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Abstract

The forward problem for complex electrical impedance tomography (EIT) is solved by means of a
meshless method, namely the method of fundamental solutions (MFS). The MFS for the complex EIT
direct problem is numerically implemented, and its efficiency and accuracy as well as the numerical
convergence of the MFS solution are analysed when assuming the presence in the medium (i.e.
background) of one or two inclusions with the physical properties different from those corresponding
to the background. Four numerical examples with inclusion(s) of various convex and non-convex
smooth shapes (e.g. circular, elliptic, peanut-shaped and acorn-shaped) and sizes are presented and
thoroughly investigated.

Keywords: Electrical impedance tomography (EIT); Multi-frequency; Forward problem; Method
of fundamental solutions (MFS); Meshless method.

1 Introduction

Electrical impedance tomography (EIT) is a technique used for determining the admittivity distribu-
tion in the interior of an object, given simultaneous measurements of alternating electric currents (of
frequencies varying from 10Hz-500kHz) and of induced voltages on the boundary of the object [12].
For a given conductive object, the admittivity is a complex valued function whose real part is the
electrical conductivity and whose imaginary part is the product of the frequency of the applied electric
alternating current and the permittivity of the object. Since different materials display different elec-
trical properties, a map of internal admittivity can be used to infer the internal structure of the object
under consideration. Therefore, EIT can be used as a non-invasive and portable method of industrial,
geophysical and medical imaging [1].

The reconstruction procedures proposed for static EIT include a wide range of iterative methods
based on formulating the inverse problem in the framework of nonlinear optimization [2, 24, 40, 41].
These approaches usually involve estimating the admittivity distribution of the object under consid-
eration and then solve the forward problem (often using finite element methods [FEMs]) for the same
input current patterns to compute the boundary voltages and then comparing the boundary data pre-
dicted by this estimate with the measured data. The discrepancy between these two data sets is then
used to update the admittivity estimate and the procedure is repeated until a satisfactory agreement
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is achieved. However, the solution of the inverse problem in static EIT has suffered not only from its
ill-posedness due to the inherent insensitivity of boundary measurements to any small changes of inte-
rior conductivity and permittivity values and its poor spatial resolution, but also from its reliance on
accurate forward models which mimic every aspect of the imaging object (e.g. knowledge of boundary
geometry, electrode positions and other sources of systematic artifacts in measured data). Hence, EIT
has had limited applicability so far in clinical applications. This has encouraged the search of new
reconstruction methods, such as the time-difference EIT (tdEIT) or frequency-difference EIT (fdEIT).
Even though numerous tdEIT methods have been applied to image lung functions, stomach empty-
ing or brain functions [12, 31, 32], there are medical applications where these time-reference data is
not available (e.g. breast cancer or cerebral stroke detection). Since complex conductivity spectra
of biological tissues show frequency-dependent changes [8, 32], fdEIT methods have been proposed to
image the changes in the admittivity distribution with respect to frequency [11, 13, 22, 38]. It has been
showed that, although there are no visible differences in the reconstructed frequency-difference images
even though the true admittivity distributions have a strong frequency dependence, any anomaly can
be clearly identified as long as its admittivity differs significantly from that of the background which is
the case for tumour and stroke imaging.

To achieve clinical acceptance, the theoretical developments of EIT reconstruction methods need
to be closely connected with laboratory experiments and studies on real data. This implies not only
the modelling of the real geometry and data collection devices but also the development of a computer
software fast enough to be used for real-time monitoring. However, optimized image reconstruction
techniques for EIT rely on computationally efficient and numerically robust forward solvers. In this
paper, we address this need by presenting an algorithm based on the method of fundamental solutions
(MFS) which can be successfully used to find the numerical solution of the EIT forward problem for
piecewise constant admittivity distributions to a high level of precision.

The MFS is a meshless boundary collocation method applicable to boundary value problems in
which a fundamental solution of the operator in the governing equation is known explicitly. The basic
ideas of this method were first introduced, in the early 60’s, by Kupradze and Aleksidze [23], whilst
its numerical formulation was first given by Mathon and Johnston [30] in the late 70’s. The main
idea of the MFS consists of approximating the solution of the problem by a linear combination of
fundamental solutions with respect to some singularities/source points which are located outside the
domain. Consequently, the original problem is reduced to determining both the unknown coefficients
of the fundamental solutions and the coordinates of the source points by requiring the approximation
to satisfy the boundary conditions in some sense and hence solving a non-linear problem. If the source
points are fixed a priori then the coefficients of the MFS approximation are determined by solving a
linear problem. The aforementioned MFS procedures are referred to in the literature as the dynamic
and static approaches, respectively.

