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Abstract
This work focuses on the analysis of the micro and macroscopic mechanical response of particle reinforced composites.
A particular attention is paid to the influence of two fundamental design parameters, i.e. the particles shape and their
volume fraction (up to very high values ranging from 0 to almost 0.8), on the overall mechanical response of the structure
as well as on the resulting elastic symmetry of the material. The strain energy-based homogenisation technique of
periodic media is here applied to a 2D finite element model of a representative volume element of the composite.
Different algorithms are developed to generate, with a good level of accuracy, the real microstructure of the composite
material characterised by circular as well as polygonal particles. Moreover, for each studied configuration a link between
the geometrical parameters of the microstructure (particles shape, size, distribution and volume fraction) and the
size of the representative volume element is also provided in order to properly describe the constitutive behaviour
of the composite at the macroscopic scale. The numerical results are compared with analytical models taken from the
literature to prove on the one hand the limitations of the analytical approaches and on the other hand the effectiveness
of the proposed numerical models.
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Ishai and Cohen (1967); Nakamura et al. (1992). All of these
works observe that the size of particle has no impact on
the elastic moduli of the composite. On the other hand,
Spanoudakis and Young (1984) seems to show a slight
decrease in Young’s modulus for increasing size of parti-
cle. However, Spanoudakis and Young (1984) explains this
phenomenon by asserting that the experimental procedure,
based on flexural tests, is detrimental to bigger particles. All
the cited studies focus on composites with spherical shaped
particles.
To estimate the elastic properties of heterogeneous materi-
als, multiple homogenisation models have been developed.
Some of these models are considered in the present study:
Reuss and Voigt’s bounds (which considers the two phases
respectively in series or in parallel), Hashin and Shtrikman’s
bounds Hashin and Shtrikman (1963) (which represent the
tightest bounds one can get with no microstructural informa-
tion). The other considered models are based on the pioneer-
ing work of Eshelby’s inclusion problem Eshelby (1957):
Mori-Tanaka Mori and Tanaka (1973) revisited by Beneviste
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Introduction

The addition of stiff particles in a bulk matrix is a common 
practice to obtain a reinforced material stiffer and more resis-
tant than the bulk matrix itself. Such a resulting composite 
material is used in multiples industries such as automotive, 
aeronautics, aerospace, and many others. Numerous and very 
diverse applications have been developed with this kind of 
composite materials from concrete to metal alloys. Con-
trary to fibre reinforced composites, particulate reinforced 
composites do not show strong mechanical principal direc-
tions, but, like classical fibre reinforced matrix composites, 
their design requires a multi-scale approach that implies the 
determination of mechanical properties of such complex and 
heterogeneous materials.
Numerous studies have already been carried out to determine 
experimentally mechanical properties of particles reinforced 
composites such as stiffness, strength and toughness, as 
function of different parameters such as particles sizes, 
volume fractions, shapes, aspect ratios, etc. One of the 
most complete review on particulate composites can be 
found in Fu et al. (2008); Nemat-Nasser and Hori (2013). 
In this study, the authors focus on polymer matrix rein-
forced composites. Experimental data are gathered and com-
pared to results obtained through the utilisation of simple 
analytical homogenisation models. One of the main con-
clusions of this study is that the size of the inclusions 
has no significant influence on Young’s modulus, whilst 
volume fraction seems to be the most influential of the 
parameters. These results are in accordance with the exper-
imental ones carried out on silica spherical shaped parti-
cle embedded in an epoxy matrix in Adachi et al. (2008);
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on real materials in order to better understand its mechanical
response at both micro- and macro-scale levels. Subse-
quently, these models will be used to perform numerical
analyses in order to calculate the full set of elastic properties
of the material. With such protocol, we will be able to
determine the effective elastic properties of the compos-
ite as well as the degree of anisotropy of the equivalent
homogeneous material at the macro-scale. In particular, three
different algorithms are developed in order to reproduce
microstructures characterised by several particle shapes as
well as microstructures having high volume fractions of
particles up to 80%, which is a very difficult task to achieve.
Indeed, a particular attention is paid to the influence of two
fundamental design parameters on the mechanical response
of the composite: the particles shape and their volume frac-
tion. In addition, to prove the effectiveness of the proposed
FE models the sensitivity to particles size and distribution
over the RVE as well as the size of the RVE is studied
too and the results are compared with analytical ones taken
from literature. For sake of clarity and reduced calculation
time, in the present study, the results and analyses are
presented regarding only the 2D case. The computational
model is implemented under plain strain assumption that is
characteristic of elongated structures loaded in the transverse
directions. This approach can be explained by asserting that
according to Böhm and Han (2001); Singh et al. (2015), the
authors are aware that 3D models are clearly superior to
2D ones, howevewer planar models give accurate trends of
results and a good idea of the behaviour of a microstructure.
The paper is organised as follows: the numerical homogeni-
sation strategy is explained in Section , then Section focuses
on the algorithms developed to generate the RVE, Section
describes the homogenisation procedure implemented for
this study, and finally the results of the homogenisation
procedure are discussed in Section .

