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Abstract
Deep brain stimulation (DBS) is a remarkably effective clinical tool, used primarily formovement
disorders. DBS relies on precise targeting of specific brain regions to rebalance the oscillatory beha-
viour of whole-brain neural networks. Traditionally, DBS targeting has been based upon animal
models (such asMPTP for Parkinson’s disease) but has also been the result of serendipity during
human lesional neurosurgery. There are, however, no good animalmodels of psychiatric disorders
such as depression and schizophrenia, and progress in this area has been slow. In this paper, we use
advanced tractography combinedwithwhole-brain anatomical parcellation to provide a rational
foundation for identifying the connectivity ‘fingerprint’ of existing, successful DBS targets. This
knowledge can then be used pre-surgically and even potentially for the discovery of novel targets. First,
using data fromour recent case series of cingulateDBS for patients with treatment-resistant chronic
pain, we demonstrate how to identify the structural ‘fingerprints’ of existing successful and unsuccess-
ful DBS targets in terms of their connectivity to other brain regions, as defined by thewhole-brain
anatomical parcellation. Second, we use a number of different strategies to identify the successful fin-
gerprints of structural connectivity across four patients with successful outcomes comparedwith
two patients with unsuccessful outcomes. Thisfingerprintingmethod can potentially be used pre-
surgically to account for a patient’s individual connectivity and identify the best DBS target. Ulti-
mately, our novel fingerprintingmethod could be combinedwith advancedwhole-brain computa-
tionalmodelling of the spontaneous dynamics arising from the structural changes in disease, to
provide new insights and potentially new targets for hitherto impenetrable neuropsychiatric
disorders.

Introduction

Deep brain stimulation (DBS) has shown remarkable results in helping to alleviate the symptoms of otherwise
treatment-resistantmovement disorders such as Parkinson’s disease and dystonia [1]with over 100 000 patients
having been implanted to date [2]. There is a growing interest in usingDBS for other conditions such as
neuropsychiatric disorders [3], yet there is a shortage of suitable animalmodels to test potential targets.
Serendipitous discoveries during human lesional neurosurgery have informed some targets such as thalamic
regions [4, 5] and periventricular/periaqueductal grey [6] for treatment-resistant chronic pain [7]. However, the
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recent discovery of a novelDBS target in the anterior cingulate cortex (ACC) for very severe treatment-resistant
chronic pain [8] has raised the important question of which region of this heterogeneous brain region is the
most effective DBS target for successful outcome.

The underlyingmechanisms ofDBS are still largely unknown, but it has been shown that the efficacy
ofDBS is related to at least three factors: (1) the stimulation parameters such as voltage, frequency and
amplitude; (2) the physiological properties of the local neural tissue (whichmay differ by disease state); and
(3) the interactions between the electrode and the surrounding neural tissuewithwhole-brain structural
connectivity of the targeted region [9]. The evidence suggests that these biophysical factors combinewith
the individual structural connectivity of theDBS target to help rebalancewidespread dynamic brain
networks [1, 10].

The study of structural brain connectivity has given rise to connectomics as the comprehensivemap of neural
connections in the brain onmany spatial scales [11]. In humans, thismap uses diffusionweighted/tensor
imaging (DWI/DTI) tomeasure the diffusion of watermolecules constrained by thewhite-matter fibre tracts,
typically on the scale ofmillimetres [12, 13]. The connectivity between brain regions can be reconstructed using
methods such as probabilistic tractography utilizing the underlyingmeasures of fractional anisotropy, local level
ofmean diffusivity, radial diffusivity or axial diffusivity [14, 15].

Recent studies have identified how integrated physiological systems form a network of interactions that
affects psychological function. These systems are characterised by specific network structures, suggesting a
robust dependency between topology and function on complex networks [16–18].

Connectomics depends on parcellations of the brain into functionallymeaningful and distinct regions,
which historically have been based on careful studies of the properties of the underlying brain tissue [19].
Parcellations used for human neuroimaging research typically include tens to several hundreds of regions [20].
The optimal parcellation of brain regions is not currently clear but some of themost popular choices include the
Hagmann parcellationwith 66 cortical regions [21] and the automated anatomical labeling (AAL) parcellation
with 116 cortical, subcortical and cerebellar regions [22].

