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Abstract 

There has been a lot of work done on the analysis of Gaussian loading analysis perhaps because 

its occurrence is more common than non-Gaussian loading problems. It is nevertheless known 

that non Gaussian load occur in many instances especially in various forms of transport, land, 

sea and space. Part of the challenge with non Gaussian loading analysis is the increased number 

of variables that are needed to model the loading adequately. Artificial neural network (ANN) 

approach provide a versatile means to develop models that may require many input variables in 

order to achieve applicable predictive generalisation capabilities. ANN has been shown to 

perform much better than existing frequency domain methods for random fatigue loading under 

stationary Gaussian load forms especially when mean stress effects are included. This paper 

presents an ANN model with greater predictive capability than existing frequency domain 

methods for both Gaussian and non Gaussian loading analysis. Both platykurtic and leptokurtic 

non Gaussian loading cases were considered to demonstrate the scope of application. The model 

was also validated with available SAE experimental data even though the skewness and kurtosis 

of the signal in this case were mild.       
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1. Introduction 

Stationary ergodic Gaussian random data has been the convenient basis of many of the data 

used for the development of models for the analysis of random vibration fatigue problems 

especially using spectral based methods [1-5].  It is however known that non Gaussian 

excitations occur due to road irregularities in automobiles, and turbulent pressure flections in 

the aerospace sector [6, 7].  Highly non Gaussian excitations  occur on rail vehicles caused by 

wheel rail contact [8]. Wind loading effects are also known to be non Gaussian with high 

uncertainties and peak values [9]. The main consequence of non Gaussian data effect is that its 

peakedness effect can be overlooked in analysis and lead to failure. There have, therefore, been 

a lot of interest in non Gaussian fatigue loading analysis [7, 10]. A number of researchers have 

attempted to use higher order statistical properties such as signal Kurtosis as an additional 

parameter to resolve issues associated with inaccuracies encountered in fatigue life prediction 

under non Gaussian loading condition [11] A lot of effort has also been going on towards the 

modelling simulation of non Gaussian data for fatigue analysis[7, 10, 12, 13]. 

Various methods have been proposed for the simulation or generation of non Gaussian data or 

its development for analysis purposes. An approach for the simulation of non Gaussian data 

uses zero-memory nonlinear (ZMNL) monotonic function to convert a zero mean  Gaussian 

signal x(t) with a specified PSD into a non-Gaussian waveform y(t)[7, 10]. This approach is 

also known as the PDF transform technique [10]. Smallwood presented three ZMNL function 

based methods for the transformation [7]. In one method, a six parameter function was proposed 

with an error objective function that is based on a specified skewness and Kurtosis values. This 

was then solved using optimisation method to determine the function parameters. A second 

method was based on a cubic polynomial function. The function parameters were also 

determined using optimisation solvers. The third method based on Hermite polynomial method 

was solved by Winterstein [14] to obtain a closed form solution in terms of specified skewness 

and Kurtosis values.  This formula worked for leptokurtic signal with Kurtosis value > 3. 
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Winterstein also presented a closed form solution for platykurtic signal with a value < 3.  Yet 

another approach of generating non Gaussian signal  is by modulating a stationary Gaussian 

signal[10]. The modulating signal is made up of a burst, which is in the form of a wave and 

followed by a passive steady factor part. It is helpful to note in passing that a Gaussian 

distribution has a kurtosis value of 3 and a skewness value of zero [15-17]. There have also 

been alternative methods for the treatment of non Gaussian data. One of such methods is known 

as Random Gaussian Sequence Decomposition (RGSD) method. This method effectively 

decomposes the non Gaussian data into Gaussian distributed parts [8, 13] before subsequent 

use for fatigue damage prediction. Some attempts have been made to account for the effect on 

non Gaussianity in fatigue calculations. Most of the effort has been directed at determining a 

correction factor that will allow the non Gaussian load damage to be determined by applying a 

correction factor to the damage obtained based on the consideration of the associated baseline 

Gaussian load [18-21]. The challenge with these methods is that the inversion process to 

determine the Gaussian signal associated with a non Gaussian signal is fraught with limitations 

and constraints. Although there are inversion formulas in certain cases [14, 21], these do not 

guarantee that the inverted Gaussian signals obtained are practically meaningful in all cases.   

Another factor in random data fatigue analysis that is of concern is non stationarity in which 

case the time shift invariance of the signal does not exist, i.e.  E[x(t)] ≠ E[x(t + τ)]. This 

problem is not considered in the present study. 

There have been a lot of interest in the use of ANN for fatigue characterisation over the past 

two decades as can be seen in references [22-26]. These references aimed to use ANN to relate 

stress amplitude with life, predict crack propagation rate, identify fatigue spectral load types, 

develop cumulative damage relationships for materials and the study of the effect of stress ratio. 

Kim et al [26] suggested the coupling of stress range or amplitude probability distribution 

functions for random fatigue loading such as those in references [1, 27-29] with the spectral 

identification carried out using ANN.  
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The author together with colleagues [30] uniquely proposed the use of ANN as a general tool 

for a wide scope of spectral loading covering a broad range of conceivable metal alloys. 

Stationary zero mean Gaussian signals were covered in the first instance; this was followed by 

ANN models which cover globally non zero mean stress signals[31]. As highlighted in the 

foregoing, non Gaussian loading cause more damage because of burst effects than zero mean 

stationary Gaussian data. One of the challenges with non Gaussian analysis that still requires 

attention is the development of models that are capable of accounting for the effects of the wider 

variability in the form of the data compared to Gaussian data.  

The ability of ANN to provide predictive generalization involving non-linear relationship and 

a number of parameters has been one of the strengths of the method [32]. This potential has 

been explored and utilized by the author and colleagues in solving a few problems [33-36]. This 

paper models Gaussian and non Gaussian stationary data to demonstrate the capabilities of 

ANN to analyse these types of data as a general random fatigue analysis method. Platykurtic 

and, leptokurtic data were investigated. The method uses a combination of rainflow counting 

time method together with a combination of spectral parameters and easily extracted time data 

as inputs for the ANN. This allows a generalisation that is not possible with the use of spectral 

based methods only. The materials considered in this work are metallic alloys. The aim of this 

work as with past works by the author and colleagues is to obtain predictive generalization 

using ANN over a broad range of material properties, component conditions and various 

spectral types for random fatigue loading analysis. 

