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ORIGINAL ARTICLE

A regularized solution for the inverse conductivity problem using

mollifiers
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In this paper we present a reconstruction method for the inverse conductivity problem suitable
for smooth conductivity distributions. The inverse problem is reformulated in terms of a pair
of coupled integral equations, one of which is of first kind which we regularize using mollifier
methods. An interesting feature of this method is that the kernel of this integral equation is
not given, but can be modified for the choice of mollifier. We are able to obtain conductivity
reconstructions rapidly and without relying on accurate a priori information.

Keywords: Inverse conductivity problem, Electrical Impedance Tomography, integral
equation methods, mollifiers, nonlinear inverse problems, ill-posed problems.
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1. Introduction

The inverse conductivity problem has attracted much attention and one of the main
reasons is that although in its basic form the problem is relatively easy to state,
it is extremely challenging mathematically. This is because it turns out to be both
nonlinear and, above all, extremely ill-posed in the Hadamard sense. A further very
positive aspect of the problem is that it has a practical realisation which is known
as Electrical Impedance Tomography (EIT). This application which has its own
substantial challenges in the fields of biomedical engineering and instrumentation,
offers the possibility of a whole range of exciting and extremely useful applications
in medical or industrial tomography at a very modest cost.

Substantial progress has been made in determining the class of conductivity
distributions that can be recovered from the boundary data [1–5], as well as in de-
signing practical reconstruction algorithms applicable to noisy measurement data.
Reconstruction procedures addressing the full nonlinear problem include a wide
range of iterative methods based on formulating the inverse problem in the frame-
work of nonlinear optimisation. While these techniques are promising for obtaining
accurate reconstructed conductivity values, they are often slow to converge and are
quite demanding computationally particularly when addressing the three dimen-
sional problem. These concerns have encouraged the search for reconstruction al-
gorithms which reduce the computational demands. Some use a priori information
to reconstruct piecewise constant conductivity distributions e.g. [6–8] while others
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are based on reformulating the inverse problems in terms of integral equations [9–
14]. This list is by no means exhaustive and new approaches are constantly being
presented [15].

In this paper we describe a reconstruction method suitable for smooth conductiv-
ity distributions. It uses a simple transformation to establish a connection between
the equations defining the inverse conductivity problem and those used in Inverse
Scattering [16]. By combining this process with the concept of mollifiers [17–21] we
are able to obtain conductivity reconstructions for arbitrary geometry, extremely
rapidly and without relying on accurate a priori information. This is achieved by
reformulating the inverse problem in terms of a pair of coupled integral equations,
one of which is of the first kind which we solve using mollifier methods. An in-
teresting feature of this method is that the kernel of this integral equation is not
given, but can be modified for the choice of mollifier.

The paper is organized as follows: Section 2 gives an outline of the basic recon-
struction method. In Section 3 we describe the concept of mollifiers and discuss the
advantages of this approach. In Section 4 we show how the technique described in
Section 2 can be regularized using mollifiers and in Section 5 we discuss the choice
of optimal boundary data. Section 6 contains the numerical experiments which
indicate the possibilities and limitations of the combination of these two powerful
theoretical tools.

2. The basic approach

Let Ω ⊂ R
n, n = 2 or 3, be a bounded simply connected domain with boundary

∂Ω ∈ C2 and let σ be an isotropic conductivity distribution in Ω, where 0 < c ≤
σ <∞ and σ ∈ C2(Ω)∩C1(Ω). It is well known that if an electric current j = σ ∂Φ

∂n
is applied on ∂Ω then the induced electric potential Φ satisfies the equation

∇ · (σ(x)∇Φ(x)) = 0 , x ∈ Ω . (1)

Using the well-known change of variables τ =
√
σ we can rewrite equation (1) in

the form

∆Ψ(x) = −V (x)Ψ(x) , x ∈ Ω, (2)

where

V (x) = −∆τ(x)

τ(x)
, (3a)

Ψ(x) ≡ τ(x)(Φ(x) + Φ0) , (3b)

and Φ0 is an arbitrary constant.
In this work we will assume that from data measurements on the boundary we

have a knowledge of both σ and Φ and their normal derivatives on ∂Ω. The inverse
conductivity problem is to use this information to identify σ in Ω. Although it
might seem that our inverse problem is overdetermined, we do not use all this
information but only certain linear combinations. In terms of the new variables,
the reconstruction problem becomes that of finding V (and consequently σ) from
a knowledge of Ψ and ∂Ψ

∂n on ∂Ω which is a similar to the data normally used.
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Definition 2.1: Suppose λ : Ω → R is bounded. Let H : Ω×Ω → R be a bounded
solution of the Schrödinger equation with respect to the second variable, i.e.