Despite its constraint on the knowledge of a fundamental solution of the governing partial differential
equation, the MFS has become very popular especially due to the ease with which it can be implemented,
in particular for problems in complex geometries. It should be mentioned that the MFS can be used
in conjunction with the so-called singularity subtraction technique (SST) for problems with boundary
and/or solution singularities, in the sense that the standard MFS solution of the partial differential
equation investigated is augmented by suitable singular functions/eigenfunctions associated with the
corresponding partial differential operator as given by the asymptotic expansion of the solution near
the singular point. For details on the MFS-SST procedure applied to the numerical solution of direct
and inverse problems associated with the Laplace, biharmonic, Helmholtz and modified Helmholtz,
and Cauchy-Navier equations, we refer the reader to Karageorghis [14], Karageorghis et al. [21], and
Marin [25–27]. In the MFS, there are no integrations. This clearly represents an advantage over the
boundary element method (BEM) where integrations could be potentially troublesome and complicated.
Furthermore, the MFS is a boundary collocation method, and hence only the boundary of the solution
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domain needs to be discretised, which is another advantage of the MFS over domain discretisation
methods, such as FEMs or finite difference methods (FDMs). The major disadvantages of the MFS
are related to the optimal location of the singularities, which is an important issue especially from the
numerical point of view, and its inability to be directly applied to non-homogeneous or nonlinear partial
differential equations, for which a fundamental solution is not available.

The MFS has been successfully applied to a large variety of physical problems, such as the Laplace
equation [14, 25, 35, 37], the biharmonic equation [16, 34], the Helmholtz and modified Helmholtz
equations [15, 26, 27], scattering and radiation problems [6], elastostatics [17, 19, 21, 36], thermoelas-
ticity [28, 39], inhomogeneous elliptic equations [34], heat conduction problems in functionally graded
materials [29], layered [3] and composite materials [4, 18], etc. For a detailed and comprehensive
description of the application of the MFS to direct and inverse problems we refer the reader to the
survey papers by Fairweather and Karageorghis [5], Fairweather et al. [6], Golberg and Chen [9], and
Karageorghis et al. [20], as well as the references therein.

To the best of our knowledge, the application of the MFS to the forward problem for complex
EIT has not been investigated yet. Motivated by the success of the application of the MFS to various
physical problems, as well as the importance of the complex EIT forward problem, the purpose of the
present study is to propose, implement and analyse the application of the MFS to the aforementioned
problem. We also investigate the efficiency, accuracy and numerical convergence of the MFS solution
of the complex EIT forward problem when assuming the presence in the medium (i.e. background)
of one or two inclusions with physical properties (i.e. conductivity and permittivity) different from
those of the background. The numerical analysis is studied for various convex and non-convex smooth
shapes (e.g. circular, elliptic, peanut-shaped and acorn-shaped) and sizes of the inclusion(s). The paper
is structured as follows. In Section 2 we formulate mathematically the problem investigated herein.
The MFS application to the complex EIT forward problem is presented in Section 3. The efficiency,
accuracy and numerical convergence of the proposed method are validated by considering four examples
in Section 4. Finally, some conclusions and future related problems are presented in Section 5.

2 Mathematical Formulation

Let Ω be a bounded, simply connected domain in R2. The forward complex EIT problem can be stated
as follows: for a given complex admittivity scalar-valued function γ(x) = σ(x) + iωε(x), x ∈ Ω, with
strictly positive real part σ(x) ≥ c > 0, at a frequency ω of the applied current, find the complex
potential distribution ϕ(x) = v(x) + ih(x), x ∈ Ω, satisfying the elliptic partial differential equation

∇ ·
(
γ(x)∇ϕ(x)

)
= 0 , x ∈ Ω , (1)

subject to the Neumann boundary condition

γ(x)
(
n(x) · ∇ϕ(x)

)
= I(x, ω) , x ∈ ∂Ω , such that

∫
∂Ω

I(x, ω) dx = 0 , (2)

where n(x) is the outer normal at x ∈ ∂Ω.

If γ ∈ L∞(Ω), the Neumann boundary value problem (1)–(2), for I ∈ H− 1
2 (∂Ω), has a unique

solution ϕ ∈ H1(Ω) up to an additive constant [7], which we fix by choosing the ground as∫
∂Ω

ϕ(x) dx = 0 . (3)

In this paper, we are interested to find the numerical solution to the EIT forward problem for a
piecewise constant admittivity distribution. To this end, we let Ωj , j = 1, J , be disconnected subdo-

mains compactly contained in Ω, such that Ωk ∩ Ωl = ∅ for all k, l = 1, J , k ̸= l, and Ω0 = Ω \
J∪

j=1

Ωj
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is connected, see Figure 1. The following notations are also introduced

Γ0 = ∂Ω0 \
J∪

j=1

∂Ωj , (4a)

Γj = ∂Ωj , j = 1, J , (4b)

ϕj(x) = vj(x) + ihj(x) , x ∈ Ωj = Ωj ∪ ∂Ωj , j = 0, J , (4c)

γj = σj + iωεj , j = 0, J , (4d)

where both the conductivity σj and the permittivity εj distributions in Ωj are assumed to be constant.
Thus, equation (1) reduces to a set of Laplace equations

∇ ·
(
∇ϕj(x)

)
= 0 , x ∈ Ωj , j = 0, J , (5a)

which could be solved subject to a Neumann boundary condition

γ0
(
n(0)(x) · ∇ϕ0(x)

)
= I0(x)eiωt , x ∈ Γ0 , such that

∫
Γ0

I0(x) dx = 0 , (5b)

at a set frequency ω and time t. To guarantee uniqueness, we impose∫
Γ0

ϕ0(x) dx = 0 . (5c)