Combining parcellation schemeswith probabilistic tractography in humans hasmade it possible to e.g.
subdivide the human thalamus into significant clusters of connectivity [23], which correspondedwith existing
maps of established patterns of connectivity [24]. The idea ofmeasuring the inter-regional structural
connectivity where each functional region has a distinct ‘fingerprint’was demonstrated in a structural
connectivity database in primates [25]. Klein and colleagues have provided an excellent overview of existing
studies using tractography forfingerprinting structural connectivity [26]with further progress beingmade, such
as recent inter-species comparisons of functional connectivity in humans andmacaques [27].

The structural connectivity between regions in a given parcellation scheme can then be further elucidated
using graph theoretical tools to demonstrate globalmeasures such as small-worldness [28], and localmeasures
such asmodules defined as locally connected clusters [29] and hubswhich are central brain regionswith high
measures of degree and centrality [30].

These advances can potentially help in identifying the necessary and sufficient structural connectivity ofDBS
targets using neuroimaging in existing patient groups, and subsequently as a pre-surgical tool and a rational
method for discovering newDBS targets.

In this paperwe use advanced probabilistic tractography combinedwith awhole-brain anatomical
parcellation to provide an innovative foundation for identifying the structural connectivity fingerprint of
existing, successful DBS targets. First, using data fromour recent case-series of cingulateDBS for patients with
treatment-resistant chronic pain, we demonstrate how to identify the structural ‘fingerprints’ of existing
successful and unsuccessful DBS targets in terms of their connectivity to other brain regions, as defined by the
anatomical parcellation. Second, conservative pattern recognitionmethods are used tofingerprint the structural
connectivity across patient groupswith successful and unsuccessful outcomes. Potentially this fingerprint
could be used pre-surgically to account for a patient’s individual connectivity and identify the bestDBS target.
Thismethodmay also be employed to search thewhole brain to help identify novel DBS targets for treatment-
resistant disorders. Furthermore, our novel fingerprintingmethod could be combinedwith advanced
whole-brain computationalmodelling of the spontaneous dynamics [31] arising from the structural changes
in disease to provide new insights and potentially even new targets for hitherto impenetrable psychiatric
disorders.

Methods

Figure 1 summarises themethods described in the following. Briefly, we analysed the electrode positions inDBS
implanted patients with chronic pain at the individual level, calculated the transformation toMNI space and
estimated the current spread to generate likely left and right anatomical regions of stimulation. These seedmasks
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were then used togetherwith each individual’s DTI to estimate the structuralfingerprints of each electrode.
We then used a conservative strategy to estimate the necessary underlying connectivity for patients with
successful (SO) and unsuccessful (UO) outcomes.

Figure 1.Novelmethod for fingerprinting structural connectivity of DBS electrodes. (A) Electrode localisation. (B) Creation of a
binarymask of the effective electric field distribution around theDBS electrode. (C) Registration of a brain parcellation template
(AAL) to each patient native space, and further probabilistic tractography between the left and rightDBS electrode and these brain
regions. Afingerprint of the resulting normalised structural connectivity strength for the left (blue) and right (right)DBS electrodes
was represented in different ways, such as radar-plots (top), logarithmic scale normal plots (middle) and 3D glass brain
reconstructions (bottom).
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Patients
Weanalysed data from six patients with neuropathic chronic pain refractory tomedication, presented forDBS
toOxford FunctionalNeurosurgery. This sample includes successful (n= 4) and unsuccessful cases ofDBS
(n= 2), based on long-term clinical postoperative assessments. Further demographic and clinical details about
these patients can be found in table 1.

This studywas approved by theNational Research Ethics Service committee SouthCentral—Berkshire in
Bristol—and informed consent was obtained fromall patients.

Surgical procedure
Quadripolar electrodesMedtronicmodel 3389 (Medtronic,Minneapolis, USA) forDBSwere implanted in the
ACCbilaterally. Before surgery, anatomical high-resolution T1 andT2MRI scanswith 1 × 1 × 1mmvoxel size
were acquired to plan the electrode implant protocol. TheCosman–Roberts–Wells stereotactic framewas
applied to the patient’s skull under local anaesthetic. For a detailed description of the surgical procedure, see
Kringelbach and colleagues [32]. A 5Vbipolar stimulation between thefirst (C0) and last (C3) contacts, with a
frequency of 130Hz and a pulse duration of 450 μs was applied to all the patients.