∆yH(x,y) + λ(y)H(x,y) = 0 , x ,y ∈ Ω . (4)

Let F be the set of functions f : Ω → R which satisfy the Schrödinger equation

∆yf(y) + λ(y)f(y) = 0 , y ∈ Ω . (5)

Remark 1 : Since H(x, ·) ∈ L∞(Ω) and H(·,y) ∈ H2(Ω), H is a function of
Hilbert-Schmidt type.

We can apply Green’s second identity [22, 23] to the functions Ψ and H defined
above, and to Ψ and the free space Green’s function for Schrödinger’s equation (4),
G0(x,y), to derive two integral representations of problem (2):

0 = ζ(x) −
∫

Ω

dy H(x,y)X(y) , x ∈ Ω , (6)

Ψ(x) = ζ0(x) +

∫

Ω

dy G0(x,y)X(y) , x ∈ Ω , (7)

where

X(y) = (V (y) − λ(y))Ψ(y) , (8)

ζ(x) =

∫

∂Ω

dy
(
Ψ(y)

∂H
∂n

(x,y) −H(x,y)
∂Ψ(y)

∂n

)
, (9)

ζ0(x) =

∫

∂Ω

dy
(
G0(x,y)

∂Ψ(y)

∂n
− Ψ(y)

∂G0

∂n
(x,y)

)
. (10)

Remark 2 : Note that the above formulation can also be applied to σ ∈W 2,∞(Ω).
The reconstruction algorithm described below needs more care when applied to
such weakly constrained conductivities and we will consider this in future work.

This integral equation formulation will allow us to develop a procedure for deter-
mining σ that is described in Section 3. It is important to note that since equation
(6) is a Fredholm integral equation of the first kind, it is severely ill-posed and
its solution has to be regularized. In this paper we examine the use of mollifiers
to achieve this regularization. Finally, it is interesting to note that we have the
possibility of choosing a function H(x,y) which is either optimal in some sense or
which has other desirable properties, yet to be determined.

3. A mollifier method for impedance tomography

Let us assume that σ, Ψ and ∂Ψ
∂n are known on ∂Ω and that an appropriate function

H has been chosen. The reconstruction of σ in Ω using the formulation described
in Section 2 then consists of four steps:
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(1) Solve the linear problem AX = ζ (given by equation (6)) where

A : L2(Ω) −→ L2(Ω)
X 7−→

∫
Ω

dy H(x,y)X(y) . (11)

The reconstructed X(x) will be an approximation to (V (x) − λ(x))Ψ(x),
x ∈ Ω.

(2) Compute Ψ(x) for x ∈ Ω using a simple quadrature in equation (7).

(3) Compute V (x) for x ∈ Ω using equation (8)

V (x) =
X(x)

Ψ(x)
+ λ(x) . (12)

Any computational difficulties related to very small or zero values of Ψ(x)
in Ω can be avoided by an appropriate choice of the constant Φ0 defined in
equation (3b).

(4) Compute τ(x) =
√
σ(x) , x ∈ Ω by solving

∆τ(x) = −V (x)τ(x) , (13)

with given boundary values τ(x) and ∂τ
∂n , x ∈ ∂Ω.

Note that this procedure has transformed the non-linear ill-posed inverse conduc-
tivity problem into a linear ill-posed problem (step 1) followed by a non-linear
process (step 3) leading to a unique stable solution of the partial differential equa-
tion (13) (step 4). Note also that once a regularized solution to equation (6) has
been found, the conductivity distribution inside Ω will be uniquely reconstructed
by following the remaining steps of the algorithm.

The solution of the ill-posed linear problem in step 1 can be stabilized using any
regularization method for integral equations of the first kind. However, mollifier
methods offer certain advantages as follows:

(i) Applications in medicine or geophysics will require different resolutions in
different regions of Ω. This requirement might depend on the distance of the
reconstruction point x from the measurement equipment or allow us to in-
corporate some a priori knowledge about homogeneous subregions. Locally
adapted resolution can be easily incorporated in a mollifier approach.