Due to the continuity of the potential and the current flux densities across the interfaces Γj , the solutions
ϕj , j = 0, J , should also satisfy the following transmission conditions:

ϕ0(x) − ϕj(x) = 0 , x ∈ Γj , j = 1, J , (5d)

γ0
(
n(0)(x) · ∇ϕ0(x)

)
+ γj

(
n(j)(x) · ∇ϕj(x)

)
= 0 , x ∈ Γj , j = 1, J , (5e)

where n(j)(x) are the outer normals at x ∈ ∂Ωj , j = 0, J , see Figure 1.
Equations (5a)–(5e) can be rewritten in terms of vj = Re ϕj and hj = Im ϕj , j = 0, J , as follows:

∆vj(x) = 0 , x ∈ Ωj , j = 0, J , (6a)

∆hj(x) = 0 , x ∈ Ωj , j = 0, J , (6b)

subject to the Neumann boundary conditions

n(0)(x) ·
(
σ0∇v0(x) − ωε0∇h0(x)

)
= I0(x) cos(ωt) , x ∈ Γ0 , (6c)

n(0)(x) ·
(
ωε0∇v0(x) + σ0∇h0(x)

)
= I0(x) sin(ωt) , x ∈ Γ0 , (6d)

the uniqueness conditions∫
Γ0

v0(x) dx = 0 , (6e)∫
Γ0

h0(x) dx = 0 , (6f)

and the transmission conditions

v0(x) − vj(x) = 0 , x ∈ Γj , j = 1, J , (6g)

h0(x) − hj(x) = 0 , x ∈ Γj , j = 1, J , (6h)

n(0)(x) ·
(
σ0∇v0(x)−ωε0∇h0(x)

)
+n(j)(x) ·

(
σj∇vj(x)−ωεj∇hj(x)

)
= 0 , x ∈ Γj , j = 1, J , (6i)

n(0)(x) ·
(
ωε0∇v0(x) +σ0∇h0(x)

)
+n(j)(x) ·

(
ωεj∇vj(x) +σj∇hj(x)

)
= 0 , x ∈ Γj , j = 1, J . (6j)

4



3 The Method of Fundamental Solutions

The fundamental solution of the two-dimensional Laplace equation is given by, see e.g. [5]

F(x,ξ) = − 1

2π
log ∥x− ξ∥ , x ∈ Ωj , j = 0, J , (7)

where x = (x1, x2) is a collocation point, ξ = (ξ1, ξ2) ∈ R2 \ Ωj is a singularity or source point and
∥x− ξ∥ =

√
(x1 − ξ1)2 + (x2 − ξ2)2 is the Euclidean distance between the collocation point x and the

singularity/source point ξ. In Figure 1, we present the possible positions of the source and collocation
points for a simple geometry.

In the MFS, both the real (vj) and the imaginary (hj) potentials corresponding to the background
(j = 0) and inclusions (j = 1, J) are approximated by a linear combination of fundamental solutions

with respect to N0 = N00 + N01 + . . .+ N0J singularities,
{
ξ(0;n)

}N0

n=1
, and Nj singularities,

{
ξ(j;n)

}Nj

n=1
,

1, J , respectively, in the form

vj(x) ≈
Nj∑
n=1

c(j;n) F
(
x,ξ(j;n)

)
, x ∈ Ωj , j = 0, J , (8a)

hj(x) ≈
Nj∑
n=1

d(j;n) F
(
x,ξ(j;n)

)
, x ∈ Ωj , j = 0, J , (8b)

where c(j) =
[
c(j;1), . . . , c(j;Nj)

]T ∈ RNj , d(j) =
[
c(j;1), . . . , c(j;Nj)

]T ∈ RNj and ξ(j) ∈ R2Nj , j = 1, J ,
is a vector containing the coordinates of the singularities. It should be noted that, in the case of
the background (j = 0), the total number of singularities (source points) was taken to be N0 =
N00 + N01 + . . . + N0J since ∂Ω0 is the outer boundary of the background and Γj , j = 1, J , are the
J inner boundaries of the background (interfaces between the background and the inclusions), whilst
N00 and N0j , j = 1, J are singularities corresponding to the outer and inner boundaries (interfaces),
respectively.

From equations (6c), (6d), (6i), (6j) and (7), it follows that the corresponding normal derivatives of
the real and imaginary parts of the potential on ∂Ωj can be approximated by

(
n(j)(x) · ∇vj(x)

)
≈

Nj∑
n=1

c(j;n)
[
n(j)(x) · ∇xF

(
x,ξ(j;n)

)]
, x ∈ ∂Ωj , j = 0, J , (9a)

(
n(j)(x) · ∇hj(x)

)
≈

Nj∑
n=1

d(j;n)
[
n(j)(x) · ∇xF

(
x,ξ(j;n)

)]
, x ∈ ∂Ωj , j = 0, J . (9b)

Next, we select Mj collocation points,
{
x(j;n)

