Overexpression of Endoplasmic Reticulum (ER) proteins from

Arabidopsis thaliana in baculovirus

3

4

1

2

- Victor M. Bolanos-Garcia^{1,*}
- ¹ Department of Biological and Medical Sciences, Faculty of Health and Life Sciences,
- 6 Oxford Brookes University, Gipsy Lane, Headington. Oxford, UK. OX3 0BP.

7 8

* vbolanos-garcia@brookes.ac.uk; Tel. 44 (0) 1865 484146

9

10

Abstract

- 11 The overproduction of proteins of the Endoplasmic Reticulum (ER) of plant cells in
- 12 prokaryotic heterologue gene expression system remains a technical challenge. Recent
- 13 advances in genetically modified insect cells technology and virus engineering methods
- 14 have paved the way to produce recombinant ER plant proteins, including those harbouring
- post-translational modifications and therefore, to yield ER plant proteins that are natively
- folded and fully functional. The present contribution focuses on the baculovirus-expression
- 17 system flashBac, which overcomes certain technical hurdles found in other insect cells-
- based expression systems such as the generation of a bacmid and the negative selection of
- 19 recombinant clones.

20

21

- **Keywords:** Endoplasmic reticulum (ER); heterologous gene expression; *Arabidopsis*
- 22 thaliana; protein overproduction; flashBac; baculovirus; post-translational modifications.

23

24

25

26

1 Introduction

282930

31

32

33 34

35

36 37

38

39

40

41

42

43 44

45

46

47 48

49

50

51 52

53

54

55

56

57

58 59 Insect cells are a widely used system for the overproduction of recombinant proteins of different origin, ranging from green plants to vertebrate and invertebrate animals. A key advantage over other expression systems such as bacteria cells, is the possibility to produce fully functional proteins that undergo postranslational modifications including glycosilation, phosphorylation and acetylation, to name a few. Indeed, early estudies showed that insect cells are a suitable system for the overexpression of endoplasmic reticulum (ER) plants proteins [1-2] and more recently, of proteins associated to the ER, paving the way to enhance our understanding of the molecular mechanisms underlying ER function [3]. Baculovirus are insect viruses that primarily infect insect larvae of the order Lepidoptera (e.g., butterflies and moths) [4] and constitute the most frequently used vehicle to produce recombinant proteins in insect cells. To this aim, a recombinant baculovirus is genetically modified to harbour a foreign gene of interest, which is subsequently expressed in a host insect cell line under control of a baculovirus gene promoter. The most extensively used baculovirus is based on the genetically modified genome Autographa californica Multicapsid Nucleopolyhedrovirus (AcMNPV). This is a double-stranded, supercoiled DNA genome of approximately 130kb in length that is packaged into a rod-shaped nucleocapsid [5-6]. Although this nucleocapsid can incorporate large gene inserts due to the property of expanding lengthways, the AcMNPV genome is considered to be too large for direct foreign gene insertion. For this reason, the gene of interest is usually cloned into a transfer plasmid that contain sequences flanking the *polh* gene in the virus genome. Following co-transfection (e.g., simultaneous introduction) of the virus genome and the transfer plasmid into host insect cells, exchange of DNA with the insertion of the gene of interest into the viral genome at the polh locus takes place through homologous recombination. Subsequently, a recombinant baculovirus is generated and the virus genome replicated. The recombinant virus can be easily harvested from the culture medium by centrifugation. The most frequently utilised lepidopteran insect cell lines for baculovirus expression system are derived from Spodoptera frugiperda (Sf9 and Sf21) and Trichoplusia ni (T.ni). These cell lines can grow in suspension or adherent cell culture in supplied or serum-free medium containg phosphates

60 61

62

63

64

The flashBAC[™] baculovirus expression system is an advanced technology to produce recombinant baculoviruses. flashBAC[™] builds on BacPAK6 technology in which a *lacZ* gene has been inserted at the AcMNPV *polh* gene locus and a Bsu361 restriction site introduced in each side of *lacZ* [8]. One important feature of the flashBAC[™] system is the addition of a

buffer to adjust the pH. These cell lines grow optimally at 28°C without the requirement of

CO₂, rendering protein production scale-up feasible and economic [7].

