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Lemurs, lorises, and tarsiers are socially and ecologically diverse primates that 26 

include some of the most endangered mammals. We review results of long-term studies 27 

of 15 lemur species from 7 sites in Madagascar and 1 species each of loris and tarsier, 28 

respectively, in Indonesia. We emphasize that the existence of long-term study 29 

populations is a crucial prerequisite for planning and conducting shorter studies on 30 

specific topics, as exemplified by various ecophysiological studies of lemurs. Extended 31 

studies of known individuals have revealed variation in social organization within and 32 

between ecologically similar species. Even in these primates with relatively fast life 33 

histories, it required more than a decade of paternity data to characterize male 34 

reproductive skew. The long-term consequences of female rank on reproductive success 35 

remain poorly known, however. Long-term monitoring of known individuals is the only 36 

method to obtain data on life history adaptations, which appear to be shaped by 37 

predation in the species covered here; long-term studies are also needed for addressing 38 

particular questions in community ecology. The mere presence of long-term projects has 39 

a positive effect on the protection of study sites, and they generate unique data that are 40 

fundamental to conservation measures, such as close population monitoring. 41 

 42 

Resumen 43 

Los lémures, lorises y tarseros son grupos de primates, muy diversos social y 44 

ecológicamente, que incluyen algunas de las especies de mamíferos más amenazadas. Se 45 

revisaron los resultados de estudios a largo plazo de 15 especies de lémures en 7 áreas 46 

de estudio diferentes en Madagascar y una especie de loris y otra de tarsero, 47 

respectivamente, en Indonesia. Se resalta la importancia de las áreas de estudio a largo 48 

plazo como prerrequisito esencial para planear y llevar a cabo asimismo estudios de 49 

menor duración sobre temas concretos, como se puede comprobar en varios estudios 50 
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eco-fisiológicos en lémures, los cuales demuestran interesantes variaciones en estrés y 51 

salud entre diferentes hábitats, estaciones y años. Los estudios prolongados sobre 52 

individuos conocidos ponen al descubierto importantes variaciones en la organización 53 

social tanto dentro de una misma especie como entre especies similares ecológicamente 54 

hablando. De la misma manera, estos estudios aportan evidencia de la dispersión de las 55 

hembras en algunas especies. Incluso en estos primates, con un ciclo vital relativamente 56 

rápido, se necesita recopilar más de una década de datos de paternidad para determinar 57 

el sesgo reproductivo de los machos, el cual está especialmente desviado en algunas 58 

especies de lémures. Sin embargo, aún se sabe poco de las consecuencias a largo plazo 59 

que la posición de las hembras en la jerarquía puede tener en el éxito reproductivo. Se 60 

siguen necesitando datos demográficos a largo plazo tanto para supervisar de manera 61 

exhaustiva las poblaciones como para abordar cuestiones específicas sobre la ecología 62 

de las comunidades. El control a largo plazo de individuos conocidos es además el único 63 

método para obtener datos acerca de las adaptaciones históricas que, en el caso de las 64 

especies incluidas aquí, parecen haber sido intensamente moldeadas por la depredación. 65 

Por último, se discute cómo la existencia de proyectos a largo plazo tiene un efecto 66 

protector sobre las áreas de estudio, además de proporcionar datos únicos, 67 

fundamentales para la toma de medidas para su conservación. 68 

 69 

Compared to most other mammals, primates are relatively long-lived, endowed with 70 

relatively large brains, and characterized by slow life histories (van Schaik and Isler 71 

2012), making them important and interesting subjects for comparative long-term field 72 

studies (Kappeler et al. 2012). Primates are comprised of 2 infraorders, Strepsirrhini 73 

and Haplorrhini; the former includes lemurs and lorises, the latter anthropoids 74 

