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Abstract

A mathematical model is developed for a micro-electro-mechanical system (MEMS)
instrument that has been designed primarily to measure the viscosity of fluids that
are encountered during oil well exploration. It is shown that, in one mode of op-
eration, the displacement of the device satisfies a fractional differential equation
(FDE). The theory of FDEs is used to solve the governing equation in closed form
and numerical solutions are also determined using a simple but efficient central dif-
ference scheme. It is shown how knowledge of the exact and numerical solutions
enable the design of the device to be optimised. It is also shown that the numerical
scheme may be extended to encompass the case of a nonlinear spring, where the
resulting FDE is nonlinear.

Key words:
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1 Introduction

In this paper we analyse a device that has been designed to measure the vis-
cosity of fluids that are encountered “downhole” during the process of oil well
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logging showing that, in one mode of operation, its motion is governed by
a fractional differential equation. The oil exploration business places a high
premium on optimum production strategies and the exploitation of downhole
fluids such as crude oil or brine. When a test bore is drilled, a key indica-
tor of whether or not the strata may contain oil involves the viscosity of the
fluids that are encountered in the drill hole. In situ measurements of the ther-
mophysical properties of these fluids are required and these may give crucial
information concerning (for example) the permeability of the reservoir forma-
tion and its possible commercial value and its flow characteristics.

1.1 The measurement of fluid thermophysical properties

The device that will be analysed below is a novel form of transversely os-
cillating micro-electro-mechanical system (MEMS) instrument. A device that
can be deployed downhole possesses a number of important advantages. At
present, it is normal for reservoir fluid samples to be collected, transported
to the surface, and later analyzed in surface laboratory. This modus operandi

is not ideal, however, as the fluid’s properties may change during its subse-
quent journey to the laboratory. This renders it difficult to faithfully simulate
real reservoir conditions. A typical hydrocarbon reservoir is a hostile environ-
ment: pressures may range from 5 to 200 MPa and temperatures from 20 to
200oC. Though it is not impossible to recreate such conditions in a laboratory,
other downhole effects such as solid deposition and fluid contamination can be
very much harder to simulate. Since reservoir fluid properties are frequently
measured at ambient conditions, extrapolation is required to mimic reservoir
conditions. Accurate rheological models are therefore needed, and the validity
and applicability of the necessary theory may be hard to verify.

The advantages of a downhole measurement capability are thus clear. Though
many different kinds of conventional viscometer have been developed and
tested for laboratory use, most traditional viscometer designs are, for a range
of reasons, unsuitable for downhole deployment. Some contain moving parts
that are separated by small clearances. Viscometers of this type are not only
liable to become blocked by the solids (such as sand) that are frequently
encountered during drilling, but also frequently suffer from the operational
limitation that they must maintain a constant orientation with respect to the
gravitational field. Torsional viscometers can perform poorly at high pressures
owing to physical distortion and capillary devices are normally too involved
and complicated to be deployed downhole. Disc viscometers are limited in
their use as the fluids encountered in drilling applications are typically too
viscous to allow such devices to perform accurately.

Until now, the only kind of device that has shown real promise for downhole
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Fig. 1. Schematic and dimensions of the MEMS “spider” viscometry device

deployment has been the simple and compact vibrating wire viscometer, for
both its design and dimensions are well suited to the typically hostile envi-
ronment that is encountered in oil exploration. If the velocity of the wire is
estimated for several resonance frequencies and a range of currents it is plau-
sible that vibrating wire viscometers may yet provide useful measurements for
both Newtonian and non-Newtonian fluids. The case for this kind of viscome-
ter has yet to be proven with measurements however.

1.2 A MEMS viscometer: the “spider”

The MEMS device whose study is the purpose of this paper is ideal for down-
hole deployment for a variety of reasons. It contains only a single moving part
(all other being electrical), does not rely on being mounted in any specific
orientation, can be mass-produced at low cost, and is extremely small and can
therefore be mounted in very confined spaces. The device can also operate at
high ambient pressures. Finally, as we shall see, the behaviour of the device
may be analysed in a manner that allows its design to be optimised.