(ii) The inversion of A is an ill-posed problem and data errors of ζ are amplified
in the reconstruction. The mollifier approach overcomes this problem by
requiring us to solve an operator equation for every reconstruction point
x with an analytically given exact right hand side. This intermediate step
can be precomputed with arbitrary precision.

(iii) Once the pointwise reconstruction vectors have been precomputed, the final
data-dependent reconstruction step simply requires the computation of one
scalar product per reconstruction point.

The mollifier method is a pointwise reconstruction technique [17–20] and is a
generalization of the Backus and Gilbert method [24, 25]. It is based on a Dirac-
sequence {eγ(ỹ,y)}, such that

∫

Ω

dy eγ(ỹ,y)X(y) −→ X(ỹ) , as γ → 0 . (14)
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A standard choice of mollifier is given by

eγ(ỹ,y) =
1

|B(ỹ, γ)| · χB(ỹ,γ)(y) =
1

|B(ỹ, γ)| ·
{

1 : y ∈ B(ỹ, γ)
0 : otherwise

(15)

and this is the one we use in this paper. The parameter γ is called the resolution
or the regularization parameter at the point ỹ and B(ỹ, γ) = {y : ||ỹ − y|| ≤ γ}.

Now assume that a reconstruction point ỹ and a desired resolution γ have been
chosen. The value of γ may vary for different reconstruction points but we will
suppress this dependence to simplify the notation in this paper. Instead of recon-
structing X itself, we attempt a reconstruction of

Xγ(ỹ) =

∫

Ω

dy eγ(ỹ,y)X(y) . (16)

Since ỹ is fixed for the moment, we have

Xγ(ỹ) =< eγ(ỹ, ·), X >L2(Ω) . (17)

The adjoint operator A∗ of the operator A defined in (11) is given by

A∗ : L2(Ω) → L2(Ω)

u 7→
∫

Ω

dx H(x,y)u(x) .

The use of mollifier methods as a regularization technique was introduced in
[17]. The basic idea is to find, at each reconstruction point ỹ, a function uγ(ỹ, ·)
satisfying

A∗uγ(ỹ, ·) = eγ(ỹ, ·) (18)

or to compute a minimum norm approximation to uγ(ỹ, ·) by solving

min||A∗uγ(ỹ, ·) − eγ(ỹ, ·)||L2(Ω) using AA∗uγ(ỹ, ·) = Aeγ(ỹ, ·) . (19)

We can then easily estimate

Xγ(ỹ) = < eγ(ỹ, ·), X >L2(Ω)≈< A∗uγ(ỹ, ·), X >L2(Ω)=< uγ(ỹ, ·), AX >L2(Ω)

= < uγ(ỹ, ·), ζ >L2(Ω) . (20)

Consequently, the reconstruction at the point ỹ is achieved by simply computing
a scalar product of the data ζ with the precomputed uγ(ỹ, ·). The construction
of uγ(ỹ, ·) requires us to solve the ill-posed operator equation (18). However, this
can be precomputed and -more important- the right hand side of equation (18) is
known exactly.

4. The choice of mollifier

The choice of the mollifier will determine the quality of the reconstruction and
its selection should reflect the properties of the operator as well as information
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about the quality of the data. However, we have another degree of freedom in
the reconstruction process described above: the choice of the function H. In other
words, the choice of the kernel of the integral operator is at our disposal. This is
very different from the situation in standard linear inverse problems and will be
the key element for our further investigations.

Let us begin with a discussion of the mollifier eγ(ỹ,y), ỹ, y ∈ Ω. Let ẽγ = A∗uγ ,
where uγ is the minimizer of equation (19). This implies that we actually do not
reconstruct

Xγ(x) =

∫

Ω

dy X(y)eγ(x,y) , (21)

but rather

Xγ(x) =

∫

Ω

dy X(y)ẽγ(x,y) . (22)

In order to determine ẽγ we first need to determine the range of A∗. This range
depends on the choice of the integral kernel H.

Lemma 4.1: Range (A∗) ⊂ F .
Proof : Consider f ∈ L2(Ω), then it is straightforward to show that

∆yA
∗f(y) = −λ(y)A∗f(y) .