 

2. Gaussian and non Gaussian signal generation  

Stationary zero mean Gaussian data can be directly modelled using  (1) [4, 37]. For every 

combination of spectra parameters, the corresponding Gaussian time domain signal for the 

selected spectrum was generated using equation (1) [37],  
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     (1) 

where n is the sample number, N is the number of discretisation of the power spectral density 

Gx that underlies the signal; with                                                       are mutually independent 

random phase angles distributed uniformly over the range 0 to 2 [16]. The characteristics of 

the peak values in this signal is that they follow the Gaussian probability distribution function 

described in equation (2) [16], 

𝑓(𝑥 | 𝜇,  𝜎2) =  𝑒
− 

(𝑥− 𝜇)2

2𝜎2 /√2𝜋𝜎2                                             (2) 

where 𝜇 and 𝜎 are the mean and standard deviation of the signal. It is helpful at this stage to 

introduce the skewness, Sk, and the kurtosis, Kr , of a signal, which will be needed for the 

description of non Gaussian, signals. These are given by equations (3) and (4) [17] 

𝑆𝑘(𝑥) =   𝐸 [(
𝑥−𝜇

𝜎
)

3

]                                                       (3) 

𝐾𝑟(𝑥) =   𝐸 [(
𝑥−𝜇

𝜎
)

4

]                                                           (4) 

where the letter E is used to describe the statistical expectation of the quantity in the bracket. 

The skewness and the kurtosis describe the asymmetry and spread or tailedness of the signal 

respectively.  The values of these parameters are 0 and 3 for Gaussian distribution functions[10, 

15]. 

 

As highlighted in the foregoing, many fatigue loading distribution do not necessarily follow the 

Gaussian distribution. There have been a number of attempts to model or generate non Gaussian 

fatigue loading signal distributions using different methods. Some signals including burst types 

are described by for example beta distribution [7, 10]. The probability distribution function for 

the beta function is given by equation (5) [38]. 

 

𝑓(𝑥|𝑢, 𝑣, 𝑝, 𝑞) =
(𝑥−𝑢)𝑝−1(𝑣−𝑥)𝑞−1

𝐵(𝑝,𝑞)(𝑣−𝑢)𝑝+𝑞−1             (5) 

𝑢 ≤ 𝑥 ≤ 𝑣;     𝑝, 𝑞 > 0 
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where p and q are shape parameters that determine the skewness and kurtosis values 

respectively, u and v are the lower and upper bounds of the signal x respectively. B(p,q) is beta 

function given by equation (6).  

𝐵(𝑝, 𝑞) =  ∫ 𝑟𝑝−1(1 − 𝑟)𝑞−1𝑑𝑟
1

0
    (6) 

where r varies between 0 and 1. The cumulative beta probability function at a probability of r’ 

is given by equation (7) [38] 

𝐼𝑟′(𝑝, 𝑞) =  
∫ 𝑟𝑝−1(1−𝑟)𝑞−1𝑑𝑟

𝑟′
0

𝐵(𝑝,𝑞)
         (7) 

wherein  r’ ranges from 0 to 1.  Following from the expressions in reference [17], the specific 

values of p and q that correspond to the desired or required values of the skewness, Sk , and the 

kurtosis, Kr can be obtained by solving the non linear equations (8) and (9) as carried out in this 

work. 

𝑆𝑘
2 =

4(𝑞−𝑝)2(𝑝+𝑞+1)

𝑝𝑞(𝑝+𝑞+2)2         (8) 

𝐾𝑟 − 3 =
6[(𝑝−𝑞)2(𝑝+𝑞+1)−𝑝𝑞(𝑝+𝑞+2)]

𝑝𝑞(𝑝+𝑞+2)(𝑝+𝑞+3)
     (9) 

Using similar approach as in Lalanne [16], a beta distribution signal can be generated by using 

equation (1) but with the phase array term given by equation (10). 

𝜙 = 2𝜋𝐼𝑟′(𝑝, 𝑞)        (10) 

The r value in equation (7) is to be selected from a uniformly distributed random number 

between 0 and 1. The signal x(t) generated in this way preserves the shape of the power spectral 

density Gx approximately. An alternative iterative shuffling algorithm based on memoryless 

nonlinear transformation approach presented by Nichols et al [12] achieves closer spectral 

density shape preservation for any chosen probability distribution function than direct 

application of equations (1) to (8). The method first determines the spectral amplitudes from 

the desired power spectral density function, Gx, and then shuffles this iteratively to match the 

target non Gaussian distribution function and subject to the preservation of the variance of the 

PSD. The target distribution function can be of the form of beta, Rayleigh or any desired 
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function. The shuffling method as to be expected and of course takes longer time relatively to 

generate the non-Gaussian data. 

 

 A leptokurtic non Gaussian signal y(t) can be obtained by applying the Winterstein formula 

[14] given here as equation (11) 

𝑦(𝑡) =  𝜇𝑥 + 𝜎𝑥𝐽 [
𝑥

𝜎𝑥
+ ℎ3

̅̅ ̅ (
𝑥

𝜎𝑥
− 1) + ℎ4

̅̅ ̅ ((
𝑥

𝜎𝑥
)

3

− 3
𝑥

𝜎𝑥
)]   (11) 

with  

𝐽 =
1

√1 + 2ℎ̅2 + 6ℎ4
̅̅ ̅2

;    ℎ3
̅̅ ̅ =

𝑆𝑘

6(1 + 6ℎ4
̅̅ ̅)

;   ℎ4
̅̅ ̅ =

√1 + 1.5(𝐾𝑟 − 3) − 1

18
 

(12) 

where 𝑆𝑘 and 𝐾𝑟 a are the expected skewness and kurtosis respectively and where x is a 

Gaussian signal based on a given spectral density Gx. This model appears to be widely accepted 

and known to provide an accurate representation of a wide range of nonlinear behaviours[10]. 

 

For the purpose of the presentations in this work, five different types of signals were considered 

and denoted as T0,T1,T2, T3 and T4 , . T0 is used to denote a Gaussian distribution signal with 

globally zero mean stress, T1 is used to denote a Gaussian distribution signal with generally 

globally non zero mean stress. T2  is used to describe the signals generated using the direct 

generation of non Gaussians by use of appropriate phase selection as given in equations (10) 

and (1) [16]. The signals generated using the leptokurtic equation (11) developed by Winterstein 

[14] is referred to as T3. The method of power spectral amplitude shuffling [12] described in 

the foregoing was used to generate the signals denoted as T4. 