}Mj

n=1
, on each boundary Γj , j = 0, J , such that the

collocation points on each interface Γj , j = 1, J , are the same for both the boundary associated with
the background, ∂Ω0, and the boundary corresponding to the jth inclusion, ∂Ωj , i.e. the following
relations hold:

x

(
0;
∑j−1

ℓ=0 Mℓ+k
)

= x(j;k) , k = 1,Mj , j = 1, J . (10)

Consequently, the total number of boundary collocation points employed in the present approach is
M0 + M1 + · · · + MJ , i.e. the number of boundary collocation points associated with the background

Ω0, namely
{
x(0;n)

}M0+M1+...+MJ

n=1
.
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Then, the collocation of the uniqueness conditions (6e) and (6f) yields the following equations

N0∑
n=1

c(0;n)

[
M0∑
k=1

F
(
x(0;k),ξ(0;n)

)]
≈ 0 , (11a)

N0∑
n=1

d(0;n)

[
M0∑
k=1

F
(
x(0;k),ξ(0;n)

)]
≈ 0 . (11b)

Finally, we collocate the Neumann boundary conditions (6c) and (6d), as well as the transmission
conditions (6g)–(6j) to obtain the following system of linear equations for the unknown coefficients
c(j),d(j) ∈ RNj , j = 0, J , grouped in the vector X ∈ RN, N = N0 + N1 + . . . + NJ :

AX = f , (12)

where A ∈ R(M+2)×N is the corresponding MFS matrix whose elements are calculated from equations
(6c)–(6j), respectively, while f ∈ RM+2, M = 2M0 + 4M1 + · · · + 4MJ , contains the corresponding
discretised Neumann data from equations (6c) and (6d), as well as zero entries associated with the
transmission conditions (6g)–(6j) and uniqueness conditions (11a) and (11b). Clearly, in order for the
discretised MFS system of linear equations (10) to have a unique solution X ∈ RN, the numbers of
collocation points M and singularities N should satisfy the inequality N ≤ M + 2. In this study, the
system of linear equations (12) is solved in the least-squares sense by numerically inverting the normal
system of equations associated with the system (12), namely

X =
(
ATA

)−1 (
AT f

)
. (13)

4 Numerical Results

Without loss of generality, we assume that the background is described by the unit disk centered at
the origin of the system of coordinates, i.e.

Ω =
{
x ∈ R2

∣∣∣ x2
1 + x2

2 < R2
}
, (14)

with R = 1, and is characterised by the conductivity σ0 = 0.036 S m−1 and permittivity ε0 =
1.9 × 10−9 F m−1. In SI based units, 1 S = 1 A2 s3 m−2 kg−1 and 1 F = 1 A2 s4 m−2 kg−1. The in-
clusions considered in this study Ωj , j = 1, 2, are assumed to have smooth boundaries ∂Ωj , j = 1, 2,
and be centered at x(1) = (0.45, 0) and x(2) = (−0.45, 0.35), respectively, whilst their corresponding
conductivities and permittivities are given by σ1 = 0.042 S m−1 and ε1 = 9.7 × 10−9 F m−1, and
σ2 = 0.05 S m−1 and ε2 = 1.2 × 10−8 F m−1, respectively.

Example 1. We consider the circular inclusion of radius r = 0.25 and centered at x(1), i.e.

Ω1 =
{
x ∈ R2

∣∣∣ (x1 − x
(1)
1

)2
+

(
x2 − x

(1)
2

)2
< r2

}
. (15)

Example 2. We consider a peanut-shaped inclusion rotated by an angle φ = 5π/6 about its centre
x(1)

Ω1 =

{
x ∈ R2

∣∣∣∣ X2
1 + X2

2

a2 cos2 θ + b2 sin2 θ
< r2

}
, (16a)
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where θ ∈ [0, 2π) is the polar angle of point x with respect to the centre of the inclusion, a = 1.0,
b = 0.5, r = 0.25, and X1 and X2 are given by

X1 =
(
x1 − x

(1)
1

)
cosφ +

(
x2 − x

(1)
2

)
sinφ, X2 = −

(
x1 − x

(1)
1

)
sinφ +

(
x2 − x

(1)
2

)
cosφ. (16b)

Example 3. We consider an acorn shaped inclusion centered at x(1)

Ω1 =

{
x ∈ R2

∣∣∣∣∣
(
x1 − x

(1)
1

)2
+

(
x2 − x

(1)
2

)2
a + b sin(3θ)

< r2

}
, (17)

where θ ∈ [0, 2π) is the polar angle of point x with respect to the centre of the inclusion, a = 4.25,
b = 2.0 and r = 0.1.

Example 4. We consider two inclusions, i.e. J = 2, namely a circular inclusion of radius r1 = 0.25
and centered at x(1)

Ω1 =
{
x ∈ R2

∣∣∣ (x1 − x
(1)
1

)2
+

(
x2 − x

(1)
2

)2
< r21

}
, (18a)

and an elliptical inclusion of semi-axes a = 1.0 and b = 0.5, rotated by an angle φ = π/4 about its
centre x(2)

Ω2 =

{
x ∈ R2

∣∣∣∣∣
(

X1

a

)2

+

(
X2

b

)2

< r22

}
, (18b)

where r2 = 0.25, whilst X1 and X2 are given by equation (16b).

