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Abstract

In this study, a new centrifugal instability mode, which dominates within the
boundary-layer flow over a slender rotating cone in still fluid, is used for the first
time to model the problem within an enforced oncoming axial flow. The resulting
problem necessitates an updated similarity solution to represent the basic flow more
accurately than previous studies in the literature. The new mean flow field is subse-
quently perturbed leading to disturbance equations that are solved via numerical and
short-wavelength asymptotic approaches, importantly yielding favourable comparison
with existing experiments. Essentially, the boundary-layer flow undergoes competition
between the streamwise flow component, due to the oncoming flow, and the rotational
flow component, due to effect of the spinning cone surface, which can be described
mathematically in terms of a control parameter, namely the ratio of streamwise to
axial flow. For a slender cone rotating in sufficiently strong axial flow rates, the in-
stability mode breaks down to Görtler-type counter-rotating spiral vortices, governed
by an underlying centrifugal mechanism, which is consistent with experimental and
theoretical studies for a slender rotating cone in otherwise-still fluid.

1 Introduction
This paper advances the study of boundary-layer transition over rotating cones. Specifi-

cally, we consider the convective instability of a slender rotating cone of half-angle 15◦ placed
in oncoming uniform axial flows of various strengths. While the model presented is valid for
other slender half-angles in the range up to approximately 40◦, a half-angle of 15◦ is chosen
as a representative value for definiteness and to facilitate comparison with existing results
in the literature by [19].
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The article forms part of a series of studies which have used theoretical techniques to
construct the correct models of governing instability for both broad and slender rotating
cones. The current study represents a significant extension to the general problem in the
slender cone case, introduced when enforcing an oncoming axial flow.

Physically, the problem represents an accurate model of flow over a rotating conical
projectile, such as the nose of a spinning sharp missile. Here laminar–turbulent transition
within the boundary layer can lead to significant increases in drag, which has negative
implications for fuel efficiency, control and accurate missile-targeting. In such cases, delaying
transition to turbulent flow is seen as beneficial, and controlling the primary instability may
be one route to achieving this. Ultimately, control of the input parameters of such a problem
may lead to design modifications and potential cost savings.

The purpose of applying a linear stability analysis in such a study is to reveal the effect
of varying the governing control parameter, namely the ratio of oncoming flow to rotational
flow. While the current authors have conducted cross-flow stability analyses of the effects
of enforced axial flow over broad rotating cones and disks (see [5, 7, 12, 13]), this paper
represents the first such study to apply a centrifugal Görtler stability analysis to a slender
cone rotating within an axial flow. As such, the investigation extends the work of [15],
which presents a full description of the still fluid problem. Specifically, we present a new
and rigorous similarity solution for the basic flow, on which we perform a stability analysis,
employing both asymptotic and numeric methods.

Importantly, in this paper we consider only stationary instabilities, which are the most
easily observed in flow-visualisation experiments. While travelling modes, which move along
the surface in the axial direction, have been shown to play an important role in the rotating-
disk case (see [1, 13]), the slender rotating-cone boundary layer is dominated by a different
underlying centrifugal instability. Such travelling modes are neglected in the present study,
but their effect on the flow maybe be considered in future investigations.

The paper is structured as follows: we begin by justifying the rationale for the choice
of new basic flow in §2, proceeding to formulate the problem in §3, using modified scalings
to correctly model terms arising from the centrifugal instability. Subsequently we outline
the asymptotic analysis in §4 and the corresponding numerical analysis in §5, along with
the major differences between the two solution methods. The results of the two theoretical
analyses are compared in §6, as well as with other numerical and experimental studies in the
literature. Finally, conclusions are drawn in §7.

2 Justification of the centrifugal mode and updated

basic flow
We begin by discussing the rationale for the choice of an alternative instability mechanism

for slender rotating cones, as well as the reasons for using a modified basic flow field.
Firstly, flow visualization studies of flow over slender rotating cones by [19] (axial flow)

and [20] (still fluid) show the primary instability is characterised by pairs of counter-rotating
Görtler vortices. However, as the half-angle ψ is increased beyond 40◦, their visualizations
clearly show that these vortices change to co-rotating vortices, as observed on rotating disks
by [9, 23, 30, 21, 1, 32], for example. It has been proposed by [6] and [15] that the counter-
rotating vortices are expected to arise from a dynamic instability induced by the centrifugal
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force of the flow field, and the co-rotating vortices are attributed to an underlying crossflow
instability. Indeed, the existence of an alternative mode of instability other than the crossflow
dominated type I and type II modes used to model vortices on broad rotating cones was
discussed in [6]. Subsequently a consistent model to correctly characterise the dominant
centrifugal-instability ‘Görtler’ mode for slender rotating cones has been applied successfully
by [15] in the still fluid case. Therefore, both experimental observations and theoretical
predictions provide evidence for the existence of distinct governing instability mechanisms
over slender and broad cones.

Secondly, the physical problem of superposing an oncoming axial flow onto a rotating
cone in still fluid depends on two important velocities: the rotational speed of the cone
surface and the local tangential slip velocity at the edge of the boundary layer, which is
directly related to the strength of the oncoming axial flow. The ratio of these two velocities
defines whether the cone is rotating ‘quickly’ (with a larger rotational velocity) or ‘slowly’
(with a larger oncoming flow). Specifically, we consider cases where the oncoming uniform
axial flow is increased gradually from zero (starting from initially still fluid), so the flow
setup corresponds to the former case above of a cone rotating ‘quickly’. Importantly, we
note that this is not a single unsteady problem but rather a sequence of steady ones, each
of which characterised by a different strength of oncoming axial flow. Existing studies have
computed the basic flow for this problem, with [7] displaying accurate solutions for 50◦ and
70◦ half-angle cones. We note that this study adopted a new method of similarity solution in
terms of the governing stream-function, which resolved problems in the basic flows originally
proposed by [5]. Furthermore, the earlier basic flow solutions proposed by [18] and later used
in the theoretical analysis of [19] appear to show some deviation from convergent behaviour
at the edge of the boundary layer. Results are given for a range of the spiral waveangles,
in order to recover the case which more closely represents experimental results. Both basic
flow solutions presented by [18] and [7] apply a method, which is similar to that used by [22].
However, the new solutions presented by [7] require only specification of the cone half-angle
and the governing ratio of the two characteristic flow velocities in order to produce solutions
exhibiting fully convergent behaviour at the edge of the boundary layer. It is for this reason
that we apply this updated formulation to obtain new basic flow solutions for a 15◦ half-angle
cone in a range of axial flows.

Importantly, for very slender cones (ψ ≤ 15◦), [19] and [20] have observed both spiral
and circular vortices for cones rotating in axial flow and still fluid, respectively. These are
distinguished by non-zero and zero waveangles. For the still fluid problem, the theoretical
study of these two cases differs depending on the orientation of the spiral vortices, with the
circular wave case of ψ ≤ 15◦ being analysed by [14]. Meanwhile, the case of spiral vortices
is presented by [15]. However, in the present study for a 15◦ cone rotating in an enforced
axial flow, the formulation in §3 covers both circular and spiral vortices, depending on the
waveangle parameter, which is essentially determined by the ratio of the oncoming flow speed
relative to the rotational speed of the cone surface.

