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Abstract 

This paper presents a method for analysing the characteristics of nano-
scale particles emitted from a 1.6 Litre, 4-stroke, gasoline direct 
injection (GDI) and turbocharged spark ignition engine fitted with a 
three-way catalytic converter. Ensemble Empirical Mode 
Decomposition (EEMD) is employed in this work to decompose the 
nano-scale particle size spectrums obtained using a differential 
mobility spectrometer (DMS) into Intrinsic Mode Functions (IMF). 
Fast Fourier Transform (FFT) is then applied to each IMF to compute 
its frequency content. 

The results show a strong correlation between the IMFs of specific 
particle ranges and the IMFs of the total particle count at various speed 
and load operating conditions. Hence, it is possible to characterise the 
influence of specific nano-scale particle ranges on the total particulate 
matter signal by analysing the frequency components of its IMFs using 
the EEMD-FFT method. This approach can provide a useful insight 
for developing a control strategy for reducing nano-scale particle 
emissions of a GDI engine. The present work details the systematic 
methodology followed for using EEMD in combination with FFT to 
analyse the spectrums of nano-scale particulate matter emissions. 

Introduction 

Particulate Matter 

Ever since the adverse health impact of nano-scale particulate matter 
(PM) from gasoline engines was identified, a significant amount of 
research was directed towards reducing the levels of PM from gasoline 
combustion sources. Most of the research work can be grouped into 
five main categories; (1) Formation mechanisms related to the 
operating conditions of the engine [1,2,3], (2) the characterisation of 
nano-scale particulate matter from gasoline direct injection (GDI) 
engines [2,3], (3) formation mechanisms linked to the chemical 
signature of fuels, lubricants, and other additives [4,5], (4) the 
measurement methods and uncertainties for meeting legislative 
emission targets [6] and finally (5) the after-treatment systems such as 
Gasoline particulate filters (GPF) [7]. 

Understanding the formation mechanism or size of soot particles 
during the combustion process is not a new area of research [8,9,10]. 
However, recent developments in measurement methodology, 
instrumentation [11,12] and research linking particulate matter with 
health risks [13] have enabled legislators to set up targets and 
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researchers to develop strategies for controlling the formation 
mechanism and total PM quantity resulting from the combustion 
process. The mechanisms driving the creation of particles from fuel 
molecules during combustion were extensively studied along with the 
oxidation and particle growth mechanisms. For example, early studies 
proposed the presence of a link between unsaturated hydrocarbons 
such as polycyclic aromatic hydrocarbons (PAH) and airborne 
particulate matter formation [5]. The growth model reviewed by 
Richter and Howard [5] highlighted the effect of C2 and C3 units on 
the growth of molecules such as Benzene which results in the 
formation of larger PAH. Other pathways of PAH formation were also 
studied by Frenklach and Warnatz [14] who suggested a potential 
relation between the cyclization of cyclopentadienyl radicals and 
phenylacetylene formation.  Melius et al. [15] later followed up on 
Frenklach and Warnatzs work and performed a quantum chemical 
analysis to test their hypothesis.  The results of Melius et al. [15] 
confirmed the significant contribution of cyclopentadienyl radicals in 
the formation of aromatic rings, which are part of the particles 
nucleation process. The focus of the previously mentioned early 
studies was mainly related to diesel combustion. However, the general 
mechanism is not different for other petrochemical derived fuels. 
These studies also suggested that the smallest recognizable particles 
are in a range of less than 2 nm in diameter. In the next stage of particle 
formation, these particles grow, oxidise and coagulate based on the 
present fuel species and prevalent conditions such as temperature and 
pressure during the combustion process [16]. This stage of formation 
is mainly responsible for different particle size ranges for the given 
operating conditions. The growth of nanoparticles has been to a large 
extent expressed as variations of H-abstraction and C2H2-addition 
sequences [5]. For example, Nicovich and Ravishankara [17] used 
kinetic modelling as a method to analyse the products of the reaction 
H + C6H6. Their results demonstrated that cyclohexadienyl radical was 
formed by this reaction. The findings of their work were still valid even 
at sup-atmospheric pressures. Whereas Mebel et al. [18] conducted a 
study on reactions H + C6H6 and C6H5 + H2, their results showed that 
reaction H + C6H6 had a significant dependence on pressure when 
temperature conditions are above room temperature. 

