researchers also suggest that 

reactive oxygen species (ROS) and nitric oxide (NO) could be involved in this 

bystander induction (Shao et al., 2005). Conversely, Konopackaand and Rogolinski 

have proved that ICCM from irradiated bronchial epithelial cells can induce 

chromosomal aberrations and MN in the normal bronchial epithelial cells following 

X-ray irradiation in an attempt to mimic the radiotherapy of cancer (Konopacka and 

Rogolinski, 2010). 
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Therefore, the purpose of our study was to investigate BE consequences between 

tumour and non-tumour breast epithelial cells following low (diagnostic) and high 

(therapeutic) doses of X-ray.  

4.2 Materials and methods 

4.2.1 Cell culture 

 Tumour (MCF7) and non-tumour human breast epithelial cells (HMT-3522S1) were 

grown and maintained as described in sections 2.1.1.i and 2.1.1.ii. In brief, cells were 

cultured in their media for several generations in T75 tissue culture flasks. For each 

cell type sub-culture, 1.4 x 106 cells were seeded per T75, and sub-cultured to 80% 

confluence using unconditioned (fresh) media. (One passage represented 

approximately 2 cell population doublings).  

4.2.2 Experimental design 

The experiment was designed as described in sections 2.1.8, 2.1.9 and 2.1.10. In brief, 

cells (MCF7 and HMT) were cultured in a 6-well plate system (base and insert dishes) 

until 70%-80% confluence. Cells in base dishes only, were exposed to 0.1 Gy and 2 

Gy X-ray irradiation; immediately following the irradiation the insert dishes were 

placed inside the base dishes and incubated as a co-culture for 4 hours. As a result of 

co-culture system cell-cell communications, four cell combinations were established: 

1) Direct irradiated MCF7 (base) - bystander HMT (insert). 2) Direct irradiated MCF7 

(base) - bystander MCF7 (insert). 3) Direct irradiated HMT (base) - bystander MCF7 

(insert) and 4) Direct irradiated HMT (base) - bystander HMT (insert). Each cell 

combination was irradiated with either 0.1 Gy or 2 Gy X-ray irradiation. Following 

the 4 hour co-culture time, samples of each irradiated and bystander cell populations 

were subjected to apoptotic analysis, whilst the remaining cells were sub-cultured to 

further population doublings. Cells from all groups were analysed for chromosomal, 
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telomere length and telomerase activity after 1, 12 and 24 population doublings. 

Control groups (sham-irradiated/0 Gy) were established in parallel. 

 4.2.3 Chromosomal analysis 

Chromosomal analysis was performed as described in section 2.1.11. Briefly, cells 

were arrested at metaphase of the cell cycle using 20 ng/ml demecolcine. Cells were 

then collected and treated with 75 mM potassium chloride solution for 20 minutes 

causing the cells to burst and release their chromosomes thus allowing them to 

subsequently spread out onto microscope slides. Cells were then fixed twice with 25% 

acetic acid in methanol and dropped onto clean microscope slides. A Giemsa solid 

method was utilised to detect chromosome aberrations as described in sub-section 

2.1.11.iii. Slides were then mounted with a cover slip and analysed using, a bright 

field light microscope. 

4.2.4 Apoptotic analysis 

Analysis of apoptotic levels was performed using prolong gold anti-fade mounting 

media with DAPI as described in section 2.1.12. Cells were collected with their media 

and fixed by 25% acetic acid in methanol prior to being dropped onto microscope 

slides and stained by mounting media. Direct irradiated and bystander cells were 

analysed after 4 hours and 1 population doubling for the initial apoptotic response and 

then after 12 and 24 generations for the delayed apoptotic response.  

4.2.5 Telomere length measurement 

Q-FISH technique was used to measure telomere length as described in section 

2.1.13. In brief, cells were collected, fixed and dropped onto clean microscope slides. 

The slides were rehydrated, fixed with formaldehyde and then hybridised using 

peptide nucleic acid FITC. They were then mounted with Vectorshield mounting 
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media with DAPI and analysed for telomeric fluorescence signals using smart capture 

and IP-Lab software. 

4.2.6 Telomerase activity measurement 

Real-time PCR technique was utilised to determine initial and delayed telomerase 

activity as described in section 2.1.14. In brief, cells were lysed by CHAPS lysis 

buffer; cell extractions were then loaded with the master mix into 96 well plates and 

then placed in real-time PCR machine to measure the activity of telomerase at 

25ºC/20min, 95ºC/10min, (95ºC/30sec, 60ºC/90sec) 40 cycles programme. 

4.3 Results 

We have previously determined the targeted effects of low and high dose X-ray 

within MCF7 and HMT cells (Chapter 3) and now we evaluate the non-target effects 

of X-ray irradiation in these cells from the results of the various cell combinations in 

the co-culture system (Figure 2.2) which was able to generate direct and bystander 

groups. Direct irradiated cells were seeded in the 6-well cell culture base, whilst the 

bystander cells were cultured in the insert dish. The two cell populations were 

physically separated; but a porous translucent polyethylene terephthalate membrane 

(3.0 µm diameter pore size), which formed the bottom of the insert dish, (Hill et al., 

2006) enabled media between the two vessels to be shared and thus communication to 

be established.  

4.3.1 Bystander responses in the non-tumour HMT cells through 

communication with 0.1 Gy direct irradiated tumour MCF7 cells 

To investigate the induction of BE in HMT cells from MCF7 cells, MCF7 cells were 

exposed to 0.1 Gy X-ray and co-cultured with un-irradiated HMT cells. This cell 

combination would also be used to determine the effect of irradiated tumour cells on 

neighbouring un-irradiated non-tumour cells in terms of mimicking the low dose 
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radiotherapy fraction treatment of cancer cells and could thus explain BE 

consequences in non-tumour cells in comparison with other cell combinations 

following low and high irradiation doses. Additionally, data from the bystander 

response could be compared with the direct irradiated response under the same 

conditions.  

Chromosome aberrations, apoptotic induction, telomere length and telomerase activity 

results from the 0.1 Gy direct irradiated MCF7 cells was all were shown to be  

significant at the early time-point. However, apoptotic levels and telomerase activity 

returned to normal after 12 and 24 population doublings, although chromosomal 

instability and telomeric shortening were maintained at significant levels at the 

delayed time-point. (For more detail see section 3.3.1).  

In order to investigate and ascertain that the short lived and long lived damaging 

signals from irradiated cells can be received by neighbouring bystander cells, the un-

irradiated insert dish containing HMT cells was immediately incubated (co-cultured)  

with the base dish, containing direct irradiated MCF7 cells, for 4 hours following 0.1 

Gy irradiation. The two dishes (base and insert) were then separated, cells were taken 

for apoptotic analysis and the remaining cells were incubated to allow subsequent 

chromosomal and apoptotic analysis, telomere length and telomerase activity 

measurement at 1, 12 and 24 population doublings. Results for the chromosomal 

analysis revealed an increase in the mean number of chromosome aberrations after 1 

population doubling in the HMT bystander cells compared to their control, 

0.21±0.045 and 0.15±0.038, respectively however, the difference was statistically 

insignificant (Figure 4.1 A). Interestingly these bystander cells exhibited a significant 

high apoptotic induction (p≤0.0001), with levels of 2.7±0.018 at the 4 hour time-

point, which was higher than the control (1.16±0.008), although the levels decreased 
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to 1.27±0.021 after 1 population doubling, statistically insignificant compared to the 

control (0.79±0.012), as shown in figure 4.1 A. Telomere length and telomerase 

activity were also both significantly reduced (p≤0.005 and p≤0.0001 respectively), in 

these bystander cells compared to their corresponding controls at this time-point. 

Telomeres were shortened from 13.18±1.49 (control) to 9.14±0.89 (bystander); whilst 

the telomerase activity measured 94130±1357.69 TAU in the control cells, which 

diminished to 65096.7±5247.96 TAU in the bystander cells (Figure 4.1 B). Although 

the bystander HMT cells displayed initial telomeric shortening and telomerase 

deficiency, the degree of chromosomal damage (aberrations) was shown to be 

insignificant. This could have been the result of apoptosis as a significant raised level 

was observed, indicative of elimination cells with high chromosomal damage. 

After 12 population doublings, the number of chromosome aberrations remained low 

and insignificant in the bystander HMT cells compared to the control although a high 

induction of apoptosis was maintained (p≤0.05) as shown in figure 4.1 A. Data thus 

suggest an inverse relationship between high levels of apoptosis and a reduction in  

chromosomal damage. Moreover, 0.1 Gy bystander HMT cells did not show a 

significant reduction in either telomerase activity or reduced telomere length 

(10.22±0.92), compared to their control (13.03±1.91) as shown in figure 4.1 B, 

implying that the signals of 0.1 Gy direct irradiated MCF7 cells were not effective at 

inducing BE in the HMT cells. 

At the 24 population doublings time-point, the bystander HMT cells exhibited an 

elevation in chromosome aberrations (0.23±0.054) although statistically not 

significant compared to the control (0.16±0.039). The reduction in the apoptotic level, 

observed in these bystander cells could explain the increase in chromosomal 

instability (Figure 4.1 A). Interestingly, the bystander cells showed significant 
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telomeric shortening (p≤0.05) as a delayed response, although telomerase activity had 

returned to normal levels (Figure 4.1 B). Our findings suggest that bystander HMT 

cells exhibited a high potential for chromosomal/genomic instability at initial time-

points due to reductions in telomere length/apoptosis and active telomerase, but this 

was not observed at our delayed time-point, although the data suggest that the number 

of delayed chromosomal aberrations could increase with further population doublings 

i.e. at a much later time-point. 
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Figure 4.1: Initial and delayed bystander consequences in un-irradiated, non-tumour 
(HMT) cells following co-culture with 0.1 Gy direct irradiated tumour (MCF7) cells. 
Un-irradiated non-tumour HMT cells were immediately incubated for 4 hours with irradiated tumour MCF7 cells 
following 0.1 Gy X-ray irradiation. Cells were analysed for apoptosis after 4 hours, 1, 12 and 24 population 
doublings (PD); whilst, chromosomal analysis, telomere length and telomerase activity measurements were 
performed after 1, 12 and 24 PD. 
Panel A represent early and late chromosomal data and apoptotic induction; interestingly the HMT cells did not 
show a significant induction of initial and delayed chromosome aberrations. However, these cells demonstrated a 
high induction of apoptosis (***p≤0.0001) after 4 hours post co-culturing which returned to normal levels after 1 
PD, but significantly increased for a second time at 12 PD (*p≤0.05) and then returned to normal levels at 24 PD. 
These results suggest that the high level of apoptosis observed at the initial time-point had eliminated the bystander 
cells with high chromosomal damage. 
Panel B showed the ability of bystander signals of 0.1 Gy direct irradiated MCF7 cells to induce telomeric 
shortening (**p≤0.005) and telomerase activity reduction (***p≤0.0001) compared to their controls at 1 PD. 
Although, the telomerase activity of bystander HMT cells returned to normal levels after 12 PD, there was still a 
reduction in the telomere length albeit statistically insignificant (p=0.07) compared to the control which remained 
the case at 24 PD. Despite the fact that bystander HMT cells did not show a significant induction of chromosomal 
instability, there is a possibility that chromosomal/genomic instability could be observed at much later time-points 
(25 PD plus),  due to telomeric shortening, maintained telomerase activity and absence of apoptosis.  
Experiment was performed in 3 technical repeats. 
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4.3.2 Bystander responses in the non-tumour HMT cells through 

communication with 2 Gy direct irradiated tumour MCF7 cells 

A direct irradiated MCF7-bystander HMT cell combination was established to 

determine the effect of bystander signals of tumour cells on neighbouring non-tumour 

cells following a radiotherapy dose (2 Gy X-ray). The targeted effects of a 

radiotherapy dose, has been quantified in section 3.3.2. Briefly, the bystander cells 

showed significant initial and delayed chromosomal damage responses and increased 

apoptotic levels at 4 hours following irradiation. We have previously demonstrated 

that direct irradiated MCF7 cells showed significant early responses of telomeric 

shortening and reduction in telomerase activity, the former had persisted at delayed 

time-points although telomerase activity levels were shown to have returned to 

normal levels. (For more details see section 3.3.2). 

The effects of bystander signalling from 2 Gy direct irradiated MCF7 were shown to 

induce initial chromosomal damage (p≤0.05) in the HMT cells (Figure 4.2 A), which 

was higher (0.35±0.06) than that observed following 0.1 Gy, suggesting of BE 

(chromosomal damage manifestation) is a dose-dependent. There was also significant 

induction of apoptosis (p≤0.0001) after 4 hours; nonetheless, the levels decreased 

becoming insignificant after the first cell sub-culture (1 population doubling) 

compared to the control (Figure 4.2 A). Furthermore at this time-point, these cells 

additionally demonstrated a significant induction of initial telomeric shortening 

(p≤0.005), which could have been mediated by the significant low levels of 

telomerase activity (p≤0.0001) as shown in figure 4.2 B. Telomerase activity was 

shown to be 94130±1357.69 TAU in the control cells but had decreased to 

6436.3±3637.92 in the bystander cells. As mentioned above, this reduction could have 

initiated telomeric shortening, thus instigating chromosome aberrations in the 

bystander cells. 
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Following 12 population doublings, the progeny of the 2 Gy bystander HMT cells 

were shown not to exhibit chromosomal damage, nor did they interestingly show an 

induction of apoptosis (Figure 4.2 A). Although, these cells were shown to have 

shortened telomeres (p≤0.005) and normal levels of telomerase activity at this time-

point. Therefore in summary, the bystander HMT cells demonstrated similar cellular 

damage responses as the HMT cells that were directly irradiated with 2 Gy X-ray 

(Chapter 3). Data for the HMT bystander cells, suggest that the manifestation of 

delayed genomic instability may be observed at later time-points, i.e. 25 population 

doublings plus; a suggestion supported by the results for chromosomal damage, where 

a high induction of chromosome aberrations (p≤0.0001) was observed at 24 

population doublings (Figure 4.2 A). The mean number of chromosomal aberrations 

in the control cells was 0.16±0.039, which increased more than 4 folds to 0.76±0.12 

in the bystander cells. There was no induction of apoptosis (Figure 4.2 A); data 

therefore again suggest that HMT bystander cells demonstrate an inverse relationship 

between apoptosis and chromosomal/genomic instability. Similarly, the bystander 

HMT cells continued to exhibit short telomeres (p≤0.005) after 24 population 

doublings, although normal levels of telomerase activity were measured (Figure 4.2 

B). Data suggest that the sustained levels of telomerase activity could maintain cell 

division even when the cells have short telomeres, and this led to chromosomal 

instability, especially with the absence of apoptotic induction. 
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Figure 4.2: Bystander effects and genomic instability in un-irradiated HMT cells 
following co-culture with 2 Gy direct irradiated MCF7 cells. 
Un-irradiated bystander HMT cells were immediately incubated (co-cultured) with direct irradiated MCF7 cells for 
4 hours following 2 Gy X-ray irradiation. Cells were collected for apoptosis after 4 hours, 1, 12 and 24 population 
doublings (PD), whilst chromosomal analysis, telomere length and telomerase activity were performed after 1, 12, 
and 24 PD following co-culture.  
Panel A demonstrate significant initial chromosomal damage (*p≤0.05) in the bystander HMT cells compared to 
the control. In addition, these cells revealed a high induction of apoptosis after 4 hours (***p≤0.0001) although 
levels returned to normal after 1 PD. At 12 PD, there was no significant evidence of delayed chromosomal 
instability moreover, cells continued to show insignificant apoptotic levels at this and later time-points. 
Interestingly though, these bystander cells exhibited a high induction of chromosomal instability (***p≤0.0001) at 
24 PD. Thus, chromosomal instability and apoptosis data demonstrate an inverse relationship.  
Panel B represent telomeric instability, including telomere length and telomerase activity. Telomerase activity was 
significantly reduced (***p≤0.0001) in the bystander cells after 1 PD. However, this reduction was not maintained 
at the later time-points (12 and 24 PD), although the cells demonstrated significant telomeric shortening 
(**p≤0.005) at all time-points. These finding therefore suggest that telomerase activity maintained cell 
proliferation although the cells had unstable short telomeres, which could instigate chromosomal instability, 
especially in the absence of apoptosis. 
Experiment was performed in 3 technical repeats. 
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4.3.3 Bystander responses in the tumour MCF7 cells through 

communication with 0.1 Gy direct irradiated tumour MCF7 cells 

To complete the investigation into non-targeted effect/consequences of 0.1 Gy X-

irradiation, a direct irradiated-bystander MCF7 cell combination was set up. Sections 

4.3.2 and 4.3.2 have shown that the bystander signals of 0.1 Gy direct irradiated 

MCF7 cells were only capable of inducing small biological effects in non-tumour 

(HMT) bystander cells compared to those observed following 2 Gy X-ray. These 

results could have major implications for warranting the use of low doses of IR in 

cancer radiotherapy. 

In contrast, the effect of using a low dose of X-ray (0.1 Gy) on the tumour cell type 

(MCF7), frequently induced early and delayed cellular damage (Section 3.3.1). 