 

In all the signals generated, the maximum signal frequency f  in equation (1) was 200 Hz. In 

the analyses carried out, the sampling frequency used to evaluate the power spectral density 

Gx(f) was varied between 400 to 6.4 kHz [39]. All signals T1 to T4 were randomly shifted in 
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the stress space so as to include signals with globally non zero mean stress. The signal x(t) was 

however scaled to lie within 5 to 94% of the ultimate strength of the test material so as to 

achieve fatigue rather monotonic failure. The global mean stress of the signal x(t) was within 

± 60% of the ultimate tensile strength. 

 

3 Frequency domain fatigue damage analysis  

The ANN method proposed uses both frequency and time domain parameters. Many of the 

inputs used as highlighted in section 4 of this paper are based on frequency domain parameters 

for characterising signals.  The primary ones are the spectral moments, which are obtained from 

the power spectral density (PSD) of the signal as highlighted in equation (13). 

 

      (13) 

where mi is the i th moment of the PSD Gx(f) of the signal The moments used in the Dirlik[1] 

formulation are given by i = 0, 1, 2, 4 for fatigue loading characterisation. Also significant are 

the estimates for the number of mean crossing E(0) and peaks E(P) per second, which are given 

by equations (14) and (15). From these two numbers, the irregularity factor, , of the signal is 

obtained using equation (16). 

 

      (14) 

 

      (15) 

 

                    

 

    (16) 

The irregularity factor gives an indication of the breadth of the frequency content of the signal. 

A value of γ tending to 0 represents a narrow band signal while 1 suggests a broad band signal.  
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3.1 Damage calculation 

The calculation of damage was carried out using both time domain and frequency domain 

methods. The time domain damage calculation produced data for the output as target values for 

the ANN training. The frequency domain damage calculation was carried for comparison 

purposes. The Basquin’s stress life equation and the Miner’s linear cumulative damage rule 

[40]  for different fatigue loading states are involved in both cases.  For a given load – life state 

(Sai, Smi and ni), the Basquin’s equation with mean stress correction is expressed as in equations 

(17) and (18), 

        (17) 

     (18) 

in these, Sai, Smi and ni are the amplitude, the mean stress and number of cycles representing the 

loading corresponding to the state i and a and b are the fatigue mechanical properties of the 

component which includes material and all influencing factors such as load type, dimension, 

surface finish and stress concentration factors. The effect of mean stress is accounted for by the 

αi parameter. The Goodman’s method [40] is used in equation (18). The ultimate strength of 

the material is represented as  Su. If under this state, Ni is the maximum number of cycles 

possible, the Miner’s rule for cumulating the damage for all occurring states i is as given in 

equation (19) 

     (19) 

Ni is obtained using equations (17) and (18).  

The damage calculation in the frequency domain approach was carried using equation (20). It 

should be noted that the Miner’s rule is inherent in this equation.  

 

    (20) 
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In equation (20), T is the time taken for the sampling of the signal and S is the stress range 

variable. The parameters  v and  k  are related to a and b as being equal to -1/b and  (2a)-1/b 

respectively. The probability distribution of the stress range is represented as p(S) in (20). The 

probability distribution function derived by Dirlik [1] which is given here in equation (21) has 

been widely applied in the literature for broadband signal fatigue problems.  

 

  (21) 

 

In (21), Z is a function of the stress range and the spectral moment m0. The parameters R, Q, 

D1, D2 and D3 are all function of the spectral moments mi, i=0,1,2 and 4.  

 

For non Gaussian loading fatigue damage determination, a correction factor approach has been 

proposed by a number of authors, for example Bracessi et al[41]. In applying this method, first the baseline 

Gaussian signal corresponding to the non Gaussian signal is determined. Then, the damage for the Gaussian signal 

is determined and the correction factor is the applied to this in order to obtain the non Gaussian fatigue loading 

data. The equation proposed by Bracessi that takes both the skewness and kurtosis into account is given in equation 

(22).  

𝐸(𝐷𝑛𝐺) = λ𝑛𝐺𝐸(𝐷𝐺)      (22) 

 

where λ𝑛𝐺 , E(DG) and E(DnG) are the correction factor, damage for the Gaussian and non 

Gaussian data respectively.  The correction factor equation developed by Bracessi et al, which 

appears to be well cited, is given in equation (23).  

 

𝜆𝑛𝐺 = exp [
𝑚3/2

𝜋
(

𝐾𝑟 −  3

5
−

𝑆𝑘
2

4
)]      (23) 

 

where m which is related to the fatigue exponent is = -1/b. 
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4 ANN model 

This section presents an outline of the bases and methods used for the ANN model presented here. The 

structure of the ANN used, the types of signals considered, the input-output parameters used, the 

numerical training, validation and testing of the model is highlighted in this section. 

4.1 ANN architecture 

Three layers of neuron as illustrated in Figure 1 which is generally accepted as sufficient to represent 

any non-linear function approximation [18] was used as the architecture of the ANN.  Various numbers 

of input were considered in the study. The input parameters considered are presented in section 4.2. The 

number of hidden layer used was 25 as in previous studies [30, 31]. This number was found to be 

adequate by checking the residual error and goodness of fit of the ANN prediction with target results. 

The result from the single output neuron was the logarithmic value of the fatigue damage. In order to 

study the effect of the density of the coverage of the sampling space, the numbers of signals constructed 

and tested ranged from 100 to 50,000.  

 

4.2 ANN Input - output 

The input and output parameters used in the study are listed in this section. The input parameters 

include fatigue material properties, a and b and the ultimate tensile strength, Su ; seven spectral 

moments 𝑚𝑖, i = 0,6; the Goodman parameter 𝛼𝑚; a mean complementary parameter  𝛼𝑐 = 1 −  𝛼𝑚; 

and two crest parameters 𝛾𝑝 and 𝛾𝑛.  The crest parameters were equal to the ratios of maximum and 

minimum stress in the signal to the ultimate tensile strength of the material respectively. The other 

input parameters used include the skewness Sk and kurtosis Kr. These parameters are listed 

symbolically as: 𝑚𝑖, 𝑖=0,6, 𝑎,  𝑏,  𝑆𝑢 , 𝛼𝑚,  𝛼𝑐 ,  𝛾𝑝, 𝛾𝑛,   𝑆𝑘 , 𝐾𝑟 where  

𝛼𝑚 = (1 −
𝑆𝑚

𝑆𝑢
)    for  𝑆𝑚 > 0    (24) 

𝛼𝑚 = 1   for 𝑆𝑚 < 0       (25) 
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and   𝛼𝑐 =     
𝑆𝑚

𝑆𝑢
⁄ ;   𝛾𝑛 =  

𝑆𝑚𝑖𝑛
𝑆𝑢

⁄ , 𝛾𝑝 =  
𝑆𝑚𝑎𝑥

𝑆𝑢
⁄ ; where 𝑆𝑚𝑖𝑛 and 𝑆𝑚𝑎𝑥 are the minimum 

and maximum values of x.   