In the present analysis, in the Neumann boundary conditions (6c) and (6d) the amplitude of the
applied current was chosen as

I0(x) = − sin
(
θ(x) + π/4

)
, (19)

while its frequency ω/2π was set to 500 kHz, and we only considered three different values for the time
variable, namely t = 0 s, t = 0.2 × 10−6 s and t = 0.5 × 10−6 s, respectively.

Generally speaking, the collocation points,
{
x(j;n)

}Mj

n=1
, are uniformly distributed on each boundary

Γj , j = 0, J . The singularities/sources
{
ξ(0;n)

}N0

n=1
, N0 = N00 + N01 + . . . + N0J , associated with

∂Ω0 =
J∪

j=0

Γj , and
{
ξ(j;n)

}Nj

n=1
associated with Γj , j = 1, J are also uniformly distributed. Moreover,

we take M0 = N00 and Mj = Nj = N0j , j = 1, J . The aforementioned singularities/sources are
preassigned and kept fixed throughout the solution process (i.e. the so-called static MFS approach is
employed) on a pseudo-boundary Γ̃j of a similar shape to that of Γj , such that dist

(
Γ̃j ,Γj

)
, j ∈ 0, J ,

are fixed constants, see e.g. [10]. Note that, for the examples considered in this paper, the number of
inclusions is either J = 1 (Examples 1–3) or J = 2 (Example 4).

To illustrate the positioning of the pseudo-boundaries used in the present approach, we consider
Example 1 and define ∂Ω̃0 = Γ̃0 ∪ Γ̃01 and Γ̃1 as follows:

Γ̃0 =
{
x ∈ R2

∣∣∣ x2
1 + x2

2 =
[
(1 + d0)R

]2}
, (20a)

Γ̃01 =
{
x ∈ R2

∣∣∣ (x1 − x
(1)
1

)2
+

(
x2 − x

(1)
2

)2
=

[
(1 − d1) r

]2}
, (20b)
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and

Γ̃1 =
{
x ∈ R2

∣∣∣ (x1 − x
(1)
1

)2
+

(
x2 − x

(1)
2

)2
=

[
(1 + d2) r

]2}
, (20c)

where d0 > 0 and d1 = d2 ∈ (0, 1) since Γ̃01 ⊂ Ω1. Similar positioning of the pseudo-boundaries Γ̃j ,
j = 0, J , are used in the case where there are J inclusions present (i.e. d0 > 0 is constant associated
with the outer boundary Γ0, and d2j−1 = d2j associated with the interfaces Γj , j = 1, J).

In order to assess the accuracy and convergence of the proposed MFS, for any real-valued function

f : Γj −→ R, j = 0, J , and any set of points
{
x(j;m)

}Mj

m=1
⊂ Γj , we define the corresponding root mean

square (RMS) error of f on Γj by

errΓj (f) =

√√√√ 1

Mj

Mj∑
m=1

∣∣f(x(j;m)
)∣∣2 , j = 0, J . (21)

We also investigate the influence of the number of source points N and of the distances from the
boundaries of the solution domain, Γj to the pseudo-boundaries on which the sources are located, Γ̃j ,
j = 0, J , on the accuracy. Therefore, we analyse the dependence of the RMS error defined by equation
(21) for the real and imaginary Dirichlet (potential) and Neumann (current) transmission conditions
(6g)–(6j) on the interfaces Γj , j = 1, J , with respect to the number of source points and the constants

d0 and d2j−1 = d2j , j = 1, J , related to dist
(
Γ̃j ,Γj

)
, j ∈ 0, J .

We first consider the problem in Example 1 and set t = 0 s in equation (19), the number of
collocation points M ∈

{
80, 120, 160

}
and distances d0 = 2.0 and d1 = d2 = 0.3, at the same time

varying the number of singularities N0j ∈
{

1, 2, . . . ,M0j

}
, j = 0, 1, i.e. such that N ≤ M + 2. Figures

2(a)–(c) present the RMS error errΓ1(v0 − v1), which actually measures the accuracy of the potential
transmission condition on the interface Γ1, as a function of the numbers of sources associated with the
boundaries Γ0 and Γ1 (i.e. N00 and N01 = N1), for M = 80, M = 120 and M = 160, respectively. For
all values of the number M of boundary collocation points considered, the following conclusions can be
drawn from these figures:

(i) For a fixed value of the number N00 ∈
{

1, 2, . . . ,M00

}
of source points corresponding to the outer

boundary Γ0, the RMS error errΓ1(v0−v1) decreases as the number of singularities N01 associated
with the interface Γ1 increases.

(ii) Although not illustrated in Figures 2(a)–(c), it should be mentioned that, for fixed but large
admissible values of d1 = d2 (i.e. d1 = d2 approaching 1.0) and a fixed value N00 ∈

{
1, 2, . . . ,M00

}
,

there exists a threshold value of the parameter N01, say Ñ01, after which errΓ1(v0 − v1) starts to
increase as N01 −→ M01, the distribution of this RMS error becomes irregular and, consequently,
the MFS approximations for the Dirichlet transmission condition on the interface Γ1 are more
inaccurate. A possible reason for this increment in the inaccuracies of the MFS approximations for
the real part of the potential transmission conditions on the interface Γ1 is the fact that increasing
the number N00 of sources corresponding to Γ1 results in a highly ill-conditioned matrix A for
the problem in Example 1.