Controlling the total count of nanoscale particles from gasoline-fuelled 
engines warranted insight from at least two specific areas. The first 
area of investigation focussed on the characterisation of the particles 
from gasoline combustion linked to the operating conditions of the 
engine. The second one focussed on the role of the chemical 
composition of gasoline and the affinity of certain species towards soot 
formation. Vehicle manufacturers and researchers broadly developed 
calibration procedures and control strategies for meeting PM emission 



targets either in g/km or total particle count N#/km below the 1000 nm 
diameter range [3,6,19,20]. Various operating parameters related to 
event control such as fuel injection timing [21], spark timing [22], 
valve timing [23] and combustion duration along with design variables 
such as injector design, combustion chamber design and other 
combustion parameters [24] specifically related to inception, 
formation, growth and size distribution nano-scale particles are 
considered with the sole aim of meeting the emission targets [1].  

Similarly, the chemical composition of fuel and its role in the 
formation, growth and size distribution of nano-scale particles was also 
studied by fuel chemists and researchers. The importance of this factor 
is recognised by legislators given the current regulations restricting 
sulphur content in diesel and gasoline fuel [25,26,27]. However, the 
precise mechanism that controls the inception, growth, fragmentation, 
coagulation and aggregation of nano-scale particles from gasoline fuel 
is not fully understood mainly because the measurements are carried 
after the combustion process. The size distribution is already frozen at 
this stage. Therefore, analysis work on the chemical composition of 
the exhaust gas, size distribution of nano-scale particles and the 
chemical composition of solid particles using methods such as thermo-
gravimetric analysis [28] and Transmission Electron Microscopy [29] 
has been carried out by researchers. These studies took into 
consideration the engine operating conditions, the chemical 
composition of lubricating oil [30], different types of fuel additives 
along with their role on exhaust particles and the overall chemical 
composition of fuels [4]. 

In addition to gaining insight into the formation mechanisms and the 
effect of fuel chemical compositions on nano-scale particles, the 
variability, robustness and repeatability of PM measurements posed 
significant challenges to the legislators for setting total particle count 
target limits from gasoline engines [31,32]. Therefore, the Particle 
Measurement Programme at the European Commission [32] suggested 
different levels of counting efficiency for different particle size ranges 
based on experimental work. The effects on measurements 
repeatability can be linked to the cyclic variability of the combustion 
process [24], the dilution ratio set for the measurements [32] and the 
location of sampling positions such as pre and post catalyst, as well as 
pre and post turbocharger [33,34]. These variables have been shown to 
influence particle size characteristics even at steady-state operating 
conditions. So far, experimental observations have enabled researchers 
to only develop limited levels of correlation between different particle 
size ranges. Therefore, there is a need for developing appropriate 
models which can be used for gaining insight into the interactions 
between different particle size ranges. This will provide a clearer input 
definition to after-treatment systems such as gasoline particulate filters 
for controlling the PM emission levels. 

In order to meet PM targets for gasoline engines, vehicle 
manufacturers developed gasoline particulate filters as an after-
treatment solution. To evaluate and optimise the performance of this 
filter, the size distribution of the particles along with the total particle 
counts are required [35]. It is already known that the size distribution 
of the particles and total count upstream of the GPF vary from that of 
engine out PM levels since systems such as turbochargers and three-
way-catalytic converters change the characteristics of nano-scale 
particles emitted from the combustion chamber [24,33,34,36,37]. 
Although reasonably strong experimental observations are available in 
the published literature, very limited mathematical methods predicting 
the influence of different exhaust subsystems on the size distribution 
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and the total count of nano-scale particles are derived from these 
experimental observations [38]. 

It can be summarised that for any given operating conditions, various 
factors such as the coolant temperature, spark timing, injection 
pressure [39] and the start of injection timing have been shown to 
influence the formation mechanism of nano-scale particles [1,2,40]. 
Therefore, the size range of the particles and the total particle count 
can be controlled by optimising these parameters. For a given engine 
and fuel composition, the engine operating variables determine the 
total PM count as well as the size distribution of nano-scale particulate 
matter. For example, one of the control variables for a given air-fuel 
ratio and engine loading conditions explored by various researchers is 
the start of injection in gasoline engines [19,41,42]. This variable 
seems to influence the particle size distribution as well as the total 
particle count. In addition to that, the location of sampling points such 
as pre-catalyst or post-catalyst is also shown to have a significant 
influence on particle size distribution as well as the total particle count. 
Whereas regardless of sampling location, the correlation between the 
size distribution and the total particle count is essential for developing 
an appropriate control strategy [24,42,43]. However, very little 
literature on underpinning correlations between specific particle size 
ranges and the total particle count is found in the published domain. 
Hence, the scope of the present work. This study proposes the use of 
Ensemble Empirical Mode Decomposition (EEMD) as an approach for 
investigating the correlation between specific nano-scale particle size 
ranges and the total particle count. 