3 Formulation
We consider a cone of half-angle ψ rotating in a fluid of kinematic viscosity ν∗ with an

angular velocity Ω∗ in an anti-clockwise direction around the streamwise coordinate axis x∗
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(where a ∗ denotes a dimensional quantity in all that follows). Other than the imposition
of the axial flow, the formulation follows that detailed in [15] and we construct coordinate
axes aligned along with and perpendicular to the spiral vortices (x̂∗ and y∗, respectively),
as shown in Figure 1. These are shifted from the conventional streamwise and azimuthal
coordinates, x∗ and θ, that are based on cylindrical polar coordinates. In such a problem,
there exists a boundary layer close to the rotating cone surface characterised by the distance
along the cone l∗ and defined by the Reynolds number, R, such that:

R =
Ω∗l∗2 sinψ

ν∗
.

However, we make the important distinction in this case of the inclusion of an oncoming
uniform axial flow. The physical problem is subsequently altered such that there now exists
a dimensional local slip velocity at the edge of the boundary layer, which is obtained via a
well-known potential-flow solution (see for example [31] or [4]), given by Ue = C∗x∗m, where
C∗ is a constant and for a cone of half-angle 15◦ considered in this study, m = 0.03927
approximately.

We subsequently compare this velocity to the rotational velocity of the cone surface,
given by Vw = Ω∗x∗ sinψ, to obtain the two important ratios. These ratios fully characterise
the problem, and are the local axial-flow parameter

Ts =
C∗x∗m

Ω∗x∗ sinψ
,

used in the literature by [5] and the rotational-flow parameter given by

s =
1

T 2
s

=
(Vw
Ue

)2

,

used earlier by [18] and [19]. In this study, we will predominantly use s in order to facilitate
comparison of our results with the experiments of [19]. However, we will make reference to
Ts where appropriate in physical cases where the cone is rotating ‘quickly’ and the axial flow
is increased from a zero value.

In contrast to the axial flow problem for a rotating disk where ψ = 90◦ analysed in [13],
the corresponding axial flow problem for a rotating cone with ψ < 90◦, results in the solution
of a system of PDEs, with the basic flow velocities depending on both the streamwise and
normal coordinates. Following [7], we seek a similarity-type solution and utilise a Mangler
transformation to capture the base flow quantities. The full details are provided in [7] for
ψ = 50◦ and 70◦, and more completely in [12] for a range of values of ψ. Here, we shall outline
the important differences between the formulation for broad and slender half-angle cones in
axial flow, and focus on the strategy of shifting the basic flow velocities from the well-known
streamwise and azimuthal coordinates x∗ and θ to the new logarithmic coordinates along
and normal to the spiral vortices x̂∗ and y∗.

We note that the shifted coordinate system (x̂∗, y∗, z∗) rotates with the cone surface at
the constant angular velocity Ω∗ in order to aid the modelling of stationary disturbances
over the cone surface. As in [15], the logarithmic spirals are directed such that the y∗-axis
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Figure 1: Diagram of the spiral vortex instability on a rotating cone placed in an oncoming
axial flow, showing coordinates in the x̂- and y-logarithmic spiral directions, as well as the
corresponding vortex wavenumber, γ, and vortex waveangle, φ. Note that the problem is
characterised by the relative strengths of the streamwise slip velocity at the edge of the
boundary layer, Ue, and the rotational speed of the cone surface, Vw, both of which are
encapsulated in the axial flow or rotational flow parameters, Ts and s, respectively.

has a positive projection with the direction of rotation of the cone. This requires that the
x̂∗-axis has positive projection onto the axis of rotation and the y∗-axis to have negative
projection, as shown in Figure 1. The spiral vortices are orientated at an angle φ relative to
the circle formed from the planer cross-sectional normal to the axis of rotation of the cone.
Consequently, the governing dimensional Navier–Stokes equations are derived in this shifted
co-ordinate system with appropriate scale factors.

We proceed to non-dimensionalize lengths on the distance along the cone l∗, so that
x̂∗ = l∗x̂ and y∗ = l∗y. Furthermore, we scale both logarithmic coordinates x̂ and y, as
well as the normal coordinate z∗, on the boundary-layer thickness, leading to the scaled
coordinate system (x̌, ȳ, η) = R1/2(x̂, y, z).

As for the still fluid problem, this scaling is imperative to enable the vortex structure in
both logarithmic directions to be analyzed at the same order as the length scale in the surface-
normal direction. This is because the counter-rotating Görtler vortices are characterized
by both logarithmic coordinates, and so, as in [15], we require this scaling to reveal their
growth-dependence behaviour in each direction. Interestingly, for rotational flow parameter
values s ≥ 5 on a 15◦ rotating cone, experimental studies by [19] observe circular ‘Taylor’
waves (φ = 0◦), as opposed to the more general spiral vortices. Nevertheless, the current
formulation is able to model both spiral and circular waves, as we include the assumption
that the spiral vortices exist and have a corresponding orientation angle φ. Therefore, setting
φ = 0◦ pertains to the circular wave case.

Importantly, the basic flow quantities Ũ and Ṽ are expressed as projections along the
shifted spiral coordinates. However, due to the introduction of an oncoming axial flow, these
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Figure 2: Velocity profiles Û(s, η1) and V̂ (s, η1) in the x̂- and y-directions, respectively, at
ψ = 15◦ for s = 1.5, 2, 3, 4, 5, 10, 16 and φ = 30.2◦, 22.5◦, 13.6◦, 6◦, 0◦, 0◦, 0◦ (in the directions
of the arrows).
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are now functions of both the non-dimensional streamwise and surface-normal coordinates, x
and z, respectively (where x is the streamwise direction over the cone, scaled on l∗). Hence,
obtaining the base flows now require the solution of a system of PDEs (see [7] and [12] for
full details and discussion) as opposed to the projected von Kármán solution of a system of
ODEs presented in [15] for the still fluid problem. We also note from [12] that the basic flow

solution to the boundary-layer equations for this problem has a correction of O(R−
1
2 ). While

there exist similar numerical basic flow formulations used by [18] and [19], experimental
verification of the basic flow is currently planned by Lingwood (personal communication,
2015). The shifted basic flow quantities are written correctly in the form:

Ũ(x, η) = U(x, η) cosφ+ V (x, η) sinφ,

Ṽ (x, η) = U(x, η) sinφ+ V (x, η) cosφ.