FE-based homogenisation strategy

In the past, several analytical, numerical and experimental
techniques have been developed in order to determine the
effective properties of composite materials as a function
of geometric and material properties of both the inclusions
and the matrix. Each method presents a certain level of
sophistication. Contrary to analytical theories, numerical-
based techniques such as FE methods, do not make use
of simplifying assumptions and are not expensive as the
experimental tests. In addition, depending on the level of
refinement of the model, they can lead to realistic solutions
in terms of the elastic response of the structure. Therefore
we have chosen a FE-based homogenisation strategy for
predicting the elastic properties of a particulate reinforced
composite.
Unlike periodic structures, such as cellular solids, particle-
filled composites do not show a repetitive unit that
neatly reproduces the microstructure of the composite. In
these materials the particles, in fact, are more or less
randomly distributed and the resulting microstructure is a
matrix containing a certain volume fraction of inclusions
inordinately distributed. Therefore, we will apply the
homogenisation method at the micro-scale (the scale of
the particles) not, as usually done, on a repetitive volume

Benveniste (1987) where inclusions are clearly consid-
ered embedded in the matrix, the self-consistent scheme 
Budiansky (1965); Hill (1965) where particles and matrix 
are embedded in the homogenised material, and Lielens’ 
model Lielens et al. (1998) which is based on a non trivial 
interpolation between Mori-Tanaka and inverse Mori-Tanaka 
model (matrix embedded in the inclusions). All the models 
derived from Eshelby’s theory take into account the volume 
fraction and the shape of the particles. One can also note that 
the Mori-Tanaka homogenisation scheme gives exactly the 
same results as the Hashin and Shtrikman’s lower bound for 
a biphasic material. These models are called uniform fields 
models because they do not account for local variations in 
the strain and stress fields. This is a significant limitation 
regarding these models, especially when local nonlinear 
phenomena or complex microstructural morphologies are 
introduced.
To overcome these difficulties, several authors have devel-
oped a numerical tool where they consider the evolution of 
simple pattern like a single inclusion in a matrix. This unit 
cell approach is based on the assumption that the material 
microstructure is fully periodic. However, observing the 
microstructure of particle reinforced composite materials, 
such an assumption seems to be very unrealistic because 
most of these materials show highly random microstructures. 
This microstructural randomness can be represented in a 
better way with Representative Volume Elements (RVE) 
approach, where a synthetic random microstructure is gener-
ated. The definition and the size of the RVE is a complicated 
question, as discussed in Kanit et al. (2003). Once the size 
of the RVE is defined (which has to be sufficiently large to 
be representative of the macroscopic behaviour of the real 
material) and the microstrcuture randomly generated, three 
types of boundary conditions can be imposed: Kinematic 
Uniform Boundary Conditions (KUBC, where a uniform 
displacement is applied to the boundaries of the RVE), 
Static Uniform Boundary Conditions (SUBC, where a uni-
form traction is applied on the boundaries of the RVE), 
and Periodic Boundary Conditions (PBC, where a relative 
displacement between all the points on opposing sides of the 
RVE is imposed). Then the problem is solved numerically, 
using methods such as Finite Elements (FE) or Fast Fourier 
Transformation (FFT). As explained in Kanit et al. (2003), 
the KUBC tends to overestimate the homogenised elastic 
moduli whilst the SUBC tends to underestimate it. The 
results of the PBC lie somewhere between these two bounds 
and the periodic boundary conditions seem to be the best 
compromise.
Multiples studies based on a numerical approach have 
already been carried out to obtain numerically the 
homogenised elastic moduli of particle reinforced compos-
ites. Synthetic microstructures with spherical or ellipsoidal 
particles are created and then the mechanical problem is 
resolved with a FE analysis in Segurado and Llorca (2002); 
Kari et al. (2007); Singh et al. (2015) or with FFT method in 
Ghossein and Lévesque (2012). These works show that they 
are able to evaluate the elastic moduli up to a maximum 60%
of particles volume fraction.
The aim of the present work is to develop numeri-
cal FE-based models capable of reproducing a composite 
microstructure which is representative of the one observed
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element but on a RVE able to take into account within
the elastic response of the structure also the random
distribution of the inclusions and their shape. Then, the
actual heterogeneous structure, at the macro-scale level,
will be replaced by an equivalent homogeneous medium
characterised by the elastic properties determined during the
homogenisation phase. About the degree of symmetry of the
homogenised structure, no assumptions are made, and all of
the components of stiffness tensors are calculated. Thus, only
in a second time, through the analysis of the stiffness tensor
components, the type and degree of elastic symmetry of the
equivalent homogeneous medium is determined. Only after
this analysis, we are able to state that the equivalent medium
is actually isotropic, orthotropic, etc.
The key points of this study are that the numerical procedure
allows to represent in a realistic manner random distributions
of particles with different shapes up to a high volume
fraction through a precise definition of the RVE and that
no assumptions are made about the elastic symmetries of
the equivalent homogenised structure. The basic assumptions
made to evaluate the elastic response of the model and,
hence, to determine the effective properties are:

1. linear, elastic behaviour for the materials of the matrix
and particles;

2. perfect bonding for the wall-to-wall contact between
matrix and particles.

and will not be updated. The most intuitive algorithm to
generate a microstructure is the Random Sequential Adsorp-
tion (RSA) algorithm, where the location of each particle
is randomly defined Torquato (1991). However, this algo-
rithm can’t achieve high volume fraction (up to a maxi-
mal value of 0.3). That is the reason why several studies
(Segurado and Llorca (2002); Singh et al. (2015); Kari et al.
(2007); Ghossein and Lévesque (2012)) use a an improved
version of the RSA algorithm. In any case, even when using
an improved version of the RSA algorithm, it is not possible
to achieve volume fractions higher than about 0.6.

Dropping and Rolling algorithm
In the present article, the authors decided to use a
dropping and rolling algorithm based on the work of
Visscher and Bolsterli (1972) and Shi and Zhang (2006).
This method is able to generate denser microstructures
than the previously cited constructive algorithms. The steps
characterising the algorithm (see Fig. 2) developed in the
framework of the present study are described thereafter:

1. A first sphere is dropped from a random position on
the upper side of the frame;

2. the sphere falls (incremental vertical displacement)
until it touches the floor (bottom of the RVE) and its
final position is recorded;

3. a new sphere is dropped from another random
position;

4. during the fall, two possibilities appears:

(a) no previous sphere is under the falling one and
the latter goes straight to the floor;

(b) there is a contact between the falling sphere
and already placed ones ⇒ the new sphere
rolls on the previous ones until it reaches an
equilibrium position: either hitting the floor or on
two existing spheres;

5. repeat the process from step 3 item until the box is
filled with spheres.

Roughly speaking, this procedure is very similar to grains of
sand flowing into a box. The advantage of such an algorithm
is that the microstructure generated can reach high volume
fraction of inclusions in a reasonable time. Moreover, a radii
distribution can be defined (either discrete or continuous),
unlike most dynamic methods. The final volume fraction
attained is controlled via a parameter representing the inter-
inclusion minimal distance. Two boundaries were developed
for the dropping and rolling algorithm. The first one is called
“rigid wall” where the disks cannot bypass those walls (see
Fig. 5 (a)). The second one is called “soft wall”: the disks are
allow to bypass the walls and they reappear on the opposite
side of the frame to ensure periodicity of the microstructure
(see Fig. 5 (b)). The soft wall conditions also avoid non
homogeneous particles distribution near the boundaries of
the RVE and reach higher volume fractions.

Voronoi tesselation microstructure algorithm
The spherical shape of the inclusions in a particulate
reinforced composite is not always a realistic assumption.
In some materials, the inclusions show multiples facets

An outline of the numerical homogenisation procedure 
developed in the framework of this study is presented 
in Fig. 1. The first step concerns the generation of the 
microstructure of the a RVE (characterised by imposed 
shapes, sizes and volume fraction of the particles). The 
algorithms that have been developed to generate the RVE are 
described in Sec. . During the second step of the strategy, the 
FE-based homogenisation is performed on the RVE. Finally, 
a homogenised stiffness tensor is extracted, that gives the 
effective elastic moduli of a particles reinforced composite 
considered as an equivalent homogeneous material. The 
homogenisation procedure is detailed thereafter.