Interestingly, these signals could also initiate early induction of chromosomal damage 

in bystander MCF7 cells (p≤0.005), as shown in figure 4.3 A. The bystander signals 

were shown to have increased the mean number of chromosomal aberrations in the 

un-irradiated MCF7 cells from 0.21±0.049 to 0.55±0.09 and in addition, induced a 

high level of apoptosis (p≤0.0001) at the 4 hour time-point (3.64±0.028) compared to 

the control (1.27±0.012), however, the high apoptotic levels were abolished after 1 

generation and remained at low levels at the later time-points (12 and 24 population 

doublings), as shown in figure 4.3 A.  Moreover, at 1 population doubling, it appears 

that the bystander signals of irradiated MCF7 had disturbed telomeric status, 

prompting telomeric shortening (p≤0.05) and telomerase activity reduction 

(p≤0.0001) in the un-irradiated MCF7 cells (Figure 4.3 B). Data suggest disturbance 

of telomeres could instigate chromosomal instability, which was seen to be the case in 

the bystander MCF7 cells after 12 and 24 population doublings. Mean chromosomal 

aberrations in the 0.1 Gy bystander MCF7 cells was 0.55±0.98 and 0.52±0.11 (12 and 

24 population doublings, respectively), which were significantly higher (p≤0.05) than 
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the controls’ mean chromosomal aberrations (0.29±0.05 and 0.2±0.047 respectively) 

as shown in figure 4.3 A. In summary, these cells demonstrated an inverse 

relationship between apoptosis and chromosomal instability as a delayed response. At 

12 population doublings, the bystander cells displayed a reduction in telomere length 

although not significant (p=0.062) compared to the control; whilst telomerase activity 

returned to normal levels (Figure 4.3 B). In contrast, at 24 population doublings, there 

was significant telomere shortening (p≤0.05) despite normal levels of telomerase 

activity in these bystander cells (Figure 4.3 B). In summary, the bystander MCF7 cells 

demonstrated similar delayed responses/consequences to the MCF7 cells that had 

been directly irradiated with 0.1 Gy X-ray irradiation. Hence, the data confirms that 

genomic instability needs many generations to manifest as chromosomal aberrations 

and telomeric shortening.  

Our findings suggest that bystander signalling is beneficial as it can induce initial 

multi-chromosomal damage in cancer cells; however, it can also have detrimental 

delayed response consequences (GI), with resultant tumour aggressiveness within the 

progeny of bystander cells.  
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Figure 4.3: Early and late induction of chromosomal instability, apoptosis and 
changes to telomere length and telomerase activity within the bystander MCF7 cells 
following co-culture with 0.1 Gy direct irradiated MCF7 cells. 
The un-irradiated bystander MCF7 cells were immediately incubated (co-cultured) with direct irradiated MCF7 
cells following 0.1 Gy X-ray irradiation. After 4 hours, cells were subjected to apoptotic analysis; in addition, they 
were analysed for chromosomal damage, apoptosis, telomere length and telomerase activity measurements at 1, 12 
and 24 population doublings (PD). 
Panel A represent mean aberrations per cell and apoptotic levels. Chromosomal damage was significantly observed 
(**p≤0.005) in these cells after 1 PD. The cells also showed a high induction of apoptosis (***p≤0.0001) after 4 
hours however, levels returned to normal after 1 PD and continued up to 24 PD. The reduction in apoptosis could 
have initiated the observed significant chromosomal instability (*p≤0.05) at 12 and 24 PD.  
Panel B illustrate telomere instability within 0.1 Gy bystander MCF7 cells. The bystander cells showed a reduction 
in telomere length (*p≤0.05) and telomerase activity (***p≤0.0001) after 1 PD compared to the controls. Although 
normal levels of telomerase activity was observed at 12 and 24 PD, the telomere length was shortened within this 
progeny after 12 PD (p=0.62) and 24 PD (*p≤0.05). Data suggest that telomeric instability could lead to 
chromosomal instability. In addition, we speculate that this trend would be maintained at later time-points (25 PD 
plus). 
Experiment was performed in 3 technical repeats. 
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4.3.4 Bystander responses in the tumour MCF7 cells through 

communication with 2 Gy direct irradiated tumour MCF7 cells 

Bystander responses of cancer cells were studied following a radiotherapy clinical 

dose, in order to estimate the effect of bystander signalling on tumour (MCF7) and 

normal cells (HMT). In addition, this cell combination was established to investigate 

the delayed responses (GI) in the bystander population cells, which can lead to 

increased tumour aggression.  

We have previously shown that direct irradiated MCF7 cells demonstrate initial and 

delayed damage responses following 2 Gy X-ray irradiation. (For more details, see 

section 3.3.2). 

In this recent investigation, bystander cells of 2 Gy MCF7-MCF7 cell combination 

showed a chromosomal damage response (p≤00.05) after 1 population doubling 

compared to the control. Initial mean chromosomal aberrations in the control cells 

was 0.21±0.049, which increased to 0.52±0.082 in the bystander group, (Figure 4.4 

A). A significant induction of apoptosis (p≤0.0001) was additionally observed in 

these bystander cells at 4 hours compared to the control however, this was short lived 

as levels returned to normal after 1 population doubling (Figure 4.4 A). Moreover, 

additionally at this time-point, a significant  initial telomeric shortening response was 

observed (p≤0.005) in these bystander cells along with a significant reduction in 

telomerase activity (p≤0.0001), as shown in figure 4.4 B. Data proved that bystander 

signals of MCF7 cells could induce initial cellular damage in the bystander MCF7 

cells; cellular responses including chromosomal damage, telomere length disruption 

and telomerase activity reduction, whilst the apoptotic response was only increased at 

the 4 hour time-point. 

After 12 population doublings, the 2 Gy bystander MCF7 cells were shown to  exhibit 

significant chromosome aberrations (p≤0.005) compared to the control but levels of 
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apoptosis remained low (Figure 4.4 A). The bystander cells were additionally 

observed to have significant telomeric shortening (p≤005) but normal levels of 

telomerase activity, suggesting maintained cell division and subsequent initiation for 

chromosomal instability (Figure 4.4 B).  

The 2 Gy bystander MCF7 cells persisted in exhibiting an induction of chromosomal 

damage (p≤0.05) after 24 population doublings compared to the control. These cells 

also continued to show a normal of level of apoptosis as a delayed response (Figure 

4.4 A). These robust findings confirmed the inverse association between apoptosis 

and chromosomal instability. Furthermore, the data again suggest that chromosomal 

instability could be as a result of active telomerase and telomeric shortening (Figure 

4.4 B); telomerase activity was shown to be normal at this time-point and this would 

have therefore maintained cell proliferation, despite significantly shortened telomeres, 

which could ultimately lead to chromosomal instability. 
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Figure 4.4: Bystander consequences and genomic instability within the bystander 
MCF7 cells following co-culture with 2 Gy direct irradiated MCF7 cells. 
Tumour MCF7 cells were exposed to 2 Gy X-ray irradiation. Un-irradiated MCF7 cells were immediately 
incubated with the 2 Gy irradiated MCF7 cells for 4 hours to induce BE, where upon apoptotic analysis was 
performed. Further apoptotic measurements along with those for chromosomal analysis, telomere length and 
telomerase activity were made after 1, 12 and 24 population doublings (PD).  
Panel A illustrate values for early and late mean aberrations per cell and apoptotic percentage within the 2 Gy 
bystander MCF7 cells. The cells demonstrated an early induction of genomic instability (*p≤0.05) compared to the 
control similar to that observed for the 0.1 Gy bystander MCF7 cells. Moreover, a high induction of apoptosis 
(***p≤0.0001) was observed in these cells after 4 hours compared to the control; however, levels returned to 
normal after 1, 12 and 24 PD. Absence of apoptosis could have led to the significant chromosomal instability 
observed within these cells  after 12 PD (**p≤0.005) and 24 PD (*p≤0.05).  
Panel B show the telomere length and telomerase activity by Q-fish and TRAP assay respectively. Short telomeres 
(**p≤0.005) and decreased telomerase activity (***p≤0.0001) were detected in the bystander cells after 1 PD 
compared to the controls. However, there was a dramatic rise in telomerase activity in these bystander cells after 
12 and 24 PD, although the progeny consistently exhibited significant telomere shortening (*p≤0.05) at this time-
point. Hence, we suggest that the significant chromosomal/genomic instability observed was due to reduction in 
telomere length, sufficient telomerase activity and absence of apoptosis. 
Experiment was performed in 3 technical repeats. 
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4.3.5 Bystander responses in the tumour MCF7 cells through 

communication with 0.1 Gy direct irradiated non-tumour HMT cells 

It has been well documented that normal/non-tumour cells are frequently exposed to 

low doses of IR during diagnostic procedures and radiotherapy treatment (BER, 2010, 

Joiner, 1987). Evaluation of bystander effects from direct irradiated normal cells is 

therefore important to allow estimation of cellular damage in the neighbouring un-

irradiated tumour or cancer cells. Thus, the HMT-MCF7 cell combination was 

established to investigate the effect of bystander signals on tumour MCF7 cells 

following irradiation of non-tumour HMT cells by 0.1 Gy X-ray. As with the other 

experimental combinations, the un-irradiated MCF7 (bystander) cells were co-

cultured with 0.1 HMT cells for 4 hours and subjected to chromosomal analysis, 

apoptotic analysis, telomere length and telomerase activity measurement. 

The initial and delayed responses are explained in section 3.3.3. (For full details see 

the section above). 

The un-irradiated bystander MCF7 cells showed significant chromosomal damage 

(p≤0.0001) after 1 population doubling following co-culture. The mean number of 

chromosomal aberrations in the control cells measured 0.09±0.032, but levels were 

significantly elevated to 0.84±0.12 in the bystander cells, (Figure 4.5 A). 

Furthermore, these bystander cells had previously displayed a significant induction of 

apoptosis (p≤0.0001) at the 4 hour time-point, (1.05±0.011 and 4.02±0.03, for control 

and bystander cells respectively); although after 1 population doubling, the level had 

decreased to control values (Figure 4.5 A). Measurements for the bystander MCF7 

cell's telomeric fluorescence intensity, indication of telomere length, gave readings of 

17.94±2.11, which was importantly lower (p≤0.05) than the control (23.84±2.59) at 

this time-point, as shown in figure 4.5 B. Moreover, telomerase activity was 

significantly reduced (p≤0.0001) in these bystander cells, 31735±1797.450 compared 
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to control values of 43718.3±2648.73 (Figure 4.5 B). These findings thus proved that 

bystander signals from 0.1 Gy direct irradiated HMT cells could cause high initial 

cellular damage responses in the bystander MCF7 cells. 

The progeny of the bystander MCF7 cells also revealed a high induction of 

chromosomal instability (p≤0.0001) after 12 and 24 population doublings compared 

to their controls (Figure 4.5 A). The mean number of chromosomal aberrations in 

these bystander cells was 0.68±0.12 and 0.65±0.11 after 12 and 24 generations 

respectively compared to the controls, which were 0.19±0.05 and 0.22±0.056. 

However at these time-points, delayed apoptotic response in the bystander progeny 

was insignificant compared to the control (Figure 4.5 A). The absence of apoptosis 

could explain the high induction of chromosomal damage as a delayed response. In 

addition, the bystander cells were also shown to have significantly shortened 

telomeres (p≤0.05), with values of 17.9±1.95 and 18.18±2.02 after 12 and 24 

generations respectively, although telomerase activity was shown to have returned to 

normal levels at these time-points (Figure 4.5 B). The findings suggest that despite 

normal telomerase activity of this progeny, which may have played a critical role in 

maintaining cell proliferation, the telomere lengths remained compromised, thus 

leading to the induction of chromosome instability. Additionally, with the absence of 

apoptosis this could result in greater tumour aggression.  
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Figure 4.5: Initial and delayed cellular damage response within un-irradiated 
bystander MCF7 cells following co-culture with 0.1 Gy direct irradiated HMT cells 
Non-tumour HMT cells were irradiated with 0.1 Gy X-ray irradiation. Immediately following irradiation un-
irradiated tumour MCF7 cells were incubated with the irradiated cells for 4 hours to induce BE. Cells were then 
propagated up to 24 population doublings (PD) for genomic instability estimation.  
Panel A illustrate the incidence of early and late chromosome aberrations and percentage of apoptosis. The 0.1 Gy 
direct irradiated HMT cells induced significant chromosomal damage (***p≤0.0001) in the bystander MCF7 cells 
after 1 PD following co-culture compared to the control. However, bystander MCF7 cells had previously shown a 
high induction of apoptosis (***p≤0.0001) at the 4 hour time-point, although there was no sustained significant 
induction after 1, 12 and 24 PD. Conversely, the bystander cells continued to exhibit significant chromosomal 
instability (***p≤0.0001) after 12 and 24 PD; thus due to the absence of apoptosis, cells maintained unstable 
chromosomes.  
Panel B show measurements of telomere length and telomerase activity as early and delayed responses within the 
0.1 Gy bystander MCF cells. A significant reduction of telomere length (*p≤0.05) and telomerase activity 
(***p≤0.0001) was observed within the bystander cells after 1 PD. Although telomerase activity returned to 
normal levels after 12 and 24 PD, these bystander cells consistently revealed significant telomeric shortening 
(*p≤0.05) at the same time-points. Data suggest that active telomerase activity could not compensate for the 
reduction in telomere length, which we suggest might instigate chromosomal instability.   
Experiment was performed in 3 technical repeats. 
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4.3.6 Bystander responses in the tumour MCF7 cells through 

communication with 2 Gy direct irradiated non-tumour HMT cells 

In radiotherapy treatment, normal cells surrounding the targeted tumour cells could 

receive a high dose of IR. Therefore, to mimic this scenario, non-tumour (HMT) cells 

were directly irradiated with 2 Gy X-ray irradiation (radiotherapy dose) and 

subsequently co-cultured with tumour (MCF7) cells to evaluate early and late cellular 

damage. Additionally the results would provide estimation as to whether bystander 

signals are beneficial by inducing multi-chromosomal damage in the cancer cells 

leading to auto-killing, or detrimental by increasing the rate of GI and cancer 

aggression. The data of direct irradiated HMT cells was represented in section 3.3.4. 

In brief, a significant amount of chromosomal damage was observed after 1 

population doublings in the directly irradiated cells although high levels of apoptosis 

had been was observed at the initial 4 hour time-point. However, subsequent 

measurements of apoptosis (1 population doubling time-point), found  levels returned 

to normal although they were again significantly elevated at 12 population doublings 

in conjunction with absence of chromosomal instability, indicative of removal of 

heavily damaged cells by apoptosis. In contrast, delayed chromosomal damage was 

significantly revealed within the progeny of the irradiated cells at 24 population 

doublings in the absence of a significant apoptotic response (Figure 3.4 A). Moreover, 

the irradiated HMT cells exhibited a high induction of telomeric shortening after 1, 12 

and 24 population doublings; however, telomerase activity was maintained at all time-

points with exception of the first time-point  as shown in figure 3.4 B. (For more 

detailed see section 3.3.4). 

Turning now to the results of the bystander responses of the un-irradiated tumour 

(MCF7) cells following communication with the 2 Gy directly irradiated non-tumour 

(HMT) cells, it was shown that there was a significant initial induction of 
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chromosomal damage in the bystander MCF7 cells (p≤0.0001) at the 1 population 

doubling time-point, as shown in figure 4.6 A. The mean number of chromosomal 

aberrations increased from 0.09±0.032 (control) to 0.76±0.12 (bystander) cells. A 

significant (p≤0.0001) early (4 hour time-point), apoptotic response was observed in 

these bystander cells (4.29±0.037) compared to the control (1.05±0.011). However, 

levels returned to normal within the bystander cells after 1 population doubling. 

Hence, data suggest that cell-cell communication between 2 Gy irradiated HMT and 

bystander MCF7 cells could disrupt the apoptotic mechanism in the bystander cells 

(Figure 4.6 A). This disrupting effect could be a long-lived response, as evidenced  

within the progeny of 2 Gy bystander cells after 12 and 24 population doublings 

significantly (p≤0.0001) demonstrating high levels of chromosomal instability, 

although apoptotic levels had returned to normal at these delayed time-points 

compared to their controls (Figure 4.6 A). The mean number of chromosomal 

aberrations was shown to be 0.71±0.1 and 0.61±0.1 after 12 and 24 population 

doublings respectively compared to the controls, which showed values 0.19±0.05 and 

0.022±0.056. 

Moreover, the 2 Gy direct irradiated HMT cells caused significant telomeric 

shortening (p≤0.05) and telomerase activity reduction (p≤0.0001) in the bystander 

MCF7 cells after 1 population doubling following co-culture (Figure 4.6 B).  

Telomere length data at the same time-point, showed the bystander cells to have 

reduced lengths (16.91±2.18) compared to the control (23.84±2.56) and also 

reductions in their telomerase activity, 27685±826.13 TAU (bystander), compared to 

43718.3±2684.73 TAU (control), as shown in figure 4.6 B. 

Although the telomerase activity in the bystander cells returned to normal levels after 

12 and 24 population doublings, significant reduced telomere lengths remained 
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(p≤0.05) as shown in figure 4.6 B. Hence, the findings supported the conjecture above 

(Section 4.3.5), that telomerase played an important role in cell proliferation leading 

to chromosomal/genomic instability due in part to shortened telomeres and absence of 

apoptosis. 
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Figure 4.6: Early and late damage responses within the un-irradiated bystander MCF7 
cells following co-culture with 2 Gy direct irradiated HMT cells. 
Immediately, following irradiation of HMT cells with 2 Gy X-ray, un-irradiated MCF7 cells were co-
cultured/incubated with them for 4 hours to induce BE. The cells were propagated for several population doublings 
(PD) for delayed damage response evaluation. The cells were subjected to chromosomal analysis, apoptotic 
analysis, telomere length and telomerase activity measurements.  
Panel A illustrate early and late chromosomal aberrations and apoptotic levels within the bystander MCF7 cells. 
Chromosome aberrations were significantly observed (***p≤0.0001) within the bystander MCF7 cells after 1, 12 
and 24 PD following co-culture with 2 Gy direct irradiated HMT cells compared to the controls. However, an 
apoptotic response was only significantly detected in these bystander cells at the 4 hour time-point. The bystander 
cells showed normal levels of apoptosis after 1, 12 and 24 PD compared to the controls. The induction of delayed 
chromosomal damage could be due to the absence of apoptosis in these cells, which suggest an inverse relationship 
between chromosomal instability and apoptosis.  
Panel B illustrate telomere instability within 2 Gy bystander MCF7 cells by telomere length and telomerase 
activity measurements. Bystander cells showed a significant initial decrease in telomere length (*p≤0.05) and 
telomerase activity (***p≤0.0001) compared to the controls. Telomerase activity levels returned to normal levels 
after 12 and 24 PD. However, this progeny continued to exhibit significant telomere shortening (*p≤0.05) after 12 
and 24 PD compared to the controls.  Similar to the 0.1 Gy MCF7 cells, data suggest that sustained telomerase 
activity could not compensate for the reduction in the telomere length, which could lead to chromosomal 
instability. 
Experiment was performed in 3 technical repeats. 
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4.3.7 Bystander responses in the non-tumour HMT cells through 

communication with 0.1 Gy direct irradiated non-tumour HMT cells 

Our previous data has unmistakably shown that direct irradiated non-tumour cells 

cause early and delayed cellular damage to the bystander cancer (MCF7) cells 

following low doses of IR.  Therefore, a non-tumour - non-tumour cell combination 

was set up to estimate non-targeted effects in the bystander non-tumour cells after a 

low dose of IR.  