Bacterial Artificial Chromosome (BAC) at the *polh* gene locus and the partial deletion of the essential *ORF1629* replication gene. The *polh* gene facilitates the maintenance of the virus genome in bacterial cells as a bacmid, while *ORF1629* prevents viral replication in insect cells. Production of recombinant virus in insect cells is attained through co-transfection of the AcMNPV genome (flashBAC™ DNA) with an appropriate transfer plasmid harbouring the foreign gene of interest. Homologous recombination between ORF603 and ORF1629 in flashBAC™ DNA and the transfer plasmid replaces the BAC replicon with the gene of interest under the polh promoter, while simultaneously restoring ORF1629, thus enabling replication of recombinant virus containing the gene of interest (**Figure 1**). An important advantage of the flashBAC system is that separation from the parental virus is not required because of the incapability of non-recombinant virus to replicate. Consequently, the production of recombinant virus is reduced to a single step procedure, turning it amenable to high-throughput gene expression platforms [9].

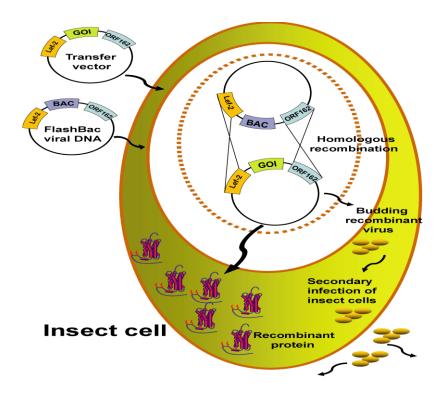
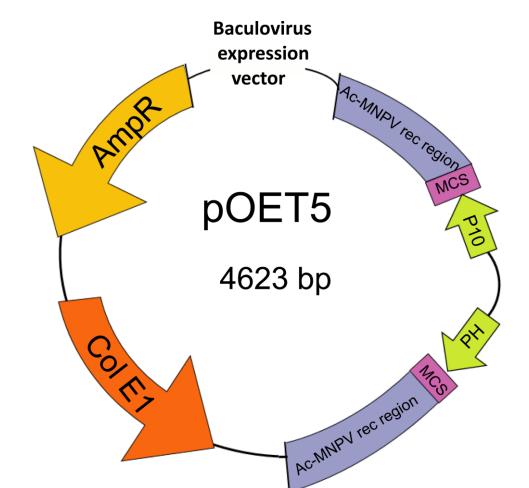



Figure 1. Schematic representation of the flashBAC $^{\text{TM}}$ system. The modified AcMNPV genome contains a BAC at *polh* gene locus with part of *ORF1629* gene deleted. Insect cells are co-transfected with *flash*BAC DNA and the transfer vector containing the gene of interest. Restoration of gene function and insertion of the foreign gene into the virus DNA under *polh* promoter takes place through homologous recombination. Baculovirus is produced as long as the recombinant virus replicates. Baculovirus is harvested and used to infect a new batch of cells to produce the recombinant protein of interest.

The baculovirus pOET5 vector (Oxford Expression Technologies, OET) is a dual promoter, compatible transfer plasmid for the flashBAC expression system (**Figure 2**). We used recently this vector and Sf9 and T. ni cells to overexpress proteins that control cell division in green plants [10]. The dual promoter feature of this transfer plasmid enables the simultaneous expression of two foreign genes under the strong AcMNPV polh promoter and the very late promoter p10. pOET5 contains a bacterial origin of replication and an ampicillin resistance gene, allowing plasmid propagation and selection in *E. coli* cells. The two multiple cloning sites (MCS) that have replaced the *polh* sequences harbour unique restriction sites that enables the insertion of a foreign gene in the correct orientation for its expression.

Figure 2. pOET5 vector map. The pOET5 transfer vector (4590bp) has a Col E1 bacterial origin of replication and an ampicillin resistant gene for selection in *E. coli.* Two multiple cloning sites (MCS) comprising unique restriction sites for foreign gene insertion in the correct orientation have replaced a segment the polyhedrin (*polh*) and p10 sequences. The *Autographa californica* Multicapsid Nucleopolyhedrovirus (AcMNPV) gene sequences flanking the gene in the transfer vector MCS enables homologous recombination with the viral DNA in insect cells facilitating expression cassette insertion into the locus.