(monkeys and apes) and tarsiers. Formerly, lemurs, lorises, and tarsiers together were 75 
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referred to as “prosimians,” but it is now clear from molecular studies that they are not 1 76 

group. Lemurs and lorises belong to Infraorder Strepsirrhini, and tarsiers (along with 77 

anthropoids) belong to Infraorder Haplorrhini (Schmitz et al. 2001). Although 78 

Strepsirrhines have some of the faster life histories among living primates, long-term 79 

research efforts are still necessary to unravel their diverse social, ecological, and life 80 

history adaptations.  There are about 100 extant species of lemurs and 30 species of 81 

lorises (making up the suborder Strepsirrhini) plus 10 species of tarsiers (Groves 2001).  82 

Strepsirrhines and tarsiers have attracted much research interest in recent years 83 

because they are socially highly diverse and complex, vary >300 fold in body mass, 84 

exhibit diverse ecological adaptations, and, sadly, include some of the most endangered 85 

mammals today (Kappeler 2012; Schwitzer et al. 2014). Field research on these 86 

primates —lemurs, lorises, and tarsiers — began in the late 1950s and early 1960s 87 

(Petter 1962; Charles-Dominique 1970; Jolly 2012), and several of the more recently 88 

initiated field projects have turned into long-term studies (>10 years) of 1 or several 89 

sympatric species, sometimes by multiple researchers at a given site. Most of these 90 

study sites, those for lemurs, are in Madagascar (Fig. 1); they include Berenty (since 91 

1963), Beza Mahafaly Special Reserve (since 1975), Ranomafana National Park (since 92 

1986), Kirindy (since 1993), Ampijoroa in Ankarafantsika National Park (since 1994), 93 

Mandena (since 1997) and Tsinjoarivo (since 2000).  Only 1 species of tarsier (Tarsius 94 

spectrum) has been studied for >10 years, and only at Tangkoko Nature Reserve in 95 

northern Sulawesi, Indonesia (since 1994). Extended studies of lorises have been 96 

confined to Nycticebus javanaicus at Cipaganti in West Java, Indonesia (since 2007). We 97 

are not aware of any long-term studies of bushbabies (Family Galagidae) or pottos 98 

(Perodicticus potto). In this paper, we summarize the research highlights emerging from 99 

these long-term studies, which involve a total of 17 species (Supplementary data S1; 100 
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Supplementary data S2). Throughout this review, we emphasize that the existence of 101 

long-term study sites is a crucial prerequisite for conducting shorter studies on specific 102 

topics covered by the contributions to this special feature. 103 

ECOPHYSIOLOGY 104 

No single ecophysiological study of strepsirrhines and tarsiers has spanned more 105 

than a few years, but several important insights into how these primates maintain 106 

homeostasis were obtained as a consequence of the establishment of long-term study 107 

populations for other reasons. For example, pronounced seasonal variation in climate 108 

and food abundance in Madagascar has led to remarkable physiological adaptations 109 

among lemurs in Family Cheirogaleidae, which exhibit various patterns of torpor and 110 

hibernation that were revealed partly by research at long-term study sites (Schmid and 111 

Kappeler 2005; Kobbe et al. 2011; Blanco et al. 2013). Moreover, there seems to be 112 

variation in stress physiology between species, sites, and seasons (Pride 2005; Fichtel et 113 

al. 2007; Brockman et al. 2009), but studies of longer duration and on other species are 114 

required to reveal factors that cause this variation. Short-term studies at several long-115 

term study sites have indicated that health and parasitic infections vary between 116 

individuals; it is not clear why they vary, although a number of factors have been 117 

implicated.  We now need additional studies to disentangle the relative importance of 118 

factors such as habitat use (Loudon and Sauther 2013), season (Wright et al. 2009), 119 

interannual variation (Clough et al. 2010; King et al. 2012; Radespiel et al. 2015), 120 

sociality (Springer et al. 2016), and habitat alteration (Irwin et al. 2010; Singleton et al. 121 

2015).  We also need these studies to be at more sites, on more species, and for longer 122 

duration.  123 

SOCIAL SYSTEMS 124 



 6 

 The study of social systems can be deconstructed into those focusing on size and 125 

composition of social units (social organization) and those focusing on mating patterns 126 

and the dynamics of social relationships (i.e., social structure; Kappeler and van Schaik 127 

2002). Data collected over years or even decades have contributed substantially to our 128 

understanding of the evolution of social systems of strepsirrhines and tarsiers. 129 