Four different types of input sets were considered for the implementation of the artificial 

neural network model. These are listed in Table 2 as N1, N2, N3 and N4 models. N1 is a 

model based on the inputs identified in a previous work as being necessary in order to obtain 

good predictions for Gaussian fatigue load with mean stress. Model N2 additionally includes 

the skewness,  Sk , and the kurtosis,  Kr , parameters. This was considered because of the 

additional variability that occurs in non Gaussian data compared to Gaussian data.  Model N3 

adds the spectral moment m3 in case N2 should prove to be inadequate to generalize fatigue 

life prediction for non Gaussian signal. Since the kurtosis is a fourth order moment, additional 

spectral moments up to the sixth order, i.e. m5 and m6 were added to N3 for the model N4.   

The target damage E(D) were taken as the values obtained using the rainflow counting time domain 

method [42]. Although the method does not have consistent convergence characteristics relative to 

experimental results [31], it is still the most acclaimed method for time domain cycle counting damage 

calculation [40]. The logarithmic value of the damage E(D) was used as the output target value. This 

approach helped to reduce the impact of the spread of the damage values, which is normally broad by 

several orders.  

4.3 Training, validation and testing of the ANN models 

The training, validation and testing process followed in this work is similar to those in previous works 

by the author and colleagues[30, 31, 43]. Generally, the feed forward backpropagation multilayer 

perceptron (MLP) model was followed.  The training starts by initialising the weights Wij in the neuron 

connections illustrated in Figure 1. The output to a next layer is obtained by summing the products of 

the weights and the corresponding inputs. This sum is then transformed using an activation function [32] 

before being used as the input to the next layer. This feedforward process progresses through to the 

output layer where a comparison is then made between the calculated value and the expected target 
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value. The difference is an error that is used in the backpropagation process to modify or correct the 

weights in the next iteration. This approach is known as a supervised learning training method[32].  

The output from an ANN does not in general match the known output corresponding to the inputs used 

from the data set, at least in the first feedforward through process. The mis-match error is a function of 

the weights associated with the neurons. The aim of the training is to determine the weights associated 

with the neurons that minimise the error. The minimisation process was carried out iteratively in many 

stages. Various error reduction backpropagation algorithms have been devised for the training of 

networks [44]. The implementation of the ANN in this work was carried out using a set of in-house 

routines developed in a MATLAB [25] environment together with the Levenberg Marquardt error 

backpropagation and weight correction method in the MATLAB ANN toolbox.  

After experimenting with various proportions, the percentages of data finally used for training, 

validation and testing were 70, 15 and 15% respectively[30, 31]. The training process was based on 70% 

of the total data generated. A validation set which was 15% of the total number of signals, was used to 

independently check the performance of the ANN weights obtained in the training process. This was to 

ensure that the ANN model had not simply over fitted or memorised the relationship between the training 

data and the output but actually developed the capability to make a prediction for an unseen set of data. 

The validation set was used to detect when the tendency for overfitting was about to set in and the 

training process was stopped at this stage. The final 15% data set was used to provide an independent 

test of the ANN model. The data used in this process was different from the data used for the training 

and validation steps.  

5 Overall procedure 

The overall procedure of the work may be summarised as follows. Signal types T0 to T4 were 

randomly generated using the methods described in section 2. Up to 50,000 signals were 

generated for some studies. All parameters such as signal type, material properties, PSD form 

Gx(f) and associated parameters were selected using Latin Hypercube Sampling [LHS] [45, 46] 

method to ensure broad coverage of the parameters. The target damage values corresponding 
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to the signals to be used for the ANN training were then calculated using the time domain 

rainflow counting and Miners rule methods[40, 42]. The parameters of the signals and the 

output target values were then used to train, validate and test the ANN. Various combinations 

of inputs were tested as indicated in section 4.2. The weights of the ANN obtained were then 

used to demonstrate the capabilities of the ANN as highlighted in section 6. The limits of the 

material properties, spectral moment values mi, i = 0,6 and other signal characteristics 

considered in the work are highlighted in Table 2.   

 

6. Results  

This section highlights the form of the non Gaussian signals analysed and the results of the 

application of different types ANN models N1 to N4 to learn and to predict relationships for 

non Gaussian fatigue problems. The results obtained from ANN predictions are compared with 

those obtained using other methods. The performance of the ANN on SAE experimental data 

is also presented.  

 

 

6.1 Skewness and kurtosis of signals 

This section highlights the types of non Gaussian signals analysed. The signals were generated 

using the equations and methods described in section 2 of this work. Figure 2 shows four 

different types of signals with different skewness and kurtosis values. Figure 2(a) shows the 

stress history distributions and Figure 2(b) shows the corresponding histogram distributions. 

Figure 2(b) (i) through to (iii) can be seen to show higher values of outliers than Figure 2(b) 

(iv) for example. Figure 2(c) shows the corresponding power spectral density plot for the 

sample fatigue loading signals in Figure 2(a). The rms values are included with the superscript 

sign ‘+’ used to denote the inclusion of the effect of mean stress and ‘*’ used to denote values 

without the effect of mean stress. Figure 3 shows more examples of stress histories with 

different and more extreme skewness and kurtosis values. Figure 3(a) shows the plot of the 
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stress history signals while 3(b) shows the histogram distribution of the data values. As in 

Figure 2(c), Figure 3(c) shows some of the underlining power spectral densities that were used 

to generate the signals in Figure 3(a). The full list of PSD types used can be found in reference 

[30] These plots and Table 2 show that a wide variety of materials, spectral properties, skewness 

and kurtosis values were covered in the work. 