111	2 Materials				
112	All solutions are prepared at room temperature (unless indicated otherwise using ultrapure,				
113	deionised water (e.g., purified water with a conductivity of 18 M Ω -cm at 25 °C) and analytical				
114	grade reagents.				
115	2.1 SDS (Sodium I	Dodecyl Sulphate) Polyacrylamide Gel Electrophoresis (SDS-			
116	PAGE)				
117		1. 4-12% NuPAGE pre-cast gels 1.5 mm, 15 wells.			
118		2. SDS-PAGE running buffer: MOPS 50mM, Tris base 50mM,			
119		SDS 3.46 mM, EDTA 1mM (see Note 1).			
120		3. NuPAGE gel thank.			
121		4. Plus Protein All Blue Molecular weight ladder or equivalent.			
122		5. Leammli buffer 5x (Tris 125mM pH 6.8, glycerol 10% (v/v),			
123		SDS 4% (w/v), β -mercaptoethanol 2% (v/v), bromophenol blue			
124		0.02% (w/v).			
125	2.2 Immunobloting				
126		1. Nitrocellulose membranes.			
127		2. Western blot transfer buffer: Tris-HCl 25 mM, glycine 192 mM,			
128		SDS 0.01%, methanol 20 % (v/v).			
129		3. PBS buffer: NaCl 150 mM, Na phosphates 50mM, pH 7.4.			
130		4. PBS containing 0.05 % Tween-20 (PBST).			
131		5. Blocking solution: 5 % milk in PBST. Store at 4 °C.			
132		6. Thick blot filter paper for western blot, 9.5 x 15.2 cm.			
133		7. Alkaline Phosphatase (AP) or horseradish peroxidase (HRP)			
134		anti-6x His tag antibodies. Secondary antibody that is HRP- or			
135		AP-conjugated.			

136		8. Nitro blue tetrazolium (NBT)/5-bromo-4-chloro-3- indolyl
137		phosphate (BCIP) 1-Step™ ready-made mix or Clarity western
138		ECL ready-made mix.
139	2.3 Insect cells work	
140		1. 35mm (six well) plates for tissue culture.
141		2. Serum free TC100 medium.
142		3. SF 921 protein-free cell culture medium.
143		4. pOET5 vector.
144		5. baculoFECTIN II transfection reagent.
145		6. flashBAC™ kit.
146		7. 5-bromo-4-chloro-3-indolyl-β-D galactopyranoside (X-gal).
147		8. N,N Dimethylformamide (DMF).
148		9. Fetal Bovine Serum (FBS).
149		10. Penicillin/streptomycin mix (10000IU and10000µg/ml
150		respectively).
151		11. PBS buffer: NaCl 150 mM, Na phosphates 50mM, pH 7.4.
152		12. Neutral Red Dye solution diluted (1:20) in sterile Phosphate-
153		buffered saline (PBS).
154	3 Methods	
155		
156	3.1 Cloning of heterol	ogous plant ER genes
157 158		1. Add a 5' sequence encoding for a hexahistidine-
159		tandem after the start codon of the heterologue gene
160		sequence to facilitate the purification of the gene
161		expression product by immobilised metal affinity
162		chromatography (IMAC). References [11-12] present