�

Hence we can aim at best at an effective mollifier ẽγ(ỹ,y) which satisfies the
Schrödinger equation (4) in y.

Definition 4.2: We denote by

{hl(y) | l ∈ Z} (23)

an orthonormal basis for F .

The effective mollifier at point ỹ is given by

ẽγ(ỹ,y) =
∑

l∈Z

< eγ(ỹ, ·), hl >L2(Ω) hl(y) . (24)

Since the range of a non-degenerate compact operator A∗ is not closed, we still
cannot ensure that (19) can be solved with eγ replaced by ẽγ . However, the kernel
H of A∗ is at our disposal and we can easily ensure ẽγ(ỹ,y) ∈ Range(A∗) by
choosing

H(x,y) =
∑

l∈Z

cl(x) < eγ(ỹ, ·), hl >L2(Ω) hl(y) (25)

with bounded coefficient functions {cl(x)} satisfying

|cl(x)| ≤Ml , x ∈ Ω , where
∑

l∈Z

Ml <∞ . (26)
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The computation of the reconstruction functional uγ(ỹ, ·) is now achieved using

A∗uγ(ỹ,y) =

∫

Ω

dx H(x,y)uγ(ỹ,x)

=
∑

l∈Z

< eγ(ỹ, ·), hl >L2(Ω) hl(y)

∫

Ω

dx cl(x)uγ(ỹ,x) . (27)

Since hl ∈ H2(Ω), then by embedding theorems hl ∈ L∞(Ω), and the validity of
reversal of the summation and integration is guaranteed by the Weierstrass M-test
[26]. The solvability of

A∗uγ(ỹ, ·) = ẽγ(ỹ, ·)

gives another restriction on the kernel H. Comparing equations (24) and (27) we
can see that this equation is satisfied for any {cl} and uγ provided

< cl, uγ(ỹ, ·) >L2(Ω)= 1 . (28)

Let us summarize the previous calculations.

Lemma 4.3: For a fixed point ỹ ∈ Ω, let eγ(ỹ, ·) ∈ L2(Ω) denote a mollifier func-
tion, and ẽγ(ỹ,y) its projection on F given by equation (24). Determine uγ(ỹ,x)
and {cl|l ∈ Z} satisfying equations (26) and (28).

Choosing the kernel H(x,y), x, y ∈ Ω, of A∗ by

H(x,y) =
∑

l∈Z

cl(x) < eγ(ỹ, ·), hl >L2(Ω) hl(y)

leads to a reconstruction functional uγ(ỹ,x) such that

Xγ(ỹ) =< AX, uγ(ỹ, ·) >L2(Ω)=

∫

Ω

dy X(y)ẽγ(ỹ,y) .

We can simplify these calculations since for the actual computation we do not
need to use the special choices of cl and uγ . In order to see this let us be more
specific. Recall that we have as data

Ψ(x) and
∂Ψ

∂n
(x) , x ∈ ∂Ω .

Theorem 4.4 : For a fixed point ỹ ∈ Ω, let eγ(ỹ,y) ∈ L2(Ω) denote a mollifier
function, and ẽγ(ỹ,y) its projection on F given by equation (24). Then the mollified
approximation to the solution X of equation (6) at ỹ is given by

Xγ(ỹ) = < X, ẽγ(ỹ, ·) >L2(Ω) =

∫

∂Ω

(∂ẽγ
∂n

(ỹ,x)Ψ(x)− ẽγ(ỹ,x)
∂Ψ

∂n
(x)
)
dx . (29)
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Proof : The right hand side of the integral equation (6) is given by

ζ(x) =

∫

∂Ω

(∂H
∂n

(x,y)Ψ(y) −H(x,y)
∂Ψ

∂n
(y)
)
dy .

Hence we have to solve AX = ζ. The reconstruction at ỹ is obtained by

Xγ(ỹ) = < X, ẽγ(ỹ, ·) >L2(Ω) = < ζ, uγ(ỹ, ·) >L2(∂Ω) .