Full details of the composition, manufacture and further properties of the
MEMS viscometer are given in (8). In brief, the sensor, which is shown in Fig-
ure 1 is composed primarily of pure silicon. Its large number of legs give rise to
its informal name: the “spider”. The MEMS fabrication technique used for the
device is largely identical to that described in (2) and (3) for an edge-clamped
plate that has been used to determine the density and viscosity of Newtonian
fluids. As can be seen from the measurements in Figure 1, the device, which
contains both electrical and mechanical components, is extremely small. The
oscillating plate is set into motion in its own plane when an alternating cur-
rent I is passed through the wire coil on top of the plate, which is held in an
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externally-applied magnetic field. Motion detection in the device is provided
by polysilicon piezoresistive strain gauges that are placed where maximum
and minimum strains occur and form a Wheatstone bridge: the optimal posi-
tioning of the strain gauges is found by a finite element analysis. The device
has 24 legs on each side. For the purposes of this study it is simplest to assume
that the “spider” can be forced to oscillate in any desired manner, though as
we shall later see this is not quite the case in reality.

The device may be used in two distinct fashions, which we shall term “forced”
and “plucked” mode. In forced mode, the device is constrained to operate in
a steady manner at a given frequency and various parameters of the motion
are measured, from which the viscosity and/or density of the surrounding
fluid may be inferred. In plucked mode, the device is released from an initial
displacement and its subsequent decaying oscillations are measured. As we
shall see, use of the device in plucked mode gives rise to a fractional differential
equation.

2 Device modelling

For modelling purposes we assume that the spider is set into motion in a ho-
mogeneous incompressible fluid that has a constant viscosity. Though it would
be of significant practical value to the oil well logging industry to produce a
viscometer that was able to measure some of the properties non-Newtonian
fluids (and the spider is clearly capable of doing this ), for simplicity we will
restrict the analysis in this study to linear viscous fluids. The fluid flow is
governed by the Navier-Stokes equations

qt + (q.∇)q = −1

ρ
∇p + ν∇2q (1)

∇.q = 0 (2)

where q denotes the fluid velocity, p denotes pressure, t denotes time and ρ
and ν are the fluid density and kinematic viscosity respectively. Equations (1)
and (2) must be solved for all regions where fluid is present, subject to the
standard no slip condition which is imposed on all rigid boundaries. Clearly
one possible approach would be to solve these equations numerically, including
full details of all the geometry of the device. Below we give details of an
alternative approach, where a one-dimensional model is proposed to analyse
the behaviour of the device.

4
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2.1 Sensor motion: leg behaviour

During motion, strain is produced in inter-connecting parts of the viscometer.
The most significant such strains are those involving the legs connecting the
plate to the main viscometer body. For simplicity, we assume henceforth that
all motion of the device occurs only as a result of the deformation of these
legs. For each of the legs, the elastic restoring force Fer may be written

Fer ≡
s3EdA

`3
,

where s, ` and d respectively denote leg width, leg length and leg depth (which,
in the specific device under consideration in this study, is also equal to the plate
depth), E is the Young’s modulus of the leg material, and A is the amplitude
of motion. If we further assume that the undamped device frequency ω0 (for a
device with N legs) depends on the total mass Mp = aBdρs of the plate, then

ω0 =

√

NFer

AMp
=

√

NEs3

l3aBρs

where a is the length of the plate, B is the plate width, and ρs is the density
of the plate material.

3 The forced spider

For reasons that will become apparent, the main focus of this study will be an
analysis of the spider in plucked mode. For completeness, however, it is worth
briefly summarising the results for cases when the device is used in forced
mode. We assume that coordinates are defined so that the plate lies in the
(x, z)-plane and that the device can move only in this plane, and proceed as
though the plate were infinite in extent in both the x and z directions (an
assumption that can be later verified to be justified so long as the viscous
penetration depth is much smaller than the plate length and width) and has
zero thickness. If the oscillations are forced then q = (U0Re(exp(−iωt)), 0, 0)
at y = 0, where U0 is the amplitude of the motion and ω the frequency. If we
now assume that q is non-zero only in its first component, which is of the form
u(y, t), then it is easy to show that the motion above the plate is governed by
the equation

ut = νuyy
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where t ≥ 0, y ∈ [0,∞), x ∈ (−∞,∞), z ∈ (−∞,∞)) and u(0, t) = U0 cos ωt.
The solution is given by

u = U0e
−y/δRe(ei(y/δ−ωt)) = U0e

−y/δ cos(y/δ − ωt)

where δ =
√

2ν/ω is the so-called “viscous penetration depth”. The frictional

force S in the x-direction on the plate (whose surface area top and bottom is
given by 2Ba) is given by

S = 2aBµuy |y=0= −2aB
√

ωµρU0 cos(ωt + π/4)

and the average power P over a period of oscillation is thus

P |y=0=
ω

2π

∣

∣

∣

∣

∣

∣

∣

2π/ω
∫

0

Su |y=0 dt

∣

∣

∣

∣

∣

∣

∣

=

√

ωµρ

2
aBU2

0 .