Generation of the microstructure
To generate the RVE for a particulate reinforced composite, 
multiple strategies can be used. The first characteristic to 
take into account is the shape of the particles. For this study, 
carried out in 2D, two shapes of particles are used: circular 
and polygonal particles. We also remind that the second 
objective of this work is to evaluate the response of highly 
filled composite materials, therefore the microstructure of the 
RVE has to reach high volume fraction of particles. Two fam-
ilies of sphere packing algorithms can be distinguished: the 
dynamic and the constructive ones. Concerning the dynamic 
algorithms, the positions and/or sizes of particles as well as 
the interactions between them are updated continuously dur-
ing the iterations of the algorithms. For this reason, they are 
usually time-consuming. For example, moving and shrinking 
or growing algorithms (Lubachevsky and Stillinger (1990); 
Lubachevsky et al. (1991)) are well known dynamic algo-
rithms. On the other hand, for the constructive algorithms, 
the position and the size of each particle is defined sequen-
tially and, when a particle is placed, its position is recorded
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and sharp angles. To deal with this kind of microstructure,
an algorithm based on a Voronoi tesselation has been
implemented, see Fig. 3. The steps charactering such an
algorithm are described thereafter:

1. N seeds (points) are randomly generated in the frame
delimited by RVE sides. A loop can be implemented
to recreate seeds that are to close to other ones;

2. this frame (with seeds) is duplicated 8 times and
translated all around the frame (top, bottom, right, left
and in diagonals). This step ensures that when the
growth step of the grains occurs, the periodicity of the
boundaries is respected;

3. the edges of all the cells are created using a Delaunay
triangulation (the Voronoi diagram being the dual
graph of this triangulation); the Matlab functions
delaunayTriangulation and voronoiDiagram are used
here. In fact, this process gives the same results as
circles growing from each seed. The boundaries are
created when two points from two circles are in
contact;

4. a reduction factor is applied to all the cells so that their
edges are no longer in contact to create the matrix
phase. The advantage of such a reduction is that the
volume fraction of particles is exactly determined by
this factor.

A typical microstructure obtained with this algorithm is
depicted in Fig. 5 (c).

Polygonal microstructure from Dropping and
Rolling algorithm
The dropping and rolling algorithm was modified to include
polygonal particles, which may be more representative of
the microstructure. The steps charactering such an algorithm
(see Fig. 4) are described thereafter:

1. A microstrcuture is created using the dropping and
rolling algorithm;

2. each circular particle is transformed into a polygonal
inscribed in the circle:

(a) the number of vertices of each polygon Nangles

is randomly generated between 5 and 8;
(b) for each vertex n (from 1 to Nangles), a number

θn between (2π) / (n− 1) and (2π) / (n) is
randomly generated. The use of intervals is
included to avoid obtaining polygons that are too
distorted;

(c) the coordinates of each vertex of the polygon is
the intersection of a line going from the center
of the circular particle and forming and angle θn
from horizontal and the circle:{

xn = x0 +R cos(θn)
yn = y0 +R sin(θn)

(1)

where {x0; y0} are the coordinates of the circular
particle’s center and R is its radius.

Geometrical capacities of these algorithms
Finally, three different models were generated based on
the algorithms described beforehand: Dropping and Rolling
algorithm with rigid walls or soft walls, the Voronoi
tesselation-based algorithm, and Dropping and Rolling with
polygonal particles. The geometrical capacities of these
algorithms are shown in Table 1.
The first algorithm generates microstructures with circular
particles whereas the latter two generate polygonal particles.
A parameter ϵ, representing the inter-particle minimal
distance, is used in the Dropping and Rolling algorithms to
set up the volume fraction. However, the volume fraction
is for this reason unknown a priori and calculated once
the microstructure has been generated. One can clearly see
that the soft wall boundary condition allows higher volume
fractions of particles than the rigid wall conditions. Also, the
creation of inscribed polygons reduces the maximum volume
fraction. One of the strengths of the Voronoi tesselation-
based algorithm is that the number of particles and their
volume fraction are inputs to the model. Unlike the Dropping
and Rolling algorithms, the particles size distribution cannot
be employed with this algorithm.

The 2D numerical-based homogenisation
procedure
The effective properties of the particles reinforced composite
are determined by using the strain energy homogenisation
technique Catapano and Jumel (2015): repetitive periodic
structures are used to approximate the effective properties
of the composite at the macro scale. This technique is based
on the assumption that the periodic heterogeneous structure
undergo the same global deformation as the homogeneous
solid, so that they have, hence the same strain energy.
The geometry of the RVE is generated with the algorithms
described in Section .