Inserting the series expansion of H, see (25), and the definition of ζ yields

Xγ(ỹ) =

∫

Ω

dx uγ(ỹ,x)

(
∑

l∈Z

< eγ(ỹ, ·), hl >L2(Ω) cl(x)

∫

∂Ω

( ∂hl

∂n
(y)Ψ(y) − hl(y)

∂Ψ

∂n
(y)
)
dy

)
.

The integral over the variable x gives the value 1 independent of l, see (28). Hence
interchanging summation and integration (again justified by the fact that hl ∈ H2

and using the Weierstrass M-test) gives the desired result. �

Remark 1 : It is interesting to note that the calculation of the regularized solution
Xγ at a point ỹ ∈ Ω using equation (29) involves only an integration over the
boundary ∂Ω and not the whole domain Ω. Moreover, the above theorem applies
to any equation of the form (6). However, if in addition we assume that (6) is an
integral formulation of equation (2) the result of Theorem 4.4 can be obtained with
the use of Green’s formula for the functions Ψ(x) and ẽγ(ỹ,x) as follows:

∫

∂Ω

(
Ψ(x)

∂ẽγ
∂n

(ỹ,x) − ẽγ(ỹ,x)
∂Ψ

∂n
(x)
)
dx =

∫

Ω

(Ψ(x)∆ẽγ(ỹ,x) − ẽγ(ỹ,x)∆Ψ(x)) dx

=

∫

Ω

(−λ(x) + V (x))Ψ(x) ẽγ(ỹ,x) dx =

∫

Ω

X(x) ẽγ(ỹ,x) dx = Xγ(ỹ) .

5. Choice of currents and voltages

The choice of H allows us to compute the projection of X = (V −λ)Ψ in F from a
single set of data measurements, namely (Ψ, ∂Ψ

∂n ). Hence, in general, we can achieve
only a partial reconstruction of V and σ with one set of measurements, but several
strategies for combining different measurements have been investigated, see for
example [27].

However, there may be special cases where a single set of measurements is suffi-
cient to recover σ.

Theorem 5.1 : If X(x) = (V (x) − λ(x))Ψ(x) ∈ F and if {x ∈ Ω|Ψ(x) = 0} has
measure zero, then V and σ are determined completely from one measurement of
Ψ and ∂Ψ

∂n on the boundary ∂Ω.

Proof : Let {hl(x) | l ∈ Z} be an orthonormal basis for F . We now compute the
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expansion coefficients of X for this basis. Using (2), integration by parts gives

χl ≡
∫

Ω

hl(x)X(x)dx =

∫

∂Ω

(
Ψ(y)

∂hl

∂n
(x) − hl(x)

∂Ψ(x)

∂n

)
dx . (30)

Since X ∈ F we can compute a full expansion X(x) =
∑
l∈Z

χlhl(x). Now we

follow the reconstruction procedure described in Section 3 and obtain Ψ in all of
Ω using (7). Our assumption on the zeros of Ψ allows us to determine V (x) =
X(x)/Ψ(x) + λ(x) almost everywhere. Subsequently τ and σ = τ2 are determined
by (3a). �

The application of the above theorem requires the construction of a potential Φ
such that X = (V −λ)Ψ ∈ F . An applied current j ∈ H− 1

2 (∂Ω) induces a potential
Φ and consequently Ψ on ∂Ω. Using equation (30) we see that the optimal input
current which makes the part of X in F as large as possible can be chosen as that
which maximizes

∑

l∈Z

|χl|2 =
∑

l∈Z

∣∣∣∣∣∣

∫

∂Ω

(
Ψ(y)

∂hl

∂n
(y) − hl(y)

∂Ψ(y)

∂n

)
dy

∣∣∣∣∣∣

2

. (31)

6. Further analytic development for constant λ

Although the analysis presented in the previous sections applies for any real valued
function λ, the case of constant λ enables us to perform many of the calculations
explicitly. Consequently, for the rest of this paper we will take λ to be a positive
constant and hence the functions {hl} defined in (23) form an orthonormal set of
solutions for the Helmholtz equation (4). The fundamental solution of equation (4)
for λ > 0 is explicitly known for any dimension n ≥ 2, see [28]. For example,

G0(x,y) =





−1
4 Y0(

√
λ ‖x − y‖) n = 2 ,

1
4π

cos(
√

λ ‖x−y‖)
‖x−y‖ n = 3 ,

where Y0 is the Bessel function of the second kind.