Ensemble Empirical Mode Decomposition 

Ensemble Empirical Mode Decomposition (EEMD) is a signal post-
processing method introduced by Wu and Huang [44] and utilised for 
time domain data analysis. The suitability of this method for complex 
signal analysis is attributable to its adaptive features, ability to process 
non-stationary and non-linear datasets, as well as its ability to preserve 
time information during decomposition [44]. The process of 
employing EEMD consists of decomposing the input dataset into a set 
of Intrinsic Mode Functions (IMF) in addition to a residual. The 
purpose of this decomposition is to isolate multiple signal components 
within the data into separate IMFs, which allows a better 
understanding and extraction of physical meanings within the data. An 
IMF must satisfy two main requirements. The first requirement is that 
the number of times the signal crosses the horizontal axis must be the 
same or different by one to the number of extrema within the signal. 
Secondly, the mean of the local maxima and minima envelopes must 
be zero at any point in the dataset [45].  

EEMD was presented as a noise-assisted data analysis (NADA) 
approach and provides a solution to the mode mixing problem 
associated with the original Empirical Mode Decomposition (EMD) 
algorithm published by Huang et al. [46] in 1998. Mode mixing occurs 
when one or more resulting IMFs contain multiple oscillations with 
varying scales. This means that the physical events associated with 
certain oscillations are not adequately represented in mode mixing 
affected IMFs, which can lead to the loss of some signal features 
present in the original dataset. EEMD overcomes this issue by adding 
white noise to the input signal. The added noise is utilised as a uniform 
reference during the decomposition process and therefore significantly 
reduces the likelihood of mode mixing. The added noise is cancelled 
out during the IMFs last mean computation [44, 45]. The process 



followed for computing IMFs using EEMD is commonly known as the 
shifting algorithm [46]. For a signal given as y(t), Huang et al. [46] 
defined the shifting algorithm steps followed during the EEMD 
process as the following: 

1. Locate the local extrema (Minima & Maxima) of the input
dataset y(t).

2. Perform an interpolation of the local extrema by employing
the cubic spline approach and find the upper and lower
envelopes (U(t) & L(t)).

3. Compute the local mean (m(t)) of the upper and lower
envelopes:  𝑚1(𝑡) =  

𝑈(𝑡)+ 𝐿(𝑡)

2

4. Perform a subtraction of m1(t) from the input dataset:
𝑗1(𝑡) = 𝑦(𝑡) − 𝑚1(𝑡)

5. Repeat steps 1 to 4 for j1(t) until reaching a jn(t) that meets
the two conditions of an IMF.

The residual r(t) is generated once the remaining signal component 
after the last computed IMF is a monotonic function. Therefore, 
equation 1 can be used to reconstruct the original dataset: 

𝑦(𝑡) =  ∑ 𝐼𝑀𝐹𝑘(𝑡)

𝑘−1

𝑘=1

 + 𝑟(𝑡) (1) 

To illustrate a practical application of the EEMD concept, signal y(t) 
shown in figure 1 was generated. The main components of this signal 
are three sinusoidal waves with frequencies of 10 Hz, 30 Hz and 70 
Hz. Random noise was added to the signal to assess its effect on the 
results of the data decomposition. The resulting IMFs of signal y(t) are 
illustrated in figure 2. Fast Fourier Transform (FFT) was then applied 
to the IMFs to analyse their frequency content. It can be seen from 
figure 3 that the 70 Hz, 30 Hz and 10 Hz signal components are 
captured in IMFs 3, 4 and 5, respectively. Therefore, it is possible to 
separate critical signal features within a complex signal using EEMD. 