Periodic Boundary Conditions (PBC)
Periodic boundary conditions are applied to the square cell
faces in order to ensure continuity of the displacement,
stress and strain fields. The displacement of corresponding
nodes on opposite faces are coupled. Let us denote the two
directions of the plane as 1 and 2. The periodic boundary
conditions can be expressed as a function of the displacement
vector u as: {

u(0, y)− u(L, y) = u1,
u(x, 0)− u(x, L) = u2,

(2)

where L is the length of both sides of the RVE. Then,
to obtain three different loading cases in the plane (tensile
loading along 1-direction, tensile loading along 2-direction,
and shear in the 12-plane), three displacement combinations
are imposed as presented in Tab. 2.
The global strain in the RVE is then calculated thanks to the
following equation:

ϵ̄11 =
u1

L
, ϵ̄22 =

u2

L
, ϵ̄12 =

u1 + u2

L
. (3)

Once the linear elastic problem is solved, we can have access
to the global averaged stress, which corresponds to an area

This algorithm has been implemented using either rigid or 
soft wall boundary conditions. In order to avoid boundary 
effects, only soft wall boundary types will be used in the 
present study. The resulting microstructure is represented in 
Fig. 5 (d).
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average on the RVE surface, computed as follows:

σ̄α =
1

SRV E

∫
SRV E

σαdS, α = 11, 22, 12. (4)

Reconstruction of the stiffness tensor
Under plane strain assumption, Hooke’s law is written as
follows: σ̄11

σ̄22

σ̄12

 =

 C1111 C1122 C1112

C1122 C2222 C2212

C1112 C2212 C1212

 ϵ̄11
ϵ̄22
2ϵ̄12

 .

(5)
Three loading cases are necessary to determine all the
components of the effective stiffness tensor in 2D (6 loading
cases are required in 3D): uniaxial tension along the 1-axis
and 2-axis and shear in the 12-plane. To reconstruct directly
the columns of the effective stiffness tensor, we want to
obtain a single non-zero value in the strain tensor (ϵ11 in
the case of tension along 1-axis, ϵ22 in the case of tension
along 2-axis, ϵ12 in the case of the shear in 12-plane). Fig. 6
represents the displacement field of each loading case. From
each loading case, the stress and strain fields are determined
thanks to eqs. and , and then a column of the stiffness tensor
is then calculated using the following relationships (eqs. 6,
7, 8):  σ̄11

σ̄22

σ̄12

 =

 C1111 ∗ ∗
C1122 ∗ ∗
C1112 ∗ ∗

 ϵ̄11
0
0

 , (6)

 σ̄11

σ̄22

σ̄12

 =

 ∗ C1122 ∗
∗ C2222 ∗
∗ C2212 ∗

 0
ϵ̄22
0

 , (7)

 σ̄11

σ̄22

σ̄12

 =

 ∗ ∗ C1112

∗ ∗ C2212

∗ ∗ C1212

 0
0

2ϵ̄12

 . (8)

depicted in Table 3. The average size of particles obtained
using the algorithms detailed beforehand ranges from 30µm
to 100µm.

Size of the RVE and its mechanical symmetries
Before performing the homogenisation, the first task is to
determine the minimum size of the RVE able to give a
proper representation of the macroscopic response of the
composite material. This study is based on both the evolution
of the elatic properties scatter and the one of mechanical
symmetries as function of the size of the RVE. This is
done for a fixed volume fraction of 0.40 (±0.005). For each
algorithm, 20 microstructures are generated for different
sizes of RVE (the length of the square side ranging from
0.4 mm to 3 mm). The average for each 20 microstructures
and the corresponding standard deviation are represented in
Fig. 7. One can observe that under a 1 mm-size RVE, the
average values and the standard deviation are not acceptable
(the deviation is higher than a maximum tolerance value
equal to 1%). A size of 1.5 mm seems to be the best
compromise between accuracy and computational time. This
size corresponds to approximately 60 particles.
The different algorithms will now be compared according
to the mechanical symmetries of the RVE they generate.
As well, in these analyses, the dependency of the RVE size
is highlighted. This study represents an evolution of the
one carried out in Catapano and Jumel (2015) for particulate
reinforced adhesives. In particular, in Catapano and Jumel
(2015) only circular shaped inclusions have been considered
and the analysis on the elastic symmetries of the equivalent
homogeneous medium showed an interesting result: particle
reinforced composites characterised by circular inclusions
can show, in general, an isotropic or at least a cubic elastic
symmetry. In the present work, due to the presence of
different particles shape, the full set of the components of
the stiffness matrix of the RVE is evaluated. Fig. 8 represents
the ratio of the tensile elastic moduli in the 2-direction over
the 1-direction. The average and the standard deviation are
depicted for 20 microstructures and for different volume
fractions. As for the size of the RVE study, the variation in
results seems to be steady for a RVE size of 1.5mm. All the
algorithms converge to a ratio of 1, except the dropping and
rolling with rigid wall boundaries. In this case, it seems to
create a slight orthotropy between the vertical and horizontal
directions.
The component C2212 of the stiffness tensor should be equal
to 0 for at least orthotropic materials (as for most of the
materials with lower symmetries). Fig. 9 represents the ratio
of C2212 over C1111 for the dropping and rolling algorithm.
We see that for a RVE size of 1.5 mm, the variation of
the component C2212 is lower than 0.5% of C1111, which
falls within the fixed tolerance. Same results are observed for
all the other algorithms and also concerning the component
C1112 of the stiffness matrix.
The isotropy of the concerned microstructures is validated
using the shear component C1212 of the stiffness tensor.
In this case, C1212 must be equal to (C1111 − C1122) /2
for isotropic materials. The evolution of the ratio of
these components is depicted in Fig. 10. For isotropic
microstructures, the ratio should tend to 1. For the three
microstructures based on the dropping and rolling algorithm,