Lemma 6.1: For a given domain Ω ⊂ R
n, the function ẽγ defined in equation

(24) becomes

ẽγ(ỹ,y) = C(γ, λ)
∑

l∈Z

hl(ỹ)hl(y) . (32)

Proof : The inner product < eγ(ỹ, ·), hl >L2(Ω) is given by

< eγ(ỹ, ·), hl >L2(Ω)=

∫

Ω
dy eγ(ỹ,y)hl(y) =

1

|B(ỹ, γ)|

∫

B(ỹ,γ)
dyhl(y) . (33)
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Using the Mean Value Theorem for the Helmholtz equation [29] we can show that

∫

B(ỹ,γ)
dyhl(y) =

(
2πγ√
λ

)n

2

Jn

2
(
√
λγ)hl(ỹ) . (34)

It follows that

< eγ(ỹ, ·), hl >L2(Ω)= C(γ, λ)hl(ỹ) , (35)

where C(γ, λ) =

(
2√
λγ

)n

2

Γ
(

n
2 + 1

)
Jn

2
(
√
λγ). Therefore,

ẽγ(ỹ,y) = C(γ, λ)
∑

l∈Z

hl(ỹ)hl(y) . (36)

�

Lemma 6.2: If λ → 0 then equation (4) reduces to Laplace’s equation and it
is straightforward to show that C(γ, λ) → 1. In other words the scalar product
(35) is independent of the regularization parameter γ. Hence, the effective mollifier
ẽγ(ỹ,y) in (24) and, consequently, the reconstructed Xγ in (29) are independent
of the resolution γ.

If we restrict ourselves to simple geometries further explicit calculations are possi-
ble.

Lemma 6.3: Let Ω be a two dimensional disk of radius R, Ω = {y =

(r cos θ, r sin θ) ∈ R
2 : ‖y‖ ≤ R }, the orthonormal solutions

{
hj

l : l ∈ Z , j = 1, 2
}

of equation (4) for λ > 0 are given by

h1
l (r, θ) = ρlJl(

√
λr) cos(lθ) = ρlℜ

[
Jl(

√
λr)eilθ

]
, (37)

h2
l (r, θ) = ρlJl(

√
λr) sin(lθ) = ρlℑ

[
Jl(

√
λr)eilθ

]
, (38)

where ρl are the normalization constants

ρl =
1

R

√√√√ (2 − δl0)

π
(
J2

l (
√
λR) − Jl−1(

√
λR)Jl+1(

√
λR)

) . (39)

Hence,

ẽγ(α, ψ; r, θ) =
2√
λγ
J1(

√
λγ)

∑

l∈Z

ρ2
l Jl(

√
λα)Jl(

√
λr) cos(l(ψ − θ)) , (40)

where (α, ψ) are the polar coordinates of ỹ, the centre of the mollifier disk. Further-
more, if the boundary data are sufficiently smooth to guarantee that Ψ ∈ C(∂Ω),
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and both Ψ′ and ∂Ψ
∂n are piecewise smooth on ∂Ω, then

Xγ(α, ψ) =
2πRJ1(

√
λγ)√

λγ

∑

l∈Z

ρ2
l Jl(

√
λα)

[
(
al cos(lψ) + bl sin(lψ)

)
J

′

l (
√
λR)

−
(
cl cos(lψ) + dl sin(lψ)

)
Jl(

√
λR)

]
, (41)

where al,bl and cl,dl are the Fourier series coefficients of Ψ(R, θ) and ∂Ψ
∂n (R, θ),

respectively.

Proof : It is straightforward to show that Jl(
√
λr)eilθ are orthogonal solutions to

equation (4). In order to guarantee an orthonormal set of solutions {hl} we require
that

∫

Ω
dyhj

l (y)2 = ρ2
l π

∫ R

0
dr rJl(

√
λr)2 = 1

and the result given in equation (39) follows. We can now derive the result for Xγ

by substituting in equation (29) the explicit formula for ẽγ given in equation (40).