Image acquisition
AllDTI data for the patients were acquired on a Philips Achieva 1.5 TeslaMagnet inOxford. DWIwas
performed using a single-shot echo planar sequencewith coverage of thewhole brain. The scanning parameters
were echo time of 65ms, repetition time of 9390ms, 176 × 176 reconstructedmatrix, reconstructed voxel size of
1.8 × 1.8 × 2mm. Furthermore, DTI data were acquiredwith 33 optimal nonlinear diffusion gradient directions
(b= 1200 smm−2) and one non-diffusionweighted volume (b= 0). Pre- and postoperative stereotactic CT scans
were also acquired.

DBS electrode localisation and co-registration toDTI space
For each patient, a postoperative CT scanwas used to confirm theDBS electrode contact positions. An
individual single-voxel binarymask for each electrode contact was then created.

In order to achieve a good transformation of thesemasks (CT space) toDTI space, we used theMRI T1 scan
as an intermediate reference image, taking advantage of its good spatial resolution to improve the accuracy of
our linear registration processes. Both theCT andDTI (b0 volume)were co-registered to the T1 space using a
3D rigid-body transformation (6DOF) and a nearest-neighbour interpolationmethod. The transformation
matrix resultant from theDTI to T1 space linear co-registrationwas inverted and applied to the electrodemasks
(T1 space), using a trilinear interpolationmethod. For each electrode transformation, we identified and created
a binarymask of the voxel with the highest intensity. This newmask represents the voxel with highest probability
of containing the single-voxel electrode contact transformation from theCT to theDTI space.

This set of operations, which included the creation, linear co-registration and transform application, were
performed using the FLIRT andApplyXFM tools fromFMRIB Software Library (FSL)where FMRIB stands for
FunctionalMagnetic Resonance Imaging of the Brain (www.fmrib.ox.ac.uk/fsl/, Oxford) [33].

Simulation of the electricfield distribution
A simple empiricalmodel for volume of activated tissue (VAT) estimation, developed for conditions of
monopolar stimulation and validated for clinical cases ofmovement disorders was used in this study [34].

Table 1.Demographics and clinical characteristics of patients. For each patient, information about the clinical success rating, sex and age, as
well as different clinical details such as the pre-operational visual analogue scale (VAS), date of surgery and origin and location of the pain are
listed.

Pain

Patient Sex Age at surgery Outcome Status Origin Location Date of surgery

SO1 Male 49 Successful FBSSa Right hemibody 12 June

SO2 Male 51 Successful FBSSa Right leg 10October

SO3 Female 46 Successful FBSSa Whole Spine 12March

SO4 Male 46 Successful BPIb Right arm 12November

UO1 Male 52 Unsuccessful Unknown Chest 11November

UO2 Female 58 Unsuccessful Head injury Right hemibody 12May

a Failed back surgery syndrome.
b Brachial plexus injury.
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whereΩ is the tissue impedance,U the applied voltage andk1,k3 andk4 the second-order polynomial
coefficients of the simplestmodel with close-to-best accuracy (model 10), resultant from amultivariate 2Dfit,
with values of−1.0473, 0.0473 and−1.0473 respectively.

This simplified 2Dmodel can be adopted as a fast approach for estimating theVAT radius for any given
voltage between 1–10V and impedance 500–2000Ω [34].

The stimulation effects using contacts C0 (−) andC3 (+) as active are believed to affect the neural tissue
surroundingC1 andC2due to the nature of the electric field distribution in the bipolar stimulation between
non-adjacent contacts (±). In this case, the resulting spatial effects of the stimulationwill be lower in the radial
direction and higher in the z-axis [35]. There is currently no optimal solution formodelling the electricfield
distribution of bipolar stimulation around and between non-adjacent active contacts, which can realistically
capture the neural activation in the complex brain tissue environment. Due to the limitations of themodel used
for estimating theVAT (developed formonopolar stimulation assuming a perfectly isotropic electromagnetic
field distribution around the contact), the spatial resolution ofDTI images and the lack of in vivomeasurements
of tissue impedance, we decided to adopt a simplified solution of the electrode configuration and stimulation
settings. Therefore, ourfinal strategywas to simulate the application of 3V to all the four electrode contacts
previously registered toDTI space, using a value of tissue impedance of 1003Ω [34].