The 2D FE model
The finite element analysis is carried out using the commer-
cial FE code ANSYS R⃝. The geometry of the RVE, imported 
in ANSYS R⃝, is meshed with plane quadratic triangular ele-
ments (PLANE183, 6 nodes triangular elements) having two 
Degrees Of Freedom (DOFs) per node, i.e. the translations 
in the nodal 1 and 2 directions. The plain strain option is 
activated for these elements. A preliminary study allows to 
ensure that the results are mesh-independent with a mean 
elements size 100 times smaller than the length of the RVE.

Results and discussion
The numerical tool described beforehand is used to evaluate 
the micro as well as the macroscopic behaviour of a particle 
reinforced composite, as a function of: the elastic moduli 
of the phases and the volume fraction, size, and shape of 
inclusions. Three different RVE generation algorithms have 
been utilised and the results obtained from these types of 
microstructures will now be compared. The elastic properties 
of the phases of the composite used for this study are



6

of the material under shear loading. A comparison between
analytical models and numerical results is depicted in
Fig. 13 (a) for low volume fractions and in Fig. 13 (b)
for higher volume fractions. The numerical results also lie
between the Hasin-Shtrikman bounds. The scatter between
the different models seems to be a little bit higher than for the
C1111 component. The same comparisons between analytical
models and numerical results can be made, i.e. the results
are very similar from low to moderate fractions and they
start to differ for higher volume fraction (from ϕ = 0.5).
Moreover, the Lielens model seems to be the closest to the
results from the dropping and rolling RVE whilst the Voronoi
tesselation RVE are closer to the lower Hashin-Shtrikman
bound. The Voronoi tesselation microstructure shows this
time a behaviour above the Hashin-Shtrikman lower bound.
Similarly, the dropping and rolling RVE are slightly above
Lielens model for this component, especially with polygonal
particles. For the dropping and rolling models, this may
be explained by the slightly cubicle behaviour that has
been observed. Fig. 14 shows the local stress fields σ12

in the case of dropping and rolling microstructure type
with circular particles Fig. 14 (a) and in the case of
Voronoi type microstructure Fig. 14 (b). Noticeably higher
stress concentrations can be observed for the Voronoi RVE,
localised at the angles of the particles. Multiples almost
circular unloaded regions are visible between particles in the
case of the dropping and rolling RVE, a phenomenon less
important on the Voronoi RVE.

Conclusions
A computational procedure has been implemented to analyse
the micro as well as the macroscopic response of particle
reinforced composites. A particular attention is paid to the
evaluation of the stiffness properties and of the degree
of anisotropy characterising the equivalent homogeneous
material. Different microstructures characterised by several
parameters (particles shape, size and volume fraction) have
been analysed. Moreover, for each configuration the minimal
size of the RVE for which its behaviour effectively represents
the macroscopic response of the composite material has been
determined. To generate an accurate microstructure of the
RVE three different algorithms have been developed. The
first one generates circular particles while the rest generate
polygonal shapes. The main results to be highlighted are as
follows:

1. The dropping and rolling algorithm appears to be a
good model to generate microstructures with circular
inclusions up to high volume fractions (0.75), in
particular soft wall boundary types are useful to reach
higher volume fraction than rigid wall ones.