We therefore find that the fluid viscosity µ is given by

µ =
2

ωρ

(

P |y=0

aBU2
0

)2

and, in principle, the viscosity may be determined by measuring the power
and the amplitude of the motion. Though this appears to be an attractive
strategy for viscometry, it involves some practical difficulties. Firstly, it is fre-
quently rather hard to monitor both the power supplied to the device and the
amplitude of the motion. More seriously, experiments that have been carried
out have shown that, when the spider is operated in this mode, the legs can
lose their structural integrity and the device may break.

Although these difficulties mean that for practical purposes the spider is likely
prove a more successful instrument when used in plucked mode (as described
below), it may still be the case that progress in the forced mode may be
possible at a later date. An advantage of forced mode is that the device may
be used not only with a top plate added, but is also well suited to measuring
the key properties of viscoelastic fluids. For the present however, we do not
consider the forced spider further, referring the reader instead to (8) (where
the viscoelastic case is also considered) for details.

6
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4 The “plucked spider”

We now consider the operation of the MEMS viscometer in “plucked” mode,
where the device is subjected to a known initial displacement X, held sta-
tionary at the displaced position, and then released. The subsequent decaying
oscillations are then measured electronically using the circuitry in the plate.
In contrast to the analysis carried out in Section 3 above, the displacement of
the plate is now unknown. The task of the modelling that will be carried out
below is therefore to predict the decaying oscillations of the plate and hence
infer the viscosity of the surrounding fluid.

We assume that the displacement x of the plate may be described by a simple
spring model, as discussed in Section 2.1. The plate is retarded by both the
elastic damping r (dimensions kg/s) provided by the legs and the viscous shear
stress exerted on the plate by the surrounding fluid. The displacement of the
plate therefore satisfies the equation of motion

ρsdBaẍ + rẋ + k2x = 2Baµuy |y=0 .

Here k2 = ω2
0ρsdBa, a dot denotes differentiation with respect to time, and

the boundary conditions are x(0) = X, ẋ(0) = 0.

To convert the plucked spider problem to a fractional differential equation, we
first solve the problem in the fluid. This is given once again by

ut = νuyy

with u(0, t) = ẋ(t), u(y, 0) = 0 and u → 0 as y → ∞. This is most easily done
by using a Laplace transform. Assuming that ẋ is suitably well-behaved (if it
is not then the device will be useless as a viscometer) we find that

u(y, t) =

t
∫

0

yẋ(s) exp
(

− y2

4ν(t−s)

)

2
√

πν(t − s)3/2
ds

and so the quantity uy is given by

uy(y, t) =

t
∫

0

ẋ(s) exp
(

− y2

4ν(t−s)

)

√
4πν(t − s)3/2

[

1 − y2

2ν(t − s)

]

ds.

To determine the limit of uy as y → 0 it is convenient to integrate by parts,

7
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giving

uy(y, t) = − 1

4ν
√

πν









−ẋ(s)
4ν exp

(

− y2

4ν(t−s)

)

√
t − s





t

0

+

t
∫

0

ẍ(s)
4ν exp

(

− y2

4ν(t−s)

)

√
t − s

ds






,

so that

lim
y→0

uy(y, t) = − 1√
πν

t
∫

0

ẍ(s)√
t − s

ds.

The equation of motion of the plucked spider is therefore given by

ρsdBaẍ + rẋ + k2x = −2Baµ√
πν

t
∫

0

ẍ(s)√
t − s

ds. (3)

To express (3) as a fractional differential equation, we use the Caputo defini-
tion of a fractional derivative (see, for example (6)) wherein we define the µth
Caputo fractional derivative (Dµ

∗
f)(t) of the function f(t) by

(Dµ
∗
f)(t) = (Jm−µf (m))(t) =

1

Γ(m − µ)

t
∫

0

(t − s)m−µ−1f (m)(s) ds (4)

where m−1 < µ ≤ m, m is a natural number and t > 0. The Caputo definition
of the fractional derivative enjoys a significant advantage over the alternative
(Riemann-Liouville) definition of the fractional derivative, for it allows the ini-
tial conditions for the problem to be specified in a natural manner. In contrast,
the Riemann-Liouville definition (see, for example (6)) requires conditions to
be specified in terms of fractional derivatives or integrals, a form in which they
are not normally known.