For each patient, TheVAT around each electrode contact of the sameDBS leadwas simulated and later
merged, creating a single continuousVAT around the four contacts of eachDBS lead. The effect of the two
stimulation parameters on the final simulatedVAT around eachDBS leadwas also studied.

Fingerprint of individual brain structural connectivity
The construction offingerprints of individual brain structural connectivity consisted of a two-step process. First,
the nodes of the networkwere defined using brain parcellation techniques. Secondly, the connections between
theDBS electrode to the nodes in the parcellationwere estimated using probabilistic tractography. In the
followingwe outline the details involved in each step.

Brain parcellation
The parcellation of the entire brain in nativeDTI space into 116 cortical, subcortical and cerebellar regions (table
S1)was accomplished using the AAL template, where each region represents a node of the brain network [22].

We used the Flirt tool (FMRIB,Oxford) [33] to linearly co-register the standard ICBM152 inMNI space
[36] into the T1-weighted structural image, by using an affine registration (12DOF) and a nearest-neighbour
interpolation. The resulting transformationmatrix was subsequently concatenatedwith the previously created
T1 toDTI native space transformationmatrix, allowing a direct co-registration of the AAL template inMNI
space to the diffusionMRI native space. This last transformationwas accomplished using a nearest-neighbour
interpolationmethod to ensure that discrete labelling valueswere preserved.

Fingerprint of electrode brain connectivity
Weused the FDT toolbox in FSL (version 5.0, www.fmrib.ox.ac.uk/fsl/, FMRIB,Oxford) to carry out the
multiple processing stages of the diffusionMRI data. The initial pre-processing involved a correction of head
motion and eddy current gradient induced image distortion.We furthermodelled for crossing fibreswithin
each voxel of the brain using aMarkovChainMonte Carlo sampling algorithm to build up distributions on
diffusion parameters and estimate the local probability distribution offibre direction at each voxel of the brain
[37]. For this step, we used an automatic estimation of twofibre directions within each voxel, which can
significantly improve the tracking sensitivity of non-dominant fibre populations in the human brain [38].

We estimated the connectivity probability by applying probabilistic tractography at the voxel level using a
sampling of 5000 streamlinefibres per voxel. Brain boundaries were defined based on a binary brain for the
whole native brain (skull extracted). The connectivity from a seed voxel i to another voxel jwas defined by the
proportion offibres passing through voxel i that reach voxel j [38]. This was then extended from the voxel level
to the region level, i.e. in a brain region consisting of n voxels, 5000*nfibreswere sampled. The connectivity
probability Pij from region i to region j is calculated as the number of sampled fibres in region i that connect the
two regions divided by 5000*n, where n is the number of voxels in region i.

For eachDBS electrode, the connectivity probability to each of the 116AAL regionswas calculated.We
implemented the calculation of regional connectivity probability using in-house Perl scripts. Regional
connectivity was normalised using the regions’ volume expressed in number of voxels. For each patient, a
2 × 116weightedmatrix was constructed, representing the structural connectivity networks of stimulation
across the brain for the left and right DBS electrode as individual seed regions. Thismethod allows for analysis of
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the impact of stimulation of each individual DBS electrode, as well as the effect of combined bilateral stimulation
over thewhole brain network.

Statistical analysis andpattern recognition
Having constructed a probabilistic network of structural connectivity stimulation for each patient, we focused
on decomposing the data into different network properties, by applying simple but potentially powerful
statisticalmeasures. For every patient, we started by analysing the pattern of stimulation for each probe
separately. A logarithmic version of this connectivity strength profile was produced to reduce thewide range of
values to a give a better visual indication of the nodes being stimulated rather than emphasising the connectivity
strength. At this stage, we aimed to identify potential intra- and inter-group lateral network differences.

We then focused on the global effect of bilateral stimulation over thewhole brain network, by concatenating
the data of bothDBS electrodes.We carried out three separate analyses:

Global network properties
Wecalculated the global graph theoreticalmeasures (number offibres, strength and number offibres per
connection) [39], as well as simple statisticalmeasures (mean, standard deviation andmedian). This allowed us
to quantify and decode the properties that characterise the structural connectivity fingerprint of each outcome
type group.

Group-exclusive target areas
In addition, a conservative approachwas also used to extract group intrinsic nodal properties by identifying the
nodes that survived a threshold of 5%of themaximum connectivity strength of the network in the participant,
andwere found common to all patients within the same group.