163		a revision of the chemical principles and applications
164		underpinning IMAC.
165	2.	Following gene amplification by PCR, the amplicon of
166		interest is purified and cloned into the appropriate
167		restrictions sites of the pOET5 vector (a combination
168		we use when possibly is BamHl and Sall) using
169		standard molecular cloning protocols.
170	3.	Confirmation of appropriate cloning of the heterologue
171		gene (e.g., in-frame, mutations-free) in pOET5 by
172		DNA Sanger sequencing using appropriate pOET
173		sequencing primers.
174		
175	3.2 Insect cells transfection	
176	•	luce seed stocks (P0) of recombinant baculovirus. The
177 178	entirety of the following technique	is carried out under aseptic conditions.
179	1.	Grow Spodoptera frugiperda 9 (Sf9) cells in serum free
180		TC100 medium as suspension cultures in shake flasks
181		(28°C, 120rpm).
182	2.	At least one hour prior to transfection, use Sf9 cells in the
183		log phase of growth and with at least 95% viability to
184		seed 35 mm cell culture dishes with 2 ml of Sf9 cells in
185		serum free TC100 growth medium at a cell density of
186		0.5x10 ⁶ cells/ml.
187	3.	Incubate at 28°C for 1 hour.
188	4.	Meanwhile, prepare the co-transfection mix of DNA and
189		transfection reagent. For each co-transfection use sterile
190		tubes and add 100µl of serum free TC100 medium,
191		followed by 100ng virus DNA (as supplied in the
192		flashBAC™ kit: 5μl at 20ng/μl).
193	5.	Add 500ng of transfer vector containing gene of interest
194		or 500ng of control plasmid (lacZ positive control as
195		supplied in the <i>flash</i> BAC [™] kit: 5µL at 100ng/µl).
196	6.	Add 1.2µl of baculoFECTIN and gently mix to prevent
197		shearing of the DNA.
198	7.	Prepare a control (mock) transfection by omitting the
199		addition of DNA to the mix.

200		8	8.	Incubate the-transfection mix for 15 minutes at room
201				temperature to allow the nanoparticle-DNA complex to
202				form.
203		(9.	Gently remove 1ml of growth medium from each well of
204				the 6-well plates and discard, leaving only 1ml of serum
205				free TC100 medium in each well.
206			10.	Add dropwise the co-transfection mix into the
207				corresponding well, ensuring an even distribution of the
208				mixture.
209			11.	Incubate the plates overnight at 28°C.
210			12.	Following overnight incubation, add 1ml of ESF 921
211				protein-free cell culture medium so each well had a total
212				volume of 2ml.
213			13.	Incubate the 6-well plates at 28°C for 4 more days.
214			14.	Harvest the seed stock (P0) from each well into sterile
215				tubes and store in the dark at 4°C.
216			15.	For the lacZ positive control to confirm transfection
217				efficiency, stain the infected cells using X-gal. To this aim,
218				add 1ml of ESF 921 protein-free cell culture medium
219				containing 15µl X-gal (2% w/v in DMF) to the well and
220				incubate at 28°C for 5 hours.
221			16.	Formation of a blue colour confirms lacZ expression in
222				the recombinant virus.
223				
224	3.3	Baculovirus amplification	n	
225			4	The entirety of the following proceeding one coming out
226			1.	The entirety of the following procedure are carried out
227			_	under aseptic conditions
228		,		A Passage 1 (P1) virus stock is generated by taking
229				0.5ml of the P0 stock virus to infect 50ml of Sf9 cells at a
230				density of 2x10 ⁶ cells/ml.
231				Incubate the cells for 5 days, 28°C, 120rpm.
232		4	4.	Harvest by centrifugation (20 minutes, 4°C, 3000rpm).
233				Recover the supernatant and store in the dark at 4°C. For
234				long-term storage at -80°C, add 5% v/v of Fetal Bovine
235			_	Serum (FBS).
236		;	5 .	Determine the titre of the virus P1 stock by plaque assay.

3.4 Plaque assay

- 1. The entirety of the following procedure is carried out under aseptic conditions.
- 12-well or 6-well plates are seeded with either Sf9 in ESF 921 protein-free cell culture medium or Spodoptera frugiperda 21 (Sf21) insect cells in TC100 medium supplemented with 10% FBS. The recommended cell density is shown in the Table 1 below.

Insect cell line	Plate Type	Cell density per well (cells/ml)	Volume per well (ml)
Sf9	6-well	0.35x10 ⁶	2
Sf9	12-well	0.4x10 ⁶	1
Sf21	6-well	0.75x10 ⁶	2
Sf21	12-well	0.4x10 ⁶	1