Section 3.3.3 illustrated early and delayed responses of HMT cells following 0.1 Gy 

X-ray irradiation. (For more detail see the section above). 

Interestingly, in this latest cell combination, there was no initial significant evidence 

of chromosomal damage in bystander HMT cells following their co-culture with 0.1 

Gy direct irradiated HMT cells (Figure 4.7 A). However, a bystander effect did 

manifest as apoptotic induction, telomeric shortening and telomerase activity 

reduction. The bystander cells demonstrated a highly significant (p≤0.0001) induction 

of apoptosis (4 fold) after 4 hours following co-culturing, with values of 1.3±0.008 

(control) and 5.13±0.02 (bystander) as shown in figure 4.7 A. Nonetheless, the trend 

was short-lived as levels significantly decreased at 1 population doubling, although 

they remained above control levels (1.51±0.018 bystander, compared to 1.05±0.013 

control). Additionally at this time-point, there was significant telomeric shortening 

(p≤0.05) and telomerase activity reduction (p≤0.0001) exhibited within these 

bystander cells; with values of 10.24±0.96 observed in the bystander cells and 

14.16±1.76 in the control. Whilst the telomerase activity was significantly reduced 

from 51666.7±1770.44 TAU (control) to 36666.7±1941.08 TAU (bystander) as 

showed in figure 4.7 B. Thus, data showed that 0.1 Gy direct irradiated HMT cells 

could not cause chromosomal damage within bystander HMT cells, which was most 

probably due to the high level of apoptosis observed at the initial time-point.  
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The 0.1 Gy bystander HMT cells continued to demonstrate insignificant chromosomal 

damage/instability after 12 and 24 population doublings as shown in figure 4.7 A. 

Conversely though, the cells exhibited a significant induction of apoptosis (p≤0.05) 

after 12 population doublings; however, this level was not maintained for the delayed 

time-point. Thus we suggest that the bystander cells showed a type of resistance to the 

'bystander signals' from the direct irradiated cells by inducing apoptosis, thereby 

removing cells with high chromosomal damage/instability.  

Although the level of telomerase activity in the bystander cells was shown to have 

returned to normal levels at the 12 and 24 population doublings time-point, these cells 

consistently showed significant telomeric shortening (p≤0.05) as shown in figure 4.7 

B. The findings suggest that cells with sort telomeres could proliferate for several 

population doublings, because of satisfactory telomerase activity. Despite that fact 

that 0.1 Gy bystander HMT cells did not demonstrate chromosomal/genomic 

instability as a delayed response at our time-points, there is potential for chromosomal 

instability in later progeny (25 generations plus), because of sustained telomeric 

shortening and absence of apoptosis.  
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Figure 4.7: Initial and delayed damage response within the un-irradiated bystander 
HMT cells following co-culture with 0.1 Gy direct irradiated HMT cells. 
The un-irradiated HMT cells were immediately incubated with the direct irradiated HMT cells following 0.1 Gy 
X-ray irradiation. The cells were subjected to apoptotic analysis after 4 hours, 1, 12 and 24 population doublings 
(PD) following co-culture; whilst chromosomal analysis, telomere length and telomerase activity measurements 
were carried out after 1, 12 and 24 PD.  
Panel A demonstrate the early and late chromosomal damage and apoptosis within the 0.1 Gy bystander HMT 
cells. The bystander cells did not show significant initial or delayed chromosomal damage at any time-points. 
Nevertheless, the bystander cells did exhibit a high induction of apoptosis (***p≤0.0001) after 4 hours compared 
to the control, although this was shown to have decreased after 1 PD following co-culture. Delayed apoptotic 
response was significantly elevated (*p≤0.05) within the progeny of 0.1 Gy bystander HMT cells after 12 PD, 
which could explain the insignificant chromosomal instability. i.e. the high level of apoptosis could remove the 
cells with high chromosomal instability. After 24 PD following co-culture, the apoptotic response in the bystander 
cells was insignificant; however, chromosomal instability was increased although statistically insignificant. Data 
suggest that chromosomal instability in the bystander cells could significantly be associated with the increase in 
the number of population doublings. Panel B illustrate the telomere length and telomerase activity measurements 
using Q-FISH and TRAP assay respectively. The bystander HMT cells revealed significant telomeric shortening 
(*p≤0.05) and telomerase activity reduction (***p≤0.0001) after 1 PD compared to the controls. After 12 and 24 
PD the bystander cells showed normal levels (sufficient) telomerase activity, however, telomere shortening was 
significantly observed in this progeny at these time-points (*p≤0.05). The findings demonstrated that sufficient 
telomerase activity could maintain cell proliferation even with telomere instability, which could lead to 
chromosomal instability. Although the progeny of 0.1 Gy HMT cells did not show significant 
chromosomal/genomic instability after 24 generations, there was a potential risk of chromosomal instability with 
more population doublings. Experiment was performed in 3 technical repeats. 
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4.3.8 Bystander responses in the non-tumour HMT cells through 

communication with 2 Gy direct irradiated non-tumour HMT cells 

We have previously shown that 2 Gy X-ray could induce cellular damage within 

direct irradiated non-tumour (HMT) cells as illustrated in section 3.3.4, and 

additionally cause early and late damage response within un-irradiated bystander 

cancer cells (Section 4.3.6). Therefore, a direct irradiated-bystander non-tumour cell 

combination was established to investigate the bystander consequences within 

bystander non-tumour cells following 2 Gy X-ray irradiation.  

We have demonstrated that chromosomal damage was significantly induced within 2 

Gy direct irradiated HMT cells after 1 and 24 population doublings. However, these 

cells showed insignificant chromosomal aberrations after 12 population doublings. 

We suggest that the reduction in the chromosomal damage could have been due to the 

high level of apoptosis that was exhibited by the cells. Moreover, the telomeres were 

significantly shortened in the direct irradiated cells at the all time points (early and 

delayed); however, a significant reduction in telomerase activity was only observed at 

the early time point. (For more details see section 3.3.4). 

Estimation of bystander signalling bystander cells in this latest combination, were 

determined as in previous investigations, by early and late chromosomal analysis, 

apoptosis analysis, telomere length measurement and telomerase activity evaluation.  

The results demonstrated a high induction of initial chromosomal damage (p≤0.0001) 

in the bystander HMT cells as shown in figure 4.8 A. The mean number of 

chromosomal aberrations ranged from 0.16±0.039 for the control to 0.49±0.088 for 

the bystander cells at 1 population doubling (Figure 4.8 A). In addition, these 

bystander cells had shown a high induction of apoptosis (p≤0.0001) after 4 hours 

following co-culture compared to the control. However, the apoptotic response 

sharply decreased to normal levels after one the first cell sub-culture (Figure 4.8 A). 
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The Telomeric status of these bystander cells, including telomere length and 

telomerase activity at this time-point, showed that the cells had undergone a 

significant reduction in their telomere length (p≤0.005) compared to the control, 

14.16±1.7 (control cells) and 9.15±1 (bystander). Similarly, telomerase activity was 

reduced from 51666.7±1770.4 TAU in the control to 37100±3939.9 in the bystander 

HMT cells (Figure 4.8 B). Thus, we suggest that the 2 Gy direct irradiated HMT cells 

caused a significant initial cellular damage response within the recipient bystander 

HMT cells through media soluble factors. 

Interestingly, the 2 Gy bystander HMT cells did not show induction of chromosomal 

instability after 12 population doublings compared to the control; however, these cells 

demonstrated an elevation in apoptotic response at the same time-point, although not 

statistically significant (p=0.08) compared to the control. Data once more confirmed 

the inverse relationship between apoptosis and chromosomal instability as a delayed 

response (Figure 4.8 A). Although telomerase activity of the progeny of 2 Gy 

bystander HMT cells returned to normal levels after 12 generations, these cells 

continued to exhibit significant telomeric shortening (p≤0.05) compared to the 

control,  (9.15±108 and 12.99±1.52, for bystander and control respectively), as shown 

in figure 4.8 B. These findings thus show that normal levels of telomerase activity 

maintained cell proliferation even though the cells sustained reduction in their 

telomere length. 

After 24 population doublings, the progeny of 2 Gy bystander HMT cells displayed a 

high induction of chromosomal instability (p≤0.0001) compared to the control. 

However, no significant induction of apoptosis was detected at the same time-point 

(Figure 4.8 A). The mean number of chromosomal aberrations within the progeny of 

bystander HMT cells measured 0.33±0.06 compared to 0.52±0.18 (control). The 
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progeny of the 2Gy bystander HMT cells additionally showed significant telomeric 

shortening (p≤0.05) although normal levels of telomerase activity, after 24 

generations (Figure 4.8 B). Data thus confirmed a positive correlation between 

increased cell population doublings and chromosomal instability which could be due 

to sustained reduction in telomere length, maintained telomerase activity and absence 

of apoptosis. 
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Figure 4.8: Early and late cellular damage response within un-irradiated bystander 
HMT cells following co-culture with 2 Gy direct irradiated HMT cells. 
The non-tumour HMT cells were exposed to 2 Gy X-ray irradiation, and co-cultured with un-irradiated HMT cells to induce BE. 
The cells were propagated up to 24 population doublings (PD) for genomic instability estimation. Early and late chromosomal 
analysis, apoptotic analysis, telomere length and telomerase activity measurements were performed to evaluate the bystander 
consequences and genomic instability within the 2 Gy bystander HMT cells.  
Panel A illustrate the mean number of chromosome aberrations and apoptotic levels within bystander HMT cells following co-
culture with 2 Gy direct irradiated HMT cells. Chromosomal damage was significantly observed (***p≤0.0001) within the 
bystander cells after 1 PD compared to the control. In addition, these cells showed a high induction of apoptosis (***p≤0.0001) 
after 4 hours following co-culture compared to the control. However, the level of apoptosis returned to normal after the initial 
cell sub-culturing. Interestingly the bystander HMT cells did not demonstrate significant chromosomal instability after 12 PD, 
which could be due to the high level of apoptosis detected at the same time point. However, this apoptotic level was statistically 
insignificant (p≤0.6) compared to the control. Additionally, these cells revealed a high induction of chromosomal instability 
(***p≤0.0001) after 24 PD compared to the control. Nonetheless, apoptotic induction within this progeny was insignificant 
compared to the control at the same time-point. Data thus suggest that there was an inverse relationship between apoptosis and 
chromosomal instability. Moreover, a positive correlation was observed between chromosomal instability and an increase in 
population doublings.  
Panel B illustrate the telomere length and telomerase activity measurements within the 2 Gy bystander HMT cells using Q-FISH 
and TRAP assay respectively. Bystander cells showed significant telomeric shortening (**p≤0.005) and telomerase activity 
reduction (***p≤0.0001) after 1 PD following co-culture compared to the controls. Although telomerase activity returned to 
normal levels after 12 and 24 PD within the progeny of bystander cells, these cells continued to exhibit significant short 
telomeres (p≤0.05). Data suggest that although telomerase activity had not been reduced it was not sufficient to repair the 
shortened telomere length; however, it could maintain cell proliferation, which could lead to chromosomal instability.   
Experiment was performed in 3 technical repeats. 
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4.4 Discussion and conclusions 

Results from the previous experiment (Chapter 3) demonstrated the induction of early 

and delayed damage in MCF7 (tumour) cells and HMT (non-tumour) cells following 

low and high doses of X-ray exposure. This experiment was established with the 

purpose of mimicking the consequences of low dose irradiation from diagnostic 

procedures and also those of high doses from radiotherapy fractions. In order to 

investigate the non-targeted effect/responses of IR in the non-hit bystander cells, 

responding from signals emitted from neighbouring irradiated cells, several 

experimental cell combinations were set up between the tumour (MCF7) and non-

tumour (HMT) cells, using both low and high doses of X-ray, as described in the 

materials and methods section (Section 4.2.2). The instability of delayed responses 

was subsequently measured within the progeny of bystander cells, thus enabling 

comparisons to be made between the direct and the non-targeted effects of low and 

high doses of IR within tumour and non-tumour cells. 

The 6-well plate co-culture system was used to facilitate BE in these cells, set up in 

opposing combinations, i.e. HMT cells seeded in insert co-culture vessels and MCF7 

cells seeded in the co-culture base and vice versa. The co-culture system allows 

bystander cells to receive the signals that have been secreted by the irradiated cells 

(Hill et al., 2006). Briefly, base dishes are irradiated or sham-irradiated in the absence 

of the insert dishes but immediately following sham/irradiation, the insert dishes are 

placed within the base vessels and the entire co-culture plate incubated for 4 hours. 

Thus the two cell populations are physically separated but communication is allowed 

between them via the porous translucent polyethylene terephthalate membrane of the 

insert vessel. 

The duration of the co-culture time, was designed to ascertain that short lived and 

long-lived signals from the sham/irradiated cells would be received by bystander 
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cells. Other studies, using a similar co-culture system, have suggested the 

involvement of short-lived bystander signals, such as superoxide, in the induction of 

BE in human prostate cancer cells (Wang and Coderre, 2005). Similarly, BE has also 

been shown to be induced by long-lived radicals, whilst, nitric oxide (NO) has been 

implicated in the formation of bystander signals although not in the bystander effect 

itself (Harada et al., 2008).  

The different cell combinations between tumour and non-tumour cells following low 

and high doses of IR in this study provided a wide range of evidence to confirm 

whether BE has detrimental or beneficial consequences. Apoptotic analysis and 

chromosomal damage estimation enabled measurement of the early negative and 

positive bystander effects. BE was considered beneficial when the bystander signals 

induced high level of apoptosis or multi-chromosomal damage leading to auto-killing 

within the cancer cells but not the normal cells.  

Telomere length and telomerase activity were measured to investigate GI and 

potential risk of second malignancies and to this end we were able to show that 

telomeric instability within bystander cells could instigate chromosomal instability, 

which could lead to cancer, as reported by Williams and co workers (Williams et al., 

2009). Furthermore, evaluation of BE in our different cell combinations (tumour-

normal; tumour-tumour; normal-tumour and normal-normal cell communications) 

presented a valuable comparison study between tumour and non-tumour cells 

following low and high doses of IR. These cells combinations provided robust 

evidence that suggest BE in the HMT and MCF7 cells was a dose-dependent 

phenomenon and cell specific.   

Other studies have demonstrated that the occurrence of BE is higher within high 

density cell cultures than those of low cell density (Mitchell et al., 2004). Therefore, 
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with this in mind, only culture vessels (insert/base/culture flasks) of equivalent cell 

densities (80% confluence), were chosen for our experimental groups. Additionally, 

both experimental HMT cells and MCF7 cells were each propagated from one 

cryovial, ensuring the cells were age matched. Experimental cells were sub-cultured 

and maintained by seeding approximately 1.5 x 106 cells per T75 tissue culture flask, 

and then incubated until 80% confluence. Thus, probable bystander effects and 

delayed responses were allowed to manifest under identical conditions.   

Both HMT and MCF7 cells demonstrated bystander responses following co-culturing 

in all cell combinations and irradiation conditions (irradiated MCF7-bystander HMT, 

irradiated MCF7-bystander MCF7, irradiated HMT-bystander MCF and irradiated 

HMT-bystander HMT, 0.1/2 Gy respectively). Thus, our results are in accordance 

with other studies that show cell-cell communication can induce BE following low 

and high doses of IR (Singh et al., 2011, Fleishman et al., 2008, Zhu et al., 2008).  In 

all our cell combinations,  bystander HMT and MCF7 cells both showed a high level 

of  apoptosis after the 4 hour co-culturing/incubation time (Figures 4.1 A; 4.2 A; 4.3 

A; 4.4 A; 4.5 A; 4.6 A; 4.7 A and 4.8 A). Vorob’eva and co-authors have suggested 

that 1 Gy γ-ray irradiated lymphocytes could cause apoptosis within bystander 

lymphocytes, due to a reduction in DNA repair resulting in increases in DNA DSB 

thus instigating apoptosis (Vorob'eva et al., 2011). Moreover, Kovalchuk and co-

authors have suggested that miRNA (microRNA) could play an important role in 

bystander apoptotic induction. They suggest that miRNA could change BCl2 gene 

expression leading to apoptosis (Kovalchuk et al., 2010). Surprisingly, apoptotic 

levels within the bystander HMT and MCF7 cells of all cell combinations returned to 

normal levels after 1 population doubling i.e. after the first cell sub-culture. Our 

findings suggest that the process of cell sub-culture eliminate cells that are highly 
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damaged. Many studies have demonstrated apoptotic induction in bystander cells after 

24-72 hours (Lyng et al., 2006a, Belyakov et al., 2005). However, it is unknown in 

these studies if apoptosis had been measured following cell sub-culture.  

The bystander HMT and MCF7 cells in all cell combinations exhibited shortened 

telomeres and reduction in telomerase activity after 1 population doubling (Figures 

4.1 B; 4.2 B; 4.3 B; 4.4 B; 4.5 B; 4.6 B; 4.7 B and 4.8 B). Belloni and co-authors have 

shown the ability of 0.1 Gy X-ray irradiation to induce apoptosis and reductions in 

telomere length in bystander human peripheral lymphocytes. They suggest that the 

observed high levels of reactive oxygen species (ROS) and hydrogen peroxide, could 

have major roles in both of these observations (Belloni et al., 2011). However, the 

mechanism for bystander telomeric shortening is not fully understood. Data suggest 

the bystander signals could down-regulate the genes of telomerase enzyme as an early 

response (Gorman et al., 2009); however, DNA microarray is required to support this 

suggestion. 