It is also convenient to non-dimensionalise (3) by setting x = Xx̃ and t =
(
√

ρsBda/k)t̃. Dropping the tildes here and henceforth for simplicity and using
(4), we find that (3) may be written

D2
∗
x + β

√
πD3/2

∗
x + αD1

∗
x + x = 0 (x(0) = 1, D1

∗
x(0) = 0) (5)

where α = r/(k
√

ρsBda) and β = (4µρ/kπ)1/2(Ba/ρ3
sd

3)1/4. We note that (5)
is closely related to the Bagley-Torvik equation described in (1), and also that
solutions to the problem depend only on the two non-dimensional combina-
tions α and β of the problem parameters.

8
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4.1 Asymptotic behaviour of the solution

For both theoretical and practical purposes it is useful to determine the asymp-
totic behaviour of the solution to (5) for t � 1 and as t → ∞. This may be
done in a number of ways, though the simplest is probably to take a Laplace
transform of the coupled problem (see (8) for details). The (non-dimensional)
result is that

x(t) ∼ 1 − t2

2
+ O(t5/2) (t → 0+), x(t) ∼ βπ

t3/2
+ O(t−5/2) (t → ∞).(6)

From a practical point of view, the behaviour as t → ∞ is significant, for
in most viscometers that employ some sort of “plucking” mechanism it is
routinely assumed that the motion of the device decays exponentially. This
guides both the choice of sensor that is normally used to measure the motion
and the modus operandi of the data-fitting process used to finally infer the fluid
viscosity from measurements of the decay. We conclude that, for the current
device, allowances will have to be made for the fact that the motion decays
algebraically rather than exponentially.

4.2 Solution of the governing equation

We now focus on (5) with α = 0. Choosing to ignore the leg damping is
tantamount to assuming that the device is retarded mainly by the viscous
damping of the surrounding fluid. If this is not the case and the leg damping
becomes important, then it is clear on physical grounds that the usefulness
and accuracy of the device as a viscometer will be seriously compromised. We
set y = x − 1 and note that (5) now becomes

D2
∗
y + β

√
πD3/2

∗
y + y = −1 (D1

∗
y(0) = 0, y(0) = 0).

The solution to this fractional differential equation is given by (see, for example
(7))

y(t) =

t
∫

0

G(t − u)(−1)du

where

G(t) =
∞
∑

k=0

(−1)k

k!
t2k+1E

(k)
1

2
,2+ 3k

2

(−β
√

π
√

t)

9
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and E
(k)
λ,µ is the kth derivative of the generalised Mittag-Leffler function, given

by

E
(k)
λ,µ(t) =

∞
∑

j=0

(j + k)!tj

j!Γ(λj + λk + µ)
. (7)

(Note that, since for large j it is true that Γ(j) ∼
√

2πe−jjj−1/2, it may easily
be shown by using the ratio test that (7) converges for all finite t.)

The solution to (5) with α = 0 is therefore given by

x(t) = 1 −
t
∫

0

G(t − u) du.

Assuming that term-by-term integration is possible (though this does not seem
easy to show), we find that

x(t) = 1 −
∞
∑

j=0

∞
∑

k=0

(−1)k(−β
√

π)j(j + k)!t2+2k+ j

2

j!k!(2 + 2k + j
2
)Γ(2 + 2k + j

2
)
. (8)

As β → 0, we may verify that, as expected, the solution reduces to

x → 1 −
∞
∑

k=0

(−1)kt2+2k

(2 + 2k)!
= cos(t).