 Social organization. — Long-term studies of social organization reveal 130 

intraspecific flexibility in some species and striking differences between closely-related, 131 

sympatric species. In spectral tarsiers (Tarsius spectrum), group size and composition 132 

exhibit pronounced intraspecific variation (Gursky 1995), with group composition 133 

varying from a single adult male-female pair to groups with multiple adult females and 134 

either 1 or multiple adult males and a mean group size of 3.1 individuals (Gursky 135 

2010a). In contrast, female gray mouse lemurs (Microcebus murinus) at Ankarafantsika 136 

form stable matrilineal sleeping groups (Radespiel 2006) in which philopatric females 137 

benefit from the presence of mothers or daughters in terms of increased survival 138 

(Lutermann et al. 2006); males mostly disperse before the onset of their 1st mating 139 

season (Radespiel 2006). Closely-related sympatric Lac Ravelobe mouse lemurs 140 

(Microcebus ravelobensis), however, form stable mixed-sex sleeping groups consisting of 141 

related members of both sexes (Weidt et al. 2004; Radespiel et al. 2009), since young 142 

males may delay dispersal and remain in their natal range throughout their 1st mating 143 

season. The social organization of M. murinus is similar at other sites, where in each case 144 

locally sympatric Madame Berthe’s mouse lemurs (Microcebus berthae) and rufous-gray 145 

mouse lemurs (Microcebus griseorufus) exhibit yet other patterns of ranging and 146 

association (Dammhahn and Kappeler 2009; Génin 2010), suggesting stability in social 147 

organization in M. murinus across habitats and time.  148 
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Some of the most important insights into the social organization of strepsirrhines and 149 

tarsiers concern natal dispersal patterns. Species differ in their dispersal behavior, 150 

which is related to age at 1st reproduction. Hence, a valid understanding of each species 151 

requires detailed observation over long periods – up to 5 years in the larger species.  152 

In lemurs, male-biased natal dispersal is common in ringtailed lemurs (Lemur catta 153 

— Sussman 1992; Sauther et al. 1999; Koyama et al. 2001; Parga et al. 2015), Verreaux’s 154 

sifaka (Propithecus verreauxi — Richard et al. 1993; Kappeler and Fichtel 2012a), Milne 155 

Edwards’s sifaka (Propithecus edwardsi — Morelli et al. 2009), and redfronted brown 156 

lemurs (Eulemur rufifrons — Overdorff et al. 1999; Kappeler and Fichtel 2012b). Long-157 

term genetic and behavioral data have illustrated that, on some occasions, females also 158 

emigrate, perhaps due to intense resource competition (L. catta —  Parga et al. 2015; E. 159 

rufifrons —  Kappeler and Fichtel 2012b; P. verreauxi — Kappeler and Fichtel 2012a). 160 

Female eviction, which can be preceded by targeted aggression, occurs in L. catta at 161 

Berenty in relatively large groups with many females in the birth or lactation season 162 

(Ichino and Koyama 2006), sometimes resulting in troop fission (Koyama 1991; Ichino 163 

2006). At Beza Mahafaly, female L. catta most often emigrate as mother-daughter 164 

groups, and male transfer also occurs, most often among related individuals (Parga et al. 165 

2015). Both male and female dispersal have been documented in P. edwardsi in 166 

Ranomafana National Park, with females transferring between groups on average twice 167 

in their lifetimes and males 3 times (Pochron et al. 2004, Morelli et al. 2009).  168 

Asian lorises reveal complexity similar to the lemurs. In the Javan slow lorises 169 

(Nycticebus javanicus), males begin to disperse at 14-18 months of age, slowly making 170 

forays from the home range. Female dispersal occurs slightly later and is more directed. 171 