Here, U(x, η) and V (x, η) can be expressed in terms of the solution functions f ′(s, η1) and
g(s, η1) (where ′ indicates ∂

∂η1
) obtained in [12] and presented in [7] for ψ = 50◦, 70◦. However,

in this study, we remain consistent with the formulation presented in [12], pertaining to the
shifted basic flow quantities, which are essential when considering the slender rotating cone
problem for ψ < 40◦. Specifically, we may write

Ũ(x, η) =
Ue

Ω∗l∗ sinψ

(
f ′(s, η1) cosφ+ s

1
2 g(s, η1) sinφ

)
= s−

1
2 Û(s, η1), (1)

Ṽ (x, η) =
Ue

Ω∗l∗ sinψ

(
f ′(s, η1) sinφ+ s

1
2 g(s, η1) cosφ

)
= s−

1
2 V̂ (s, η1), (2)

where Û and V̂ are presented in Figure 2 for ψ = 15◦ in a range of axial flows, increasing
from s = 1.5 to s = 16 (corresponding to a ‘quickly’ rotating cone). We note that the
x̂-component, Û exhibits a familiar inflexional nature, with its limiting value at the edge of
the boundary layer increasing as s increases. However, for s ≥ 5, we observe from the results
of [19] that φ = 0◦, which is consistent with out basic flow solution where Û recovers the

streamwise basic flow component, f ′, to within a factor of s−
1
2 . In contrast, the y-component

of velocity V̂ exhibits a uniform shear and is consistently reduced as s is increased.
At this point, we outline the important link between the standard surface-normal coor-

dinate η and the modified surface-normal coordinate η1 scaled on boundary-layer thickness
according to the new velocity scales applied to the basic flow boundary-layer equations. The
coordinate stretching yields

η1 = η
(m+ 3

2s
1
2

sinψ
) 1

2
. (3)

This relation enables the shifted velocity profiles Ũ(x, η) and Ṽ (x, η), expressed in terms
of the standard boundary-layer coordinates, to be written in terms of f ′(s, η1) and g(s, η1),
which depend on s and the modified boundary-layer coordinate.

We assume that the spiral waves are periodic in the x̂-direction and introduce periodicity
into the perturbation quantities of vortex x̌-wavenumber a and ȳ-wavenumber b. Scaling our
perturbation quantities on the boundary-layer thickness, we introduce a combined flow of
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the form

ũ∗ = Ω∗l∗ sinψ[{Ũ(x, η), Ṽ (x, η),R−
1
2W (x, η)}+ R−

1
2{ũ(η), ṽ(η), w̃(η)}exp(iax̌+ ibȳ)].

Here W (x, η) is the surface-normal basic flow component, which is defined in [12] but not
used explicitly in the analysis of the problem. Similarly, the pressure perturbation term
scales as

p∗ = (ρ∗Ω∗2l∗2 sin2 ψ)R−1p̃(η)exp(iax̌+ ibȳ). (4)

Importantly, in order to obtain the correct form of the disturbance equations for analysing
spiral vortices and circular waves (φ 6= 0◦ and φ = 0◦, respectively), we employ mathemat-
ical approximations, specifically using the assumption of large Reynolds number to expand
the scale factors, which eventually lead to the expressions (15) and (16). We also focus
on the large spiral wavenumber apparent within the problem, which forms the basis for a
small parameter expansion in §asymp. However, a significant difference between the current
approach and the analysis of [15] is that the axial flow problem is now characterised by x-
dependence in the shifted basic flow quantities (Ũ(x, η), Ṽ (x, η)). Hence, we may express this
x-dependence in terms of the logarithmic spiral coordinates after they have been scaled on
boundary layer thickness, x̌ and ȳ, so that in essence Ũ = Ũ(x̌, ȳ, η) and Ṽ = Ṽ (x̌, ȳ, η). This
re-formulation reveals the correct length-scalings that successfully model the spiral waves.

Next we proceed to investigate the orientation of the short-wavelength asymptotic struc-
ture of the centrifugal instability and hence identify the spiral wavenumber in the x̌-direction
as a = ε−1, where ε is a small parameter. Here, b = O(1) is the corresponding wavenumber in
the ȳ-direction. The importance of transforming to the new logarithmic coordinate system
now becomes apparent when considering that the spiral vortex wavenumbers a and b in the
x̌- and ȳ-directions, respectively, enable the introduction of periodicity into the disturbance
quantities. Specifically, we observe that boundary-layer growth occurs along the x̌-direction,
with spiral waves in the ȳ-direction remaining fixed. Hence, the use of the logarithmic spiral
coordinate system is not only imperative to obtaining the correct length scalings upon which
to model the spiral vortices of the centrifugal instability, but also to revealing the correct
orientations along which these spiral vortices grow within the boundary layer. Further de-
tails of the mathematical manipulations employed in the asymptotic analysis are given in
[12] and we subsequently arrive at the governing stability equations given in Appendix A.

4 Asymptotic analysis

As with the asymptotic analysis presented in [15] for the still fluid problem, we follow
a strategy of employing a large vortex wavenumber and large Reynolds number. However,
given the experimental observations of [18] and [19], who report the existence of both spiral
and circular waves for different values of s, we extend the analysis of [15] to account for both
zero and non-zero values of φ. We subsequently treat φ = 0◦ as a special case of this analysis,
recovering the circular wave setup. It is important to note that the waveangle φ is essentially
a function of both ψ and s, as once the half-angle and axial flow strength is determine, the
instability develops accordingly admitting spiral waves of a certain waveangle. Hence, for a
fixed ψ = 15◦, we may consider φ = φ(s).
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We proceed to solve the governing equations to determine leading- and next-order esti-
mates of the scaled Taylor number for neutrally-stable modes, which arises due to the scaling
analysis and loosely follows [10] for the Taylor problem of flow between concentric rotating
cylinders. Importantly, we are able to form comparisons with results in the literature ex-
pressed in terms of Reynolds numbers (see §6 for more details). The corresponding Taylor
number, which characterizes the importance of centrifugal to viscous forces, is given by

T =
2 cotψ cosφ

sin4 ψ
. (5)

In the axial flow problem, for a fixed ψ, this quantity is an output of the analysis and
represents a measure of how s (or alternatively Ts) affects the physical flow characteristics.
In general, we can consider it to be a function of ψ and parameterized by the particular
φ(s) and s under consideration. However, in this study, we fix ψ = 15◦ and investigate the
effect of varying s. Consequently, this determines φ and hence the expression for T , which
is observed by [19] to decrease as s is increased for a 15◦ cone. Essentially, the problem
becomes a competition between the rotational flow due to the spinning cone surface versus the
streamwise forcing due the external oncoming axial flow. The former promotes the centrifugal
instability, whereas the latter amplifies a viscous Tollmien-Schlichting instability. Hence, it
is clear that the relative strengths of these two respective centrifugal and viscous mechanisms
reveal why the Taylor number becomes the governing parameter in this regime. The Taylor
number is closely related to the Görtler number for centrifugal instability problems and has
been studied for example by [10] for fully developed of boundary-layer flows.

Furthermore, a significant modification for the axial flow problem compared with the
still fluid case arises when considering the governing perturbation equations in Appendix A.
Due to the fact that the basic flow quantities and the streamwise coordinate x depend on
the logarithmic coordinates (see above in §3), we expand the shifted basic flows in powers of

R−
1
2 , about the location of vortex activity, namely at η = 0 on the cone surface. This leads

to the expressions

Ũ(x̌, ȳ, η) = R−
1
2η
∂Ũ

∂η
(x̌, ȳ, 0) +O(R−1), (6)

Ṽ (x̌, ȳ, η) = R−
1
2η
∂Ṽ

∂η
(x̌, ȳ, 0) +O(R−1), (7)

noting that Ũ(x̌, ȳ, 0) = Ṽ (x̌, ȳ, 0) = 0. This expansion allows important quantities related
to the basic flows, which appear in the governing perturbation equations, to be evaluated
within the leading- and first order asymptotic analyses.