It is also convenient to note that, since

∞
∑

k=0

(−1)k(−β
√

π)j(j + k)!t2+2k+ j

2

j!k!(2 + 2k + j
2
)Γ(2 + 2k + j

2
)

=

2(−β
√

π)jt2+
j

2

(4 + j)Γ(2 + j
2
)

1F2

(

[j + 1],
[

j + 8

4
,
j + 6

4

]

,−t2

4

)

the solution may be conveniently expressed in terms of the extended hyperge-
ometric function as

x(t) = 1 −
∞
∑

j=0

2(−β
√

π)jt2+
j

2

(4 + j)Γ(2 + j
2
)

1F2

(

[j + 1],
[

j + 8

4
,
j + 6

4

]

,−t2

4

)

. (9)

Fractional differential equation solutions such as (9) have been presented in
many previous studies: in this case, however, we aim to try to use the solution

10
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to provide practical information that may be used for device optimisation.
We shall presently address the numerical solution of (5), however, we note for
the present that the closed form solution (9) is only of any practical use if it
converges for a large range of the parameters involved. A standard asymptotic
expansion may be used to show that, as t → 0+,

1F2

(

[j + 1],
[

j + 8

4
,
j + 6

4

]

,−t2

4

)

∼ 1 − 4(j + 1)

(j + 6)(j + 8)
t2 + O(t4)

and the ratio test may then be used to show that the series converges. When
t and β are both relatively small, either (8) or (9) may be used in suitably
truncated form to evaluate the solution numerically in an efficient and accurate
manner. Unfortunately when β and t are not small the leading terms of both
of the above series become large, much cancellation occurs, and numerical
evaluation becomes a very difficult matter. Though numerical experiments
might lead one to conclude that the radii of convergence of both (8) and (9)
are finite, it may be shown that both series are in fact convergent for all finite
positive values of β and t by noting that, if we set

S(β, t) =
∞
∑

j=0

∞
∑

k=0

(−1)k(−β
√

π)j(j + k)!t2+2k+j/2

j!k!Γ(3 + 2k + j/2)

then

S(β, t) =
∞
∑

n=0

n
∑

j=0

(−1)nn!(β
√

π)jt2+2n−3j/2

j!(n − j)!Γ(3 + 2n − 3j/2)

=
∞
∑

n=0

(−1)nt2+2n
n
∑

j=0

(

n

j

)

(β
√

πt−3/2)j

Γ(3 + 2n − 3j/2)
.

If we now express the reciprocal Gamma function using Hankel’s contour in-
tegral expression (see, for example (9)) then we may write

S(β, t) =
∞
∑

n=0

(−1)nt2+2n 1

2πi

0+
∫

−∞

ess−3−2n
n
∑

j=0

(

n

j

)

(β
√

π(st−1)3/2)j ds

=
∞
∑

n=0

(−1)nt2+2n 1

2πi

0+
∫

−∞

ess−3−2n(1 + β
√

π(st−1)3/2)n ds.

11
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Setting s = z2t and summing the series now shows that

S(β, t) =
1

πi

c+i∞
∫

c−i∞

etz2

z(z4 + β
√

πz3 + 1)
dz (10)

where c is chosen so that all poles of the integrand in (10) lie to the left of
the integration contour. The integral (10) may now be evaluated numerically
with ease for arbitrary positive values of β and t so that the exact solution
may be used for comparison purposes.

Finally, we note that even if α 6= 0 it is still possible to express the solution
to (5) in closed form (see, for example (5)). Unfortunately the solution thus
obtained is of a rather involved nature and is inconvenient to use for practical
purposes.

4.3 Numerical solution of the governing equation

A successful numerical strategy for the solution of (5) was discussed in full
in (8). We let xi denote the approximate value of x(t) at time t = ti with
i = 0, 1, ..., N and t0 = 0 and, for simplicity, use a constant time step δt
so that ti+1 − ti = δt. The initial conditions are that the plate starts from
a stationary position at a (dimensional) distance X from the origin, so that
ẋ(0) = 0, x(0) = 1. Central differences are used to approximate the first
and second derivatives of x with respect to t, and the fractional term in the
equation is dealt with by approximating the integral in the Caputo definition
of the fractional derivative in the simplest possible fashion at time ti, namely
by assuming that ẍ is linear on each interval [tj, tj+1] and using the trapezium
rule. Equation (5) may then be approximated using

xi+1 − 2xi + xi−1

δt2
+ α

(

xi+1 − xi−1

2δt

)

+ xi + β
(

xi+1 − xi − xi−1 + xi−2

δt
3

2

)

= −β
i−1
∑

j=1

xj+1 − xj − xj−1 + xj−2

δt
3

2

(
√

i − j + 1 −
√

i − j). (11)