Both sexes disperse 1-6 km away from their natal range, and dispersal may occur in 172 

stages whereby a young loris attempts to settle, and even pairs for ≤ 1 year with another 173 
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loris before moving on again (Nekaris 2014). In spectral tarsiers, males disperse twice 174 

as far as females do (Gursky 2010b). As a result, only females regularly form territories 175 

adjacent to their parental ranges. The site fidelity of individuals that were relocated to 176 

their original sleeping tree 5 years later was positively related to the width (diameter at 177 

breast height) and height of their sleeping trees. Thus, diverse combinations of social 178 

and ecological factors appear to explain dispersal in different species of strepsirrhines 179 

and tarsiers, which exhibit deviations from the dominant mammalian pattern of male-180 

only dispersal. 181 

 Mating system. —Long-term studies have informed our understanding of lemur 182 

mating systems mainly with respect to male reproductive strategies, which has emerged 183 

from genetic paternity data collected over a decade or more. For example, in P. verreauxi 184 

mating occurs both within and between groups, with great variation in mating 185 

competition among the multiple males within a group (Richard 1992; Lawler et al. 186 

2005). Paternities also show a mix of within- and extra-group reproduction, and a 10-187 

year study showed that paternity of P. verreauxi at Beza Mahafaly is skewed toward a 188 

handful of successful males (Lawler 2007). At Kirindy, the dominant male in a sifaka 189 

group sired >90% of all infant over more than 10 years, the greatest skew observed in 190 

male reproductive success in all primates (Kappeler and Schäffler 2008). Similarly, in E. 191 

rufifrons at Kirindy the most successful males sired on average >70% of all infants over 192 

more than 10 years (Kappeler and Port 2008). Male reproductive skew is also 193 

pronounced among M. murinus at Ankarafantsika where resident males have relatively 194 

higher body mass, larger home ranges, and sire relatively more infants than immigrant 195 

males (Schmelting et al. 2007). This outcome of intrasexual selection is difficult to 196 

reconcile with the lack of sexual dimorphism in lemurs (Kappeler and Fichtel 2015). 197 
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 Social structure. — There are fundamental challenges for mammals that live in 198 

dispersed social networks.  These networks are characterized by individualized stable 199 

associations and solitary foraging, and they require coordination of movements, 200 

cohesion, and reproduction in time and space, particulary if a species is sympatric with 201 

cryptic species of similar body mass. Long-term bioacoustic studies were done on 202 

individually marked lemurs of 4 species of the nocturnal lemur community in 203 

Ankarafantsika National Park (mouse lemurs, M. murinus and M. ravelobensis; Milne-204 

Edwards’s sportive lemur, Lepilemur edwardsi;  and the western woolly lemur, Avahi 205 

occidentalis), and it was found that different species exploit different acoustic niches for 206 

communication (Zimmermann 2016a). The 2 small-bodied species, the mouse lemurs, 207 

use the high frequency (ultrasonic) range as an adaptation to predation. This research 208 

also revealed a hitherto neglected role of acoustic signaling in governing group reunion 209 

and dispersal as well as species cohesiveness in sympatry, with cues from acoustic 210 

structure of the calls that characterize individual identity, sex, kinship, group, or species 211 

identity (Zimmermann 2016b). In L. edwardsi, pair partners engage in duetting at 212 

resource sites, supporting the notion that duetting evolved as a mechanism to 213 

coordinate activities between pair partners dispersed in space, to strengthen pair bonds, 214 

and to limit infanticide and nutritional stress in lactating females (Méndez-Cárdenas and 215 

Zimmermann 2009).  Specific syllables within these duets also occur in alarm calls 216 

(Scheumann et al. 2007).  Acoustic signaling in this nocturnal lemur community allows 217 

recognition, even across distance, and consequently gathering of dispersed group 218 

members at a particular site and a distinct time; vocal exchanges also help to limit costly, 219 

direct intra- and interspecific conflicts (Zimmermann 2016a, 2016b). Furthermore, 220 

specific differences in acoustic signaling facilitates the recognition of conspecifics and 221 
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contribute to cohesiveness of species sympatric with other species (Braune et al. 2008; 222 