In our studies, the bystander cells showed different chromosomal damage responses 

following 0.1 and 2 Gy X-ray irradiation. Interestingly, bystander HMT cells did not 

show significant chromosomal damage after 1 population doubling following co-

culture with 0.1 direct irradiated MCF7 cells (Figure 4.1 A). However, these 

bystander cells did show a high level of apoptosis, which could have subsequently 

removed cells with high chromosomal damage and been due to the inability of the low 

X-ray dose to cause effects on these cells. Sowa and co-workers have reported that 

low-LET IR was unable to induce DNA damage in either bystander primary human 

fibroblast or epithelial colon carcinoma cells (Sowa et al., 2010).  

Conversely, we have been able to demonstrate the ability of 2 Gy direct irradiated 

MCF7 cells to induce early high levels of chromosome aberrations in the bystander 
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HMT cells (Figure 4.2 A). This data supports research by Gow and co-authors who 

observed different responses following different irradiation doses and thereby suggest 

that bystander effects are a dose-dependent phenomena (Gow et al., 2008). Moreover, 

it has been previously reported that high doses of IR can diminish the antioxidant 

enzymes activity in the bystander cells leading to high levels of oxidation and lipid 

peroxidation, which can cause a high induction of chromosome aberrations. Radiation 

dose-dependent chromosomal damage has additionally been demonstrated in 

bystander cells. Buonanno and fellow authors reported that high doses of IR showed 

higher bystander chromosomal damage than low doses of IR (Buonanno et al., 2011). 

Whilst Groesser and co-workers have reported that human colon epithelial cancer 

cells (SW48) did not show significant bystander DNA damage following high doses 

of IR, as detected by γ-H2AX (Groesser et al., 2008), thus confirming that bystander 

responses can also be cell line-dependent (Vines et al., 2008). Aside from DNA 

damage, bystander effects have been shown to manifest in other responses, as shown 

in 0.1 Gy irradiated MCF7-bystander HMT cell combination. In HMT bystander cells, 

the BE response was observed by significant apoptotic induction, telomeric 

shortening and reduction in telomerase activity respectively. There was an absence of 

any early chromosomal damage as a bystander manifestation.  

In contrast, the MCF-MCF7 cell combination demonstrated significant chromosomal 

damage in the bystander population following both 0.1 and 2 Gy X-ray irradiation 

(Figures 4.3 A and 4.4 A). This data supports work by He and co-authors who in 

addition reported that cytochrome-c can increase NO production in bystander human 

hepatoma cells cause DNA damage (He et al., 2012). There has also been much 

evidence documenting the major role that ROS plays in bystander DNA damage 

induction (Widel et al., 2012, Pandey et al., 2011, Lyng et al., 2011). 
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The bystander MCF7 exhibited a high induction of chromosomal damage after 1 

population doubling following co-culture with both 0.1 and 2 Gy direct irradiated 

HMT cells (Figures 4.5 A and 4.6 A). Whilst direct irradiated MCF7 cells were only 

shown to induce chromosomal damage within bystander HMT cells following 2 Gy 

X-ray irradiation. The data suggest that bystander signals could be cell line-

dependent. Other studies have also shown that the bystander cell response from 

signals emitted from irradiated cells could be variable between cell lines (Vines et al., 

2008). Moreover, ICCM from irradiated human epithelial cells have only been shown 

to induce BE in human fibroblasts but not vice verse (Mothersill and Seymour, 1997). 

Interestingly in our study, bystander HMT cells at the early time-points did not 

demonstrate significant chromosomal damage following co-culture with 0.1 Gy direct 

irradiated HMT cells (Figure 4.7 A) although the bystander HMT cells did exhibit 

high levels of apoptosis, telomeric shortening and reduction in telomerase activity. In 

contrast significant chromosome aberrations were observed within bystander HMT 

cells following co-culture with 2 Gy direct irradiated HMT cells (Figure 4.8 A). The 

data thus suggest that bystander-damage responses could be dose-dependent.  

The 0.1 Gy irradiated MCF7-bystander HMT cell combination demonstrated that 

bystander HMT cells showed a high induction of apoptosis after 12 generations 

following co-culture (Figure 4.1 B). We suggest that this induction of apoptosis could 

by instigated by the presence of short telomeres (Figure 4.1 B).  A recent study has 

shown a sustained reduction in telomere length in the lymphocytes of Chernobyl clean 

workers, 20 years following initial exposure to low doses of IR. Moreover, a high 

induction of apoptosis was detected in these cells, which the authors suggest were as a 

result of telomeric shortening (Ilyenko et al., 2011). The homeostatic status of cell 

culture is frequently maintained by apoptosis i.e. removal of cells with high 
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chromosomal damage (Tesfaigzi, 2006). Apoptotic bodies have additionally been 

linked with inflammatory mediators leading to decrease in pro-inflammatory 

cytokines and inflammation control (Ren et al., 2008, Tesfaigzi, 2006), causing less 

chromosomal aberrations in delayed responses to the IR (Martin et al., 2011). The 

absence of chromosomal instability within bystander HMT cell after 12 generations 

following co-culture with 0.1 Gy irradiated MCF7 cells thus confirms the inverse 

correlation between apoptosis and chromosomal instability (Figure 4.1 A).  

Telomerase activity of these cells returned to the normal levels after 12 and 24 

population doublings following co-culture. Bednarel and co-authors report that 

telomerase activity positively correlate to increased GI levels (Bednarek et al., 1995). 

Thus, we suggest that the active telomerase could maintain cell proliferation even 

with short telomeres, as observed in the 0.1 Gy bystander HMT cells after 24 

generations (Figure 4.1 B). Consequently, there was a potential risk of chromosomal 

instability within the progeny of these bystander cells, due to short telomeres 

(Gorman et al., 2009). Data thus suggest that bystander HMT cells could reveal 

chromosomal instability with increased population doublings, i.e. 25 population 

doublings plus. 

Conversely, bystander HMT cells showed a high induction of chromosomal instability 

(p≤0.0001) after 24 population doublings following co-culture with 2 Gy direct 

irradiated MCF7 cells compared to the control (Figure 4.2 A). Bystander cells have 

been frequently shown to demonstrate chromosomal instability within their progeny 

(Lorimore et al., 2008, Bowler et al., 2006). Short telomeres were reported to have a 

crucial role in GI induction within both normal and cancer cells (Hills and Lansdorp, 

2009). Transforming growth factor-β (TNF-β), ROS and NO has additionally been 

shown to increase DNA DSB and inflammatory responses in both normal (non-



118 
 

tumour) and cancer bystander cells leading to subsequent GI and oncogenic 

transformation (Dickey et al., 2009, Lorimore et al., 2001). Toyokuni and co-authors 

have reported that X-chromosomes with large deletions can instigate GI (Toyokuni et 

al., 2009). Recently, there has been much evidence implicating epigenetics, including 

DNA methylation and miRNA, in the GI pathway. Up-regulation of miRNA can be 

induced by IR leading to suppression of the expression of lymphoid-specific helicase 

(LSH), which is important for DNA methylation maintenance. Decrease LSH 

expression frequently instigates DNA hypomethylation of retroelements ((long 

interspersed nuclear elements 1 (LINE1) and short interspersed nuclear elements B2 

(SINE B2)) causing GI (Kovalchuk et al., 2011). LINE1 aberrant methylation has also 

been shown to be associated with GI and chromosomal aneuploidy (Zeimet et al., 

2011). Moreover, Aypar and co-workers have demonstrated that X-ray irradiation 

(low LET) causes increased epigenetic changes compared to those observed following 

Fe ions irradiation (high LET) (Aypar et al., 2011). They have shown that 6 miRNA 

types are involved in the epigenetic pathway leading to aberrant epigenetic changes 

following X-ray irradiation (Aypar et al., 2011) initiating chromosomal/genomic 

instability (Tamminga and Kovalchuk, 2011).  

Our studies have demonstrated the inability of 2 Gy direct irradiated MCF7 cells to 

induce chromosomal instability in bystander HMT cells after 12 population 

doublings, although high levels of chromosomal damage was observed in the 

bystander progeny at 24 population doublings. Thus indicating that the high level of 

apoptosis observed in these cells at 12 population doubling time-point had most likely 

eliminated highly damaged cells (Figure 4.2 A). These findings also suggest that there 

is a threshold of signals that can induce GI. Furthermore, these signals might 
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positively correlate to increases in cell population doubling as discussed in chapter 5 

below. 

The progeny of bystander MCF7 cells showed chromosomal and telomeric instability 

after 12 and 24 population doublings following co-culture with 0.1 and 2 Gy direct 

irradiated MCF7 and HMT cells. However, apoptotic levels and telomerase activity 

were shown to have returned to normal levels in these cells at the same time-points 

(Figures 4.3 A and B; 4.4 A and B; 4.5 A and B and 4.6 A and B). The findings 

suggest that the absence of apoptosis induction and active telomerase could maintain 

cell proliferation even with a reduction in telomere length, which ultimately led to 

chromosomal instability. Additionally we propose the involvement of inflammatory 

responses and epigenetics to be a contributory factor in GI induction (Moore et al., 

2005, Averbeck, 2010).   

The progeny of bystander HMT cells of 0.1 Gy direct irradiated HMT-bystander 

HMT cell combination showed a similar pattern/response as the progeny of bystander 

HMT cells of 0.1 Gy direct irradiated MCF7-bystander HMT cell combination 

(Figures 4.7 A and B). This bystander HMT progeny continued to exhibit reduced 

telomere length as a delayed response and high level of apoptosis after 12 population 

doublings. However, these cells failed to demonstrate significant chromosomal 

instability at 12 and 24 population doublings time-points. Moreover, these cells 

showed an ability to maintain proliferation, which we propose was due to the 

maintained normal telomerase activity levels. Data again suggest that the high 

induction of apoptosis could have played a crucial role in the absence of chromosomal 

instability until the 24 population doubling time-point. Nevertheless, we propose that 

chromosomal instability could be exhibited at later time-points (25 population 

doublings plus), due to short telomeres. 
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Various delayed cellular responses within progeny of bystander HMT cells were 

significantly detected following co-culture with 2 Gy direct irradiated HMT cells 

(Figures 4.7 A and B and 4.8 A and B), although chromosomal instability was only 

observed at the 24 population doublings time-point. Consequently, data suggest that 

the level of effective GI signals correlates to increased population doublings as 

discussed in chapter 5. 

We have shown that bystander HMT cells exhibit a higher apoptotic response than 

bystander MCF7 cells (Figures 4.1 A, 4.2 A, 4.3 A, 4.4 A, 4.5 A, 4.6 A, 4.7 A and 4.8 

A). Thus the findings confirm that HMT cells were more resistant to the bystander 

signals than MCF7 cells. As discussed above, apoptosis could eliminate the cells with 

high chromosomal damage, or could decrease the inflammatory responses (Tesfaigzi, 

2006), which can decrease chromosomal damage in the bystander cell populations 

(Lorimore et al., 2001) . 

As to the thinking as to whether BE is detrimental or beneficial, our data has shown 

that bystander signals of 2 Gy cell combinations exhibited detrimental responses 

within both bystander tumour and non-tumour cells. Results of the 2 Gy bystander 

MCF7 cells showed a high induction of chromosomal damage as an initial response to 

the bystander signals, and additionally the progeny of these cells revealed significant 

chromosomal instability, which can lead to second malignancies (Buonanno et al., 

2011). Furthermore 2 Gy bystander HMT cells similarly, demonstrated significant 

early and delayed chromosomal damage. Hence, the findings confirm that high doses 

of X-ray can induce damaging BE. 

In contrast, initial bystander responses following 0.1 Gy X-ray were shown to have 

beneficial consequences by inducing high chromosomal damage within the bystander 

tumour cells alone. Multi-chromosomal damage is known to cause auto-killing in 
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tumour cells (Abdelrazzak et al., 2011). However, the delayed responses 

(chromosomal damage and telomeric shortening) that were observed within the 

progeny of 0.1 Gy bystander tumour cells (MCF7) suggest that BE was detrimental. 

In addition, the progeny of 0.1 Gy bystander non-tumour cells (HMT) exhibited 

unstable telomeres but normal telomerase activity, which could promote chromosomal 

instability in future generations i.e. at time-points later than 24 population doublings. 

Chromosomal/genomic instability has been frequently shown to generate second 

malignancies at later periods (Salas et al., 2012), Consequently, the findings suggest 

that BE has detrimental consequences following low and high doses of X-ray 

irradiation. 
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Conclusions 

1. Both non-tumour (HMT) and tumour (MCF7) cells demonstrated bystander 

responses following both low and high doses of X-ray irradiation. The bystander 

signals of direct irradiated MCF7 cells frequently induced BE within un-irradiated 

non-tumour cell and tumour cells and vice versa. Moreover, the bystander response 

was seen to manifest in the form of chromosome aberrations, apoptosis or telomere 

dysfunction and/or all of these manifestations. 

2. Bystander responses were dose-dependent in the bystander HMT and MCF7 cells. 

For example, the 0.1 Gy bystander HMT cells demonstrated different biological 

responses from 2 Gy bystander HMT cells following co-culture with direct irradiated 

MCF7 cells.  

3. Bystander signals can be cell-dependent, i.e. the bystander signals from 2 Gy direct 

irradiated non-tumour cells (HMT) induced bystander responses in the un-irradiated 

tumour cells (MCF7) that were different from those observed from the 2 Gy direct 

irradiated MCF7 cells. 

4. Bystander signals of direct irradiated MCF7 and HMT cells could induce GI within 

MCF7 and HMT cells following 0.1 and 2 Gy X-ray irradiation. 

5. All the experimental bystander cells (HMT and MCF7) revealed genomic 

instability within their progeny. Genomic instability was manifest as chromosomal 

damage, telomeric instability or apoptosis or all of these expressions.  

6. GI was dose and cell-dependent within bystander HMT and MCF7 cells. 

7. Apoptosis showed an inverse relationship with GI in the bystander cell populations 

of HMT and MCF7 cells. 

8. Telomerase activity positively correlated to increase in GI and population 

doublings. 
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9. Bystander HMT and MCF7 cells both maintained their ability to proliferate despite 

sustained reductions in their cell's telomere length. 

10. BE was shown to have detrimental consequences due to GI within progeny of 0.1 

and 2 Gy bystander non-tumour (HMT) and tumour (MCF7) cells. 
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Chapter 5: Exosomes mediated- non-targeted effects of ionizing 

radiation 

5.1 Introduction 

Exosomes are nano-membrane vesicles, between 40–100 nm in diameter that are 

released by a wide range of cells into the extracellular environment after fusion of 

multivesicular endosomes with the plasma membrane (Simons and Raposo, 2009). 

Exosomes can be secreted by both normal, non-tumour cells (van Niel et al., 2001, 

Segura et al., 2005) and cancer cells (Hong et al., 2009, Keller et al., 2009b) and have 

been identified in a number of body fluids such as blood plasma (Caby et al., 2005), 

urine (Pisitkun et al., 2004), human saliva (Palanisamy et al., 2011), bronchoalveolar 

lavage fluid (Admyre et al., 2008) and amniotic fluid (Keller et al., 2007).   

Exosomes formation starts with endocytosis; the proteins of the cells surface are 

engulfed as endocytic vesicles, creating early endosomes, which can be recycled back 

to the plasma membrane or transferred to late endocytic vesicles (van Niel et al., 

2006), which are recycled to the extracellular environment through the plasma 

membrane (Figure 5.1). Exosomes’ cargo originates from endosomes, plasma 

membrane and the cytosol; however, there is no specific marker of exosomes (van 

Niel and Heyman, 2002). 

Exosomes have a lipid membrane, enriched in sphingomyelin (Subra et al., 2007). 

Depending on the type and condition of cell, exosomes contain a number of different 

proteins such as chaperone, cytoskeletal (actin, tubulin and moesin), tetraspanin 

(CD9, CD63, CD81 and CD82), transport and fusion proteins (Rab2, Rab7, Rab11 

and annexines) (Escola et al., 1998, Caby et al., 2005, Keller et al., 2006). Moreover, 

exosomes have been reported to contain mRNA and microRNA (miRNA) molecules 

(Valadi et al., 2007, Yang et al., 2011).  
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Figure 5.1: Diagram of exosome formation and secretion. 

5.2 Function of exosomes 

Exosomes’ function depends on the cells that they are released from and under which 

condition they are created (e.g. healthy, disease or stress etc.). They offer one form of 

cell-cell communication (Fevrier et al., 2005), through their attachment/fusion with 

plasma membrane of target cells resulting in delivery of exosomal surface proteins 

and the exosomes’ cargo into the recipient cell (Denzer et al., 2000a, Caby et al., 

2005). These nanovesicles can, furthermore, interact with recipient plasma membrane 

cells through receptors-ligand interactions (Clayton et al., 2004). 

B cell derived exosomes of both human and mouse can stimulate T-lymphocyte 

responses (Raposo et al., 1996). In addition, Zitvogel and co-worker have 

demonstrated that exosomes from dendritic cells (professional antigen presenting 

cells) can induce T-lymphocyte stimulation in vivo (Zitvogel et al., 1998). 
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Immunological effects have also been observed in cells that received exosomes from 

mast cells; these under IL-4 stimulation, can increase lymphocyte activation and 

production of IL-2 and IFN-gamma in vitro and in vivo (Skokos et al., 2001, Skokos 

et al., 2003). Additionally, mast cell derived exosomes can activate endothelium to 

release Plasminogen Activator Inhibitor Type-I, causing properties of pro-co-

coagulant (Al-Nedawi et al., 2005).  

Cancer cells shed exosomes that appear capable of inducing oncogenic properties in 

recipient cells, including increased cell division or metastatic behaviour 

(Higginbotham et al., 2011, Keller et al., 2009b, Skog et al., 2008). Exosome-

mediated signalling may underlie the cancer ‘field effect’, in which tumour cells have 

been shown to influence the phenotype of nearby cells (Chai and Brown, 2009), and 

this is consistent with findings that exosome levels are raised in the blood of cancer 

patients (Keller et al., 2009b, Taylor and Gercel-Taylor, 2008). Cancer cell derived 

exosomes can change immune responses in terms of activation (Wolfers et al., 2001) 

and inhibition (Clayton et al., 2007). 