2. The modified version of the dropping and rolling
algorithm via the introduction of polygons (inscribed
in the original circles) strongly reduces the highest
volume fraction reached. This algorithm, though,
generates microstructures that are slightly cubic
instead of fully isotropic.

3. The effective elastic moduli obtained using the two
types of boundary conditions (i.e. the rigid and the
soft wall one) are however very close. A slight
difference might however appear when considering

this ratio tends to a value ranging between 1.03 and 
1.05. Although the difference is very low (less than a 
5% difference between C1212 and (C1111 − C1122) /2), this 
means that the microstructures generated from dropping and 
rolling are slightly cubicle and not completely isotropic. 
The Voronoi tesselation algorithm gives fully isotropic 
microstructures as the ratio tends to 1.

Comparisons with analytical homogenisation
models

The results obtained with this numerical procedure can 
be compared to those obtained using the analytical 
homogenisation schemes. To fit with the numerical results 
obtained under plane strain assumption, the homogenisation 
schemes presented hereafter are expressed with transversely 
isotropic structures, a matrix with infinite circular cylinders. 
The Fig. 11 represents the evolution of the component C1111 
of the stiffness tensor against the volume fraction of particles 
for all the analytical homogenisation schemes used in this 
study: Voigt and Reuss bounds, Hashin-Shtrikman bounds, 
Mori-Tanaka scheme, Self Consistent Scheme and Lielen’s 
model. The computational results are compared to these 
analytical models (Fig. 13 (a) for low volume fractions 
ranging from 0 to 0.5 and (b) for high volume fraction 
ranging from 0.5 to 0.9). The comparison is carried out 
on a volume fraction range between 0 and 0.9, even if the 
dropping and rolling algorithm is not able of producing 
volume fractions higher than 0.75. Over the whole range 
of volume fractions, the results lie between the Hashin-
Shtrikman bounds.
For low to moderate volume fraction (0 to 0.4), the elastic 
moduli given by all the microstructures are very similar 
and are very close to the lower Hashin-Shtrikman bounds. 
Below a volume fraction around 0.5, the results start to 
differ for the different microstructure types. Similar trends 
are observed for most of the analytical homogenisation 
models. The two boundary types (rigid wall and soft wall) 
give similar homogenised elastic moduli. A difference might 
appear when nonlinearities are taken into account, because 
the distribution of particles is less homogeneous due, to 
boundary effects in the case of rigid wall condition. The 
dropping and rolling algorithm with polygonal particles 
also seems to provide similar trends (differences lower 
than 10%). In the case of polygonal particles, we observe 
slightly stiffer equivalent homogeneous properties. The best 
analytical homogenisation model to fit these data is Lielen’s 
model, as cited by Klusemann and Svendsen (2010) and 
Ghossein and Lévesque (2012). The microstructures given 
by the Voronoi tesselation algorithm give lower homogenised 
elastic moduli, close to Hashin-Shtrikman lower bounds. 
This could be due to the fact that, with this algorithm, 
the sides of the polygons are aligned with respect to that 
of its neighbours. To picture this difference with the other 
algorithms, Fig. 12 represents the local stress σ11 in the 
matrix of the RVE for a dropping and rolling microstructure 
and that of the Voronoi models. We can observe that some 
paths are completely unloaded in the case of the Voronoi 
microstructure.
The same analysis is made for the component C1212 of the 
stiffness tensor. This component represents the behaviour



Gentieu et al. 7

non-linearities, due to different particles distributions
next to the boundaries of the RVE.

4. All the numerical results obtained with the proposed
models are close to those given by the analytical
models taken from literature just for low to moderate
values of the volume fraction (between 0 and 0.4).
Whereas, major differences appear at higher values
of volume fraction (above 0.6). This aspect is strictly
related to the interaction (in terms of local stress field)
between the inclusions which is more pronounced at
high volume fractions than lower ones.

5. Although, the Voronoi-based algorithm has the
advantage of generating microstructures with fixed
volume fraction and a fixed number of particles, the
equivalent stiffness of the resulting composite material
is lower than the one belonging to microstructures
obtained using the dropping and rolling algorithm
(next to the lower Hashin-Shtrikman and Mori-Tanaka
bounds). This could be due to the very special
microstructure generated with this algorithm, whereby
the sides of each polygon are parallel to those of its
neighbouring polygons. This orderly geometry causes
several continuous stress flows in the matrix from one
side to the opposite one of the RVE; in this way the
matrix results to be the most charged phase of the
composite while the inclusions give only a secondary
contribution to the stiffness of the composite.