Zimmermann and Radespiel 2014).  223 

Long-term behavioral data also provide important insights into dynamics and 224 

function of social relationships, especially with respect to dominance. For example, 225 

while overall rates of aggression are relatively low among both P. verreauxi and P. 226 

edwardsi, females at Beza Mahafaly are aggressive toward males and consistently elicit 227 

submissive signals from them (Kubzdela 1997; Pochron et al. 2003), providing insights 228 

into the development of female dominance. As in other taxa, female rank appears to be 229 

age-dependent within groups (Kubzdela 1997) and relatively stable over time (Koyama 230 

et al. 2005), whereas male-male dominance relationships are more unstable and less 231 

age-dependent (Brockman et al. 1998). This is probably because some groups are 232 

characterized by large amounts of instability and changes in male membership due to 233 

patterns of immigration, emigration, and evictions (Brockman et al. 2001). However, 234 

fitness consequences of female rank have only rarely been studied, (Takahata et al. 235 

2008), offering an important topic for future analyses of long-term data.  236 

POPULATION AND COMMUNITY ECOLOGY 237 

Long-term monitoring of known individuals is the only method for obtaining 238 

information on population dynamics and underlying life history adaptations. Most of the 239 

species included in this review have been studied for multiple generations (i.e., 240 

successful reproduction by offspring of individuals known and followed since birth), 241 

yielding important comparative data on population dynamics, demography, and life 242 

history. 243 

 Population dynamics. — Studies of population density and ranging can yield key 244 

information, both for conservation management and for understanding energetic 245 

strategies and constraints driving the evolution of social systems. Long-term variation in 246 



 11 

population abundance and distribution can be the result of species-specific habitat 247 

requirements or interspecific competition. Long-term ecological research over a period 248 

of more than 15 years at Ankarafantsika suggests that the heterogeneous distribution of 249 

Microcebus species there is most likely based on species-specific (micro-) habitat 250 

preferences related more to divergent patterns of resource use than to interspecific 251 

competition (Radespiel 2016).  Competitive exclusion may also account for variation in 252 

population density in red-bellied lemurs (Eulemur rubriventer) and E. rufifrons, golden 253 

bamboo lemurs (Hapalemur aureus) and gray bamboo lemurs (Hapalemur griseus), as 254 

well as Peyrieras’ woolly lemurs (Avahi peyrierasi) and the small-toothed sportive lemur 255 

(Lepilemur microdon) at Ranomafana (Wright et al. 2012).  256 

For example, P. diadema in more-disturbed habitats at Tsinjoarivo have smaller 257 

home range sizes and higher population density, having switched to food resources that 258 

are more abundant but lower-quality; they are surviving, but with physiological signs of 259 

compromised health (Irwin 2008). Population dynamics of P. edwardsi in Ranomafana 260 

are also affected by global climate cycles, in that fecundity is compromised by cyclones 261 

during gestation (Dunham et al. 2011). In L. catta at Berenty, territories were stable 262 

over decades but group size is highly variable (Jolly and Pride 1999; Koyama et al. 2006; 263 

see Gould et al. 1999). Variation in birth rate, an important driver of group size, was 264 

buffered against ecological crises in groups exposed to food-supplementation by tourists 265 

(Koyama et al. 2001; Jolly et al. 2002). Population densities of nocturnal lemurs in the 266 

same habitat remained stable over 27 years, however (Hladik et al. 1998). Bamboo 267 

lemurs in Ranomafana have had 1 or 2 decades of population stability and territory 268 

fidelity followed by sudden decreases in numbers of individuals in a group, and even 269 

group extinction caused by predation by fossa (Cryptoprocta ferox, the largest carnivore 270 

on Madagascar) and probably other factors (Wright et al. 2008a, 2014). Thus, long-term 271 
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monitoring is essential to capture variation in population dynamics over biologically 272 

meaningful temporal scales. 273 

 Life history. — There are likely numerous environmental factors that influence 274 

the evolution of life history schedules, as there are in other mammals, but so far, the 275 

most established connections between environment and lemur life histories pertain to 276 

climate (Wright 1999; Dewar and Richard 2007; Dunham et al. 2011). Because 277 

strepsirrhines and tarsiers lead relatively slow lives compared to other mammals of the 278 

same size, at least 1 decade of continuous monitoring is required, even for the smallest 279 

species, which can live to >10 years in the wild (Wright et al. 2008b; Hämäläinen et al. 280 