 

6.2 Trends of predictions using different types of ANN models. 

This section shows the trends of predictions using different forms of ANN, i.e. N1 to N4 on 5 

groups of signal types T0 to T4 comparing predictions with target values. The description of 

the signal types and ANN models are given in sections 2 and 4.2 respectively. Comparisons are 

also made with results of predictions using Dirlik[1] and Nieslony’s[47] methods. Additionally, 

a comparison is also made with the use of the Benasciutti – Tovo method [29] together with the 

non Gaussian correction factor presented by Bracessi et al[41]. This correction factor is here 

given in equation (21).  In applying this method, a Gaussian signal was first generated using 

equation (1) and then the corresponding non Gaussian signal was generated using the 

Winterstein leptokurtic equations (11) and (12). Signal type T3 follows this approach and it is 

the signal choice made here for comparison.  The non–Gaussian damage was then obtained 

using equation (21). 

 

Figure 4 shows the plot of the trend of predictions for the signal type T0 using the ANN methods 

against target rainflow prediction.  It also includes similar results for the Dirlik and Nieslony 

predictions. Each plot was based on 1000 generated signals.  As can be seen in the plots in the 

figure all methods appear to produce good result. The coefficient of fit and the correlation 

coefficients all appear to be very good. The performance of Dirlik and Nieslony methods are 

also very good but this is not surprising because these were the type of signals used in the 

development of the methods. 
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Figure 5 shows the performance of all models on signal types T1, which have non zero, mean 

stress. Only the ANN models could be seen to give good correlation and fit. Similar trends can 

be seen for other signal types T2 to T4 are shown in Figures 6 to 8. It can be seen that the ANN 

models produced the best trends for all these non-Gaussian signals. The performance of the 

Dirlik and Nieslony methods for the type T4 can be seen to be particularly wide. These methods 

although tempting to be used in all cases were not designed to be used for signals such as non-

Gaussian distribution fatigue load. Figure 9 shows the plot of the results of using Benasciutti 

and Tovo [29] method together with Bracessi’s [41] non Gaussian damage correction equation 

(21). It can be seen that the performance of the combination still does not match that of ANN. 

In some cases, the deviation can be quite significant perhaps because of the exponent factor 

involved in equation (22). Although all the ANN models performed well generally, it is helpful 

to try to identify which is best performing in most cases.  

 

6.3 Performance of the ANN models 

As highlighted in section 6.2 all the ANN models produced very good results. This section aims 

to look more closely at the predictions from all the models in order to identify which is best in 

most cases for all signal types. In order to achieve this aim, more extensive tests were carried 

out. Similar to section 6.2, 1000 signals were generated for an analysis. In this case, however, 

the analysis were repeated 10 times. For each test, the correlation coefficient and the coefficient 

of linear fit between the target and the predicted results were obtained for all the ANN models. 

The coefficient was obtained as the gradient of the line of best fit, m = cov(X,Y)/var(X), where 

X and Y represent the rainflow calculated damage and the predicted damage E(D) values 

respectively; cov and var are statistical symbols for covariance and variance respectively. This 

process was carried out twice which led to the results presented in the Tables 3 and 4. As can 

been in the results in the tables, all models were qualitatively very good. In some parts, the 

differences between the predictions are nominal and marginal. In order to obtain a quantitative 
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appraisal, the average of all RMS error and coefficient of fit and their corresponding standard 

deviations for all cases considered were determined. This showed that model N2 had the lowest 

error and model N4 had the best coefficient of fit. Model N2 had higher coefficient of fit of 

0.975 and model N4 averaged to 0.999. The corresponding standard deviation on the coefficient 

of fit were 0.0361 and 0.0436 respectively. These results show that model N4 is likely to give 

results that will be closer to actual values than model N2 but the scatter in model N4 results is 

likely to be higher. These features can be seen in the trends shown in the plots in Figures 4 to 

8. Better correspondence with actual results for model N4 makes it to be desirable compared to 

model N2.  

 

Table 5 shows the comparison of the run times obtained using the tic toc commands 

recommended in MATLAB [44] for the comparison of the performance of algorithms. The run 

times were the times taking to process 10,000 signals to obtain the necessary input parameters 

and then using the ANN weights to make damage prediction as well as the times taken using 

the rainflow method to determine the range and mean stress values and using the material 

properties to obtain damage. The run times varied from 10.54 seconds for the N1 ANN type to 

12.09 for the N4 type ANN. These performances compares with 40.11 seconds for the rainflow 

counting algorithm. This shows that the rainflow counting method required nearly 4 times as 

long time as the ANN methods.  

 

6.4 Performance of ANN on random loading fatigue experimental test data. 

The ANN model N4 herein was used to predict fatigue failure based on SAE experimental 

fatigue test data [48]. The data was generated in the early 1970s by the SAE in order to test the 

performance of different methods of calculating fatigue damage from random loading data. 

Two types of steel materials, Manten and RQC 100, were considered. Using one of the nominal 

fatigue stress analysis methods in [1]. The fatigue mechanical properties a and b based on 
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equation (17) which accounts for the effect of the stress concentration at the notch in the 

specimen are 2641 (MPa) and -0.248 for the Manten steel and 3336 (MPa) and -0.228 for the 

RQC 100 material respectively. Three forms of component loading were considered; these were 

representative of bracket, transmission and axle loading in a vehicle. Also, three load levels 

representing low, medium and high values were considered. The digitised versions of the 

loading forms could be found in finite element analysis packages such as ANSYS[49] and 

SolidWorks[50]. Figures 10 and 11 show the specimen geometry and the time history data for 

the SAE fatigue loading program respectively. As can be seen in the skewness and kurtosis 

values in Figure 10, the bracket data is platykurtic while the transmission and suspension data 

are mildly leptokurtic. Figure 12 shows the cumulative distribution counts for the stress range 

obtained from the loading data using the rainflow counting method[42]. The agreement between 

the plot in Figure 12 and that of the original plot by SAE in reference [42] was assuring that the 

data was right and that the in house routine used for the rainflow counting was correct.  

 

The analysis to obtain the nominal stress in the net section can be carried out by modelling the 

test specimen as a simple beam subjected to both tension and bending loads as illustrated in 

Figure 10 [51]. This gives a value of 11.2 MPa/kN of the applied load.  This implies that the 

nominal maximum stress σmax for an applied load P in kN is 11.2 P (MPa). This value is then 

used together with the data points in Figure 10 to obtain the time domain series for any given 

load and for a specific component, i.e. bracket, transmission or suspension. The rainflow 

counting method can then be used to obtain a time domain damage value. The spectral moments 

were obtained as highlighted in section 3 and the procedures explained in sections 4 and 5 were 

used to obtain the ANN predictions for the fatigue damage.  