- 3. Plates are incubated overnight at 28°C to obtain anticipated confluency ≥70%.
- 4. Then serial dilutions (1:10) of virus stock are performed by ten-fold steps (10⁻¹-10⁻⁷) in TC100 medium+10% FBS using 50μl of virus and 450μl of growth medium as diluent at each step, ensuring to mix thoroughly.
- 5. Medium is aspired from wells and 100µl of virus dilutions gently added dropwise to the centre of each well.
- 6. Plates are incubated for 45 minutes at room temperature with agitation to allow the virus to adsorb. During the 45minute incubation period the overlay is prepared as follows:
- 7. Low melting temperature agarose (Sigma-Aldrich 2% w/v solution in deionised water) is warmed to hand hot ~50-55°C and diluted 1:2 with pre-warmed (28°C) TC100 medium+10% FBS or ESF 921 protein-free cell culture medium (if using Sf21 or Sf9 cells respectively). Keep the mix in an oven set at 55°C to prevent setting.
- 8. Following the incubation period, the virus suspension is aspired and 1ml or 2ml of overlay added to 12-well or 6-well plates respectively, allowing the overlay to flow down

273		the side of the well and spread slowly over the cell
274		monolayer.
275	9.	Once the agarose has set at room temperature, 1ml of
276		antibiotic mix (10000IU penicillin/10000µg/ml
277		streptomycin) in TC100 medium+10% FBS or ESF 921
278		protein-free cell culture medium (if using Sf21 or Sf9 cells
279		respectively) is added to the cells and the plate(s)
280		incubated at 28°C for 3/4 days for Sf21/Sf9 cells,
281		respectively.
282	10.	In order to visualise the virus plaques, the cells are
283		stained with a previously sterilised Neutral Red Dye
284		solution diluted (1:20) in sterile PBS.
285	11.	Plates are incubated overnight at 28°C, then dye is tipped
286		off and plaques counted. From the following equation
287		virus titre was determined:
288		
289		Average plaque count * Dilution factor * 10
290		$= Virus\ titre\ (pfu/ml)$
291		
292	12.	Where dilution factor is the inverse of the dilution and the
293		multiplication by 10 is because 0.1ml of virus was added
294		to each well.
295	2.5. Timo course protein produ	ction
296297	3.5 Time course protein production Once a virus titre of high infective	vity (typically 10 ⁷ to 10 ⁸ pfu/ml) is obtained, time course
298	•	n insect cell lines such as Sf9 and T.ni at three different
299	multiplicity of infection (MOI) levels	s and for up to 96 h post infection.
300 301	1	For small-scale production trials of heterologue plant
	1.	endothelium reticulum proteins, the cell lines Sf9 and
302		·
303		Trichoplusia ni (T.ni) at a cell density of 1.5x10 ⁶ cells/ml
304		and 1.0x10 ⁶ cells/ml, respectively, are infected with the
305		P1 virus stock at 0.1, 1.0 and 5.0 Multiplicity of Infection
306		(MOI) titres. Samples of 1 ml from the different MOIs are
307		collected after 24 h, 48 h, 72 h and 96 h and harvested by
308		centrifugation at 12,000 rpm for 10 min. The pellet and
309		supernatant can be stored at -20°C for further analyses.

To breakdown the insect cells, a lysis buffer solution

311			consisting of Tris 50 mM pH 8.0, β-mercaptoethanol5
312		1	mM, KCl 100 mM, Nonidet P-40 1% (v/v), cOmplete™,
313			EDTA-free protease inhibitor cocktail tablets (Roche) is
314		1	used (see Note 2).
315		2.	Cells membrane fragments and other debris are removed
316			by centrifugation at 12,000 rpm, at 2-8°C for 15 min. An
317		;	aliquot of the supernatant (e.g., the soluble fraction) and
318		1	the pellet (the insoluble fraction) for SDS-PAGE and
319		,	Western Blotting analysis.
320		3.	For large-scale expression, 1 to 4 L of Sf9 or T.ni insect
321			cells in culture at 1.5x10 ⁶ cells/ml are infected and
322		İ	incubated at 28°C according to the optimised conditions
323		1	found in the small-scale time-course expression tests.
324		4.	Once the maximal expression hours is determined
325			(usually, after 2-3 days incubation post-infection), the
326			cells are harvested by centrifugation at 4,000 rpm, 2-8°C
327		1	for 20 min (Beckman, J2-21) and the pellets stored at -
328			20°C.
329		5.	Cell lysis is carried out as described above. Intact cells,
330			cell membrane fragments, and other debris are removed
331			by centrifugation at 12,000 rpm, 2-8°C for 45 min
332			(Beckman, J2-21).
333		6.	The soluble fractions are recovered and used for SDS-
334			PAGE and western blot analyses.
335			
336	3.6 SDS-PAGE		
337		1	Aliquots of the collected soluble fractions from the time-
338			course expression tests are mixed with SDS-PAGE
339			loading dye Leammli buffer 5x and heated at 95°C for 5
340		I	minutes.
341		2.	Assemble the protein gel system with 15-well precast
342			NuPAGE 4-12% Bis-Tris gels (1.0mm thick). Fill the gel
343		1	tank with the running buffer (e.g., MOPS 50mM,Tris base
344		;	50mM, SDS 3.46 mM, EDTA 1mM).
345		3.	Gels are runs at 120V until the dye front reaches near the
346			bottom of the gel (~40 minutes). Ensure the gel is running