Leading-order solution

Upon incorporating the basic flow expansions, we expand the perturbation quantities
and pose a WKB solution for small values of ε, where a = ε−1 for the wavenumber a in the
x̌-direction. As for the still fluid problem, the dominant terms in the governing equations
(11)–(14) balance if we scale T ∼ ε−4 and W/V ∼ O(ε−2), resulting in identical perturba-
tion expansions to those presented in [15] (reproduced here for clarity when manipulating
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subsequent quantities):

ũ =E(u0(η) + εu1(η) + ε2u2(η) + . . .),

ṽ =ε2E(v0(η) + εv1(η) + ε2v2(η) + . . .),

w̃ =E(w0(η) + εw1(η) + ε2w2(η) + . . .),

T =ε−4(λ0 + λ1ε+ λ2ε
2 + . . .),

where λ = λ0 + λ1ε + λ2ε
2 + . . ., E = exp i

ε

∫ ϕ
K(τ)dτ and ϕ = sinψ

h̄1
η. However, when

substituting these expansions in to the governing equations to obtain the corresponding
eigenrelation, we make appropriate simplifications sin2 φ << cos2 φ in (11)–(14) relating to
a small waveangle, which for ψ = 15◦ holds for s ≥ 5 and reasonably well for s < 5, from the
experiments of [19]. This is subsequently solved to yield the scaled leading-order eigenvalue
estimate

λ̄0 = −
( 2
√
s

m+ 3

) 1
2 1

V̂ ′(s, 0)
,

where the scaled eigenvalue is now given by

λ̄ = λh̄4
1

Ue
Ω∗l∗ sinψ

,

such that λ̄ = λ̄0 + λ̄1ε + λ̄2ε
2 + . . . and h̄1 is a scale factor defined as h̄1 = 1 + x̌ cosφ −

ȳ sinφ+ η cosψ sin2 φ.
Importantly, we note from Figure 3 that for s ≥ 5, the vortex activity is located at the

wall, with the minimum of V̂ ′(s, η1) existing at η1 = 0. However, for s < 5, the curve has a
minimum slightly departed from the wall, indicating the location of vortex activity will not be
at η1 = 0. This correlation results as a consequence of the requirement of obtaining valid real
solutions for the growth rate K when solving the governing eigenvalue equation at leading
order, which itself arises by following the study of [10] for the Taylor problem of flow between
concentric rotating cylinders. For the case of s < 5, the solutions obtained are not the most
dangerous modes available, but we include them as they provide useful information about
non-zero wave angles (spiral waves) for a 15◦ rotating cone in axial flow. Furthermore, an
interesting observation pertains to the related study of [13] on the rotating disk in axial flow,
where non-stationary travelling modes become more important as the strength of oncoming
axial flow increases. Specifically, for s < 5 in the current problem, it appears that the location
of vortex activity departing slightly from the wall suggests that travelling modes may grow as
Ts is increased (or s reduced) and in fact become the most unstable modes in this parameter
regime. Indeed, physically, the departure of a vortex from the wall suggests that vorticity
within the boundary layer is no longer fixed on the cone surface, but is instead propagating
or travelling in the effective velocity x̂-direction. Ultimately, in order to confirm whether
travelling instabilities may harbour the most unstable modes for the slender rotating-cone
problem, a further investigation would be required, taking account of time-dependent terms
within the governing disturbance equations (11)–(14).

As seen from Table 1, for ψ = 15◦, the scaled leading-order eigenvalue estimate λ̄0 is
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s Ts φ(s) λ̄0 λ̄1

1.5 0.8165 30.2◦ 1.6414 38.1682
2 0.7071 22.5◦ 0.9941 3.1288
3 0.5774 13.6◦ 0.6288 0.0321
4 0.5 6◦ 0.4668 0.9479
5 0.4472 0◦ 0.3803 1.7922
10 0.3162 0◦ 0.2782 1.2277
16 0.25 0◦ 0.2236 0.9561

Table 1: Leading- and first-order eigenvalue estimates of the scaled Taylor number for rota-
tional flow parameters s observed by Kobayashi et al. on a cone with 15◦ half-angle.

found to decrease as s is increased and also increases as φ(s) increases for corresponding
experimental observations.

First-order solution

We proceed to apply Hall’s method and account for modifications to the analysis of [15]
owing to the shifted basic flow terms. We also include assumptions of sufficiently small
waveangle, such that tan2 φ is small compared with 1, which is consistent with the vortex
activity being located at the wall. Hence, following [15], we pose a thin layer of thickness

O(ε
2
3 ) about η1 = 0, expanding the Taylor number in the form

T = ε−4(λ0 + λ1ε
2
3 + . . .)

and re-scaling the normal variable on an appropriate thickness ξ = ϕ

3
1
3 ε

2
3

. The normal

perturbation velocity is similarly expanded as

w̃ = w0(ξ) + ε
2
3w1(ξ) + . . . ,

with ũ = O(1) and ṽ = O(ε2) as in the leading-order analysis. Substituting these expres-

sions into the updated governing equations and equating terms of O(ε
2
3 ) yields a modified

eigenvalue relation at first order, which is solved to give a first-order estimate of our scaled
Taylor-number eigenvalue as

λ̄1 =
2.3381× 3

1
3

|V̂ ′(s, 0)|

( 2
√
s

m+ 3

) 1
2
[ V̂ ′′(s, 0) + s−

1
2 V̂ ′(s, 0)2 cosφ

V̂ ′(s, 0)

]2

.

The full analysis is mathematically quite detailed and provided more completely in [12]. Nu-
merical values for the first order λ̄1 are displayed in Table 1 for various s and φ corresponding
to experimental observations.



13

ǫ
-1

3 3.5 4 4.5 5 5.5 6 6.5 7

T̄

10
1

10
2

10
3

10
4

10
5

Increasing s

Stable

Unstable

Figure 4: Asymptotic scaled Taylor number T̄ as a function of non-dimensional
vortex wavenumber ε−1 for ψ = 15◦, s = 1.5, 2, 3, 4, 5, 10, 16 and φ(s) =
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Asymptotic estimate of Taylor number

Finally, we combine the leading- and first-order estimates for the scaled effective Taylor
number, which is given by

T̄ =T h̄4
1

Ue
Ω∗l∗ sinψ

,

=ε−4
( 2
√
s

m+ 3

) 1
2

[
1

V̂ ′(s, 0)
+

2.3381× 3
1
3

|V̂ ′(s, 0)|
ε
2
3

( V̂ ′′(s, 0) + s−
1
2 V̂ ′(s, 0)2 cosφ

V̂ ′(s, 0)

)2

+ . . .

]
. (8)

Logarithmic plots of the scaled asymptotic Taylor number against vortex wavenumber,
ε−1 = a, are shown in Figure 4 for ψ = 15◦ and various values of s . The unstable region
is above the curves and the stable region below. In general, we observe that increasing s
leads to a trend of reducing the asymptotic Taylor number branch. Physically, this can
be interpreted as promoting the more dangerous centrifugal instability mode, and hence
destabilising the flow, which leads to a larger unstable region above the neutral stability
branch, as depicted in Figure 4.