Connectivity strength comparing groups
Supplementary permutation-based paired t-tests identifiedwhich network nodes showed significant group
differences in terms of connectivity strength. Under the null hypothesis there should be no differences in the
average connectivity strength between the two groups, while permutation based paired t-tests were produced for
every pairwise comparison to correct formultiple comparisons, using a statistical criterion for between-group
differences set at p< 0.05.

Results

Using an automatized neuroimage processing pipeline, we extracted the fingerprints as the structural
connectivity between theDBS electrodes in six patients withDBS in theACC for treatment-resistant chronic
pain. Figure 2 showsmultiple ways of visualising this fingerprint from left and right hemisphere to the
116AAL regions as a radar-plot and as 2D area-plots (normal and logarithmic) as well 3D visualisations.
Figure 3 shows the full fingerprints of the four successful (SO1–SO4) and the two unsuccessful (UO1–UO2)
outcomes.

Specifically, the results from graph analysis (table 2) demonstrated that there are clear group differences
in the structural networks excited by the combined stimulation of the left and right DBS electrodes. For
the patient group with successful outcomes, network patterns suggest a small dominance on the
connectivity of the left side with higher number of connections in the left hemisphere (58.5 ± 26.1;
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Figure 2.Example of the fingerprint of structural connectivity from left and right electrode in a patient (SO1).Different
representations of the produced stimulation networks, in radar, normal logarithmic scale and 3D reconstructed glass brain (lateral
view represented), respectively, were produced for each patient.
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mean± s.d.) compared to the right hemisphere (55.3 ± 10.6), revealing an increased total number of fibres
being stimulated (L: 341.1 ± 86.85; R: 327.49 ± 89) and a trend of having significantly different fingerprint
of anatomical targeting between groups of patients with successful and unsuccessful outcomes (p= 0.21).
Additionally, there is a significant group difference in the number of connection on the right
hemisphere (p= 0.04).

A lateralisation effect is also found for the group of patients with unsuccessful outcomes but the tendency is
inversedwith fewer connections to the left hemisphere (74.5 ± 4.95) compared to the right hemisphere
(77 ± 7.1). The opposite pattern is found for the strength of the connections from the left electrodewhich is

Figure 3. Fingerprints of six patients with successful (SO1–SO4) and unsuccessful (UO1–UO2) outcomes. For each patient, a normal
(top) and a logarithmic scale (bottom) graph of the structural connectivity for the left and right DBS electrodes were constructed. A
3D glass brain reconstruction of the resulting brain stimulation networks was also produced (lateral and dorsal view represented). The
red sphere represents the centre of gravity of the simulatedVAT. The thickness of each blue edge indicates the strength of connection
(in logarithmic scale) between the source of stimulation and different anatomical targets (AAL regions), each represented by a green
sphere, positioned according to their centroid stereotaxic coordinates.
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Table 2.Global graph theoreticalmeasures on the structural connectivity network stimulated by theDBS. For eachDBS electrode, group average values of the degree (number of connections), strength (number offibres) and rate of fibres
per connectionwere calculated, together with the corresponding standard deviations. Similarly, this procedurewas repeated for the global brain stimulation network produced by combining the left and right DBS electrode networks.
Group comparisons of thesemeasures were calculated using a permutation-based paired t-tests.

Successful outcomes Unsuccessful outcomes Permutation-based t-test Group difference (%)

Networkmeasures La Rb LRc La Rb LRc La Rb LRc La Rb LRc

Degree Mean 58.50 55.25 71.25 74.50 77.00 86.00 0.21 0.04 0.18 12.03 16.45 9.38

Std 26.13 10.63 21.33 4.95 7.07 4.24 — — — — — —

Strength Mean 341.12 327.49 668.61 412.00 385.79 797.79 0.16 0.27 0.16 9.41 8.17 8.81

Std 86.85 88.97 146.82 6.05 40.95 34.90 — — — — — —

Fibres/connection Mean 6.83 6.05 10.00 5.54 5.01 9.28 0.46 0.83 0.61 10.42 9.42 3.77

Std 3.65 1.63 3.28 0.29 0.07 0.05 — — — — — —

a Left DBS electrode.
b RightDBS electrode.
c Left and rightDBS electrodes combined, representing thewhole stimulation network produced.
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increased compared to that of the right electrode (L: 412 ± 6.05; R: 385.8 ± 40.95), suggestive of an imbalance
between the number and strength of the connections on this network, i.e. less connections are being established
with increased strength to the nodes.