347 during this time (bubbles should be visible coming off the 348 bottom electrode) (see Note 3). 349 3.7 Western blotting 350 351 1. Once the SDS-PAGE run is completed, rinse the gel with 352 deionised water and transfer to a small plastic box 353 containing enough transfer buffer solution to cover the 354 355 gel. 2. Cut a piece of polyvinylidene fluoride (PVDF) membrane 356 (Bio-Rad®) of a size similar to that of the protein gel (see 357 358 Note 4). 3. Soak the PVDF membrane in pure methanol for 1 minute 359 360 (see Note 5). 361 4. Transfer the membrane to a small plastic box containing enough transfer buffer solution to cover the PVDF 362 membrane and incubate for 5 minutes (see Note 6). 363 5. During the equilibration of the PVDF membrane in the 364 transfer buffer, assemble the blotting sandwich as 365 follows: Whatman filter-membrane-gel-Whatman filter. 366 Place the gel on the PVDF membrane in such a way it 367 cover the membrane completely. Use a 5 or 10 mL 368 pipette to roll out air bubbles from the gel-membrane 369 sandwich prior to placing in transfer cassette. This will 370 prevent the trapping of air bubbles in between the gel and 371 the PVDF membrane. 372 6. Use a semi-dry transfer blot to transfer the proteins from 373 the gel to the PVDF membrane. Typically, this step 374 performed at 25 V for 5 min per protein gel. 375 7. Following transfer, the membrane is blocked in PBS, 5% 376 (w/v) skim milk powder, 0.1% Tween 20 overnight at 4°C 377 with rotation. 378 8. The primary antibody is diluted according to supplier's 379 recommendations in blocking solution. The membrane is 380 incubated with the primary antibody diluted in PBST for 1-381 2 hours at 4°C with rotation. The use of Alkaline 382 Phosphatase (AP) or horse radish peroxidase (HRP) anti-383

384			6x His tag antibody is recommended to speed up the
385			process.
386		9.	The primary antibody is removed by six 5-minute washes
387			with PBST followed by a 1 hour incubation (4°C with
388			rotation) with secondary antibody that is HRP- or AP-
389			conjugated (the dilution is according to supplier's
390			recommendations) in PBST.
391		10.	Following six 5-minute washes as in step 9 above, for
392			HRP-conjugated antibody, the colorimetric 1-Step
393			NBT/NCIP ready-made mix is applied to the membrane
394			for the detection of proteins on the blots. For alkaline
395			phosphatase-conjugated antibody use the 1-Step™
396			NBT/BCIP ready-made mix (see Note 7).
397		11.	The blot images are captured on a ChemiDoc (BioRad)
398			instrument or alike.
399			
400			
401 4 402	Notes	1	Unpolymerised polyacrylamide is a neurotoxin, so you
		1.	
403		2	need to wear gloves during this procedure.
404		۷.	Cell lysis solution can be irritant to skin, mucous
405			membranes and eyes. In case of accidental contact, rinse
406		_	cautiously with water for several minutes.
407		3.	The electrophoresis and transfer apparatus uses high
408			voltages.
409		4.	Avoid touching the PVDF membrane with bare fingers as
410			the proteins left on it (mainly keratin), may cross-react
411			with the antibodies.
412		5.	Methanol is a flammable and harmful solvent that may
413			cause blindness or death if swallowed. Store in a cool,
414			well ventilated area. Use PPE-based containers to handle
415			it. Keep away from strong oxidising agents. Avoid
416			heat/ignition sources.
417		6.	It is very important that during the western blotting
418			procedure that everything is kept damp. Pouring a small
419			volume of transfer buffer onto the stack to keep it moist
420			during assembling it should suffice. It is also essential