2014; Ichino et al. 2015).  281 

Female P. verreauxi in the dry deciduous forests at Beza Mahafaly reach sexual 282 

maturity around 4 years, but fertility peaks between 7 and 17 years, dropping off after 283 

17 years (Richard et al. 2002). This species is is long lived (Morris et al. 2011) and is 284 

characterized by slow rates of aging (Bronikowski et al. 2011). Relative to their body 285 

size, P. verreauxi reproduces later and lives longer (up to 19 years) than any other non-286 

human primate species for which there are comparable data (Richard et al. 2002). Many 287 

demographic traits such as life expectancy, reproductive value (i.e., an individual’s 288 

expected future contribution to population growth), and population growth rate exhibits 289 

lower values in periods when annual rainfall is low, and a stochastic demographic 290 

analysis also shows that population growth rate is depressed as the variance in annual 291 

rainfall increases (Lawler et al. 2009). These life history patterns are consistent with 292 

theoretical expectation and empirical findings pertaining to life history evolution in an 293 

unpredictable climatic environment (Dewar and Richard 2007). Similarly, in high (but 294 

still variable) rainfall areas such as Ranomafana, P. edwardsi has larger home ranges (50 295 

ha) and lower population density, yet the trends of long lifespans (up to 30+ years) and 296 
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slow development are consistent with data from other species of sifakas, both sympatric 297 

species and dry-forest species (Morelli et al. 2009; King et al. 2012; Tecot et al. 2013). 298 

Predation is a key source of extrinsic mortality, and local extinction of top predators 299 

such as C. ferox has created variation in predation rates that also can be compared 300 

among study sites. For example, P. verreauxi at Kirindy is exposed to higher predation 301 

rates than at Beza Mahafaly, where sifakas can live up to 10 years longer (Kappeler and 302 

Fichtel 2012a). Irwin et al. (2009) compiled data on C. ferox predation of rainforest 303 

Propithecus from 2 long-term sifaka studies (22 group-years for P. diadema at 304 

Tsinjoarivo and 73 group-years for P. edwardsi at Ranomafana). Although average rates 305 

of predation are relatively low (6-7 % of the population taken in a given year), the 306 

killings were clustered in time. This suggests that C. ferox uses a nomadic hunting 307 

strategy, hunting rather intensively in an area before moving on. This type of predation 308 

is also a potentially strong force that causes group extinctions, a phenomenon which is 309 

especially damaging in the fragmented forests at Tsinjoarivo, where it is unlikely that 310 

“empty” forest fragmentswill be reolonized ecause of low dispersal rates and the low 311 

chance that single individuals will settle. 312 

A study of raptor predation at Ranomafana revealed that harrier hawks (Polyboroides 313 

radiatus) and goshawks (Accipiter henstii) preyed on 7 species of lemurs, with woolly 314 

lemurs and bamboo lemurs the most frequently taken (Karpanty and Wright 2007). 315 

Playbacks of raptor calls to P. edwardsi individuals elicited alarm calls and male 316 

defensive behaviors, suggesting even large-bodied lemurs fear raptor predation 317 

(Karpanty 2006). In Ranomafana, predation by ring-tailed mongooses (Galidia elegans) 318 

on both rufous mouse lemurs (Microcebus rufus) and dwarf lemurs (genus Cheirogaleus) 319 

has been observed, and boas (Acranthophis dumerili) eat the smaller lemurs (Wright et 320 

al. 2012). Flexibility of life-history traits of small nocturnal lemurs living under different 321 
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environmental conditions (Lahann et al. 2006) may therefore also be due partly to 322 

variation in predation risk.  323 

CONSERVATION 324 

Long-term field studies have made 2 types of contributions to the conservation of 325 

lemurs, lorises, and tarsiers. First, the mere presence of long-term projects, often 326 

involving community-based partnerships, has a positive protective effect on the 327 

respective study sites, buffering them, at least to some extent, from major local threats 328 

(Rabesandratana et al. 2012). In Java the presence of a long-term project has been 329 

directly associated with cessation of capture of slow lorises for illegal trade (Nekaris 330 