The resulting stimulation networks for the combined left and right electrodes (LR) suggest that there is a
larger number of connections being established between theDBS electrodes and the anatomical regionswith
increased overall strength for theUOgroup (degree: 86 ± 4.2; strength: 797.8 ± 34.9) in comparisonwith the SO
group (degree: 71.3 ± 21.3; strength: 668.6 ± 146.82).

There are no significant hemispheric differences (p= 0.61) between the number offibres per
connection in the global networks (LR) between the two groups (SO: 10 ± 3.28; UO: 9.28 ± 0.1). This is likely
due to the opposite hemispheric patterns of connectivity between groups of successful and unsuccessful
outcomes.

The global structural connectivity fingerprint of each groupwas obtained by combining the data from the
left and rightDBS electrodes (figures 3 and 4). The normalised connectivity patterns for the two groups show
not only that different areas are being stimulated, but also that the distribution of the strength along the
stimulation targets is changed between groups. This can be seen by visually inspecting themean andmedian
group plots, where the connectivity to regions in the anterior and posterior cingulate cortices,middle frontal
gyrus and thalamus is increased in the group of patients with unsuccessful outcome, contrasting with
the decrease in connectivity to regions in the caudate and supplementarymotor, when comparedwith the
successful outcomes.

A conservative analysis was undertaken to discover similarities and differences in the anatomical target
patterns across all patients in each group. This revealed that the left and right DBS electrodes in both groups
have the two common regions of left and right anterior andmiddle cingulate cortices (AAL 31–34). Exclusive
regions of the left and rightmiddle superior frontal gyrus and posterior cingulate cortex (AAL regions 23, 24, 35
and 36)were found in the group of patients with unsuccessful outcome, while one region of the left
supplementarymotor cortex (AAL region 19) in the patient groupwith successful outcomes, as shown in
figure 5 and table 3. This suggests that a successful stimulation fingerprint for chronic treatment-resistant pain
will have to reach supplementarymotor areas, while avoidingmiddle superior frontal and posterior cingulate
regions.

We also undertook a less conservative analysis using permutation-based paired t-tests to correct formultiple
comparisons and calculate significant local differences in region connectivity strength between successful and
unsuccessful patients (seemethods). Using this less conservative, and potentiallymore sensitive,measure, we
found 11 significant local differences in connectivity strengths between theDBS electrodes and brain regions
between the SO andUOgroups (p< 0.05, see figure 6 and table 4). Ten regions of the hippocampus, vermis,
orbitofrontal, frontal, cingulate and occipital cortices, had significantly stronger connectivity strength in theUO
group compared to the SO group, while only one region of the supramarginal gyrus had significantly stronger
connectivity strength in the SO group.

Discussion

Wehave presented a new automatizedmethod for ‘fingerprinting’ the structural connectivity from aDBS
electrode to awhole-brain parcellation. Thismethod can identify the necessary and sufficient structural
connectivity patterns responsible for successful outcomes in existingDBS patient groups. Once these
fingerprints are established they can be used as part of pre-surgical planning and as a rational way to discover
newDBS targets in various disorders including neuropsychiatric disorders.

We demonstrated the potential and usefulness of thismethod in patients withDBS in the cingulate cortex for
severe treatment-resistant chronic pain.While this newDBS target has shown significant success in alleviating
the emotional suffering in treatment-resistant chronic pain [8, 40], we still lack a principledway for accurate
DBS electrode placement. In order to evaluate the underlying features of a successful DBS implant, we extracted
thefingerprints of structural connectivity in a group of four chronic painDBS patients with successful outcomes
aswell as in a group of two patients with unsuccessful outcomes.

Many different potential pattern recognition algorithms, such as principle component analysis and
machine learning, can be used to detect the necessary and sufficient properties of successful DBS targets, all of
which are obviously determined and constrained by the quality of the underlying data. Furthermore, for
each patient, additional brain global and local graph theoreticalmeasures can be combinedwithmore
detailed clinical information to produce a better characterisation of the successful connectivity stimulation
patterns. Given the small sample size of the two patient groups, we opted here for two simplemethods to
identify common and differentfingerprint patterns between groups. Themost conservativemethod
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assumed that significant connectivity to a given region had to be present in all patients within and between
groups.