5 Numerical analysis
In this section, we develop the corresponding numerical solution, outlining the major

differences between the axial flow problem formulated in §3 and the still fluid case presented
in [15]. These arise due to the fact that the basic flow quantities Ũ and Ṽ are now functions
of the logarithmic spiral coordinates x̌ and ȳ, as well as η. We manipulate the disturbance
equations (11)–(14) and subsequently express the basic flow terms in terms of η1 by making
use of the coordinate stretching (3). The analysis involves neglecting Coriolis terms and
viscous streamline-curvature effects. Importantly, we note that the centrifugal mode under
investigation differs from the streamline-curvature mode for large half-angle cones (as studied
in [6]), which arises due to viscous effects of the cone surface. In contrast, the centrifugal
mode for small half-angle cones arises from the centrifugal forces present in the mean flow
for small ψ, owing to the effects of surface-curvature. Such centrifugal curvature terms are
not neglected in the analysis and contain the Taylor number as a factor. Proceeding in this
fashion yields a modified Orr–Sommerfeld (OS) equation for stationary disturbances within
the system, given by[

i
(
∂2
ηη − k2

)2
+
Re√
s

(
α1Û + β1V̂

) (
∂2
ηη − k2

)
− Re

2s
(m+ 3) sinψ

(
α1Û

′′ + β1V̂
′′
)]

w̃ = 0,

(9)
where

α1 =
a sinψ

Re
, β1 = b sinψ, k =

√
α2

1 + β2
1

represent the vortex wavenumbers in the x̌-, ȳ- and effective velocity-directions, respectively,
and ∂2

ηη = ∂2/∂η2. Furthermore, Re = x sinψ is the local Reynolds number, interpreted as
the local non-dimensional radius of the cone surface from the axis of rotation. Importantly,
we can relate the rotational Reynolds number, Re, to the conventional Reynolds number, R,
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defined in §3 using equation (45) of [18] to re-express the surface-curvature term, yielding

Re = R
1
2

√
0.6698. (10)

In similar fashion to the still fluid study of [15], the system depends on the updated basic
flow solutions. However, in the axial flow case, this includes a related dependence on the
rotational flow parameter, s, as well as on the waveangle φ, arising from the definition of the
projected basic flow quantities Û and V̂ in (1) and (2). We proceed to solve the OS equation
to obtain estimates of the effective vortex wavenumber k and rotational Reynolds number
Re, for a range of values of s and φ, which enable suitable comparison with the experimental
results of [19].

To obtain the numerical solution, we first convert the system of disturbance equations
(11)–(14) into a set of six first-order equations. Upon following the above description, specifi-
cally neglecting Coriolis and viscous streamline-curvature terms, we arrive at the fourth-order
OS equation (9). However, we now apply an OS solver routine, which has been modified to
allow existing solutions for the OS neutral curve at specific values of ψ and (s, φ(s)) to be
used in order to facilitate fast convergence when searching for neutral curves for the required
the values. Essentially, we reduce ψ for fixed s, traversing from the upper branch of known
neutral curves presented in [7] for larger half-angles ψ = 50◦ and 70◦. Our current basic
flows are used as input solutions to the OS solver in order to obtain results for ψ = 15◦.
Subsequently we repeat the updated routine by reducing s now for fixed ψ = 15◦, traversing
from the known upper branch for large s (s → ∞) and reducing to the required parameter
range of s investigated by [19]. We again use the shifted basic flow solutions for varying
(s, φ(s)) at ψ = 15◦. The result is the modified OS solver enables us to gradually merge in
an incremental process from previously computed OS solutions in order to obtain the OS
neutral stability curves that we seek for the required values of ψ and (s, φ(s)).

We present numerical predictions of the critical Reynolds numbers and critical vortex
wavenumbers for ψ = 15◦ in a range of axial flows varying from s = 1.5 to s = 16 in table 2.
The results show that an increase in s leads to a reduction in the critical Reynolds number,
which suggests that a stronger rotational flow promotes the centrifugal instability mode,
hence destabilising the flow. This is supported by the critical vortex wavenumbers in the
effective velocity direction, which increase as s is increased, leading to greater amplification
rates for steady flow. Importantly, we observe close agreement with the experimental obser-
vations of [19] and with our asymptotic results in §4, discussion of which is developed below
in §6.

However, at this stage we must note that the OS numerical analysis presented neglects
Coriolis and streamline-curvature effects. These effects are known to yield a characteristic
two-lobe structure to the neutral-stability curve, which is unable to be captured by the OS
analysis. This behaviour is concentrated around the critical Reynolds number region of the
stability curve. Consequently, the results of the OS numerical analysis will exhibit a slight
discrepancy when compared with the experimental measurements of [19] around the critical
Reynolds number region.

Firstly, we justify the use of the OS numerical stability analysis, as it represents a useful
simplification of the disturbance equations (11)–(14). Nevertheless, the process of obtaining
the numerical solution is complicated by the use of the modified OS solver routine, which
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s Ts φ(s) Rec α1,c

1.5 0.8165 30.2◦ 58.9 0.75
2 0.7071 22.5◦ 37.2 0.77
3 0.5774 13.6◦ 18.6 0.81
4 0.5 6◦ 16.1 0.84
5 0.4472 0◦ 15.7 0.86
10 0.3162 0◦ 14.9 0.89
16 0.25 0◦ 14.0 0.91

Table 2: Numerical calculations of the critical Reynolds numbers, Rec, and critical vortex
wavenumbers, α1,c, in the effective velocity direction for a cone of 15◦ half-angle in a range
of axial flows defined by s, with corresponding vortex waveangles, φ.

requires the updated basic flow solutions for successively varying values of ψ and subsequently
(s, φ(s)) in order to converge gradually to an updated neutral curve for ψ = 15◦ and the
relevant axial flow strengths. While the process is incremental and time-consuming when
compared with, for example, the asymptotic solution presented in §4, it improves in accuracy,
yielding closer comparisons with the experimental measurements of [19] as Re increases.

Secondly, the current OS numerical solution essentially represents an interesting compar-
ison with the numerical method of [18] and [19], revealing the effect of perturbing around
the more accurate base flows Û and V̂ used in this study. As the majority of the terms
in the OS analysis leading to equation (9) depend on these base flow quantities, improving
their accuracy can significantly boost the overall accuracy of the OS neutral-curve solution.
In fact, we observe that the numerical analysis presented yields generally better agreement
with the experimental data of [19] than their numerical calculations do. As such, these
comparisons are expanded upon and discussed later in §6.

Lastly, we note that in the numerical analysis, φ(s) is treated as a general unknown
value. Neutral stability curves are constructed for ψ = 15◦ and the required values of s. As
in [18], a range of φ are investigated around the critical Reynolds number region, in order
to ascertain the φ with the minimum critical Reynolds number. These values of φ exist in a
range, for example for ψ = 15◦ and s = 3, φ lies between 5◦ and 20◦. The φ values presented
in this study are selected to show direct comparisons between our numerical analysis and
the numerical results of [18] and [19], pertaining to the improved accuracy in our basic flows
and perturbation solutions compared with their numerical techniques. Furthermore, if we
consider figure 10 in [19], we see that there is a wide range of experimental data measurements
available for φ. Our numerical results can be compared with these, but have not been chosen
to fit this data.