(iii) For a fixed value of the number N01 ∈
{

1, 2, . . . , Ñ01

}
of source points corresponding to the

interface Γ1, the error in the Dirichlet transmission condition on Γ1, errΓ1(v0 − v1), has almost
the same value for all N00 ≥ 5.

(iv) For all N00 ≥ 5 a fixed value of the number of source points corresponding to the interface Γ1

which is set to be proportional to the maximum admissible number of source points on Γ1, e.g.
N01 = M01/2, the RMS error errΓ1(v0 − v1) decreases with respect to the number of boundary
collocation points, M, i.e. the MFS is convergent with respect to increasing M.
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The same conclusions can be drawn from Figures 3(a)–(c) for the RMS error corresponding to the
transmission condition for the real part of the electric current on the interface Γ1, errΓ1

[
n(0) ·

(
σ0∇v0−

ωε0∇h0
)

+n(1) ·
(
σ1∇v1−ωε1∇h1

)]
. The transmission conditions on Γ1 associated with the imaginary

parts of the potential and current display similar behaviours, although these have not been presented
here. As expected, errΓ1(v0−v1) < errΓ1

[
n(0) ·

(
σ0∇v0−ωε0∇h0

)
+n(1) ·

(
σ1∇v1−ωε1∇h1

)]
for the fixed

values of the MFS parameters considered, namely t = 0 s in equation (19), the number of collocation
points M ∈

{
80, 120, 160

}
and distances d0 = 2.0 and d1 = d2 = 0.3, and all admissible values of the

numbers of source points N00 ∈
{

5, 6, . . . ,M00

}
and N01 ∈

{
1, 2, . . . , Ñ01

}
, i.e. the MFS approximations

for the Neumann (current) transmission conditions on the interface Γ1 are more inaccurate than the
numerical results retrieved for the Dirichlet (potential) transmission conditions on Γ1.

It is well-known that the accuracy of the MFS depends on the distance between the pseudo-boundary
on which the singularities are located and the boundary of the solution domain. For direct problems with
exact boundary data, it is generally advised to place the singularities as far away from the boundary of
the domain under investigation as possible, as much as the machine precision allows. Ramachandran [37]
showed that the singular value decomposition (SVD) could mitigate this critical dependence.

However, the direct problem investigated in this paper is somehow different from the situation
presented above. More specifically, in the case of direct problems in EIT, the domain occupied by the
background Ω0 is a multiply connected domain and, therefore, there exist source points associated with
the interfaces Γj , j = 1, J , and corresponding to the background which are located inside the simply
connected domain Ω, more precisely, these sources are situated in the domains occupied by the inclusions
Ωj ⊂ Ω, j = 1, J . Consequently, the distances between the interfaces Γj and their corresponding pseudo-
boundaries on which the MFS sources are located, and hence d2j−1 = d2j , j = 1, J , are constrained
by the size of the inclusions Ωj ⊂ Ω0, j = 1, J . Nonetheless, it should be mentioned that there is no

constraint on the distance between the outer boundary Γ0 and its associated pseudo-boundary Γ̃0 and
this can have any positive value.

Figures 4(a)–(c) present the RMS error errΓ1

(
h0 −h1

)
as a function of the distances d0 ∈ [0.05, 3.0]

and d1 = d2 ∈ [0.01, 0.9] from the boundary Γj to the pseudo-boundary Γ̃j , j = 0, 1, on which the
sources are positioned, obtained using t = 0.5 × 10−6 s and various numbers of collocation and source
points, namely M = N = 80, M = N = 120 and M = N = 160, respectively, for Example 1. It can be
observed from these figures that, as the numbers of boundary collocation points M and singularities N
increase, d0 increases and d1 = d2 −→ 0.90, the distribution of the RMS error errΓ1

(
h0 − h1

)
becomes

irregular. This is a direct consequence of the fact that the corresponding MFS matrix A becomes highly
ill-conditioned since not only the dimension of this matrix increases (i.e. M = N increase), but also
the singularities on the pseudo-boundary Γ̃1 associated with the interface Γ1 cluster around the origin.
Similar results have been obtained for the RMS error defined by equation (21) and corresponding to
the imaginary part of the Neumann (current) transmission condition on Γ1 and these are displayed in
Figures 5(a)–(c). Although not illustrated, similar results were also obtained, in the case of Example 1,
for the RMS errors errΓ1

(
v0−v1

)
and errΓ1

[
n(0) ·

(
σ0∇v0−ωε0∇h0

)
+n(1) ·

(
σ1∇v1−ωε1∇h1

)]
, as well as

the other examples analysed in this study. According to the RMS errors associated with the transmission
conditions presented in Figures 4 and 5, for stability and accuracy reasons it is recommended to choose
the source points corresponding to the interfaces (inner boundaries) Γj , j = 1, J , on the pseudo-

boundaries Γ̃j , j = 1, J , such that d2j−1 = d2j ∈ [0.02, 0.35], j = 1, J .