Bystander cells exhibit a wide range of biological responses, with many phenotypic 

similarities to GI. The nature of the soluble transmitting factor(s) is yet to be fully 

understood, but cytokines including IL-8 (Facoetti et al., 2006), TGF-beta (Burr et al., 

2011), and TNF-alpha (Moore et al., 2005, Kadhim et al., 2006), as well as calcium 

fluxes, NO (Shao et al., 2008b) and ROS (Matsumoto et al., 2007) have been 

suggested as mediators of bystander responses. A role for plasma membrane-bound 

lipid rafts has also been indicated (Hamada et al., 2007). Recently, miRNA has been 

shown to be a potential mediator of BE (Aypar et al., 2011). Interestingly, miRNA 

molecules have been found in exosome multi-protein complexes, which are known to 

be one of the cell-cell communication signals (Mathivanan et al., 2011), secreted by 
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healthy and non-healthy cells. In addition, exosomes have been found to be associated 

with the process of senescence (Lehmann et al., 2008).  

Therefore, this study was established to test the hypothesis that exosomes mediate 

non-targeted effects of ionizing radiation, and that RNA and protein molecules of 

exosomes play a critical role in this process. 

5.3 Materials and Methods 

5.3.1 Cell culture 

Breast epithelial cancer and non-tumour cells (MCF7 and HMT 3522S1 respectively) 

were utilised in this study. They were cultured as described in sections 2.2.1.i and 

2.2.1.ii.   

5.3.2 Experimental design 

The experiment was set up to study the induction of non-targeted effects of X- 

irradiation and comprised three aims.  

1) Part 1: to investigate the role of exosomes using tumour (MCF7) cells.  

2) Part 2- experiment 1: to investigate the possible role(s) of exosomes’ cargo (RNA 

and protein molecules) using irradiated MCF7 and bystander MCF7 cells.  

 3) Part 2- experiment 2: to identify of the role of exosomes’ cargo in the induction of 

BE in non-tumour (HMT) cells following a radiotherapy dose (irradiated MCF7 and 

bystander HMT cell combination).  

A media transfer technique was used in all experiments after 4 hour incubation 

following irradiation. 

a. Part 1: MCF7 cells were grown in T75 flasks. At 70% confluence, four flasks were 

irradiated with 2 Gy X-ray irradiation. One irradiated flask was incubated for 24 hours 

as a direct irradiated group, whilst the remaining irradiated flasks were incubated for 4 

hours, after which, the irradiated cell conditioned media (ICCM) were pooled and 
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filtered through 1% BSA treated 0.2 µm filter (Section 5.3.3). Fresh MCF7 cells were 

treated with 15 ml filtered ICCM at 70% confluence and considered as a bystander 

group (ICCM bystander group). The remaining 30 ml filtered ICCM was ultra-

centrifuged (Section 5.3.3) and the supernatant transferred to fresh MCF7 cells (70% 

confluence) to induce ICCM supernatant bystander group.  The exosome pellet was 

re-suspended in 400 µl PBS, 200 µl was processed for electron microscopy (Section 

5.3.4) and 200 µl was transferred to fresh MCF7 cells (70% confluence) to induce 

ICCM exosome bystander group. Control cell conditioned media (CCCM) was 

established in parallel by repeating the procedure above without irradiation. All 

groups were analysed for total DNA damage after 24 hour incubation (at first 

population doubling). Cells were propagated until p10 (approximately 20 cell-

doublings) for assessment of delayed chromosomal/genomic instability. For each 

passage 1.4 million cells were seeded in a T75 flask using fresh (unconditioned) 

media and grown to 80% confluence.  All experimental groups were analysed using 

comet assay (Section 5.3.5) for total DNA damage estimation. After 20 population 

doublings following irradiation, exosomes from progeny media of irradiated, 

bystander and exosome bystander cells were purified and transferred to fresh MCF7 

cells in order to investigate whether the exosomes of these groups are able to induce 

DNA damage in fresh un-irradiated cells (Figure 5.2). 

b. Part 2- experiment 1: MCF7 cells were seeded in T75 flasks until 70% confluence.  

Seven T75 flasks were irradiated with 2 Gy X-ray irradiation. One flask was 

incubated for 24 hours as direct irradiated cells. After 4 hour incubation, ICCM of the 

remaining 6 irradiated flasks were pooled and filtered through 1% BSA treated 0.2 

µm filter (Section 5.3.3). Bystander effects were induced by transferring 15 ml of 

ICCM filtered media to flasks of fresh MCF7 cells (70% confluence). The remaining 
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ICCM filtered media was subjected to exosomes purification process. Exosomes’ 

pellet was re-suspended in 1000 µl PBS and divided into 5 fractions (200 µl/fraction); 

1 fraction was processed for electron microscopy (Section 5.3.4) imaging whilst the 

remaining 4 fractions were processed as follows to create: 

1: Exosome bystander group (Exo bystander) by adding the fraction to fresh MCF7 

cells (70% confluence) 

2: RNase treated exosome bystander group (RNase bystander) by treatment of 

fraction with 30 µg/ml RNase A (Sigma, R6513) for 30 minutes at 37ºC in order to 

digest exosomes’ RNA molecules, prior to adding to fresh MCF7 cells (70% 

confluence)  

3: Exosome inactivated proteins bystander group (Boiled Exo bystander) by boiling 

fraction at 98 °C for 10 minutes prior to adding to fresh MCF7 cells (70% confluence)  

4: Exosome’s inactivated RNA and protein group (Boiled Exo-RNase bystander) by 

adding 30 µg/ml RNase A to the fraction for 30 minutes at 37ºC, and then boiling it at 

98 °C for 10 minutes prior to adding to fresh MCF7 cells (70% confluence).  

Control cell conditioned media (CCCM) was generated in parallel by repeating the 

procedure above without irradiation. At 24 hours and p12 (approximately 24 cell-

doublings), all groups were subjected to chromosomal analysis, apoptotic analysis, 

telomere length and telomerase activity measurements for assessment of initial and 

delayed chromosomal/genomic instability (Figure 5.3). For each passage, 1.4 million 

cells were seeded in a T75 flask using fresh (unconditioned) media and grown to 80% 

confluence. 

Part 2- experiment 2: This was performed similarly to experiment 1 above, using 

irradiated MCF7 and bystander HMT cell combination. Briefly, MCF7 cells were 

irradiated with 2 Gy X-ray irradiation; bystander HMT cells received ICCM from 
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these irradiated MCF7 cells. For this experiment, the exosome pellet was divided into 

2 fractions to create: 

1: Exosome bystander group (Exo bystander) by adding the fraction to fresh HMT 

cells (70% confluence) 

2: Exosome’s inactivated RNA and protein group (Boiled Exo-RNase bystander) by 

adding 30 µg/ml RNase A to the fraction for 30 minutes at 37ºC, and then boiling it at 

98 °C for 10 minutes prior to adding to fresh HMT cells (70% confluence).  

Control groups were set up in parallel and all groups were subjected to the same time-

points and end-points as experiment 1 (figure 5.4). 
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               Figure 5.2: Exosomes’ experimental schematic, part 1. 
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                  Figure 5.3: Exosome’s experimental schematic, part 2, experiment 1 

     

            Figure 5.4: Exosomes’ experimental schematic, part 2, experiment 2 

 

 

Sham/2Gy irradiated MCF7 
cells 

Bystander MCF7 
cells 

Exosome purification 

Fresh MCF7 cells 
Exo bystander 

RNA inhibition Protein inhibition RNA and protein inhibition 

Chromosome analysis, apoptotic analysis, Telomere length and telomerase activity measurement 

Chromosome analysis, apoptotic analysis, Telomere length and telomerase activity measurement 

 Propagate for delayed response several population doublings later 
(Approximately 24 population doublings) 

Results 

Fresh MCF7 cells  
Boiled Exo-Rnase Bystander 

Fresh MCF7 cells 
Boiled Exo bystander 

Fresh MCF7 cells 
Rnase bystander  

Sham/2Gy irradiated MCF7 cells Bystander HMT cells 

Exosome purification 

Fresh HMT cells 
Exo bystander 

RNA and protein inhibition 

Chromosome analysis, apoptotic analysis, Telomere length and telomerase activity measurement 

Chromosome analysis, apoptotic analysis, Telomere length and telomerase activity measurement 

 Propagate for delayed response several population doublings later 
(Approximately 24 population doublings) 

Results 

Fresh HMT cells  
Boiled Exo-Rnase Bystander 



134 
 

5.3.3 Exosome purification 

The exosome extraction method was adapted from (Lehmann et al., 2008). Briefly, 

exosomes were isolated from the collected irradiated cell conditioned media (ICCM), 

control (un-irradiated) cell conditioned media (CCCM), bystander cell conditioned 

media and progeny of irradiated and bystander cell conditioned media. All were 

filtered through 1% BSA treated 0.2 µm filters (Sartorius, 16532) and then 

centrifuged at 14000 X g for 15 minutes (Eppendorf 5417R), to eliminate cell debris. 

The exosome vesicles were pelleted by ultra-centrifugation at 100,000 X g for 90 

minutes at 4°C (Beckman Coulter LE-80K). Both supernatant and exosome pellet 

were used to induce BE in cells.  

5.3.4 Electron microscopy 

Exosome fractions in PBS were incubated on formvar coated nickel grids (Agar 

scientific S138N3) and negative stained with 3% aqueous uranyl acetate; excess stain 

was removed and the grids were allowed to air dry prior to observation using a 

Hitachi H7650 transmission electron microscope at 120 kV. 

5.3.5 Comet assay 

This was described in section 2.1.14; briefly, microscope slides were coated with 1% 

normal melting point agarose (NMPA) and allowed to dry over night.  The coated 

slides were then placed on a metal tray on ice. 2 x 104 cells were re-suspended with 

200 µl of 0.6% low melting point agarose (LMPA) and placed immediately onto 

chilled pre-coated slides. The cell-LMPA suspensions were flattened with cover slips, 

which were removed after 5-10 minutes. The slides were then transferred to a Coplin 

jar, which was filled with cold lysis buffer (2.5 M NaCl, 100 mM EDTA pH 8.0, 10 

mM Tris-HCl pH 7.6,  and 1% Triton X-100, pH >10). The jar was kept at 4ºC over 

night. The slides were then moved to a horizontal electrophoresis tank filled with 
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electrophoresis buffer (0.3 M NaOH and 1 mM EDTA, pH 13) at 4ºC for 40 minutes. 

The electrophoresis was run for 30 minutes, at 19V, 300A. Slides were neutralised 

with neutralising buffer (0.4 M Tris-HCl, pH 7.5), washed with distilled water, and 

immediately stained with a 1:10,000 dilution of SYBR Gold (Molecular 

Probes/Invitrogen, Carlsbad, CA). The slides were analysed using Komet 5.5 Image 

Analysis Software (Kinetic Imaging Technology/Andor, Germany). 

5.3.6 Chromosomal analysis 

Cells were analysed for chromosomal damage after 1 and 24 population doublings for 

initial and delayed damage response respectively as described in section 2.1.11. In 

brief, cells were treated with 20 ng/ml demecolcine for 1.5 hours. They were then 

collected and treated with 75 mM potassium chloride solution for 20 minutes prior to 

fixation with 25% acetic acid in methanol (twice). Cells were then dropped onto clean 

microscope’s slides, aged, stained with Giemsa and mounted with cover slips.  

5.3.7 Apoptotic analysis 

Apoptotic levels were determined as described in section 2.1.12, after 1 and 24 

population doublings for initial and delayed responses following irradiation. Prolong 

gold anti-fade reagent with DAPI was utilised to detect the apoptotic bodies. Cells 

were collected into universal tubes and washed twice with 25% acetic acid in 

methanol. Cell were dropped onto slides and mounted with prolong gold anti-fade 

reagent with DAPI. The normal cell nucleus uniformly stains with DAPI, whilst the 

apoptotic cell nucleus shows apoptotic bodies using fluorescent microscope.  

5.3.8 Telomere length measurement 

Q-FISH technique was used to measure the telomere length of chromosomes as 

described in section 2.1.13. Briefly, cells were collected, fixed and dropped onto clean 

slides. The slides were washed with PBS and then fixed with formaldehyde. The 
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slides were incubated with pepsin and hybridised using peptide nucleic acid FITC. 

The slides were then mounted with Vectorshield mounting media with DAPI. The 

slides were analysed for telomere length (telomeric fluorescence intensity) using 

smart capture and IP-Lab software. 

5.3.9 Telomerase activity measurement 

Cells were analysed for telomerase activity by TRAP assay as described in section 

2.1.14. In brief, cells were lysed by CHAPS lysis buffer. Cell extractions were mixed 

with master mix and loaded into 96 well plates. Telomerase activity was measured 

using real-time PCR. 

5.4 Results 

5.4.1 Exosome-mediated non-targeted effects of IR (part 1) 

5.4.1.i Exosomes of ICCM-induced BE  
In order to investigate the role of exosomes in BE induction and in cell-cell 

communication signals, exosomes were extracted from ICCM of direct irradiated 

MCF7 cells and transferred to fresh un-irradiated MCF7 cells to induce ICCM-

exosomes bystander. Additionally, ICCM after exosome extraction was placed on 

fresh un-irradiated MCF7 cells to induce ICCM supernatant bystander.  

Total DNA damage (double-strand breaks, single-strand breaks and base damage) in 

individual cells of all the experimental groups was measured using the sensitive comet 

assay (Collins, 2004). Preliminary work confirmed that MCF7 cells were capable of 

eliciting a response after direct irradiation and as a bystander population. The 

subsequent experimental results also confirmed that exosomes could be involved in 

BE induction. The direct irradiated MCF cells showed significant DNA damage 

(p≤0.0001) after 1 population doubling following 2 Gy X-ray irradiation, with median 

percentage values of 18.65±0.61 and 13.47±0.5 for direct irradiated and control, 
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respectively (Figure 5.5 A). Moreover, MCF7 ICCM caused a high induction of DNA 

damage (p≤0.0001) in the un-irradiated MCF7 (22.33±0.61) compared to its 

corresponding control (CCCM) (9.9±0.37) as shown in figure 5.5 A. These results 

confirmed that whole ICCM could induce BE in the fresh (un-irradiated) MCF7 cells 

after 24 hours communication. A high induction of DNA damage (p≤0.0001) was also 

observed in fresh un-irradiated bystander MCF7 cells treated with the exosome pellet 

of ICCM following 100000 X g (MCF7 ICCM-exosomes) after 24 hours 

communication compared to its control (MCF7 CCCM-exosomes) as shown in figure 

5.5 B. Interestingly, the supernatant of ICCM following 100000 X g was unable to 

induce DNA damage in the fresh un-irradiated bystander MCF7 cells (MCF7 ICCM-

supernatant) at this time-point (Figure 5.5 B). These findings suggest that ICCM 

exosomes could mediated BE in the MCF7 cells through exosome cargo molecules, 

including RNA and protein molecules (Lasser et al., 2012), or at least one of them 

following 2 Gy X-ray irradiation. Nevertheless, ICCM Supernatant (without 

exosomes) did not show a significant effect on the bystander MCF7 cells.   
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Figure 5.5: Percentage of DNA in the comet tail within direct irradiated and bystander 
MCF7 cell populations after 1 generation following 2 Gy X-ray irradiation. 
MCF7 cells were irradiated with 2Gy X-ray and subjected to the comet assay after 1 generation following 
irradiation. The ICCM were transferred to fresh un-irradiated MCF7 cells to induce BE. The bystander cells were 
also analysed for total DNA damage using comet assay. Panel A illustrated the non-targeted effects of 2 Gy X-ray 
irradiation within MCF7 cells after 1 population doubling.  . Both 2 Gy direct irradiated and bystander MCF cells 
showed significant DNA damage (***p≤0.0001). Panel B showed the ability of exosomes of ICCM to induce 
DNA damage in un-irradiated MCF7 cells. The CCCM and ICCM were ultra-centrifuged, the exosomes’ pellets 
and the supernatant were separately transferred to un-irradiated cells. Interestingly, the exosome pellet of ICCM 
caused DNA damage (***p≤0.0001) in the cells compared to the control; however, the supernatant bystander cells 
did not demonstrate a significant DNA damage compared to the control. The finding showed that exosome pellet 
caused BE compared to the supernatant of ICCM.  
Experiment was performed in 3 technical repeats. 
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5.4.1.ii Exosomes of ICCM-induced GI 
The cells (MCF7 direct irradiated, MCF7 ICCM, MCF7 ICCM–supernatant and 

MCF7 ICCM-exosomes and their controls) were propagated for approximately 20 

population doublings following irradiation for delayed DNA damage response (GI) 

estimation.  A high induction, approximately 4.5 folds higher, of DNA damage 

(p≤0.0001) was observed in the progeny of direct irradiated (22.17±0.9) and ICCM 

MCF7 cells (24.3±0.85) compared to the controls (5.11±0.39 and 4.98±0.25 

respectively), as shown in figure 5.6 A. Moreover, there was also a similar (4.5 folds 

higher) significant induction of DNA damage  (p≤0.0001) observed within the 

progeny of MCF7 ICCM-exosomes (28.79±1.03) after 20 generations following 

exosome pellet transfer compared to the control (6.41±0.35), as shown in  figure 5.6 

B. Interestingly, the progeny of MCF7 ICCM supernatant (without exosomes) were 

unable to induce a significant delayed DNA damage compared with the control 

(Figure 5.6 B), thereby confirming that ICCM exosomes induced GI within MCF7 

cells following 2 Gy X-ray irradiation. Data suggested that exosomes could be either: 

long-lived signals; secreted from the progeny of irradiated/bystander cells or from 

cells that were treated with ICCM exosomes. 
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Figure 5.6: Delayed responses within the progeny of direct irradiated and bystander 
MCF7 cell populations after 20 population doublings following 2 Gy X-ray 
irradiation. 
The direct irradiated and bystander cells were propagated until about 20 population doublings for delayed 
response. Panel A showed similar results as those of the early time-point, i.e. both treatment groups showed a 
significant induction of DNA damage (***p≤0.0001) compared to the controls. Panel B demonstrated the delayed 
responses within the progeny of supernatant (without exosomes) and exosome treated cells following irradiation. 
The progeny of supernatant bystander cells did not exhibit induction of delayed DNA damage after 20 generations. 
Nonetheless, the progeny of exosome bystander cells revealed a high induction of delayed response in terms of 
total DNA damage (***p≤0.0001) compared to the control. Data demonstrated that the exosomes of ICCM could 
cause delayed DNA damage compared to the exosomes of CCCM. 
Experiment was performed in 3 technical repeats. 
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5.4.1.iii Progeny displayed exosome-induced DNA damage 
The data clearly showed that irradiated cells secrete exosomes and these played a 

significant role in bystander signalling, further endorsed by evidence in section 5.4.1, 

of exosomes ability to induce BE by cell-cell communication. We have also observed 

that MCF7 cells treated with exosomes from the progeny of direct irradiated, ICCM 

and ICCM-exosomes cells expressed DNA damage underlying the delayed response. 