6 Comparison between asymptotic and numerical anal-

ysis
In this section, we seek to compare the numerical OS neutral stability curves with the

large vortex wavenumber asymptotic predictions. We use modified scalings linking the Taylor
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Figure 5: A comparison between the scaled effective asymptotic Taylor number T̄ (above)
and the Reynolds number Re predicted by the Orr-Sommerfeld analysis (below), against
vortex wavenumbers ε−1 and σ respectively, for ψ = 15◦, s = 1.5.
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Figure 6: A comparison between the scaled effective asymptotic Taylor number T̄ (below)
and the Reynolds number Re predicted by the Orr-Sommerfeld analysis (above), against
vortex wavenumbers ε−1 and σ respectively, for ψ = 15◦, s = 2.



19

ǫ
-1

 / σ

1 2 3 4 5 6 7

(0
.6
6
98
)1

/
2
T̄
/
R
e

10
1

10
2

10
3

10
4

φ = 13.6
°

φ = 15
°

Stable

Unstable
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lines, below) for φ = 13.6◦, 15◦ and the Reynolds number Re predicted by the Orr-
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fact two separate curves on the diagram, but appear very close together, with φ = 15◦

slightly above and φ = 13.6◦ slightly below.
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number defined in equation (5) to the rotational Reynolds number (used in [19]), which yields

Re = T̄
√

0.6698

for large Reynolds number, Re, and large Taylor number, T .
We again seek comparisons between scaled effective asymptotic Taylor number, T̄ , versus

large vortex wavenumber, ε−1, and the numerical OS neutral curves of Reynolds number,
Re, versus vortex wavenumber σ in the effective velocity direction. Here, σ = αδ1/h1,
from [18], where α represents the wavenumber in the effective velocity direction. Following
comparisons with the definitions used in [18], we associate σ with our vortex wavenumber in
the x̌-direction, α1, given in the OS equation (9).

Figures 5, 6 and 7 show log-log comparisons between the scaled effective asymptotic
Taylor number, T̄ , expanded in terms of vortex wavenumber ε−1, versus the numerically
predicted Reynolds number Re, expressed in terms of σ, for ψ = 15◦ and s = 1.5, 2 and 3,
respectively. In each figure, we compute asymptotic curves for the corresponding waveangles
used in the experiments of [19], namely φ = 30.2◦, 22.5◦ and 13.6◦ respectively. Additionally,
we also present asymptotic curves for φ = 15◦ in the case of s = 3 in figure 7, which
corresponds to the waveangle used in the numerical study of [18].

For ψ = 15◦, we observe good qualitative agreement between the OS neutral curves
and the asymptotic branches of the scaled effective Taylor number for s = 1.5, 2 and 3. In
particular, the agreement between the asymptotics and numerics becomes more favourable
for larger values of T̄ , further along the asymptotic branch. Due to the nature of the
large vortex wavenumbers and large Reynolds numbers used in the asymptotic analysis, we
expect better agreement for large values of ε−1 and σ. Furthermore, the accuracy of the OS
numerical neutral curves should increase for larger values of Re, which is consistent with our
observations as we move along the upper branch of the neutral stability curves.

Furthermore, as s increases, we observe closer general agreement between the asymptotic
and numerical estimates, which can be seen as we move from figures 5 to 7. One explanation
pertains to a modelling assumption used in §4 to derive the asymptotic Taylor number
estimates, which requires a sufficiently small waveangle. This is consistent with the vortex
activity being located at the wall, which is the case for s ≥ 5. For smaller values of s, this
location departs slightly from the wall, as can be seen in figure 3. The consequence is that the
asymptotic stability modes obtained, whilst not being the most dangerous modes available,
will nevertheless be close to the most dangerous modes. Hence, comparisons between the
asymptotic and numerical estimates should yield greater accuracy for larger values of s,
where the asymptotic stability modes are closer to the neutral stability modes obtained from
the numerical analysis.

A second explanation for the closer agreement between the asymptotics and numerics for
larger values of s relates to a physical interpretation of the problem, where a larger value
of s corresponds to a stronger rotational flow component. This essentially promotes the
centrifugal instability, which has been used to model the important length scalings for both
the asymptotic and numerical analyses. Hence, the parameter regime of large s (or small Ts)
corresponds to the closest theoretical model of the counter-rotating vortex activity observed
for slender rotating cones in axial flow. In contrast, smaller values of s lead to a stronger
streamwise flow component. This instead promotes a distinct viscous Tollmien-Schlichting
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instability, which forces the spiral waves further along in the streamwise direction. Overall,
the centrifugal instability is identified as the more dangerous mechanism, with a stronger
streamwise flow component acting to stabilise the flow versus the de-stabilising rotational
flow component. Consequently, larger values of s should yield closer agreement between the
asymptotic and numerics, as observed.

In the specific case of figure 7, we observe that both our numerical OS results (solid
curve) and the numerical calculations of [18] (dashed curve) lead to slightly closer agreement
with the asymptotic branch for φ = 15◦ rather than for φ = 13.6◦. This is consistent with
the fact that φ = 15◦ corresponds to Kobayashi’s numerical study, whereas φ = 13.6◦ relates
to the experiments of [19].

More importantly, figure 7 shows that while both our numerical results (solid curve)
and those of [18] (dashed curve) agree well with the asymptotic branches for large σ and
large Re, our OS calculations predict a higher critical Reynolds number at the leading edge
of the curve, compared with the numerical results of [18]. This discrepancy is discussed
further in §7, where we compare both predictions for the critical Reynolds numbers, with
the experimental observations of [19], showing our results are closer to their experimental
measurements, as depicted in figure 9.

One explanation for the observed improvement in our results involves considering the
differences between our numerical analysis and that of [18]. As discussed earlier in §2,
Kobayashi’s basic flows appear to show some deviation from the required convergent be-
haviour at the edge of the boundary layer, matching with the inviscid potential flow solution
Ue. In contrast, our shifted basic flows developed in §3 and obtained using the commercial
NAG routine D03PEF exhibit strongly convergent behaviour at the edge of the boundary
layer (as shown in figure 2). While in the asymptotic model, many of the important quan-
tities which feed into the analysis are calculated at the wall location (η = 0), this is not the
case for the numerical model. Specifically, we see from the governing OS stability equation
(9) that the complete basic flow profiles are fed into the numerical analysis when employing
the modified OS solver described in §5. Hence, greater accuracy in the calculation of these
shifted basic flows is important for the numerical model to ensure more accurate predictions
of the OS neutral curves when compared with those curves of [18], particularly near the
regions corresponding to the critical values of the rotational Reynolds number Re.

7 Conclusion
In this paper, we have presented a physical extension to the problem of boundary-layer

flow over a rotating cone. Specifically, by imposing an oncoming axial flow, we have devel-
oped distinct asymptotic and numerical analyses based on the centrifugal-instability mode,
which captures the effects of surface-curvature and incorporates the rotational flow compo-
nent. Furthermore, through the control parameter s, we have also included the effects of
the streamwise flow component, which is susceptible to a viscous Tollmien-Schlichting in-
stability. We observe that the combined flow is a competition between these two competing
instabilities, with the former the most dangerous mechanism. Meanwhile, the latter acts to
stabilise the flow and force the counter-rotating spiral waves along the cone surface in the
streamwise direction.