The numerical results presented in the sequel have been obtained by setting the corresponding MFS
parameters introduced in Section 3 as follows:

(i) M00 ∈ {40, 60, 80} and M0j = Mj ∈ {20, 30, 40} for j = 1, 2, such that M ∈ {80, 120, 160} for
Examples 1–3 and M ∈ {120, 180, 240} for Example 4;

(ii) N0j = M0j for j = 0, 1, 2, such that M = N for Examples 1–4;
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(iii) d0 = 2.0 and d1 = d2 = 0.3 (Example 1); d0 = 1.0 and d1 = d2 = 0.2 (Example 2); d0 = 2.0 and
d1 = d2 = 0.2 (Example 3); d0 = 1.0, d1 = d2 = 0.3 and d3 = d4 = 0.3 (Example 4).

For Examples 1–4, d1 and d2 set the positions of the pseudo-boundaries corresponding to Γ1, whilst
the distances between Γ2 and its corresponding pseudo-boundaries in Example 4 are determined by d3
and d4.

Figures 6 and 7 present the contour plots of the real and imaginary parts of the electric potential ϕ,
v and h, respectively, obtained in the domain corresponding to Example 1 by applying the boundary
current given by equation (19) with M = N = 160 and various values of the time variable, namely
t = 0 s, t = 0.2 × 10−6 s and t = 0.5 × 10−6 s. It can be seen from Figures 6(a) and (b) that although
the numerically reconstructed values of v = Re ϕ at t = 0 s and t = 0.2 × 10−6 s are different, the
distributions of the real electric potential in Ω are very similar. However, the real electric potential
numerically retrieved at t = 0.5×10−6 s and illustrated in Figure 6(c) clearly accounts for the presence
of the circular inclusion Ω1 given by equation (15).

As expected, the behaviour of the reconstructed imaginary part of the electric potential h = Im ϕ
is opposite to that of the real electric potential v = Re ϕ, see Figures 6 and 7. More precisely, at
t = 0 s and t = 0.2 × 10−6 s, although their numerical values are different, both imaginary electric
potential distributions account for the presence of the circular inclusion Ω1, see Figures 7(a) and (b).
On the contrary, at t = 0.5× 10−6 s the presence of the inclusion Ω1 has little effect on the numerically
reconstructed values of the imaginary part of the electric potential h = Im ϕ presented in Figure 7(c).

The approach developed here was also shown to be efficient, accurate and convergent with respect
to increasing the number of boundary collocation points when the inclusion Ω1 was assumed to be
smooth, but non-convex. Two examples have been considered to illustrate this situation, namely the
peanut-shaped inclusion considered in Example 2 for t = 0.2 × 10−6 s and the acorn-shaped inclusion
in Example 3 for t = 0.5 × 10−6 s. The contour plots of the numerically retrieved values for v and h in
Ω and corresponding to Examples 2 and 3 are illustrated in Figures 8 − 11.

The proposed procedure works equally well when two inclusions (J = 2) are present in the back-
ground medium as is the case in Example 4, in which we consider a circular inclusion and an elliptical
one given by equations (18a) and (18b), respectively. Figures 12 and 13 present the contour plots of
the retrieved real, v, and imaginary parts of the potential, h, respectively, using the boundary current
given by equation (19) at t = 0.5 × 10−6 s and various numbers of collocation and source points, i.e.
M = N ∈

{
80, 120, 160

}
. Overall, from Figures 6− 13 we can conclude that the MFS provides accurate

and convergent numerical solutions for the real and imaginary parts of the electric potential in the
background medium Ω0 as well as in the inclusions Ωj ⊂ Ω, j = 1, J , at all time instants t ≥ 0.

5 Conclusions

In this paper, the MFS has been implemented and analysed for obtaining the numerical solution of the
complex EIT forward problem in two dimensions. A generalized MFS formulation for this EIT direct
problem has been developed for the case when a finite number of inclusions with constant physical
properties (i.e. conductivity and permittivity) are assumed to be compactly contained in a given
medium (background). The efficiency, accuracy and numerical convergence of the proposed method
have been investigated and validated by considering five numerical examples corresponding to various
smooth convex or non-convex shapes of the inclusion(s), namely circular, elliptic, peanut-shaped and
acorn-shaped.