All demonstrated a high induction of DNA damage (p≤0.0001) compared to their 

corresponding controls (Figure 5.7). The percentage of DNA damage was 22.9±1.49, 

22.14±0.91 and 20.87±1.08 in these groups, compared to their controls, which 

exhibited 5.33±0.81, 4.43±0.33 and 7.54±0.74 percentage of DNA damage 

respectively, indicating that exosomes may have an important role in GI. 
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Figure 5.7: Induction of DNA damage in cells treated with exosomes from the 
progeny of irradiated, bystander and exosome bystander cells. 
The media of progeny of irradiated, bystander, exosome bystander cells and their controls were collected 
separately, each was then purified. The exosome pellets were added to fresh un-irradiated cells to investigate the 
ability of progeny exosomes to induce delayed DNA damage. Interestingly, the cells treated with exosome pellets 
of the progeny showed a high induction of DNA damage (***p≤0.0001) compared to the controls. This suggests 
that exosomes secreted by the direct irradiated and bystander progeny cells could mediate delayed DNA damage 
responses. 
Experiment was performed in 3 technical repeats. 
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5.4.1.iv Electron microscopy analysis 
Exosome pellets of irradiated, bystander and the progeny of irradiated, bystander and 

bystander-exosome MCF7 cells were processed for electron microscopy imaging in 

order to visualise and characterise their morphology to determine if the various 

treatments conferred differences. However, the data did not show any morphological 

distinction (qualitative and quantitative differences) between any of the groups but 

confirmed them to be of a size between 40-140 nm (Figure 5.8). Therefore, it was 

necessary to perform further studies/specific methods to in order to qualify and 

quantify if differences did actually exist between the exosomes of CCCM, ICCM and 

bystander cells. 
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                              Exosomes of bystander cell-conditioned media 
 
Figure 5.8: Electron microscope images of exosomes from the media of 
shame/control, direct irradiated and bystander MCF7 cells. 
Exosomes were isolated from the media of sham/control, direct irradiated and bystander cells. The 
exosomes of these cells were shown to be between 40-140 nm in diameter. There was no 
morphological difference between any of the treatment groups. Further, qualitative and quantitative 
studies were therefore needed to investigate possible differences between the exosomes from CCCM, 
ICCM and bystander-exosomes, respectively. 
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5.4.2 Exosome cargo molecules and non-targeted effects of IR (part 2) 

As shown in section 5.4.1, data demonstrated that exosomes could mediate non-

targeted effects of IR. In order to investigate which of the exosome cargo molecules 

were involved in the non-targeted effects induction, exosomes were purified from 

ICCM and divided into 5 fractions (Section 5.3.2). Briefly, the first fraction was used 

for electron microscopy imaging. The second fraction was transferred to fresh MCF7 

cells to investigate the induction of BE by exosomes (EXO BE). The third was treated 

with RNase A, to digest exosome RNA molecules; thus it was considered an 

exosomes-bystander without RNA molecules (EXO-RNase BE). The fourth fraction 

was boiled to denature exosome proteins and considered as exosome-bystander 

without exosome proteins (boiled EXO-BE). The last fraction was treated with RNase 

and then boiled to digest and stop the actions of exosome RNA and protein molecules 

together. Thus it was considered an exosome-bystander without exosome RNA and 

protein molecules (boiled EXO-RNA BE). The control groups were established in 

parallel.  Chromosomal analysis, apoptotic analysis, telomere length and telomerase 

activity measurements were utilised as biological end points to estimate BE and GI 

consequences in the all groups to enable comparisons with the previous results of 

chapters 3 and 4. Hence, the investigations were set up specially to understand 

whether the exosome effects were from RNA molecules or protein molecules or both. 

5.4.2.i Exosome-induced BE and GI within MCF7 cells 
It was first necessary to confirm the existence of BE following IR and communication 

via exosomes from ICCM in MCF7 cells. Thus, MCF7 cells were directly irradiated 

with 2 Gy X-ray (MCF7 Dir Irr 2Gy). Bystander populations were created by CCCM 

and ICCM transfer (MCF7 CCCM and MCF7 ICCM), while the exosome pellet was 

added to fresh un-irradiated MCF7 to generate exosome bystander (MCF7 EXO BE). 

Cells were analysed for BE and GI after 1 and 24 generations. 
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Early chromosomal damage was significantly induced (p≤0.0001) in the direct 

irradiated, bystander and exosome bystander MCF7 cells compared to their 

corresponding controls (Figure 5.9 A). The mean number of chromosomal aberrations 

observed in MCF7 Dir Irr 2Gy cells was 1.44±0.28 compared to 0.16±0.05 of the 

MCF7 Dir Irr control group. In contrast MCF7 CCCM cells showed values of 

0.2±0.06 which increased to 0.94±0.14 after ICCM transfer (MCF7 ICCM cells). 

Similar numbers of chromosomal aberrations (0.76±0.18), were observed in the 

exosome bystander (MCF7 EXO BE cells) compared to the control (MCF7 EXO 

control) which only showed 0.16±0.06 aberrations. The data thus demonstrated the 

efficiency of 2 Gy X-ray, ICCM and the whole component of the exosomes of ICCM 

to cause initial chromosomal damage within MCF7 cells. However, no induction of 

apoptosis was observed in any of these groups (Figure 5.9 A). Conversely, all 

demonstrated a significant reduction in the telomerase activity (p≤0.0001) at the same 

time-point (Figure 5.9 B), although statistically significant telomeric shortening was 

only observed (p≤0.05) in the MCF7 Dir Irr 2Gy compared to the control.  

Cytogenetic analysis from the delayed time-point (24 generations) exhibited 

significant damage (p≤0.0001) within the progeny of MCF7 Dir Irr 2Gy, MCF7 

ICCM and MCF7 EXO BE cells and the media transfer compared to the 

corresponding controls (Figure 5.9 C), however, there was no induction of apoptosis 

(Figure 5.9 C), which would have contributed to the expression of a high induction of 

chromosomal instability, according to the inverse relationship between apoptosis and 

chromosomal instability. Furthermore, progeny of MCF7 Dir Irr 2Gy cells continued 

to demonstrate significant telomeric shortening (p≤0.05) as shown in figure 5.9 D and 

interestingly, the progeny of MCF7 ICCM and MCF7 EXO BE cells also revealed 

significant telomeric shortening (p≤0.05), which had previously been absent in the 
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earlier time-point. Moreover, telomerase activity was now shown to have returned to 

control levels, suggesting that the initial increase in the telomerase activity positively 

correlated with GI. These findings indicate that short telomeres, sufficient telomerase 

activity and absence of apoptosis frequently led to chromosomal instability within the 

progeny of irradiated, bystander and exosome bystander progeny.  
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Figure 5.9: Cellular damage in MCF7 direct irradiated, bystander and exosome 
bystander cell after 1 and 24 population doublings following 2 Gy X-ray irradiation. 
MCF7 cells were irradiated with 2 Gy X-ray irradiation. The CCCM and ICCM were transferred to un-irradiated MCF7 
cells to induce BE (MCF7 CCCM and ICCM). The exosomes were extracted from CCCM and ICCM and placed onto 
fresh un-irradiated MCF7 cells to induce exosome-BE (MCF7 EXO control and BE). Cells were analysed for initial 
responses after 1 generation. Cells were then propagated until 24 population doublings for delayed responses. Panel A 
represented chromosomal data and apoptotic levels within the cells after 1 population doubling. Chromosomal damage 
was significantly induced (***p≤0.0001) within the direct irradiated, bystander and exosome bystander cells compared to 
the controls. However, the cells did not show a significant apoptotic induction at the same time-point. Panel B illustrates 
telomeric instability including telomere length and telomerase activity estimation in the irradiated and bystander MCF7 
cells. The irradiated cells exhibited significant telomeric shortening (*p≤0.05) compared to the control. The MCF7 ICCM 
cells were shown to exhibits short telomeres following bystander induction; nevertheless, the telomeric shortening of 
these bystander cells was statistically insignificant compared to the control. Similarly, MCF7 EXO BE cells revealed 
short telomeres although statistically insignificant.  Moreover, direct irradiated, ICCM and EXO BE MCF7 cells 
demonstrated a significant reduction of telomerase activity (***p≤0.0001) compared to the controls. Thus data showed 
that exosome pellet of irradiated MCF7 cells elicited a similar effect to ICCM on MCF7 bystander cells underlying BE.  
Experiment was performed in 3 technical repeats. 
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Figure 5.9:  
Panel C represent the delayed chromosomal damage and apoptotic levels in the progeny of direct irradiated, 
bystander and exosome bystander cells after 24 population doublings. The chromosome aberrations were 
significantly observed (p≤0.0001) within the progeny of direct irradiated, bystander and exosome bystander cells. 
However, there was no significant induction of apoptosis; thus, results confirmed the inverse relationship between 
apoptosis and chromosomal instability.  
Panel D exhibit telomere length and telomerase activity within the progeny of direct irradiated, bystander and 
exosome bystander cells after 24 generations. Telomerase activity was shown to have returned to control levels 
although, there was significant telomeric shortening (p≤0.05), which suggest that sufficient telomerase activity can 
maintain the cell proliferation even when chromosomes have short telomeres, which can lead to chromosomal 
instability especially in the absence of apoptosis. Moreover, data suggested that exosomes could mediate GI in 
MCF7 cells following 2 Gy X-ray irradiation. 
Experiment was performed in 3 technical repeats. 
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5.4.2.ii Exosome RNA molecules and non-targeted effects of IR 
In order to investigate the role of exosome RNA molecules following irradiation, 

exosome pellets (ICCM and CCCM exosomes) were separately treated with RNase A 

for 30 minutes to digest RNA molecules within the pellets. The pellets were then 

transferred to fresh un-irradiated MCF7 cells to induce RNase exosome BE and 

control (MCF7 EXO-RNase BE and MCF7 EXO-RNase control cells). Cells were 

then analysed for chromosomal damage, apoptosis telomere length and telomerase 

activity measurements after 1 and 24 population doublings in order to measure early 

and late cellular responses. 

Interestingly, the MCF7 EXO-RNase BE cells did not show induction of 

chromosomal following digestion of exosome RNA molecules by RNase A indicating 

that RNase abrogated the effect of ICCM exosomes to induce initial chromosome 

aberrations within MCF7 cells. However, the mean chromosomal background damage 

in the MCF7 EXO-RNase control group (0.28±0.09), was higher than other 

experimental control levels (MCF7 Dir Irr control, MCF7 CCCM and MCF7 EXO 

control) which had mean aberrations levels of between 0.16-0.20 (Figure 5.10 A); this 

increase could have been caused by RNase treatment. Apoptotic levels were also 

insignificant in MCF7 EXO-RNase BE cells compared to the control cells. Moreover, 

MCF7 EXO-RNase BE cells did not show a significant telomeric shortening or 

reduction in the telomerase activity compared to the control (Figure 5.10 B). 

However, the levels of telomerase activity in both MCF7 EXO-RNase BE and MCF7 

EXO-RNase control cells were low, suggesting that RNase may have digested the 

telomerase RNA subunit whereby instigating a reduction in telomerase activity. 

Overall, the results showed that RNase increased the damage in the control cells and 

slightly decreased the effect of exosome treatment within the treated cells. 
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Interestingly, chromosomal instability was significantly observed (p≤0.0001) within 

the progeny of MCF7 EXO-RNase BE cells after 24 generations (Figure 5.10 A). The 

mean chromosomal aberrations in the control cells was 0.22±0.08, which increased to 

0.6±0.14 in the progeny of MCF7 EXO-RNase BE cells. These results suggest that 

inhibition of exosome RNA molecules in the parent cells partly abolished initial 

chromosomal damage but not delayed damage, the latter may be due to other 

molecules e.g. exosome proteins and/or long-lived molecules. Apoptotic levels in the 

progeny of MCF7 EXO-RNase BE cells were insignificant different after 24 

population doublings compared to the control (Figure 5.10 A). Additionally, data did 

not show a significant difference in telomerase activity levels between the progeny of 

MCF7 EXO-RNase BE and the control cells at the same time-point. Nonetheless, the 

level of telomerase activity was significantly higher (p≤0.0001) in the progeny cells 

(after 24 generations) than parent cells (after 1 generation) we think due to RNase 

treatment affecting the function of telomerase in the parent cells (Figure 5.10 B). 

Interestingly, the progeny of MCF7 EXO-RNase BE cells showed short telomere 

length after 24 generations although insignificant compared to the control (Figure 

5.10 B). Data suggest that instable telomeres led to chromosomal instability. 
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Figure 5.10: Early and delayed cellular responses within the RNase treated-exosome 
bystander cells. 
Exosomes were separately isolated from CCCM and ICCM of MCF7 cells and treated with RNase to digest 
exosome RNA molecules. The RNase treated exosomes were then transferred to fresh un-irradiated MCF7 cells to 
induce BE. i.e. BE was induced within MCF7 cells by RNA deficient exosome molecules. Panel A: represent 
initial and delayed chromosomal damage and apoptotic induction within the cells. RNase abrogated chromosomal 
damage within MCF7 EXO-RNase BE cells after 1 generation following transferring compared to the control. 
Surprisingly, these cells showed a significant chromosomal damage (***p≤0.0001) after 24 generations compared 
to the control. Data suggest that in addition to the exosome RNAs another molecule mediated the delayed 
chromosomal aberrations. Similarly in the direct irradiated, bystander and exosome bystander apoptotic responses, 
the MCF7 cells that were treated with RNase treated-ICCM exosomes did not exhibit early or delayed induction of 
apoptosis. Panel B demonstrates telomere length and telomerase activity data within the MCF7 EXO-RNase 
control and BE cells. These cells did not demonstrate significant telomeric shortening or reduction in the 
telomerase activity after 1 generation compared to the control. These cells continued to show normal levels of 
telomerase activity after 24 population doublings although they exhibited shortened telomeres but these were not 
statistically significant. Overall, the data suggest that exosome RNAs could play a role in the non-targeted effects 
of IR, although we postulate that chromosomal instability was caused by another long-lived molecule.  
Experiment was performed in 3 technical repeats. 

0

0.5

1

1.5

2

2.5

MCF7 EXO-

RNas control

MCF7 EXO-

RNase BE

MCF7 EXO-

RNas control

MCF7 EXO-

RNase BE

After 1 population doubling After 24 population doublings

M
e
a
n
 c

h
ro

m
o
s
o
m

a
l 
a
b
e
rr

a
ti
o
n
s
 p

e
r 

c
e
ll

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

P
e
rc

e
n
ta

g
e
 o

f 
a
p
o
p
to

s
is

Chromosomal damage Apoptotic levelA

***

0

5

10

15

20

25

30

MCF7 EXO-

RNas control

MCF7 EXO-

RNase BE

MCF7 EXO-

RNas control

MCF7 EXO-

RNase BE

After 1 population doubling After 24 population

T
e
lo

m
e
ri
c
 f

lu
o
re

s
c
e
n
c
e
 i
n
te

n
s
it
y

0

20000

40000

60000

80000

100000

120000

140000

T
e
lo

m
e
ra

s
e
 a

rb
it
ra

ry
 u

n
it

Telomere length Telomerase activityB



153 
 

5.4.2.ii Exosome proteins and non-targeted effects of IR 
Exosome protein molecules were additionally studied to investigate the correlation 

between them and the induction of non-targeted effects of IR. In order to do this, the 

pellets from ICCM and CCCM were boiled at 98°C for 10 minutes to denature the 

proteins and to abolish their action. The pellets were then added to the fresh un-

irradiated cells to investigate bystander response of MCF7 cells and their control 

group (MCF7 boiled EXO BE and Control cells, respectively). Chromosomal and, 

apoptotic analysis, telomere length and telomerase activity measurements were 

performed to evaluate the early and late effects. 

The MCF7 boiled EXO BE cells showed induction of chromosomal damage (p≤0.05) 

after 1 population doubling compared to the control (Figure 5.11 A). A significant 

reduction in telomerase activity (p≤0.05) was also observed at the same time-point 

(Figure 5.11 B). However, the levels of chromosomal damage and telomerase activity 

(0.4±0.11 and 54515±1102.6 TAU respectively) in the MCF7 boiled EXO Control 

group were significantly (p≤0.05) lower than those from the MCF7 EXO cells 

(0.76±0.18 and 46365±2744.2TA). Moreover, the MCF7 boiled EXO BE cells failed 

to demonstrate induction of apoptosis and significant telomeric shortening as early 

responses compared to the controls (Figures 5.11 A and B respectively). Data suggest 

that inactivation of exosome protein could partially reduce bystander cellular damage 

within MCF cells following irradiation. 

After 24 population doublings, the progeny of MCF7 boiled EXO BE cells revealed 

unstable chromosomal damage (p≤0.05) compared to its control (Figure 5.11 A). 

Conversely, there was no significant difference in apoptotic levels between the groups 

and telomerase activity had returned to normal despite shortened telomeres, although 

statistically insignificant, in the treated group compared to its control (Figure 5.11 B). 
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We speculate that short telomeres could play a crucial role in chromosomal instability 

in MCF7 cells treated with boiled exosomes (MCF7 boiled EXO BE). 