In general, we observe close agreement between our asymptotic and OS numerical sta-
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Figure 8: A comparison between the experimental observations of [19] (dot-dashed line, 4)
and the current theoretical predictions (solid line, ◦) of the vortex orientation angle, φ, at
the onset of instability. The diagram illustrates φ(s) reduces with increased rotational flow
parameter, s, to a limiting value of φ = 0◦ at s = 5.
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◦) of the critical Reynolds number, Rex,c, at the onset of instability. The diagram illustrates
Rex,c reduces with increased rotational flow parameter, s.



24

bility results. We also obtain reasonably good comparisons between our numerics and the
numerical stability calculations of [18] in figure 7. Importantly, while we have used the
asymptotic results to provide an envelope for the right-hand branch of the numerical neu-
tral stability curve, they are unable to predict the effect of varying axial flow on the critical
Reynolds numbers. Nevertheless, the asymptotic analysis has proved invaluable in this study,
as it reveals the correct length-scalings on which to model the counter-rotating vortex pairs,
which characterise the centrifugal mode. Furthermore, by expanding the shifted basic flows
about the location η = 0, we were able to confirm from that the vortex activity of the most
dangerous modes is located at the wall. Subsequently as s was varied, we tracked the loca-
tion of vortex activity, observing that it departs slightly from the wall for s < 5. As a result,
we have posed the hypothesis that stationary modes could dominate in the region s ≥ 5,
but below this non-stationary (or ‘travelling’) modes may begin to grow. Such an observa-
tion requires further investigation, but would not be possible through solely conducting a
numerical analysis. Hence, the importance of an asymptotic analysis is clear in revealing the
underlying physical mechanisms at work, along with how they might interact.

In contrast, the OS numerical stability results complement the asymptotics in confirming
the existence of the neutral stability curve for the centrifugal mode. Furthermore, we observe
a reduction in the critical Reynolds number Rec as well as an increase in the critical am-
plification rate α1,c with increasing s, suggesting that larger values of s are destabilising (or
larger values of Ts are stabilising), as seen in table 2. Hence, the centrifugal-instability mode
is physically the most dangerous mechanism, despite alternatives being present, including
the crossflow and Tollmien-Schlichting instabilities.

Ultimately, we propose a condition of ‘optimal’ stability existing around s = Ts = 1,
where the competing effects of the rotational and streamwise flow components balance.
For s < 1 (or Ts > 1), the physical problem changes from a ‘quickly’ rotating cone (the
parameter range considered in this study) to a ‘slowly’ rotating cone. In this regime, the
physical effect of the oncoming axial flow strengthens, thereby promoting the streamwise
Tollmien-Schlichting instability, which begins to dominate over the centrifugal mode. This
conclusion has interesting implications for the design of spinning projectiles, for example in
military and defence applications. Here, the streamwise component is often large due to
the projected velocity of the missile. For example, projectile applications that involve high
rotation rates, such as spinning bullets and spinning missiles, can spin up to 3000◦ per second
and higher. In such case, it is important to design a missile that spins at sufficiently high
rotation rate in order to promote the centrifugal mode and obtain a suitable balance between
the competing instabilities. In fact, the primary instability can break-down to a secondary
instability, which has been observed, for example, by [23] in the formation of ‘horseshoe-like’
vortices. Essentially, the aim in such spinning body applications is to reduce the parameter-
scope for transition-to-turbulence within the flow. Therefore, influencing the primary and,
potentially, the secondary instability, over a longer streamwise distance along the spinning
body may achieve a delay in turbulent-transition, which consequently leads to more accurate
targeting and projectile control properties. It should be noted at this point that the current
study neglects the effects of compressibility, which would play a significant role in accurately
modelling such high-speed applications. In this light, the authors are presently working on
a compressible flow study of the rotating cone [34] and hope to report on this in the near
future.
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Figure 8 presents the observed waveangle, φ, versus various s for a 15◦ rotating cone. We
compare results from the present study with the experiments of [19], observing close agree-
ment. Both studies observe that in the regime of a ‘quickly’ rotating cone (s > 1), increasing
s leads to a reduction in φ, to the point where φ = 0 for s ≥ 5, physically corresponding to
the transition from spiral waves to circular or ‘Taylor’ vortices. Interestingly, this appears
consistent with the asymptotic analysis in §4 where for s ≥ 5, the vortex activity remains
located on the wall at η = 0. Conversely for s < 5, the stronger axial flow (larger Ts) acts
to sweep vorticity in the streamwise direction, which is again consistent with the asymptotic
findings in §4, namely that the vortex activity undergoes a slight departure from the wall in
this regime.

Importantly, we note that φ = φ(s) forms a pseudo parameter in the numerical analysis.
For ψ = 15◦ and fixed s, we obtained basic flows for a range of φ, supplying these as
input profiles to the modified OS solver discussed in §5 in order to construct the neutral
stability curves from the corresponding curves for larger cone half-angles. Consequently,
following the method of [18], the values of φ yielding the lowest critical Reynolds numbers
when plotting the stability curves were chosen to identify the most unstable modes and
subsequently compare with the experimental measurements of [19]. Additionally, we observe
more consistent and smoother convergence behaviour in the OS solver for these φ, suggesting
that the numerical analysis accurately captures the dominant centrifugal mode within the
parameter range for s under investigation.

In figure 9, we present a logarithmic plot of the critical experimental Reynolds number
Rex,c against various values of s for a cone with ψ = 15◦. We compare our numerics both
with the numerical and experimental results in figure 6 of [19], using equation (10) and
identifying R at the critical location to be Rex,c in Kobayashi’s notation. Similar to table 2,
we observe a reduction in Rex,c as s is increased, suggesting that increasing the rotational
flow is de-stabilising. In general, we observe good comparisons with the experimental mea-
surements of [19], with improving accuracy as s is increased. One explanation for this is
that the centrifugal mechanism strengthens for increasing s, due to the larger rotational flow
component. Hence, the length-scalings and approximations governing the numerical analysis
will yield better comparisons with experiments as s increases.

Interestingly, while our results appear to under-predict the critical Reynolds number
Rex,c, we observe closer agreement with the experiments of [19] than their numerical results.
This may be due to the increased accuracy achieved in calculating the shifted basic flow
profiles. Indeed, for the numerical analysis in §5, we use the complete shifted basic flow
profiles, as opposed to the asymptotic analysis in §4, where predominantly the quantities
at η = 0 are utilised. Specifically, use of the commercial NAG routine D03PEF appears to
yield more accurate basic flows, with smoother convergence behaviour at the edge of the
boundary layer, compared with those obtained in [18]. As a result, this increased accuracy
is transferred to the numerical stability analysis, where the basic flows are used in solving
the governing OS equation (9). Ultimately, this leads to more accurate predictions of the
critical Rex,c, when compared with the experiments of [19]. Furthermore, we notice our
results are consistent with the related study of [7], where the OS neutral curves for a broad
rotating cone (ψ = 70◦) under-predict the critical Reynolds number, compared with the
corresponding neutral curves obtained from the full perturbation system.