EEMD was previously utilised for various applications in signal post 
processing and feature extraction. For example, Wang and Shao [47] 
used EEMD as a tool to extract fault features within the vibration 
signal of rotating machinery. Similarly, a paper published by Park, 
Kim and Choi [48] proposed an approach for gearbox fault diagnosis 
based on EEMD. Their method consists of decomposing the gearbox 
transmission error signal into a set of IMFs using EEMD. This 
facilitates detecting the difference between the faulty and normal 
gearbox by analysing the features within each IMF. Whereas El 
Yacoubi and Samuel [49] decomposed cylinder pressure data of a GDI 
engine using EEMD and showed that it is possible to identify engine 
firing features within the IMFs by analysing the frequency domain of 
each IMF. A similar approach is employed in the present work by 
decomposing the measured PM data using EEMD. FFT is then applied 
to the resulting IMFs to analyse its frequency features.  
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Figure 1: Graphical representation of the example signal y(t) 

Figure 2: Resulting IMFs after applying EEMD to signal y(t) 

Figure 3: Frequency domain of IMFs 3, 4 and 5 of signal y(t)  
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Experimental apparatus 

Power unit 

The experimental data collected during this work are from a 1.6 Litre, 
4-stroke, gasoline direct injection (GDI) and turbocharged spark
ignition engine fitted with a three-way catalytic converter. Additional
specifications of the test engine are shown in table 1.

The wall-guided direct injection (WGDI) strategy of the test engine 
consists of injecting fuel into the cylinder via a swirl injector installed 
on the side of the cylinder. The injector setup combined with a bowl-
shaped pocket design of the piston crown allows easier guidance of the 
air-fuel mixture towards the spark plug. The test engine has a 
maximum fuel injection pressure of 12 MPa. This pressure level allows 
for a higher spray velocity compared to the piston velocity [10]. The 
engine control unit (ECU) modulates fuel injection pressure based on 
speed and load operating conditions to ensure optimum fuel 
consumption and emissions levels. The WGDI along with injection 
pressure specifications based on the operating conditions of the test 
engine play a crucial role in reducing fuel impingement on the cylinder 
walls. This is an important PM experimental testing consideration 
given the direct link between particle emissions and fuel injection 
parameters of GDI engines [50,51,52]. Elevated levels of wall fuel 
impingement often result in an alteration in fuel evaporation dynamics 
and therefore lead to a significant change in the characteristics of PM 
emissions [37,53]. 

Particulate matter measuring device 

The present work utilises a Differential Mobility Spectrometer DMS-
500 as a device to sample particulate matter data from the exhaust gas. 
This device is capable of measuring PM total count and size spectrums 
for particles with a geometric mean diameter (GMD) between 5 nm 
and 1000 nm. The sampling period used to collect PM measurements 
was 500 milliseconds.  

Table 1: Experimental engine specifications 

Parameter Value 

Peak torque  240 Nm @ 4000 RPM 

Rated power 130 kW @ 6000 RPM  

Bore diameter 77 mm 

Stroke length 85.8 mm 

Connecting rod length 138.4 mm 

Number of cylinders 4 

Compression ratio 10.5 

Pistons firing order  1 – 3 – 4 – 2 

Fuel injection type Gasoline Direct injection 

Induction type Turbocharged and intercooled 

Methodology of work 

Experimental testing 

Particulate matter data used in this work were collected from the test 
engine at fully warmed-up and steady-state operating conditions. An 
eddy current dynamometer controlled by a CADET V12 system was 
utilised to maintain the desired engine speed and load inputs within ± 
2 RPM and ± 1 Nm, respectively. This ensures higher accuracy in 
steady-state measurements. The collected steady-state conditions in 
the present work are 1500 RPM at 50 Nm, 1500 RPM at 80 Nm, 2500 
RPM at 20 Nm, 2500 RPM at 50 Nm, 3500 RPM at 20 Nm and 3500 
RPM at 80 Nm. Oil and coolant temperatures during the experiment 
were recorded as 89 °C and 83 °C, respectively. These temperature 
readings were taken after a full 20 minutes of engine warm-up to allow 
for oil and coolant temperature stabilisation and ensure a non-
fluctuating reading. Ambient air temperature is assumed to be 21 °C 
during the reading. 

The exhaust samples were taken from upstream as well as downstream 
of the three-way catalytic converter. A heated selector valve 
maintained at 190 °C was used to allow for choosing a sampling 
location prior to or post catalyst. Figure 4 illustrates a schematic 
representation of the experimental setup. 