 

 

 

 

 

 



155 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.11: Initial and delayed cellular response within MCF7 cells treated with 
boiled exosomes of irradiated MCF7 cells. 
Exosomes were extracted from the CCCM and ICCM of MCF7 cells and separately boiled at 98°C for 10 minutes to denature 
and inhibit the exosomes’ proteins. The boiled exosomes were added to fresh un-irradiated MCF7 cells in order to investigate the 
role of exosomes’ protein in bystander effect induction. Panel A illustrate chromosomal damage and apoptotic levels after 1 and 
24 generations following treatment. The boiled EXO BE cells showed significant initial chromosomal damage (*p≤0.05) 
compared to the control. However, the induction of chromosomal damage within these control cells was lower than the exosome 
BE cells suggesting that exosomes’ protein inhibition could reduce bystander chromosomal damage. The boiled EXO BE cells 
exhibited a delayed chromosomal damage (*p≤0.05) compared to the control, although they did not demonstrate significant early 
and late induction of apoptosis, an observation similar to other bystander groups. Panel B represent telomere length and 
telomerase activity data. The MCF7 boiled EXO BE cells showed initial and delayed telomeric shortening although statistically 
insignificant. The results suggest that exosome, protein inhibition could reduce the exosome BE. Telomerase activity reduction 
was significantly observed in the MCF7 boiled EXO BE cells after 1 generation following boiled exosome transfer. Nevertheless, 
the telomerase activity returned to normal levels after 24 generations. These findings suggest that exosomes’ protein molecules 
could partly contribute to induce BE following X-ray irradiation within MCF7 cells. 
Experiment was performed in 3 technical repeats. 
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5.4.2.iii Exosome RNA and protein molecules inhibition abrogates non-

targeted effects of IR 
To investigate whether RNAs and proteins of exosomes both associate with the 

induction of non-targeted effects of IR, exosome pellets of ICCM were treated with 

RNase A to digest exosome RNAs,  boiled to denature the proteins of exosomes prior 

to being added to fresh un-irradiated MCF7 cells (MCF boiled EXO-RNase BE). In 

parallel a control group was established for comparison. Cells were analysed for 

chromosomal damage measurement, apoptotic analysis, telomere length estimation 

and telomerase activity measurement after 1 and 24 population doublings. 

Interestingly, the MCF7 boiled EXO-RNase BE cells did not show significant initial 

(after1 population doubling) or delayed (after 24 population doubling) any cellular 

damage responses (chromosomal damage, apoptosis, telomere shortening, and 

telomerase activity reduction) compared to the controls (Figures 5.12 A and B). These 

results thereby suggest that both RNA and protein molecules of exosomes work 

together in a synergistic manner to infer the non-targeted effects of IR. We realise that 

the exosomes endured a long preparation time (3 hours) and that the short-lived 

bystander signals from ICCM would subsequently have been lost; our data thus 

suggests that exosomes mediated non-targeted effects of IR through long-lived 

signals.  
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Figure 5.12: Early and late cellular responses within irradiated MCF7 cells following 
exosome RNA/ protein inhibition treatment. 
Exosomes were purified from CCCM and ICCM of MCF7 cells. The exosomes’ pellets were treated with RNase 
to digest the RNA molecule, they were then boiled to denature and inhibit the exosomes’ proteins prior to being 
added to fresh un-irradiated MCF7 cells to induce free RNAs/proteins exosomes BE. Panel A show the early and 
delayed responses of chromosomal damage and apoptotic induction. Interestingly, the cells that were treated with 
RNase treated/boiled exosomes did not show a significant induction of initial and delayed chromosomal damage or 
apoptotic responses compared to the corresponding controls. Moreover, these cells did not demonstrate a 
significant reduction in the telomere length or telomerase activity at either time-point. Consequently, data suggest 
that both exosome RNA and proteins are required to induce BE in the MCF7 cells following 2 Gy X-ray 
irradiation.  
Experiment was performed in 3 technical repeats. 
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5.4.3 Exosomes of irradiated tumour cells mediate non-targeted 

effects of IR within non-tumour cells following a radiotherapy dose of 

X-ray (part 2) 

It was shown that irradiated MCF7 (tumour) cells can induce BE in the HMT (non-

tumour) cells following 2 Gy X-ray (Section 4.3.2). We have also shown that 

exosomes from irradiated MCF7 cells are involved in the induction of BE in the 

MCF7 cells (Section 5.4.1.i). We were therefore interested to investigate if these 

exosomes would facilitate communication between MCF7 and HMT cells following 2 

Gy X-ray. Therefore, experiments were set up (Section 5.3.2, part 2, experiment 2) 

which enabled exosomes of ICCM and CCCM of 2 Gy and direct sham-irradiated 

MCF7 to be collected, purified and added to un-irradiated HMT cells to induce 

exosome BE.  

The results demonstrated that this indeed was the case, thus, in brief, after 1 

population doubling, chromosomal damage was significantly observed (p≤0.0001) in 

the bystander HMT cells (HMT ICCM) following ICCM media transfer compared to 

the control (Figure 5.13 A). Nevertheless, these cells did not show an early induction 

of apoptosis (Figure 5.13 A). However, their telomere length was significantly 

shortened (p≤005) as shown in figure 5.13 B; moreover telomerase activity within 

these bystander cells was significantly reduced (p≤00001) compared to the control 

(Figure 5.13 B).  

After 24 generations, the progeny of the HMT ICCM cells demonstrated a high 

induction of chromosomal instability (p≤0.0001) and no significant levels of 

apoptosis (Figure 5.13 C). Additionally, although the telomerase activity returned to 

normal levels within this progeny there was significant telomere instability (p≤0.05, 

figure 5.13 D), which could instigate chromosomal instability. 
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The ICCM exosomes’ pellet of the 2 Gy direct irradiated MCF7 cells was also shown 

to  cause initial chromosomal damage (p≤0.0001) within HMT EXO BE cells 

compared to the HMT EXO control cell; however, there was no significant induction 

of apoptosis (Figure 5.13 A). In addition, telomeric shortening (p≤0.01) and 

telomerase activity reduction (p≤0.005) were also significantly demonstrated in these 

cells compared to the control (Figure 5.13 B). In summary, all these results gave 

similar bystander cellular responses as those seen in the HMT ICCM (bystander cells) 

and thus we can surmise that exosomes of 2 Gy direct irradiated MCF cells initiate the 

underlying bystander signals.  

Similarly after 24 generations, the progeny of HMT EXO BE cells demonstrated 

comparable results to those of the HMT ICCM (bystander) cells i.e. chromosomal 

instability was significantly detected (p≤0.0001) compared to the control  (Figure 5.13 

C). Moreover, these cells did not exhibit a significant induction of apoptosis. 

However, telomeric shortening was significantly observed whilst telomerase activity 

returned to normal levels (Figure 5.13 D), thus suggesting telomerase activity 

maintained cell proliferation, although the presence of short telomeres and absence of 

apoptosis led to chromosomal instability.  

To confirm that BE and GI could be mediated by exosome RNAs and proteins from 

the irradiated tumour (MCF7) cells, the exosome pellets of the 0 and 2 Gy cells 

respectively, were treated with RNase for 30 minutes at 37°C in order to digest 

exosomes’ RNAs. The pellets were then boiled at 98°C for 10 minutes to denature the 

exosomes’ proteins and stop their activities and finally they were transferred to un-

irradiated HMT cells (HMT boiled EXO-RNase control and HMT boiled EXO-RNase 

BE) cells respectively.   
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The findings showed that inactivation of exosome RNA and protein molecules 

abolished the non-targeted bystander effects of 2 Gy X-ray i.e. direct irradiated MCF7 

cells were unable to induce damage in the bystander (HMT) cells (Figures 5.14 A and 

B) suggesting that exosomes have crucial roles in the non-targeted effects of IR, 

specifically long-lived signals, as the exosome inactivation process took a long time 

(3 hours).   
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Figure 5.13: Early and late cellular responses within direct irradiated MCF7 cells, 
bystander and exosome bystander HMT cells following 2 Gy X-ray irradiation. 
MCF7 cells were irradiated with 2 Gy X-ray irradiation. The CCCM and ICCM were transferred to un-irradiated HMT cells to 
induce BE (HMT CCCM and ICCM). The exosomes were extracted from CCCM and ICCM and placed onto un-irradiated HMT 
cells to induce exosomes-BE (HMT EXO control and BE). Cells were analysed after 1 and 24 population doublings to asses early 
and late damage responses. Panel A represent chromosomal data and apoptotic levels within the cells after 1 population doubling. 
Chromosomal damage was significantly induced (***p≤0.0001) within the direct irradiated MCF7, bystander and exosome 
bystander HMT cells following irradiation and treatment compared to the controls. However, these groups did not show 
significant apoptotic induction. Panel B illustrate telomeric instability including telomere length and telomerase activity in the 
irradiated MCF7, bystander and exosome bystander HMT cells after 1 population doubling. The irradiated cells exhibited a 
significant telomeric shortening (*p≤0.05) following irradiation compared to the control. The HMT ICCM cells demonstrated 
short telomeres following bystander induction; nevertheless, the telomeric shortening of these bystander cells was statistically 
insignificant compared to the control. However, HMT EXO BE cells revealed a significant initial telomeric shortening compared 
to the control. Moreover, direct irradiated MCF7, ICCM and EXO BE HMT cells demonstrated a significant reduction of 
telomerase activity (***p≤0.0001; **p≤0.005) compared to the controls. Thus data showed that exosomes pellet of irradiated 
tumour MCF7 cells had the similar effect of MCF7 ICCM on non-tumour HMT bystander cells underlying BE induction i.e. 
exosomes of tumour cells could play crucial roles in BE within non-tumour cells following radiotherapy dose (2 Gy X-ray).  
Experiment was performed in 3 technical repeats. 
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Figure 5.13: 

Panel C represent the delayed chromosomal damage and apoptotic levels within the progeny of direct irradiated 
MCF7, bystander and exosomes bystander HMT cells after 24 population doublings. The chromosome aberrations 
were significantly induced (***p≤0.0001) within the progeny of direct irradiated MCF7, bystander and exosomes 
bystander HMT cells. However, there was no significant induction in apoptosis. These results suggest there was an 
inverse relationship between apoptosis and chromosomal instability.  
Panel D illustrate telomere length and telomerase activity within the progeny of direct irradiated MCF7, bystander 
and exosomes bystander HMT cells after 24 generations. Although telomerase activity returned to normal levels, 
the progeny showed significant telomeric shortening (*p≤0.05). These results suggest that the telomerase activity 
could maintain the cells proliferation even with short telomeres, which could lead to chromosomal instability 
especially with lack of apoptosis. Moreover, data suggest that exosomes could mediate GI following 2 Gy X-ray 
irradiation. 
Experiment was performed in 3 technical repeats. 
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Figure 5.14: Effects of exosomes of ICCM from MCF7 cells on HMT cells following 
exosomes’ RNA/ protein inhibition. 
In order to confirm the role of irradiated MCF7 exosomes in BE induction of HMT cells, exosomes from CCCM 
and ICCM of MCF7 cells were purified and treated with RNase to digest the exosomes’ RNA molecules. They 
were then boiled to denature and inhibit the exosomes’ proteins producing RNAs-free and protein-free exosomes, 
which were added to fresh un-irradiated HMT cells. Panel A illustrate the early and delayed responses of 
chromosomal damage and apoptotic induction. Interestingly, the cells that were treated with RNase treated/boiled 
exosomes did not show a significant induction of initial and delayed chromosomal damage or apoptotic responses 
compared to the corresponding controls. Moreover, these cells did not demonstrate a significant reduction in the 
telomere length or telomerase activity. Thus the data suggest that inhibition of irradiated MCF7 exosomes could 
abrogate the non-targeted effect responses within non-tumour HMT cells.  
Experiment was performed in 3 technical repeats. 
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5.5 Discussion and conclusions 

In order to investigate the signals that mediate BE, it was first necessary to prove that 

radiation could cause direct cellular responses and BE within MCF7 cells following 2 

Gy X-ray irradiation. Our data successfully demonstrated this phenomenon at both 

early and late time-points (Chapter 3 and 4 respectively). It is has been well 

established that transfer of irradiated cell conditioned media (ICCM) induces BE in 

un-irradiated cells (Belloni et al., 2011, Herok et al., 2010, Bowler et al., 2006). 

Therefore, in our study, a media transfer technique was utilised to induce BE and also 

to induce exosome-mediated BE following irradiation, i.e. ICCM was collected and 

then transferred to fresh un-irradiated cells following exosome extraction. Therefore, 

in summary, all the bystander cell populations (bystander and exosome-bystander 

cells) were treated under the same conditions.  

The findings showed that exosomes from the ICCM of 2 Gy direct irradiated MC7 

cells induced early and late DNA damage (p≤0.0001) within the un-irradiated MCF7 

cells. However, a similar effect was not observed following media transfer i.e. 

exosome-free ICCM of 2 Gy direct irradiated MCF7 cells transferred onto un-

irradiated MCF7 cells (Figures 5.5 B and 5.6 B), however, these cells did exhibit 

similar initial and delayed cellular responses as the bystander cells, implying that non-

target effects of IR could be mediated by exosomes. Other data also suggest cell-cell 

communications by exosomes are the means by which bystander signals are delivered 

to recipient bystander cells (Porto-Carreiro et al., 2005). Denzer and other workers 

have proposed that exosomes fuse with the plasma membrane of the target cells thus 

enabling delivery of the  exosomes’ cargo into recipient cells (Denzer et al., 2000b). 

Furthermore, it is known that exosomes frequently transfer miRNAs between 

dendritic cells (Montecalvo et al., 2012).  
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Recent evidence has shown that exosomes contain RNA and protein molecules (da 

Silveira et al., 2012, Lasser et al., 2012), which can play crucial roles in the 

mechanism of the non-targeted effects of IR. Dickey et al. have reported that miRNA 

has an indirect role in BE induction; they suggest that miRNA can be considered as a 

non-primary bystander signal leading to DNA double strand breaks (Dickey et al., 

2011). Additional studies have shown that miRNA can play an important role in the 

manifestation of delayed BE by affecting DNA methylation and apoptosis through 

changes in the expression of BCL-2 (Kovalchuk et al., 2011, Koturbash et al., 2007). 

Whilst, McCabe and others have also reported that miRNA can associate with DNA 

methylation (McCabe et al., 2009), which can lead to GI (Zeimet et al., 2011). 

Moreover, it has been shown that GI in the parental germline can be caused by 

miRNA and DNA methylation, inducing GI within the progeny (Filkowski et al., 

2011). Much evidence has confirmed that exosomes of colon cancer epithelial cells 

can transfer a cytokine-like pro-inflammatory protein, which may increase 

inflammation between cells (LiuLiu et al., 2006). Furthermore, cytokines, such as 

TNF-α, are localised within exosomes of fibroblast cells (Liu et al., 2010, Johnson et 

al., 1975). All these results therefore suggest that exosome proteins could mediate 

non-targeted effects of IR; however, the exact mechanism needs to be quantified for 

more accurate results. 

In our study's data, we were able to demonstrate the ability of the progeny exosomes 

of direct irradiated, bystander and exosomes bystander cells to induce DNA damage 

in un-irradiated MCF7 recipient cells underlying the delayed damage response 

following irradiation (Figure 5.7). In general, the results of the first part of our study 

(Section 5.4.1) suggest that irradiated cells released exosomes molecules into the 

microenvironment (the media) consequently inducing BE responses in the un-
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irradiated cells through one and/or two possible mechanisms. The first mechanism 

could involve inflammation, possibly mediated by the exosomes proteins, and the 

second mechanism could involve exosome RNAs (miRNAs). Moreover, bystander 

cells and the progeny of direct irradiated and bystander cell populations also showed 

the ability to secret exosomes into the microenvironment, which could contribute to 

the delayed responses (GI) as illustrated in figure 5.15. 
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Figure 5.15: Scheme of possible mechanisms of exosome-mediated non-targeted 
effects.  
Irradiated cells release exosomes into the microenvironment providing two possible mechanisms of their involvement in inducing 
BE in the un-irradiated cells, either through (a) exosomes’ protein molecules, which can lead to inflammation and chromosomal 
damage and (b) through epigenetics, which could be mediated by exosomes’ RNA molecules. Delayed damage could be 
mediated by one or both of these mechanisms together.  The progeny of irradiated and bystander cells could release exosomes, 
which could affect the progeny and increase delayed responses.  

 

To confirm the existence of two possible mechanisms of exosome-mediated non-

targeted effects of IR, we set up experiments were the ICCM exosomes’ pellet was 
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divided into 4 fractions (Section 5.3.2). The first fraction was directly added to fresh 

cells to induce exosome BE; as we believed exosome RNA and protein molecules 

contribute to induce BE. The second fraction was treated with RNase thus producing 

RNA-free exosomes, to investigate the role exosome RNAs in the induction of non-

targeted effects of IR. The third exosome pellet fraction was boiled at 98°C for 10 

minutes to denature and inhibit the exosomes’ protein molecules, to allow 

investigation of the role of exosomes’ proteins in the non-targeted effects of IR. 

However, because non-targeted effects of IR could be abrogated by inhibiting both 

RNAs and proteins of exosomes, the fourth exosome pellet fraction was treated with 

RNase A for 30 minutes at 37ºC and then boiled at 98°C for 10 minutes, resulting in 

both the exosome RNAs and proteins inhibition. 

As shown in section 5.4.2.ii, treatment of exosome pellet with RNase significantly 

abrogated its ability to induce bystander chromosomal damage and apoptotic 

induction after 1 population doubling (Figure 5.10 A), suggesting that the initial 

signals mediating BE include a RNA molecule. These cells exhibited an elevation in 

chromosomal damage; nevertheless this elevation was statistically insignificant. 

Moreover, MCF7 exosome cells that were treated with RNase did not show a 

significant reduction in telomere length and telomerase activity at the same time-point 

compared to their controls (Figure 5.10 B). However, telomerase activity levels within 

MCF EXO-RNase BE group and their control were lower than MCF7 direct control, 

MCF7 CCCM and MCF7 exosome control (Figure 5.9 B). These findings suggest that 

RNase A digested telomerase RNA (TR or TERC, telomerase template) causing 

telomerase dysfunction. Surprisingly, the progeny of MCF7 EXO-RNase cells 

demonstrated a high induction of chromosomal damage (p≤0.0001) after 24 

generations compared to the control (Figure 5.10 A). Our data suggest that exosome 
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RNA molecules are partly involved in the signals of non-targeted effects of IR. 