This conservativemethod of pattern recognition found that successfulfingerprints for treating treatment-
resistant chronic pain should have connectivity to supplementarymotor regions, while avoidingmiddle
superior frontal and posterior cingulate regions.

The results of using a less conservative analysis using permutation-based paired t-tests to identify local
differences between the two groups found 11 significant group differences in connectivity strength between the
DBS electrode and brain regions. The successful outcomes were associatedwith a significant decrease in

Figure 4. Fingerprints of the normalised structural connectivity for patient groupswith successful and unsuccessful clinical outcome.
(A) Contour-plots illustrating the strength and uniformity of the structural connectivity patterns across patients with SO (I, III) and
UO (II, IV) in normal (I, II) and logarithmic (III, IV) scales. (B)Group statistics, includingmeanwith standard error limits (I, II) and
median (III, IV) graphs of patients with SO (I, III) andUO (II, IV), showing the average/median group patterns of anatomical
targeting and the normalised intensity of these connections.
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connectivity to ten regions of the hippocampus, vermis, orbitofrontal, frontal, cingulate and occipital cortices,
and significant stronger connections to one region of the supramarginal gyrus, when comparedwith
unsuccessful outcomes.

These preliminary results are suggestive of different lateralisation effects on the stimulation networks in
successful and unsuccessful patients, whichwill require further validation in future studies. It should be noted
that the statistical significance of this lateralisation effect is strongly dependent on the sample size, and that this
asymmetry could also be associatedwith consistent differences in the electrode targeting, as well as to group
variations in the intrinsic structural network properties.

These findings will need to be replicated in amuch larger sample of patients but offer potential insights that
can be used for future pre-surgical planning. Itmight also be instructive to use our novel DBSfingerprinting
methodwith amore fine-grained parcellation of the cingulate cortex, such as the recent parcellation by
Beckmann and colleagues [41], whichmay help further inform futureDBS targeting. Thesefindings should be
seen in the context of previous researchwhich has used tractography to define likely cingulate regions stimulated
by subgenual cingulate DBS for treatment-resistant depression [42]. The authors found that treatment efficacy
appears to bemediated via effects on a distributed network of frontal, limbic, and visceromotor brain regions.
However, this result is tempered by the recent disappointing long-term clinical outcomes of subgenual cingulate
DBS for treatment-resistant depression [43].

Fingerprinting of structural brain connectivity is beginning to gain popularity as a tool for understanding
brain function [26] and has recently been extended to encompass functional brain connectivity [44]. This allows
for a better understanding of the temporal interactions between brain regions and specifically that frequency-
specific neuronal correlations in large-scale brain networksmay befingerprints of the fundamental
computations underlying information processing.More generally, however, such correlationswill need to be
supported by computationalmodels in order to understand the underlyingmechanistic principles of integration
and segregation of information in the human brain [31, 45].

Ultimately, the novel fingerprintingmethod presented here has helped shed new light on the necessary and
sufficientfingerprints of structural connectivity underlying successful outcome ofDBS implantation. As such
this has the potential to aid pre-surgical planning ofDBS. In addition, themethod also opens up for the
discovery of new potential targets with similar structural connectivity fingerprints. Further potential
developments include combining this structuralmethodwith advancedwhole-brain computationalmodelling
of the spontaneous dynamics arising from the structural changes in disease [46]which can help provide new

Figure 5.Conservativemethod for estimating group differences in terms of common areas that to all subjects of the same group. A 3D
glass brain reconstructionwas produced to show these group-specific anatomical targeting pattern, shown from the frontal (A),
lateral (B) and dorsal (C) views. AAL regions in green indicate areas that are found common to all patients with successful clinical
outcome, but not to patients with unsuccessful outcomes, where orange areas have the opposite pattern.

Table 3.Brain areas found to be common and exclusive to all subjects of the same group for the two groups under analysis, after a 5%
thresholdwas applied to the normalisedfingerprints.

node AAL region Group

19 Left supplementarymotor area SO

23 Left superior frontal gyrus,medial UO

24 Right superior frontal gyrus,medial UO

35 Left posterior cingulate UO

36 Left posterior cingulate UO
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insights into themechanisms ofDBS—andmay potentially even help discover new targets for neuropsychiatric
disorders.
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