The duration of PM emissions measurements was 10 mins for all 
operating conditions. This is to account for particle count variability 
and allow a better representation of frequency properties during the 
data post-processing stage.   

Signal post-processing 

The data analysis approach employed in the present work consists of 
applying EEMD to the particle count spectrums obtained 
experimentally at different operating conditions. The purpose of this 
approach is to obtain a set of Intrinsic Mode Functions representing 
various signal features for each test case. RStudio integrated 
development environment (IDE) for R© 4.2.2 was used for performing 
EEMD using the integrated Rlibeemd package.  

Next, Fast Fourier Transform was applied to the IMFs obtained from 
EEMD to obtain the frequency characteristics of each IMF. The 
integrated FFT function within MATLAB programming software was 
used in this work to compute the frequency domain of the IMFs.  



Figure 4: Schematic representation of the experimental setup used for PM data 
collection 

Results and discussion 

A typical particle spectral density for every 60 seconds as a function 
of particle diameter is shown in figure 5. It can be seen that the general 
trend of the particle spectral density is similar for every 60 seconds 
increment of the sampling duration. This is expected as the 
measurements were taken during steady-state operating conditions. 
However, it can also be seen that most of the fluctuation in particle 
spectral density from one 60 seconds increment to the next is within 
the 10 nm to 50 nm diameter region. This is also expected given that 
this nanoparticle range represents the majority of particulate matter 
emissions from gasoline engines. Therefore, the effects of engine 
cyclic variability will be most significant for this particle diameter 
range.  

The effect of load on particle size density is embodied in figure 6. It is 
already known that at a relatively low operating load, most exhaust 
particles are generally within 10 to 50nm in diameter. Whereas as the 
load increases for a constant speed, the proportion of small diameter 
particles decreases as larger diameter particles increase [24,34]. 
Therefore, the results in figure 6 align with the outcome of similar 
studies in the literature [24,34]. The particles within the range of 10 -
25 nm diameter have a higher contribution to the total particle count in 
the 2500 RPM and 20 Nm case in comparison to the 2500 RPM and 
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80 Nm case. This is expected given that peak cylinder pressure and 
temperature are higher at high load operating conditions. These 
combustion parameters have a direct effect on the inception, growth, 
oxidation and coagulation of nano-scale particles.  

This study grouped the particles into different particle size ranges as 
5-23, 23-50, 50-100 and 100-300 nm diameter. The particle size ranges
were grouped in this manner to align with the chosen particle range
grouping in similar studies [34,37,54]. The correlation between these
particle size ranges and the total particle count was then examined. The
analysis compared the characteristics of these nanoparticle ranges to
those of the total signal.

Figure 5:  A particle size spectral density plot for every 60 seconds as a function 
of particle diameter measured upstream of the catalyst at 2500 RPM and 20 Nm 
operating conditions 

Figure 6: Particle size spectral density measured upstream of the catalyst at a 
low load case 2500 RPM - 20 Nm (Top figure) and a high load case 2500 RPM 
- 80 Nm (Bottom Figure)

The resulting particle count measurements used for the analysis are 
presented as time domain signals. Figure 7 shows an example time 
domain plot of the total particle count signal ranging from 5 nm to 
1000 nm diameter particles measured upstream of the catalyst at 3500 
RPM and 20 Nm operating conditions. The measured particle 
emissions for each operating condition consist of a total time domain 



capturing all particles within the 5 nm to 1000 nm diameter range in 
addition to the specified subgroups of nanoparticle range signals.  

EEMD was applied to the time domain data at various operating 
conditions and IMFs for each speed and load operating conditions were 
obtained. An example of the resulting IMFs obtained after 
decomposing the PM measurements in figure 7 is illustrated in figure 
8. It can be seen that each obtained IMF contains different oscillations
in comparison to the next IMF, with the oscillations frequency
decreasing as the IMFs order increases.  Therefore, FFT was applied
to the IMFs in order to extract the frequency content of these IMFs.