 

The ANN results for damage obtained are plotted in Figures 12 and compared with those 

obtained based on time domain rainflow counting and of other frequency domain based 



19 

 

methods such as Dirlik[1] and Nieslony’s[47] methods. As can be seen from the results, apart 

from the results for transmission, the ANN predictions are generally closer to experimental 

results than those of any previous frequency domain based methods. It is surprising that 

although the rainflow counting method gives closer results to experimental values in magnitude 

the trend in terms of over predicting or under predicting cannot be assumed. This makes the use 

of other methods such as the ANN to be helpful in obtaining as much information as possible 

for the design of effective components for life application. It should also be remarked that the 

ANN model which includes skewness and kurtosis effects still predict good results without 

noticeable reduction in performance compared to previous ANN models that used less number 

of inputs[30, 31, 43]. 

7. Discussion 

The results in this work have shown ANN to be a versatile approach in developing predictive 

models that can have many input parameters. As highlighted in the results section, it has been 

encouraging to identify the output required for ANN to be able to predict with good degree of 

correlation and fit the results for both Gaussian and non-Gaussian fatigue problems. The ANN 

model N4 gave better fit to target results generally for all types of fatigue data form than the 

lower order ANN models that require less input parameters. The prediction of the model 

however, appear to exhibit nominally higher scatter in results than lower order methods. This 

may be partly due to the higher order spectral variables m5 and m6 that are included in its input. 

These are based on products of the fifth and sixth order with respect to frequency. This higher 

order can lead to amplification of differences. Model N4 should be generally preferable than 

others because it is not always the case that the form of loading of a fatigue data is known in 

advance. An encompassing model such as N4 is more likely to capture the prediction generally 

better than using a lower-order model for a higher order complex data. The results in this work 

also show again as in reference [31] that existing frequency domain methods are not capable of 

handling the effect of mean stress on fatigue damage effectively. It should also be reiterated 
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that the results of the rainflow counting time-domain method is not necessary always consistent 

in over predicting or under predicting fatigue damage. 

 

8. Conclusion 

An ANN model that is capable of predicting fatigue damage under Gaussian and non Gaussian 

load distribution has been presented. A wide range of skewness and kurtosis values were 

considered. Both platykurtic and leptokurtic distribution data types were considered. The 

prediction of the ANN model is very good compared to target values and better than those of 

other frequency domain methods. The ANN method was validated against experimental results 

produced by the SAE for random fatigue loading analysis demonstrating the viability of the 

method. The results ofthe ANN methods  for fatigue damage values were generally between 

those of other spectral methods and that of the rainflow counting time domain method. For the 

cases considered, the ANN approach generates damage predictions about four times faster than 

the rainflow counting method. 
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Figure 7 Trends of predictions of ANN models N1 to N4 with target values and Dirlik[1] and Nieslony[41] methods for signal type T3
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Figure 10 Illustration of SAE fatigue specimen [42,45], L = 60.84 mm, W = 66.13 mm, Thickness = 9.5 mm
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Figure 11 Stress histories developed by SAE [42] for the random loading fatigue experiment (a) Bracket, (b) Transmission, (c) Suspension.
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Figure 12 Distribution of stress range values obtained using rainflow counting for the SAE [42] random loading fatigue 

experiment  (a) Bracket, (b) Transmission, (c) Suspension assuming maximum stress value of 1000 MPa for the signal 



SAE Data

Figure 13 (a)   Manten fatigue life results from A – Experiment, B – Rainflow,  C – ANN N4,  D – Dirlik[1], E – Nieslony’s method[41]
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SAE Data

Figure 13 (b)   RQC-100 fatigue life results from A – Experiment, B – Rainflow,  C – ANN,  D – Dirlik[1], E – Nieslony’s method[47]
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ANN 
type

No of 
inputs

Input output

N1 11 𝑚0,𝑚1,𝑚2,𝑚4,𝑎, 𝑏, 𝑆𝑢, 𝛼𝑚, 𝛼𝑐 , 𝛾𝑝, 𝛾𝑛

𝐿𝑜𝑔[𝐸 𝐷 ]

N2 13 𝑚0,𝑚1,𝑚2,𝑚4,𝑎, 𝑏, 𝑆𝑢, 𝛼𝑚, 𝛼𝑐 , 𝛾𝑝, 𝛾𝑛, 𝑆, 𝐾

N3 14 𝑚0,𝑚1,𝑚2,𝑚3,𝑚4,𝑎, 𝑏, 𝑆𝑢, 𝛼𝑚, 𝛼𝑐 , 𝛾𝑝, 𝛾𝑛, 𝑆, 𝐾

N4 16 𝑚0,𝑚1,𝑚2,𝑚3,𝑚4,𝑚5,𝑚6 𝑎, 𝑏, 𝑆𝑢 , 𝛼𝑚, 𝛼𝑐 , 𝛾𝑝, 𝛾𝑛, 𝑆, 𝐾

Table 1 Input and output variables defining the ANN models N1 to N4



Prop Su (MPa) a (MPa) b m0 m1 m2 m3 m4 m5 m6 Sk Kr

Min 200 261 -0.333 4.74E+00 1.34E+02 3.33E+03 5.26E+04 5.07E+06 7.39E+08 1.22E+11 -0.69 1.55

Max 2000 26543 -0.085 1.23E+06 1.19E+08 1.19E+10 1.56E+12 2.19E+14 3.08E+16 4.33E+18 2.67 15.51

Table 2 Range of limits of fatigue parameters and spectral moments used in the study



(i)  Signal type T1

Table 3 RMS error and coefficient of fit for results of various trials using ANN models N1 to N4 – Test 1 