This general scheme (11) may now be rearranged to give xi+1 in terms of xi,
xi−1, and xi−2, allowing all the xi to be determined for i ≥ 3. We introduce an
artificial mesh point for i = −1 and determine x0, x1, and x2 independently.
We use the boundary condition x(0) = 1 to set x0 = 1 and introduce a central
difference to show that x−1 = x1. The asymptotic solution (6) for t � 1 is
used to determine x1. Since the integral term in Eq. (5) is zero when t = 0, the
scheme given by (11) may now be applied with i = 1 and all terms involving

12
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β are set equal to zero to yield the value of x2 so that the calculation may
begin. The final (dimensionless) numerical scheme is thus

x0 = 1, x−1 = x1, x1 = 1 − δt2

2

x2 =
(

2

2 + αδt

)

[

x1(2 − δt2) + x0

(

αδt

2
− 1

)]

xi+1 =

(

2

2 + αδt + 2βδt1/2

)[

xi(2 − δt2 + βδt1/2) + xi−1

(

αδt

2
+ βδt1/2 − 1

)

−xi−2βδt1/2 − β
i−1
∑

j=1

(

xj+1 − xj − xj−1 + xj−2

δt
3

2

)

(
√

i − j + 1 −
√

i − j)



 .(12)

All of the usual numerical tests may be carried out to verify that the proposed
scheme is consistent and convergent: we suppress the results of these tests for
brevity. Though the scheme is relatively quick to run, the fractional derivative
term increases the execution time greatly in comparison to similar methods for
standard differential equation, as is familiarly encountered for such equations.
Convergence analysis may also be carried out in a standard fashion if required.
It should also be noted that many alternative numerical methods may be
proposed for the solution of the (5), and many such methods have also been
analysed for consistency, convergence and economy. For further details the
reader is referred to (4).

The exact solution is convenient for comparison purposes: Figure 2 shows a
typical case: we observe good agreement between the numerical and exact
solutions (parameters used: α = 0, β = 1/5, δt = 0.05).

4.4 A theoretical approach to device design

Having carried out a substantial amount of both theoretical and numerical
analysis of the “spider”, we are now in a position to help to optimise the
design of the device using what we have learned. In particular, we would like
to know for what kinds of fluid a MEMS viscometer of a given size might be
expected to give practically useable results.

First, let us consider the time scale of the device. We previously set t = T t̄
where T =

√
ρsBda/k. For the device shown in Figure (1), we have ρs '

2320kg m−3, B ' 1.6mm, d ' 20µm and a ' 2.4mm so that the weight
W = ρsBda of the device is given by W ' 1.78× 10−7kg. There are two ways
of determining the constant k for practical comparisons. One way is to infer k

13
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Fig. 2. Comparison between numerical solution (symbols) and exact solution (solid
line), for parameters α = 0, β = 1/5, δt = 0.05

from a series of in vacuo experiments. When we did this it was found that k ∼
95kg1/2/s (a value that will henceforth be used in our results and comparisons).
Alternatively, one might simply calculate k using the relationship given earlier
which amounts to

k2 = ω2
0ρsdBa =

NEs3d

`3
. (13)

Using N = 48 (24 legs per side), E = 125.8GPa ((3)), s = 4×10−5 and ` = 5×
10−4 gives k ∼ 247kg 1/2/s. Though this value is larger than that determined
by experiment by a factor of roughly 2.5, the mere fact that the calculation
gives a value that is the same order of magnitude as the experimental result is
encouraging when one considers the number approximations that are present
in (13).

Using W ' 1.78 × 10−7kg and k ' 95kg1/2/s as explained above, yields
a timescale of T ' 4.4 × 10−6s, from which we immediately conclude that
any motion sensors that are used will have to be capable of measuring over
microsecond time scales. If the leg damping is ignored (as stated earlier,
if this is not justified then it is unlikely that the device will ever be use-
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Fig. 3. Numerical solution (symbols) and exact solution calculated from (10) (solid
line) for two cases with α = 0 and δt = 0.05 (left hand diagram: β = 0.005), (right
hand diagram: β = 1)

ful) then the only other non-dimensional parameter of importance is β =
(4µρ/kπ)1/2(Ba/ρ3

sd
3)1/4. Figure 3 shows numerical solutions with α = 0 for

what we might regard as two extreme situations, namely the values β = 0.005
(where the oscillations decrease so slowly in magnitude that the decay would
be hard to measure) and β = 1 (where the decay is so rapid that not enough
data would be collected). From these results we conclude that, for the device
to have any chance of functioning correctly, we require

0.005 <
(

4µρ

kπ

)1/2
(

Ba

ρ3
sd

3

)1/4

< 1.