Figure 7: Time domain signal of the total particle count upstream of the catalyst 
at 3500 RPM – 20 Nm 

Figure 8: Resulting IMFs 2, 3, 4 and 5 after applying EEMD to the particle 
density time domain measured upstream of the catalyst at 3500 RPM – 20 Nm 

Figures 9 to 14 demonstrate a comparison of the frequency 
characteristics associated with IMFs 2 to 5 for each nanoparticle range 
signal and the total PM signal at various operating conditions. The 
comparison included both pre-catalyst and post-catalyst cases. It can 
be seen that the fundamental frequency of the total particle count 
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correlates with a different size range as the speed and load change. It 
is also seen that the frequency of the particle size range that compares 
favourably with the total particle count for the pre-catalyst is different 
from that of post-catalyst measurement. For example, figure 9 shows 
the IMFs fundamental frequency of the specific nanoparticle ranges 
and the total particle count for the pre-catalyst and post-catalyst at an 
engine speed of 1500 RPM and 50 Nm loading conditions. In the pre-
catalyst case, it can be seen that the fundamental frequency of IMF 2 
of the 5-23 nm particle range matches the fundamental frequency of 
IMF 2 of the total particle count. Similarly, the fundamental frequency 
of IMF 3 of the 23-50 nm particle range matches the fundamental 
frequency of IMF 3 of the total particle count. Therefore, it is 
concluded that the 5-23 nm and 23-50 nm ranges are closely related to 
the total particle count for the pre-catalyst 1500 RPM and 50 Nm case. 
In the post-catalyst case, the correlation between IMF 2 of the 5-23 nm 
particle range and IMF 2 of the total particle count is less prominent. 
Whereas IMF 3 of the 23-50 nm particle range no longer matches IMF 
3 of the total particle count. These observations hence suggest that the 
three-way catalytic converter affects the particle size spectral density, 
which reflects on the fundamental frequencies of different particle size 
ranges. 

In contrast, the frequency of 5-23 nm particles closely aligns with the 
fundamental frequency of total particle count. It has already been 
shown that the particle number density around 10nm diameter after the 
catalytic converter usually drops when compared to Pre-Catalyst 
values [53]. Whereas the particle number density around 100 nm 
diameter after the catalytic converter increases when compared to the 
Pre-catalyst values. EEMD provides an insight into the correlation 
between the 5-23 nm particle range and the total particle count. 
Similarly, EEMD provides insight into the influence of the catalytic 
converter on particulate matter emissions.  

Figure 10 shows the effect of load on particle size and count. As the 
load increases from 50 to 80 Nm, the correlation between all IMFs of 
the 23-50 nm particles with the IMFs of the total particle count of the 
pre-catalyst sample is more significant. For the post-catalyst case, the 
IMFs frequencies of 100-300 nm particles compare favourably with 
the IMFs of the total particle count. These findings align well with the 
background literature. Increasing the load results in a decrease of 
smaller particles [24,34] and therefore a less significant correlation 
between the 5-23 nm particles and the total particle count signal at 
1500 RPM – 80 Nm in comparison to the 1500 RPM – 50 Nm case. 
Similarly, it was shown that three-way catalytic converters can 
influence the particle size distribution characteristics and result in an 
increased number of larger diameter particles [53]. This explains the 
strong correlation between the 100-300 nm particles and the total 
particle count signal in the post-catalyst case in figure 10.    

The frequency characteristics derived from IMFs for the 2500 RPM – 
20 Nm and 2500 RPM - 50 Nm cases are shown in figures 11 and 12, 
respectively. Whereas the frequency characteristics derived from IMFs 
for the 3500 RPM – 20 Nm and 3500 RPM - 80 Nm cases are shown 
in figures 13 and 14, respectively. Overall, it was found that IMF 2 of 
the 5-23 nm particle spectrum and IMF 2 of total particle count were 
correlated for 83% of the pre-catalyst testing cases. Whereas this 
correlation was less prominent in the post-catalyst cases. The effect of 
load for the other operating speeds also agrees with the conclusion 
drawn from the 1500 RPM case. The effect of engine load on particle 
emissions is more dominant in comparison to the effect of speed given 
the direct relation between load settings and in-cylinder combustion 



conditions. The analysis performed during the present work was 
limited to the speed range of 1500 RPM to 3500 RPM and a load range 
of 20 Nm to 80 Nm. However, further EEMD-FFT analysis of 
particulate matter data from a wider range of speed and load operating 
conditions could further validate the findings of this work and reveal 
additional correlations between the nanoparticle ranges and the total 
particle count.   