Trials
RMS error Coeff of fit

N1 N2 N3 N4 N1 N2 N3 N4

1 6.05E-05 5.25E-05 4.82E-05 8.69E-05 1.0283 1.0190 1.0243 1.0382

2 8.85E-05 7.22E-05 6.50E-05 1.45E-04 1.0343 1.0319 1.0197 1.0614

3 6.60E-05 5.44E-05 5.49E-05 1.09E-04 1.0218 1.0121 1.0172 1.0410

4 6.04E-05 4.86E-05 6.19E-05 7.12E-05 0.9959 1.0036 0.9895 1.0008

5 4.99E-05 4.69E-05 3.38E-05 4.92E-05 0.9990 0.9950 1.0001 1.0128

6 5.44E-05 4.37E-05 4.32E-05 5.43E-05 1.0229 1.0162 1.0220 1.0408

7 4.74E-05 7.49E-05 5.86E-05 1.07E-04 1.0136 0.9811 1.0053 1.0438

8 7.59E-05 6.37E-05 7.73E-05 6.95E-05 0.9889 0.9780 0.9951 1.0215

9 3.40E-05 2.88E-05 2.82E-05 6.48E-05 1.0130 1.0043 1.0003 1.0426

10 3.80E-05 3.71E-05 4.45E-05 4.38E-05 0.9775 0.9710 0.9791 0.9940

Mean 5.75E-05 5.23E-05 5.16E-05 8.01E-05 1.0095 1.0012 1.0053 1.0297

Std 1.66E-05 1.47E-05 1.49E-05 3.19E-05 0.0185 0.0198 0.0152 0.0215

Trials
RMS error Coeff of fit

N1 N2 N3 N4 N1 N2 N3 N4

1 4.20E-05 3.10E-05 2.53E-05 2.31E-05 1.0693 1.0639 1.0573 1.0479

2 2.47E-05 2.02E-05 1.78E-05 1.52E-05 1.0446 1.0728 1.0729 1.0256

3 1.83E-05 1.70E-05 1.39E-05 1.18E-05 1.0805 1.0615 1.0490 1.0425

4 2.64E-05 2.87E-05 2.59E-05 2.22E-05 1.0528 1.0489 1.0428 1.0182

5 1.40E-05 1.11E-05 9.62E-06 1.00E-05 1.0140 1.0176 1.0036 0.9575

6 1.94E-05 2.29E-05 1.83E-05 1.61E-05 1.0128 0.9890 0.9861 0.9683

7 1.91E-05 1.70E-05 1.30E-05 1.43E-05 1.0250 1.0212 1.0096 0.9814

8 4.18E-05 3.89E-05 3.71E-05 3.65E-05 0.9892 0.9849 0.9731 0.9572

9 2.67E-05 2.49E-05 2.01E-05 1.60E-05 1.1322 1.1270 1.1066 1.0884

10 3.08E-05 2.32E-05 1.74E-05 2.63E-05 1.1040 1.0873 1.0594 1.0897

Mean 2.63E-05 2.35E-05 1.98E-05 1.91E-05 0.9779 0.9688 0.9522 0.8980

Std 9.57E-06 7.99E-06 7.91E-06 7.98E-06 0.0728 0.0779 0.0680 0.1211

(ii)  Signal type T2



Trials
RMS error Coeff of fit

N1 N2 N3 N4 N1 N2 N3 N4

1 1.89E-04 1.86E-04 1.40E-04 6.14E-05 0.8357 0.8376 0.8610 0.9146

2 8.38E-05 7.51E-05 7.47E-05 7.44E-05 0.8662 0.8759 0.8824 0.8869

3 2.95E-05 2.32E-05 2.50E-05 2.37E-05 0.9073 0.9148 0.9120 0.9306

4 3.63E-05 3.69E-05 4.22E-05 5.46E-05 0.9372 0.9255 0.9560 0.9668

5 9.93E-05 1.02E-04 7.41E-05 8.13E-05 0.9529 0.9857 0.9791 1.0108

6 3.16E-05 2.89E-05 2.47E-05 2.07E-05 0.8942 0.8981 0.9087 0.9275

7 3.03E-05 2.50E-05 2.14E-05 2.38E-05 0.9392 0.9422 0.9455 0.9851

8 2.99E-05 3.71E-05 3.26E-05 5.66E-05 0.9363 0.9256 0.9375 0.9787

9 4.34E-05 4.10E-05 3.29E-05 1.09E-04 0.9012 0.9035 0.9307 1.0116

10 4.57E-05 4.83E-05 4.11E-05 3.57E-05 0.8953 0.8883 0.9128 0.9230

Mean 6.19E-05 6.03E-05 5.08E-05 5.42E-05 0.9066 0.9097 0.9226 0.9536

Std 5.08E-05 5.06E-05 3.66E-05 2.9E-05 0.0365 0.0399 0.0349 0.0429

Trials
RMS error Coeff of fit

N1 N2 N3 N4 N1 N2 N3 N4

1 1.64E-03 7.01E-04 8.64E-04 1.70E-03 0.9030 0.8994 0.8643 0.9374

2 9.83E-05 9.88E-05 7.05E-05 1.01E-04 0.9217 0.9461 0.9530 0.9792

3 7.42E-04 2.85E-04 3.93E-04 7.35E-04 1.0835 1.0086 1.0713 1.0611

4 2.77E-04 2.33E-04 1.92E-04 2.09E-04 0.9418 0.9208 0.9338 0.9727

5 2.81E-04 2.99E-04 3.43E-04 7.45E-04 1.0075 1.0133 1.0431 1.0804

6 6.65E-05 7.11E-05 5.87E-05 5.65E-05 0.9526 0.9573 0.9450 0.9637

7 1.38E-03 5.43E-04 6.43E-04 8.55E-04 0.9597 0.9407 0.9029 0.9440

8 4.79E-04 2.41E-04 2.38E-04 3.01E-04 1.0320 0.9594 0.8972 0.8903

9 1.25E-03 7.06E-04 7.19E-04 1.66E-03 1.0023 0.9843 0.9811 1.0184

10 2.12E-04 6.62E-05 1.02E-04 1.10E-04 1.0633 1.0431 1.0387 1.0384

Mean 6.42E-04 3.24E-04 3.62E-04 6.47E-04 0.9867 0.9673 0.9630 0.9886

Std 5.78E-04 2.44E-04 2.88E-04 6.18E-04 0.0606 0.0447 0.0693 0.0599

(iii)  Signal type T3

Table 3 RMS error and coefficient of fit for results of various trials using ANN models N1 to N4 – Test 1 