Using values k ∼ 95kg1/2/s, B = 1.6mm, ρs = 2320kg m−3, a = 2.4mm,
d = 20µm we find that the imposed limits on β amount to 0.01 < µρ <
381kg2m−4s−1. The device will therefore be useful for fluids such as water
(where at ambient temperatures µρ ∼ 1 and a range of other fluids that
are commonly encountered downhole. Finally, we note that the key non-
dimensional parameter β contains all of the information that we need to de-
termine how the device specifications and material properties would have to
change if the properties of a substantially different type of fluid were to be
measured.

4.5 A nonlinear fractional differential equation

The assumption that the legs of the MEMS device that has been analysed
give rise to behaviour that mimics a linear spring is unlikely to be exactly
true in practice. It is well known that, for most springs, a more accurate
representation of the elastic force F is given by F = −k2x + φx3 where φ < 0
is identified with a so-called “hard” spring and φ > 0 with a “soft” spring. We
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therefore now extend our analysis to include the case of such springs, where
the (non-dimensional) governing equation is

D2
∗
x + β

√
πD3/2

∗
x + αD1

∗
x + x + εx3 = 0 (x(0) = 1, D1

∗
x(0) = 0) (14)

and the dimensionless parameter ε is greater than (less than) zero for a hard
(soft) spring. It is well known that in the case α = β = 0, ε > 0, all solutions
of (14) are bounded, oscillatory and periodic, and it therefore seems likely
that for non-zero values of α and/or β the nonlinear spring term will simply
introduce an extra retardation term.

Though there appears to be little hope of finding any closed-form solutions to
(14), the numerical scheme developed in Section 4.3 enjoys the great advantage
that it may easily be modified to include the nonlinear term. The only changes
that need to be made involve setting x1 = x−1 = 1−(1+ε)δt2/2 and replacing
the term x1(2 − δt2) by x1(2 − δt2 − εx2

1δt
2) in the definition for x2 and the

term xi(2 − δt2 + βδt1/2) by xi(2 − δt2 + βδt1/2 − εx2
i δt

2) in the definition for
xi in (12).

Figure (4) compares the numerical solution to the nonlinear problem (with
ε = 1 - symbols) and the exact solution (ε = 0 - solid line) for parameter
values α = 0, β = 1/5 and δt = 0.05. We note that the nonlinear solution has
a slightly greater amplitude and also exhibits a phase difference. We carried
out many other numerical experiments and the results shown in Figure (4)
are typical, confirming that though a difference in both phase and amplitude
are to be expected, the generic behaviour of the device remains unchanged.

5 Further Results and Conclusions

The operation of a novel MEMS viscometer has been analysed using a combi-
nation of theory and numerical calculations. It has been shown that, using the
model predictions, device dimensions and other properties can be specified
that will allow the device to function efficiently for fluids with a given vis-
cosity and density range. The analysis also showed that, unlike many similar
devices, the decay of the motion of the moving component of the viscometer
is algebraic rather than exponential - a matter that is likely to be of practical
significance for device designers and manufacturers.

As mentioned above, it is ultimately desirable to use the device to determine
some of the properties of non-Newtonian fluids. As we have seen, device op-
timisation is probably only really possible if a complete theory of the device
is available, and though the current theory could be extended to encompass
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Fig. 4. Comparison between numerical solution (symbols) for nonlinear case with
ε = 1 and exact solution (solid line, ε = 0), for parameters α = 0, β = 1/5, δt = 0.05

viscoelastic effects, it is not easy to see what could be done for nonlinear (for
example, pseudoplastic) fluids.

If the legs of the device are modelled as nonlinear (Duffing-type) springs, then
it has been shown that, though no exact solution is available, the problem may
be solved numerically with ease. As usual with more complicated models, a
key challenge if the nonlinear spring assumption is used will be to determine
the constants that appear in the model with accuracy. In general, a full exper-
imental programme is required if the device is to be transformed from being
an interesting idea to a working commercial device.

Finally, we note that, assessed in comparison to viscometers in general, the
accuracy of the device is not exceptional: crucially, however, the device is suf-
ficiently accurate in hostile conditions and sufficiently small to be deployed
downhole. It is important to realise that, for efficient and cost-effective oil ex-
ploration, a trade-off will almost certainly have to be made between measure-
ment precision of the measurement and the ability to perform in challenging
surroundings and operate in a wide range of fluids.
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