Furthermore, the progeny were shown to exhibit short telomeres although statistically 

insignificant (Figure 5.10 A) and normal levels of telomerase activity. These findings 

suggested that RNase A did not completely abolish BE and GI within MCF7 cells 

following 2 Gy X-ray irradiation, implying that exosome RNAs could be in part, 

involved in the induction of non-targeted effects of IR in the MCF7 cells following 2 

Gy X-ray. Other results from our investigations additionally suggest that signals 

mediating BE and GI were not solely due to RNA molecules but that exosome 

proteins played a role since when the ICCM containing exosomes were boiled causing 

their subsequent inhibition, the level of initial chromosomal damage in the MCF7 

cells (MCF7 boiled EXO BE, figure 5.11 A) was significantly diminished (p≤0.05) 

compared to the MCF7 that had not been boiled (MCF7 EXO BE, figure 5.9). 

However, early chromosomal damage was significantly observed (p≤0.05) in the 

MCF7 boiled EXO BE cells compared to the corresponding control. Moreover, these 

cells demonstrated a high induction of delayed chromosomal damage (p≤0.05) after 

24 population doublings (Figure 5.11 A). MCF7 boiled EXO BE cells also showed a 

lower reduction in telomere length and telomerase activity (Figure 5.11 B) compared 

to MCF7 EXO BE cells (Figure 5.9 B) after 1 population doubling. These results are 

similar to those observed by the MCF7 boiled EXO BE group suggesting that the 

exosome proteins were partly involved in mechanisms of non-targeted effects of IR.  

Thus in summary, both RNA and protein molecules of ICCM exosomes were shown 

to play a crucial role in the induction of non-targeted effects of IR.  This was 

confirmed by the results of the bystander cells treated with RNase and boiled (MCF7 

boiled EXO-RNase BE), where no significant early or late cellular responses 

following treatment (Figures 5.12 A and B) were observed; thus implying that 
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inhibition of RNA and proteins molecules of ICCM exosomes abrogated the 

consequences of BE and GI in the bystander MCF7 cells following 2 Gy X-ray. 

Our investigations also found that communication between irradiated tumour MCF7 

and non-tumour HMT cells following radiotherapy dose (2 Gy X-ray) could be also 

mediated by exosomes. Our data showed that HMT cells, treated with ICCM 

exosomes of 2 Gy direct irradiated MCF7 cells, exhibited similar responses to HMT 

cells that were treated with ICCM (Figures 5.13 A, B, C and D). These findings 

suggest that exosomes were involved in the signals mediating BE and GI in the HMT 

cells following irradiated MCF7-bystander HMT cell communication. Moreover, 

inhibition of exosomes molecules (RNAs and proteins) abrogated the induction of BE 

and GI in HMT cells following irradiated MCF7-bystander HMT cell communication 

(Figure 5.14 A and B). These results could have potential consequences in the genesis 

of secondary cancer following radiotherapy.  

Due to the duration of exosome preparation (almost 3 hours), our findings suggest that 

exosomes are frequently associated with the long-lived signals of non-targeted effects 

of IR. However, for more robust data, exosomes and their molecules would need to be 

further quantified. 
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Conclusion: 

1. Exosomes are nanovesicles (40-140nm), which are secreted by sham-

irradiated/control and 2 Gy direct irradiated MCF7 cells into the microenvironment 

(media). Exosomes of sham-irradiated cells are morphologically similar to the 

exosomes of 2 Gy irradiated cells.   

2. Both sham-irradiated and 2 Gy direct irradiated MCF7 cell exosomes can 

communicate with un-irradiated bystander cells. However, exosomes of 2 Gy 

irradiated cells only can cause BE. 

3. Bystander cells are also able to release exosomes, which can induce cellular 

damage. Moreover, the progeny of irradiated and bystander cells showed the ability to 

secret exosomes which were able to induce cellular damage in fresh un-irradiated 

cells underlying delayed damage response. It is this mechanism that is most likely for 

the propagation of GI. 

4. Exosome RNA and protein molecules play crucial roles in the mechanism of non-

targeted effects of IR. Inhibition of exosome RNAs and proteins, can abrogate the 

induction of BE and GI in cells. 

5. Exosomes can mediate the non-targeted effects of IR in the non-tumour HMT cells 

following cell communication with 2 Gy irradiated MCF7 cells. 

6. Exosomes associate with the long-lived signals of the non-targeted effects of IR. 

However, further studies are required to assess whether exosomes are also involved in 

short-lived signals of BE. Further investigations are also needed to enable 

quantification of the exosomes that are released following irradiation.  
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Chapter 6: Discussion 
Our understanding of radiation effects is evolving from a mechanism driven 

exclusively by direct damage to DNA, to one where secondarily induced DNA 

damage and instability, as well as intra and particularly inter-cellular communication 

become integral components. The development of ideas around non-targeted effects 

has highlighted the important role of intercellular signalling in the development of 

bystander effects and the triggering of genomic instability (GI). Key understanding of 

these effects has derived from several advances in the field of radiation biology 

research. These include numerous in vitro and in vivo studies that indicate in addition 

to the targeted effects/damage response induced directly in cells by irradiation, a 

variety of non-targeted effects may make important contributions to determining the 

overall outcome after radiation exposure. Research studies in this field were reviewed 

in chapter one. However, the non-targeted effects response is not universally 

expressed, and this could be due to several factors including: cell/tissue types, 

radiation quality and dose as well as genetic predisposition factors (Kadhim et al., 

2004, Kadhim, 2003). Also, studies of the non-targeted responses of radiation suffer 

from a gap in our understanding of the likely mechanisms associated with non-DNA 

targeted effects, particularly with respect to human health consequences at low and 

intermediate doses of ionizing radiation such as those used for radiation therapy. In 

addition, other outstanding questions that need to be addressed include: the 

direct/indirect crossmechanistic links between the different non-targeted responses, 

and if the observed variation in non-targeted response between individuals and cell 

lines are linked to genetic background or epigenetic effects. Furthermore, whilst the 

initial target and early interactions in cells that give rise to non-targeted responses in 

neighbouring or descendant cells are still unknown, numerous studies point towards 

an epigenetic mechanism.  
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This study was set up to address some of the above questions and provide answers to 

the conflicting views and reports of the implication of the non-targeted effects for 

health risk and therapy, especially the question of whether BE is beneficial or 

detrimental. Therefore this study was set up to: 

1- Investigate whether the bystander effect is potentially detrimental or beneficial in 

normal versus tumour cells. Linked to this, the mechanistic relationship between 

bystander effects and the GI response in normal and tumour cells will be explored. 

2. Achieve an increased understanding of the mechanistic link between radiation-

induced genomic instability in irradiated and un-irradiated bystander cells including 

the molecular signalling involved. 

As described in the introduction, radiation-induced bystander effect (BE) is the 

biological effect observed in un-irradiated cells that received signals from nearby 

irradiated cells (Nagasawa and Little, 1992). Furthermore, it has been well 

documented that BE frequently induce chromosomal damage (Lorimore et al., 2005), 

micronuclei (Kashino et al., 2007b), mutations, apoptosis (Hamada et al., 2008) and 

GI within the progeny of bystander cells (Bowler et al., 2006). Thus, BE could be 

considered as harmful or beneficial depending on the consequences of the biological 

effects. Therefore, this study first aimed to investigate the beneficial BE consequences 

by using different cell communications between tumour MCF7 and non-tumour HMT 

cells. The cell communication included irradiated MCF7-bystander HMT, irradiated 

MCF7-bystander MCF7, irradiated HMT-bystander MCF7 and irradiated HMT-

bystander HMT cells following low (0.1 Gy) and high (2 Gy) doses of X-ray 

irradiation; mimicking the effects of diagnostic (0.1 Gy) and radiotherapy doses (2 

Gy) on the human body respectively. A full body CT scan emits 0.1 Gy X-ray (BER, 

2010), additionally this dose has been established as a fractionated dose to a high 
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therapeutic dose of radiation in cancer treatment. Moreover, it is known that normal 

cells, in the track of IR beam during radiotherapy, can receive a low dose of IR 

(Joiner, 1987). In contrast, 2 Gy X-ray was chosen to investigate the effects of 

bystander signals secreted from tumour cells to the normal surrounding cells 

following equivalent radiotherapy doses and also to mimic conditions of the normal 

cells, which adhere or are in vicinity of cancer cells, which thus frequently receive 

high doses of IR during radiotherapy. Our investigations could be potentially 

considered as important issues in the radiotherapy process. 

Chromosomal damage, apoptotic induction and telomeric instability, including 

telomere length and telomerase activity measurement, were measured as biological 

end-points, and these responses are strongly correlated. Telomeric instability can 

instigate chromosomal instability (Berardinelli et al., 2011), and short telomeres 

frequently cause apoptosis (Merle et al., 2011). A study by Meznikova and co-authors 

showed telomerase dysfunction can lead to telomeric shortening (Meznikova et al., 

2009) causing chromosome aberrations (Song et al., 2012). Moreover, a previous 

study by Kadhim and colleagues has suggested there is an inverse relationship 

between apoptosis and chromosomal instability, in which a high level of apoptosis 

can remove cells with high levels of chromosomal damage, consequently resulting in 

a decrease in chromosomal instability (Kadhim et al., 1995). Such mechanisms could 

contribute to the possibility of the beneficial effects of non-targeted effects of 

radiation, for example BE is considered beneficial if the bystander signals are able to 

induce apoptosis and multi-damage leading to auto-killing within bystander cancer 

cells (Abdelrazzak et al., 2011) but not in normal cells. On the other hand, detrimental 

consequences of bystander effects can cause more genomic instability in the progeny 

of bystander cancer or normal cells, which can lead to more aggressiveness in the 
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cancer cells or cause cancer in the normal tissue (Raynaud et al., 2008, Naruke et al., 

2009).  

The second aim of this study was to increase the understanding of the mechanism of 

non-targeted effects of IR underlying cell-cell communication signals. The study 

tested the hypothesis that exosomes of ICCM mediate the BE and GI, and that RNA 

and protein molecules play an important role in this process.  

The experimental results of chapter 3 and 4 addressed the first aim where the direct 

irradiated and bystander responses in both MCF7 and HMT cells were discussed. The 

tumour MCF7 cells exhibited different responses from non-tumour HMT cells, i.e. 

HMT cells were shown to be more resistant to IR and bystander signals than MCF7 

cells. The results showed that both direct irradiated and bystander MCF7 cells 

demonstrated early and late chromosomal damage and telomere shortening following 

0.1 and 2 Gy X-ray. However, apoptosis and telomerase dysfunction were observed 

only at the 4 hours and 1 population doubling time-point respectively. Data suggest 

that both direct IR and/or bystander signals induced DNA damage within MCF7 cells. 

This DNA damage could lead to apoptosis and chromosomal aberration as early 

responses. Also IR and bystander signals could cause telomerase dysfunction, which 

could instigate telomere shortening in the MCF7 cells. The short telomeres frequently 

led to chromosomal aberration as early responses. MCF7 cells could produce high 

frequency of chromosomal instability during DNA misrepair. The results also showed 

that both direct irradiated and bystander MCF7 cells exhibited delayed short 

telomeres, which could cause chromosomal instability. Active telomerase could also 

maintain cell proliferation even with short telomeres. Therefore, BE within MCF7 

cells could be considered detrimental, due to the high level of GI, which can lead to 

more cancer cell aggressiveness as shown in figure 6.1.  



176 
 

                    

Irradiated and bystander MCF7 cell populations

Telomerase dysfunction

Telomere shortening

DNA damage

Apoptosis, Chromosomal 

aberrations

Chromosomal aberrations

Chromosomal/Genomic instability

DNA misrepair

E
a
rl

y 
re

s
p
o
n
s
e
s

D
e
la

y
e
d
 

re
s
p
o
n
s
e
s

Telomere shortening, 

active telomerase and lack 

of apoptosis within the 

progeny cells of irradiated 

and bystander cells

0.1/2 Gy X-ray

Possible detrimental BE consequences

Irradiated and bystander MCF7 cell populations

Telomerase dysfunction

Telomere shortening

DNA damage

Apoptosis, Chromosomal 

aberrations

Chromosomal aberrations

Chromosomal/Genomic instability

DNA misrepair

E
a
rl

y 
re

s
p
o
n
s
e
s

D
e
la

y
e
d
 

re
s
p
o
n
s
e
s

Telomere shortening, 

active telomerase and lack 

of apoptosis within the 

progeny cells of irradiated 

and bystander cells

0.1/2 Gy X-ray

Possible detrimental BE consequences
 

Figure 6.1: The possible cellular responses in the direct irradiated and bystander 
MCF7 cells following 0.1 and 2 Gy X-ray irradiation. 
 
Whilst the cellular responses of HMT cells were shown to be similar to the MCF7 

cells following 2 Gy X-ray in both direct irradiated and bystander cells, the 0.1Gy 

direct irradiated and bystander cells showed different responses, as shown in figure 

6.2. The direct irradiated HMT cells demonstrated significant chromosomal damage 

after 1 population doubling following 0.1 Gy X-ray. The results suggest that IR 

induced DNA damage that caused initial apoptosis and chromosomal damage 

following 0.1 Gy direct radiation exposure. Moreover, the results showed early 



177 
 

telomerase dysfunction response, which could lead to telomere shortening as early 

responses in these cells. Interestingly these cells did not reveal chromosomal 

instability; however, a high level of apoptosis was observed after 12 population 

doublings (delayed response). This suggested that the high level of apoptosis 

eliminated the cells with high chromosomal damage, demonstrating an underlying 

mechanism for the inverse relationship between apoptosis and chromosomal 

instability, as shown in chapter 3 and 4. Although the 0.1 Gy direct irradiated HMT 

cells did not show chromosomal instability after 24 population doublings, there was a 

potential risk of chromosomal instability because of the short telomeres within these 

cells. Data suggest that at later generation doublings (more than 24 generations) these 

cells might express a significant level of chromosomal instability. The 0.1 Gy 

bystander HMT cells did not show significant chromosomal damage after 1 

population doubling. However, these cells exhibited a significant induction of early 

apoptosis, telomere shortening and telomerase activity reduction. Moreover, these 

cells continued to show insignificant chromosomal instability and a significant 

apoptotic level and telomere shortening as late responses. However, telomerase 

activity returned to the normal level (See chapter 4). Similarly, due to the telomeric 

instability within these cells, there was a potential risk of chromosomal instability, 

which might be observed at later population doublings.  
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Figure 6.2: The possible cellular responses in the direct irradiated and bystander HMT 
cells following 0.1 Gy X-ray irradiation. 
 
The mechanisms of BE and GI induction were not clear from our first experiments 

(Figure 6.2 - the direct irradiated and BE experiments).  There were still outstanding 

questions: 1) How were the signals of non-targeted effects of IR released from the 

irradiated cells? 2) How were these signals received by un-irradiated cells? 3) Were 

these signals short or long-lived and were they transmissible from generation to 

generation causing damage and delayed response? 4) Could the progeny of the direct 

irradiated and bystander cells release different or similar signals, which could induce 

delayed damage responses? These important questions needed to be addressed in 

order to understand the molecular mechanisms of cell communications following 
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irradiation and bystander responses which could have potential application in 

radiotherapy, especially between direct irradiated tumour-bystander tumour and direct 

irradiated tumour-normal cell combination following 2 Gy (the radiotherapy dose). 

These issues/questions were investigated in chapter 5 from the work of exosome cell-

cell communication signals following irradiation. Data showed that exosomes from 

ICCM of MCF7 cells induced early DNA damage in bystander MCF7 cells following 

2 Gy X-ray irradiation. In contrast, the ICCM without exosomes could not cause 

significant damage within the bystander MCF7 cells (exosomes bystander cells). 

These results suggest that irradiated cells secrete exosomes and these acted as delivery 

vesicles instigating DNA damage within the bystander cells. The results also 

demonstrated that the progeny of bystander cells were able to release exosomes, 

which could mediate GI as discussed in chapter 5. Additional to the transmissible 

damage that can lead to GI (Glaviano et al., 2006), our data suggest that delayed 

damage responses could be caused by exosomes, in which RNA and protein 

molecules of exosomes play an important role in this process. The data also 

demonstrate that exosome RNAs and proteins of direct irradiated MCF7 cells were 

responsible for producing the initial and delayed cellular responses in the MCF7 and 

HMT cells. Inhibition of exosome RNA and protein molecules frequently abrogated 

the non-targeted effects of IR, as shown in chapter 5. Thus, the possible cellular 

responses observed in the 2 Gy direct irradiated MCF7 and bystander MCF7 and 

HMT cells could be due the exosomes. We propose that these exosomes, 

molecules/signals were received by bystander cells (MCF7 and HMT cells) causing 

cellular damage responses such as DNA damage and reduction in telomere lengths. 

Moreover, bystander cells released exosomes, which could increase cellular damage 

within the bystander un-irradiated cells. Additional to possible DNA misrepair, the 
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progeny of direct irradiated and bystander cells secreted exosomes that frequently 

increased cellular damage underlying the delayed damage responses as shown in 

figure 6.3. 

 

 
 
Figure 6.3: The possible cellular responses in the direct irradiated MCF7 and 
bystander MCF7 and HMT cells following 2 Gy X-ray irradiation. 
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Conclusion and future work 

The findings concluded that BE most likely has detrimental consequences within the 

tumour (MCF7) and non-tumour (HMT-3522S1) breast epithelial cells following both 

low (0.1 Gy) and high (2 Gy) doses of X-ray irradiation, because of the induction of 

chromosomal and telomeric instability. These detrimental consequences are 

frequently mediated by exosomes that contain RNA and protein molecules. Inhibition 

of these molecules can abrogate BE and GI following radiotherapy dose, which can 

potentially have an application in the clinical radiotherapy.  

These findings provide a window of opportunity for further investigations in to   the 

exact characteristic of exosomes in samples by demonstrating the presence of specific 

exosomes’ marker using for example immunofluorescence. In addition, quantifying   

exosomes is important in irradiated/bystander population vs. control and further 

functional tests to investigate the  origin of the RNAs and proteins involved in 

mediating BE are also needed. Another potential important area for future study is to 

investigate how exosomes and their cargo (RNA and protein molecules) are inhibited?    
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