(iv)  Signal type T4



Trials
RMS error Coeff of fit

N1 N2 N3 N4 N1 N2 N3 N4

1 3.58E-05 3.91E-05 3.91E-05 3.89E-05 0.9967 0.9936 1.0153 1.0380

2 4.95E-05 3.99E-05 4.70E-05 4.40E-05 1.0066 1.0022 1.0088 1.0232

3 3.80E-05 3.70E-05 3.72E-05 3.79E-05 0.9843 0.9822 0.9821 1.0044

4 9.79E-05 7.08E-05 9.98E-05 1.00E-04 1.0460 1.0394 1.0499 1.0637

5 1.00E-04 1.20E-04 1.06E-04 7.57E-05 0.9425 0.9279 0.9326 0.9590

6 6.47E-05 3.28E-05 3.96E-05 6.01E-05 1.0164 1.0162 1.0241 1.0344

7 4.56E-05 3.70E-05 3.61E-05 4.42E-05 1.0165 1.0020 0.9983 1.0039

8 2.58E-05 2.24E-05 2.46E-05 2.74E-05 1.0095 0.9965 1.0082 1.0354

9 4.07E-05 5.82E-05 5.67E-05 3.80E-05 0.9842 0.9610 0.9773 1.0083

10 4.77E-05 4.75E-05 5.05E-05 5.65E-05 1.0199 1.0006 1.0045 1.0017

Mean 5.46E-05 5.05E-05 5.37E-05 5.23E-05 1.0022 0.9921 1.0001 1.0172

Std 2.55E-05 2.79E-05 2.75E-05 2.18E-05 0.0278 0.0304 0.0314 0.0285

Trials
RMS error Coeff of fit

N1 N2 N3 N4 N1 N2 N3 N4

1 2.73E-05 2.66E-05 1.95E-05 1.60E-05 1.0470 1.0214 1.0144 1.0113

2 2.09E-05 2.32E-05 1.93E-05 1.36E-05 1.0258 1.0359 1.0110 0.9897

3 1.30E-05 1.05E-05 8.72E-06 1.06E-05 1.0975 1.0838 1.0664 1.0827

4 2.04E-05 2.07E-05 1.73E-05 1.85E-05 0.9853 0.9948 0.9840 0.9693

5 2.98E-05 2.81E-05 2.57E-05 2.13E-05 1.0214 0.9958 0.9866 0.9951

6 2.16E-05 1.46E-05 1.22E-05 1.28E-05 1.0672 1.0359 1.0250 1.0115

7 2.26E-05 1.80E-05 1.35E-05 1.97E-05 1.0744 1.0549 1.0295 1.0304

8 1.38E-05 1.34E-05 1.26E-05 1.25E-05 1.0303 1.0488 1.0380 0.9878

9 2.46E-05 2.28E-05 2.11E-05 1.55E-05 1.0880 1.0725 1.0625 1.0395

10 3.56E-05 2.76E-05 2.54E-05 2.46E-05 1.0919 1.0774 1.0654 1.0509

Mean 2.30E-05 2.05E-05 1.75E-05 1.65E-05 1.0529 1.0421 1.0283 1.0168

Std 6.88E-06 6.23E-06 5.73E-06 4.45E-06 0.0369 0.0316 0.0304 0.0343

(i)  Signal type T1

Table 4 RMS error and coefficient of fit for results of various trials using ANN models N1 to N4  – Test 2 

(ii)  Signal type T2



Trials
RMS error Coeff of fit

N1 N2 N3 N4 N1 N2 N3 N4

1 1.89E-04 1.86E-04 1.40E-04 6.14E-05 0.8357 0.8376 0.8610 0.9146

2 8.38E-05 7.51E-05 7.47E-05 7.44E-05 0.8662 0.8759 0.8824 0.8869

3 2.95E-05 2.32E-05 2.50E-05 2.37E-05 0.9073 0.9148 0.9120 0.9306

4 3.63E-05 3.69E-05 4.22E-05 5.46E-05 0.9372 0.9255 0.9560 0.9668

5 9.93E-05 1.02E-04 7.41E-05 8.13E-05 0.9529 0.9857 0.9791 1.0108

6 3.16E-05 2.89E-05 2.47E-05 2.07E-05 0.8942 0.8981 0.9087 0.9275

7 3.03E-05 2.50E-05 2.14E-05 2.38E-05 0.9392 0.9422 0.9455 0.9851

8 2.99E-05 3.71E-05 3.26E-05 5.66E-05 0.9363 0.9256 0.9375 0.9787

9 4.34E-05 4.10E-05 3.29E-05 1.09E-04 0.9012 0.9035 0.9307 1.0116

10 4.57E-05 4.83E-05 4.11E-05 3.57E-05 0.8953 0.8883 0.9128 0.9230

Mean 6.19E-05 6.03E-05 5.08E-05 5.42E-05 0.9066 0.9097 0.9226 0.9536

Std 5.08E-05 5.06E-05 3.66E-05 2.9E-05 0.0365 0.0399 0.0349 0.0429

Trials
RMS error Coeff of fit

N1 N2 N3 N4 N1 N2 N3 N4

1 1.01E-04 6.57E-05 6.19E-05 7.01E-05 0.9854 0.9497 0.9485 0.9975

2 2.91E-04 3.08E-04 1.79E-04 3.04E-04 1.0134 0.9928 0.9767 0.9966

3 9.62E-04 4.70E-04 5.93E-04 9.03E-04 1.0078 0.9743 0.9666 0.9973

4 2.60E-04 2.85E-04 3.19E-04 7.04E-04 1.0193 0.9892 1.0274 1.0581

5 2.57E-04 8.97E-05 2.38E-04 8.37E-04 0.9798 0.9383 0.9326 1.0358

6 3.05E-04 1.35E-04 1.07E-04 1.21E-03 1.0007 0.9212 0.9606 1.1563

7 7.19E-05 8.36E-05 1.15E-04 1.50E-04 0.9465 0.9368 0.9437 0.8967

8 8.93E-04 4.09E-04 4.10E-04 1.19E-03 1.0185 0.9243 1.0025 1.0825

9 2.74E-04 1.64E-04 1.13E-04 6.47E-04 0.9781 0.9184 0.9772 1.0996

10 2.16E-04 1.28E-04 1.85E-04 2.74E-04 0.9489 0.9696 0.9596 0.9491

Mean 3.63E-04 2.14E-04 2.32E-04 6.28E-04 0.9898 0.9515 0.9695 1.0269

Std 3.08E-04 0.000145 0.000166 0.000414 0.0269 0.0281 0.0283 0.0759

(iii)  Signal type T3

Table 4 RMS error and coefficient of fit for results of various trials using ANN models N1 to N4 – Test 2 

(iv)  Signal type T4



Run
Run time (s)

N1 N2 N3 N4 RFC

1 10.54 10.44 11.29 11.54 40.09

2 10.57 10.60 11.71 12.88 40.12

3 10.52 10.58 10.84 11.86 40.13

Average 10.54 10.54 11.28 12.09 40.11

Table 5 Performance indicators using tic toc run time in 
MATLAB for different ANN network types and rainflow
counting method.  Number of signals analysed in each run 
was 10,000.