2014).  Second, most projects in Madagascar have contributed importantly to 331 

understanding human impacts on lemur populations. Many problems face Madagascar’s 332 

forests — they are highly fragmented, close to villages, become increasingly degraded or 333 

completely destroyed, and are subject to rapid climate change (Harper et al. 2007; 334 

Hannah et al. 2008). Long-term monitoring of habitat modification and local lemur 335 

distributions and abundance provides by far the majority of the data for the re-336 

assessment of conservation status of numerous species (Schwitzer et al. 2014). Direct 337 

detrimental effects of anthropogenic activities on lemur health have become especially 338 

evident in southern Madagascar (Cuozzo and Sauther 2006; Sauther and Cuozzo 2009; 339 

Jolly 2012; Singleton et al. 2015). Negative effects of human-lemur interactions have also 340 

been observed in rainforest populations of rufous mouse lemurs occupying forests near 341 

villages that are infected with Giardia and retroviruses (Zohdy et al. 2015). 342 

Long-term presence of researchers is also necessary to assess the feasibility and 343 

effectiveness of concrete conservation measures aimed at diminishing the effects of 344 

fragmentation, degradation, and possibilities of restoring connectivity between isolated 345 

habitats through corridors. Gray mouse lemurs are suitable candidates to address these 346 
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issues because of their short generation time and high densities. Long-term monitoring 347 

reveals that they can use mixed tree plantations, including exotic tree species, as 348 

corridors within 5 years after being planted (Andriamandimbiarisoa et al. 2015). Slow 349 

lorises, too, have been shown to persist in agricultural plantations if suitable plant 350 

species are available (Nekaris 2014). The knowledge that introduced fast growing tree 351 

species can be used by lemurs and lorises offers new perspectives for restructuring 352 

fragmented landscapes for conservation. Long-term research coupled with conservation 353 

genetics can give us important insights into endangered species, providing better 354 

assessment of functional genetic diversity in the face of habitat fragmentation (Baden et 355 

al. 2014). 356 

ADDITIONAL TOPICS 357 

Long-term field studies have also contributed to a growing list of food items 358 

consumed by lemurs (Simmen et al. 2006) and lorises (Nekaris 2014), as well as records 359 

of rare events and behaviors such as vertebrate predation (Ichino and Rambeloarivony 360 

2011), predator mobbing (Gursky 2005), cannibalism (Hämäläinen 2012), and 361 

infanticide (Erhart and Overdorff 1998; Jolly et al. 2000; Rasoloharijaona et al. 2000; 362 

Wright et al. 2012). Moreover, long-term studies have also contributed to understanding 363 

the true level of species diversity at several study sites (e.g. Schmid and Kappeler 1994; 364 

Zimmermann et al. 1998). Other studies have begun to document patterns of social 365 

learning and stable patterns of local behavioral variability across years (Schnoell et al. 366 

2014). 367 

FUTURE DIRECTIONS 368 

Long-term work on several populations of strepsirrhines and tarsiers has now 369 

been ongoing for several decades. The biggest challenge for successful continuation of 370 

these projects is the implementation of supportive frameworks in terms of political and 371 
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economic stability in Madagascar and other range countries to allow them to continue. 372 

The other side of this coin pertains to the establishment of financial mechanisms for 373 

long-term sustainability of field sites in the countries where most of the researchers are 374 

currently based. Moreover, to understand fully the evolution and adaptations of these 375 

ecologically and socially diverse primate taxa, more long-term field studies are needed, 376 

especially on bushbabies (Galagidae; see Kotze et al. 2016) and pottos (Perodicticus 377 

species). Finally, long-term sites have generated rigorous long-term data, and merging 378 

them into a comparative and synthetic data base would now provide the ability to 379 

answer a number of big questions in primate biology. The present special feature 380 

provides an example of how such integration can be accomplished.  381 
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Figure legend 716 

Fig. 1. — Location of long-term lemur study sites in Madagascar.  Inset shows location of 717 

Madagascar off SE coast of Africa.   718 