The application of EEMD and IMFs provides a useful insight into 
inter-particle correlations and their effect on the total particle count for 
the pre-catalyst and post-catalyst measurements. Therefore, such 
information can provide a practical input for developing suitable 
strategies to control particle emissions as well as predicting the effect 
of a catalytic converter design on particle size characteristics. The 
EEMD-FFT approach highlighted in the present work can also be 
combined with other mathematical methods in the literature to 
facilitate its implementation in a control algorithm. For example, the 
work performed by El Yacoubi and Samuel in [49] identified the 
presence of a frequency coupling between cylinder pressure, manifold 
pressure and the crankshaft instantaneous speed signal using bispectral 
analysis. Given that the EEMD-FFT method used in the present work 
is capable of extracting the frequency characteristics of the 
decomposed PM data, it is possible to combine this method with 
bispectral analysis to extract potential frequency couplings between 
the IMFs of PM data and other signals such as cylinder pressure. Such 
coupling can be used in common engine calibration models such as 
mean value engine models (MVEM) for particulate matter emissions 
control purposes.     

Figure 9: A comparison of the total PM signal IMFs with the IMFs of specific 
nanoparticle ranges at 1500 RPM and 50 Nm. The comparison includes a pre-
catalyst case (Top bar chart) and a post-catalyst case (Bottom bar chart)   
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Figure 10: A comparison of the total PM signal IMFs with the IMFs of specific 
nanoparticle ranges at 1500 RPM and 80 Nm. The comparison includes a pre-
catalyst case (Top bar chart) and a post-catalyst case (Bottom bar chart)   

Figure 11: A comparison of the total PM signal IMFs with the IMFs of specific 
nanoparticle ranges at 2500 RPM and 20 Nm. The comparison includes a pre-
catalyst case (Top bar chart) and a post-catalyst case (Bottom bar chart)   



Figure 12: A comparison of the total PM signal IMFs with the IMFs of specific 
nanoparticle ranges at 2500 RPM and 50 Nm. The comparison includes a pre-
catalyst case (Top bar chart) and a post-catalyst case (Bottom bar chart) 

Figure 13: A comparison of the total PM signal IMFs with the IMFs of specific 
nanoparticle ranges at 3500 RPM and 20 Nm. The comparison includes a pre-
catalyst case (Top bar chart) and a post-catalyst case (Bottom bar chart) 
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Figure 14: A comparison of the total PM signal IMFs with the IMFs of specific 
nanoparticle ranges at 3500 RPM and 80 Nm. The comparison includes a pre-
catalyst case (Top bar chart) and a post-catalyst case (Bottom bar chart)   

Conclusions 

The present work introduces a systematic approach to analyse 
particulate matter data from a 4-stroke, 4-cylinder, 1.6 Litre, spark 
ignition, gasoline direct injection engine using an EEMD-FFT method. 
The application of EEMD as a tool for examining the correlation 
between different particle size ranges and the total particle count has 
highlighted that at a relatively low operating load, IMF 2 of the 5-23 
nm particle spectrum and IMF 2 of total particle count were correlated 
for 83% of the pre-catalyst testing cases. Similarly, as the load 
increases the fundamental frequency of the 23-50 nm particles tends to 
correlate with the total particle count. The present work focused on 
analysing particulate matter emissions data associated with a speed 
range of 1500 RPM to 3500 RPM and a load range of 20 Nm to 80 
Nm. However, further EEMD-FFT analysis of PM data from a wider 
range of operating conditions could reveal additional correlations 
between the nanoparticle ranges and the total particle count. 
Additionally, the use of EEMD in the present work also showed that 
the three-way catalytic converter altered the effect of certain 
nanoparticle ranges on the total particle count signal.    

The findings of this work can provide a useful insight for developing 
a control strategy to be embedded in engine calibration models such as 
mean value engine models for controlling particulate matter emissions. 
Whereas the findings related to the effect of the three-way catalytic 
converter on PM emissions can also be used as a reference during the 
design and evaluation process of gasoline after-treatment systems. 
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PM Particulate Matter 

GDI Gasoline Direct Injection 

GPF Gasoline particulate filter 

PAH Polycyclic Aromatic 
Hydrocarbons  

EEMD Ensemble Empirical Mode 
Decomposition 

IMF Intrinsic Mode Function 

NADA Noise-assisted data analysis 

EMD Empirical Mode 
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FFT Fast Fourier Transform 

WGDI Wall guided direct injection 

ECU Engine Control Unit 

DMS Differential Mobility 
Spectrometer 

GMD Geometric Mean Diameter 

IDE Integrated development 
environment 

MVEM Mean value engine model 