Finally, even if the shape of the particles seems to
have a small effect on the equivalent elastic properties
of a particulate composite, it might become much more
significant when considering non-linearities (debonding of
the particles and matrix plasticity or failure) due to different
stress concentrations around these particles. Research is
ongoing on these aspects.
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Tables

Algorithm Particle shape Particles size distribution Volume fraction Max Volume fraction

D&R Rigid walls circular defined calculated 0.68
D&R Soft walls circular defined calculated 0.75

Voronoi polygonal undefined input of the model 1
D&R Polygons polygonal defined calculated 0.60

Table 1. Geometrical capacities of the microstructure
generation algorithms.

Tensile 1-direction Tensile 2-direction Shear 12-direction

u1 = U1 u1 = 0 u1 = U1/2
u2 = 0 u2 = U2 u2 = U2/2

Table 2. Imposed displacements for the PBC, 3 different
loading cases

Phase Mechanical symmetry Young’s modulusE Poisson’s ratio ν

Matrix isotropic 3GPa 0.3
Particles isotropic 450GPa 0.2

Table 3. Material properties of the phases
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Figures

Figure 1. Numerical homogenisation scheme

Figure 2. Flowchart of the dropping and rolling algorithm

Figure 3. Flowchart of the Voronoi tesselation-based algorithm
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Figure 4. Flowchart of the dropping and rolling algorithm with
polygonal particles
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Figure 5. Microstructures obtained with the dropping and
rolling algorithm with rigid walls (a), with soft walls (b), with
Voronoi tesselation algorithm (c), with the dropping and rolling
algorithm with polygonal particles (d). Volume fraction of
particles for each microstructure ϕ = 0.4.
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(a)

(b)

(c)

Figure 6. Displacement field U11 of the RVE under tensile
loading along 1-axis (a); displacement field U22 of the RVE
under tensile loading along 2-axis (b); displacement field U12 of
the RVE under shear loading in the 12-plane (c), [mm].

(a)

(b)

(c)

(d)

Figure 7. Evolution of the C1111 component of the stiffness
tensor with standard deviation against the size of the RVE for
the dropping and rolling algorithm with rigid walls (a), with soft
walls (b), for Voronoi tesselation algorithm (c), for the dropping
and rolling algorithm with polygonal particles (d) for a fixed
volume fraction ϕ = 0.4.
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(a)

(b)

(c)

Figure9.EvolutionoftheratioC2212/C1111withstandard
deviationagainstthesizeoftheRVEforthedroppingandrolling
algorithmwithrigidwallsforafixedvolumefractionϕ=0.4.

(a)

(b)

Figure10.EvolutionoftheratioC1212/((C1111 C1122)/2)
withstandarddeviationagainstthesizeoftheRVEforthe
droppingandrollingalgorithmwithsoftwalls(a)andforVoronoi
tesselationalgorithm(b)forafixedvolumefractionϕ=0.4.

(c)

Figure 8. Evolution of the ratio C2222/C1111 with standard 
deviation against the size of the RVE for the dropping and rolling 
algorithm with rigid walls (a), with soft walls (b), for Voronoi 
tesselation algorithm (c), for the dropping and rolling algorithm 
with polygonal particles (d) for a fixed volume fraction ϕ = 0.4.
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(a)

(b)

Figure 11. Homogenised C1111 component of the stiffness
tensor against volume fraction ϕ for analytical homogenisation
schemes; V/R bounds = Voigt and Reuss bounds, H-S bounds
= Hashin-Shtrikman bounds, Mori-Tanaka scheme, SCS =
Self-Consistent Scheme, Lielens’ model; and for numerical
simulations on RVE for (a) low volume fractions (b) high volume
fractions.

(a)

(b)

(a)

(b)

Figure 13. Homogenised C1212 component of the stiffness
tensor against volume fraction ϕ for analytical homogenisation
schemes; V/R bounds = Voigt and Reuss bounds, H-S bounds
= Hashin-Shtrikman bounds, Mori-Tanaka scheme, SCS =
Self-Consistent Scheme, Lielens’ model; and for numerical
simulations on RVE for (a) low volume fractions (b) high volume
fractions.

(a)

(b)

Figure 14. Local stress field σ12 [MPa] in the the matrix of the
RVE for the dropping and rolling algorithm (a) and the Voronoi
tesselation algorithm (b).

Figure 12. Local stress field σ11 [MPa] in the the matrix of the 
RVE for the dropping and rolling algorithm (a) and the Voronoi 
tesselation algorithm (b).