421	•	that there are no air bubbles between any of the layers	
422		otherwise transfer will not occur.	
422		The NBT/BCIP staining solution is a flammable liquid and	
424		vapour. Harmful in contact with skin. Causes serious eye	
425		irritation.	
426		The Tris-Glycine-Methanol blotting buffer solution must	
427		be disposed of as hazardous waste.	
428	9. \	Western blotting bands fade away when stored for long	
429	t	time periods (e.g., a few days) even when the blot is	
430		covered with water. Therefore, it is best to image the	
431	I	blots immediately after performing the	
432	(chemioluminescence reaction.	
433 434	References		
434	References		
436	1. Macdonald H, Henderson J, Napi	er RM, Venis MA, Hawes C, Lazarus CM (1994) Authentic	
437	processing and targeting of active maize auxin-binding protein in the baculovirus expression system.		
438	Plant Physiol 105:1049-1057		
439			
440	2. Henderson J, Macdonald H, Lazaru	us CM, Napier RM, Hawes CR (1996) Protein retention in the	
441	endoplasmic reticulum of insect cells is not compromised by baculovirus infection Cell Biol Int 20:413-		
442	422.		
443			
444	3. Bréhélin C, Yurchenko O, de Vries	J, Valerius O, Braus GH, Ischebeck T, Chapman KD, Dyer JM,	
445	Mullen RT (2021) LDIP cooperates w	vith SEIPIN and LDAP to facilitate lipid droplet biogenesis in	
446	Arabidopsis. Plant Cell 33:3076-3103.		
447			
448	4. Van Regenmortal, MHV, Fauquet Cl	M, Bishop DHL, Cartsens EB, Estes MK, Lemon SM, Maniloff J,	
449	Mayo MA, McGeoch DJ, Pringle Cl	R, Wickner RB (2000) Virus Taxonomy: Classification and	
450	Nomenclature of Viruses. Seventh Re	port of the International Committee on Taxonomy of Viruses.	
451	San Diego: Academic Press. ISBN-13	978-0123702005.	

- 5. Smith GE, Summers MD, Fraser MJ (1983) Production of human beta interferon in insect cells
- infected with a baculovirus expression vector. Mol Cell Biol 3:2156-2165.

455

- 6. Pennock GD, Shoemaker C, Miller LK (1984) Strong and regulated expression of Escherichia coli
- beta-galactosidase in insect cells with a baculovirus vector. Mol Cell Biol 4:399-406.

458

- 459 7. Liu F, Wu X, Li L, Liu Z, Wang Z (2013) Use of baculovirus expression system for generation of
- virus-like particles: Successes and challenges. Protein Expr Purif 90:104-116.

461

- 8. Kitts PA, Possee R (1993) A method for producing recombinant baculovirus expression vectors at
- high frequency. BioTechniques 14:810-817.

464

- 9. Chambers A, Aksular M, Graves L, Irons S, Possee R, King L (2018) Overview of the baculovirus
- expression system. Curr Protoc Protein Sci 91:5.4.1–5.4.6

467

- 468 10. Cosma MA, Curtis NL, Pain C, Kriechbaumer V, Bolanos-Garcia VM (2022) Biochemical,
- biophysical, and functional characterisation of the E3 ubiquitin ligase APC/C regulator CDC20 from
- 470 Arabidopsis thaliana. Front Physiol 13:938688.

471

- 11. Bolanos-Garcia VM, Davies OR (2006) Structural analysis and classification of native proteins
- 473 from E. coli commonly co-purified by immobilised metal affinity chromatography. Biochim Biophys
- 474 Acta 1760:1304-1313.

- 12. Cheung RC, Wong JH, Ng TB (2012) Immobilized metal ion affinity chromatography: a review on
- its applications. Appl Microbiol Biotechnol 96:1411-1420.