The proposed technique is efficient and can be extended to other problems for complex EIT: three-
dimensional forward problems, inverse geometric problems (i.e. reconstruction of the inclusion(s) in
the background when the physical properties of both the inclusion(s) and the background are known
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a priori), parameter identification problems (i.e. identification of the physical properties of the inclu-
sion(s) in the background) and combined geometric-parameter identification problems in two and three
dimensions. However, these extensions will be considered in future work.
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Figure 1: Geometry of the problem. Possible placement of the sources for Ω0 (�) and Ωj , j = 1, 2, (�),
and the collocation points (•).
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Figure 2: The RMS error, errΓ1

(
v0 − v1

)
, as a function of the number of sources N00 ∈

{
1, 2, . . . ,M00

}
and N01 ∈

{
1, 2, . . . ,M01

}
at t = 0 s and various numbers of collocation points, namely (a) M = 80,

(b) M = 120 and (c) M = 160, for Example 1.
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Figure 3: The RMS error, errΓ1

[
n(0) ·

(
σ0∇v0 − ωε0∇h0

)
+ n(1) ·

(
σ1∇v1 − ωε1∇h1

)]
, as a function of

the number of sources N00 ∈
{

1, 2, . . . ,M00

}
and N01 ∈

{
1, 2, . . . ,M01

}
at t = 0 s and various numbers

of collocation points, namely (a) M = 80, (b) M = 120 and (c) M = 160, for Example 1.
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Figure 4: The RMS error, errΓ1

(
h0 − h1

)
, as a function of d0 and d1 = d2 at t = 0.5 × 10−6 s and

various numbers of collocation and source points, namely (a) M = N = 80, (b) M = N = 120 and
(c) M = N = 160, for Example 1.
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Figure 5: The RMS error, errΓ1

[
n(0) ·

(
ωε0∇v0 + σ0∇h0

)
+ n(1) ·

(
ωε1∇v1 + σ1∇h1

)]
, as a function of

the distances d0 and d1 = d2 at t = 0.5 × 10−6 s and various numbers of collocation and source points,
namely (a) M = N = 80, (b) M = N = 120 and (c) M = N = 160, for Example 1.
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(c) Example 1: v (t = 0.5× 10−6 s)

Figure 6: Distribution of the real part of the potential, v = Re ϕ, for M = N = 160 at various times,
namely (a) t = 0 s, (b) t = 0.2 × 10−6 s and (c) t = 0.5 × 10−6 s, for Example 1.
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(a) Example 1: h (t = 0 s)
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(b) Example 1: h (t = 0.2× 10−6 s)
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(c) Example 1: h (t = 0.5× 10−6 s)

Figure 7: Distribution of the imaginary part of the potential, h = Im ϕ, for M = N = 160 at various
times, namely (a) t = 0 s, (b) t = 0.2 × 10−6 s and (c) t = 0.5 × 10−6 s, for Example 1.
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(a) Example 2: v (t = 0.2× 10−6 s; M = N = 80)
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(b) Example 2: v (t = 0.2× 10−6 s; M = N = 120)
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(c) Example 2: v (t = 0.2× 10−6 s; M = N = 160)

Figure 8: Distribution of the real part of the potential, v = Re ϕ, at t = 0.2×10−6 s and various numbers
of collocation and source points, namely (a) M = N = 80, (b) M = N = 120 and (c) M = N = 160, for
Example 2.
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(a) Example 2: h (t = 0.2× 10−6 s; M = N = 80)
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(b) Example 2: h (t = 0.2× 10−6 s; M = N = 120)
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(c) Example 2: h (t = 0.2× 10−6 s; M = N = 160)

Figure 9: Distribution of the imaginary part of the potential, h = Im ϕ, at t = 0.2 × 10−6 s and
various numbers of collocation and source points, namely (a) M = N = 80, (b) M = N = 120 and
(c) M = N = 160, for Example 2.
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(a) Example 3: v (t = 0.5× 10−6 s; M = N = 80)
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(b) Example 3: v (t = 0.5× 10−6 s; M = N = 120)
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(c) Example 3: v (t = 0.5× 10−6 s; M = N = 160)

Figure 10: Distribution of the real part of the potential, v = Re ϕ, at t = 0.5 × 10−6 s and various
numbers of collocation and source points, namely (a) M = N = 80, (b) M = N = 120 and (c) M = N =
160, for Example 3.
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(a) Example 3: h (t = 0.5× 10−6 s; M = N = 80)
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(b) Example 3: h (t = 0.5× 10−6 s; M = N = 120)
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(c) Example 3: h (t = 0.5× 10−6 s; M = N = 160)

Figure 11: Distribution of the imaginary part of the potential, h = Im ϕ, at t = 0.5 × 10−6 s and
various numbers of collocation and source points, namely (a) M = N = 80, (b) M = N = 120 and
(c) M = N = 160, for Example 3.
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(a) Example 4: v (t = 0.5× 10−6 s; M = N = 120)
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(b) Example 4: v (t = 0.5× 10−6 s; M = N = 180)
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(c) Example 4: v (t = 0.5× 10−6 s; M = N = 240)

Figure 12: Distribution of the real part of the potential, v = Re ϕ, at t = 0.5 × 10−6 s and various
numbers of collocation and source points, namely (a) M = N = 120, (b) M = N = 180 and (c) M =
N = 240, for Example 4.
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(a) Example 4: h (t = 0.5× 10−6 s; M = N = 120)
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(b) Example 4: h (t = 0.5× 10−6 s; M = N = 180)
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(c) Example 4: h (t = 0.5× 10−6 s; M = N = 240)

Figure 13: Distribution of the imaginary part of the potential, h = Im ϕ, at t = 0.5 × 10−6 s and
various numbers of collocation and source points, namely (a) M = N = 120, (b) M = N = 180 and
(c) M = N = 240, for Example 4.
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