The problem of experimentally investigating spinning body applications with an axial flow
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introduced remains an open question. This is predominantly due to the inherent difficulties
in accurate measurement of the important aerodynamic parameters when incorporating an
external oncoming axial flow. Consequently, theoretical studies, such as the asymptotic and
numerical analyses presented here, represent important pathways to progress in such complex
problems, which often involve the interaction of a number competing instabilities.

Alternatively, while the present study uses an OS numerical analysis to estimate the
neutral stability curves, it cannot accurately model the familiar two-lobed structure of the
curve near the critical Reynolds number region. However, the numerics yield results of
improving accuracy as Re increases, and also recover the asymptotics for large Re and
σ, which utilise the full disturbance equations. Furthermore, comparisons of our OS results
Rex,c with the experiments of [19] in figure 9 show reasonably good agreement. Nevertheless,
we propose a numerical analysis of the full perturbation equations, including the Coriolis and
viscous streamline-curvature effects, as an extension to this problem. It should be stressed
that as in §5, such an analysis will obtain neutral curves for the required values of ψ and
s. We will subsequently investigate the stability curves for the range of φ which produces
the lowest critical Reynolds numbers. This will form an accurate estimate for φ that can
be compared to existing experimental and numerical results. Ultimately, utilisation of the
updated basic flows presented in this study would potentially lead to closer comparison with
existing experiments, not to mention with any potential future experimental studies. In
this light, we are currently in the process of developing and extending the work of [6] for
a broad rotating cone undergoing a crossflow instability, to incorporate an oncoming axial
flow. Consequently, we hope to extend these results in due course to the current problem of
a slender rotating cone in axial flow.
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ũ

+
sinψ

h̄1

∂Ũ

∂x̌
(x̌, ȳ, η)ũ− sinψ

h̄2

∂Ũ

∂ȳ
(x̌, ȳ, η)ṽ +

∂Ũ

∂η
(x̌, ȳ, η)w̃

+
sinψ

h̄1h̄2

[Ũ(x̌, ȳ, η)ṽ + Ṽ (x̌, ȳ, η)ũ] sinφ

+
(
Ũ(x̌, ȳ, η)w̃ + Wũ

)cosψ

h̄1

sin2 φ

−2
sinψ

h̄1h̄2

Ṽ (x̌, ȳ, η)ṽ cosφ − 2(w̃ cotψ sinφ+ ṽ)

= −ia
sinψ

h̄1

p̃+ ∇̄2ũ +
[ ∂
∂x̌

( 1

h̄1h̄2

∂(h̄1h̄2)

∂x̌

)
ũ− 2ib

sinψ

h̄2
2

∂h̄2

∂x̌
ṽ

−
(sinψ

h̄3
2

∂h̄2

∂ȳ

∂h̄2

∂x̌
+

sinψ

h̄2
1h̄2

∂h̄1

∂ȳ

∂h̄1

∂x̌

)
ṽ −

(sinψ

h̄3
1

∂h̄1

∂η

∂h̄1

∂x̌
+

sinψ

h̄1h̄2
2

∂h̄2

∂η

∂h̄2

∂x̌

)
w̃
]
,

(12)

(
ia

sinψ

h̄1

Ũ(x̌, ȳ, η) + ib
sinψ

h̄2

Ṽ (x̌, ȳ, η) +W
∂

∂η

)
ṽ

+
sinψ

h̄1

∂Ṽ

∂x̌
(x̌, ȳ, η)ũ− sinψ

h̄2

∂Ṽ

∂ȳ
(x̌, ȳ, η)ṽ +

∂Ṽ

∂η
(x̌, ȳ, η)w̃

+
sinψ

h̄1h̄2

[Ũ(x̌, ȳ, η)ṽ + Ṽ (x̌, ȳ, η)ũ] cosφ

+
(
Ṽ (x̌, ȳ, η)w̃ + Wṽ

)cosψ

h̄2

cos2 φ

−2
sinψ

h̄1h̄2

Ũ(x̌, ȳ, η)ũ sinφ + 2(w̃ cotψ cosφ+ ũ)

= −ib
sinψ

h̄2

p̃+ ∇̄2ṽ +
[(sinψ

h̄3
2

∂h̄2

∂x̌

∂h̄2

∂ȳ
+

sinψ

h̄2
1h̄2

∂h̄1

∂x̌

∂h̄1

∂ȳ

)
ũ

+
sin2 ψ

h̄2
2

ṽ − 2ib
sinψ

h̄2
2

(∂h̄2

∂x̌
ũ+

∂h̄2

∂η
w̃
)

−
(sinψ

h̄3
1

∂h̄1

∂η

∂h̄1

∂ȳ
+

sinψ

h̄1h̄2
2

∂h̄2

∂η

∂h̄2

∂ȳ

)
w̃
]
, (13)
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(
ia

sinψ

h̄1

Ũ(x̌, ȳ, η) + ib
sinψ

h̄2

Ṽ (x̌, ȳ, η) +W
∂

∂η

)
w̃ +

∂W

∂η
w̃

−2
cosψ sin2 φ

h̄1

Ũ(x̌, ȳ, η)ũ − 2
cosψ cos2 φ

h̄2

Ṽ (x̌, ȳ, η)ṽ

−2(ṽ cotψ cosφ − ũ cotψ sinφ) = −∂p̃
∂η

+ ∇̄2w̃

−
(sinψ

h̄3
1

∂h̄1

∂x̌

∂h̄1

∂η
+

sinψ

h̄1h̄2
2

∂h̄2

∂x̌

∂h̄2

∂η

)
ũ

+
(sinψ

h̄3
2

∂h̄2

∂ȳ

∂h̄2

∂η
+

sinψ

h̄2
1h̄2

∂h̄1

∂ȳ

∂h̄1

∂η

)
ṽ

+2
(sinψ

h̄2
1

∂h̄1

∂η

∂ũ

∂x̌
+

sinψ

h̄2
2

∂h̄2

∂η

∂ṽ

∂ȳ

)
− ∂

∂η

( 1

h̄1h̄2

∂(h̄1h̄2)

∂η

)
w̃,

(14)

where ∇̄2 = R−1∇2 is now the non-dimensional re-scaled Laplacian operator in the logarith-
mic spiral wave coordinate setup, which may be expressed as

∇̄2 =
∂2

∂η2
−
(
a2 sin2 ψ

h̄2
1

+ b2 sin2 ψ

h̄2
2

)
+

sin2 ψ

h̄1h̄2

[
ia
∂

∂x̌

( h̄2

h̄1

)
+ ib

∂

∂ȳ

( h̄1

h̄2

)
+

∂

∂η
(h̄1h̄2)

∂

∂η

)]
.

Equations (11)–(14) represent the continuity and momentum disturbance equations, with
the convective terms in equation (14) producing the important quantities leading to the
definition of the Taylor number T in the asymptotic analysis §4. The scale factors are given
by

h1 =
h̄1

sinψ
+O(R−

1
2 ), (15)

h2 =
h̄2

sinψ
+O(R−

1
2 ), (16)

where

h̄1 = 1 + x̌ cosφ− ȳ sinφ+ η cosψ sin2 φ,

h̄2 = 1 + x̌ cosφ− ȳ sinφ+ η cosψ cos2 φ.
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