The smoothness assumptions on Ψ, Ψ′ and ∂Ψ
∂n on the boundary ∂Ω imply that

the Fourier coefficients al, bl ∼ 1
l2+ǫ

, and cl, dl ∼ 1
l1+ǫ

, where ǫ > 0 [26]. From
the asymptotic behaviour of Bessel functions, it is straightforward to show that for
large l

alρ
2
l Jl(

√
λα)J

′

l (
√
λR) ∼

(α
R

)l 1

lǫ
, and clρ

2
l Jl(

√
λα)Jl(

√
λR) ∼

(α
R

)l 1

lǫ
.

Similar results hold for the terms involving bl and dl.
�

7. Numerical implementation on the unit disk

The results of Section 5 suggest that we should be able to use our method to
determine an acceptable reconstruction from one measurement only. In principle,
this requires an optimal choice of the induced current but in this paper we will
investigate what can be reconstructed from a single measurement resulting from a
standard pattern for the applied current.

The method described in this paper is not restricted to particular geometries,
but for simplicity, as in the previous section, we consider the unit disk Ω = {y =
(r cos θ, r sin θ) ∈ R

2 : ‖y‖ ≤ 1 }. Our general procedure for performing the
numerical test is as follows. We start by choosing a conductivity σ that we attempt
to reconstruct. To simulate the measured values of the potential on the boundary
we have first to solve the direct problem, and in order to avoid inverse crimes we
use as forward solver the PDE Toolbox of Matlab which has no connection with
the reconstruction method under consideration. Thus, we obtain Φ and Ψ as well
as their normal derivatives at 214 equally spaced mesh points on the boundary.

The inversion algorithm is to use our mollifier method to compute X by means
of equation (41) and then follow the step by step procedure described in Section
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3. Once X is known the calculation of Ψ inside the unit disk is straightforward:

Ψ(r, θ) = ζ0(r, θ) +

1∫

0

dρ ρ

2π∫

0

dϑG0(r, θ; ρ, ϑ)X(ρ, ϑ) . (42)

The function ζ0 is computed numerically from the boundary data using the Com-
posite Trapezium rule:

ζ0(r, θ) =

2π∫

0

dϑ
(
G0(r, θ; 1, ϑ)

∂Ψ

∂n
(1, ϑ) − Ψ(1, ϑ)

∂G0

∂n
(r, θ; 1, ϑ)

)
.

In order to compute the integral on the right-hand side of equation (42) we note
that the integral kernel G0 has a weak singularity when (r, θ) = (ρ, ϑ). However,
this possible difficulty can be overcome by using special quadrature methods [30]
or a subtraction technique [31] as follows:

Ψ(r, θ) = ζ0(r, θ) +

1∫

0

dρ ρ

2π∫

0

dϑG0(r, θ; ρ, ϑ) [X(ρ, ϑ) −X(r, θ)]

+ X(r, θ)

1∫

0

dρ ρ

2π∫

0

dϑG0(r, θ; ρ, ϑ). (43)

Since

1∫

0

dρ ρ

2π∫

0

dϑG0(r, θ; ρ, ϑ) = −
(

1

λ
+

π

2
√
λ
J0(

√
λr)Y1(

√
λ)

)
,

relation (43) can be further simplified

Ψ(r, θ) = ζ0(r, θ) − X(r, θ)

(
1

λ
+

π

2
√
λ
J0(

√
λr)Y1(

√
λ)

)

+
172∑

k=1

wk G0(r, θ; ρk, ϑk) [X(ρk, ϑk) −X(r, θ)] ,

where {ρk, ϑk; wk} is a set of 172 quadrature points and weights for the unit disk
given by Engels in [32]. V is then computed by means of equation (12). Equation
(13) can be solved for τ in a stable way, for instance, by means of a Fredholm
equation of the second kind with a weakly singular kernel:

τ(r, θ) = τ0(r, θ) +

1∫

0

dρ ρ

2π∫

0

dϑG0(r, θ; ρ, ϑ)V (ρ, ϑ)τ(ρ, ϑ) , (44)

where the function τ0 is computed numerically from the boundary data again using



13

the Composite Trapezium rule:

τ0(r, θ) =

2π∫

0

dϑ
(
G0(r, θ; 1, ϑ)

∂τ

∂n
(1, ϑ) − τ(1, ϑ)

∂G0

∂n
(r, θ; 1, ϑ)

)
.

Using the same subtraction technique [31], equation (44) becomes

τ(r, θ) = τ0(r, θ) − V (r, θ)τ(r, θ)

(
1

λ
+

π

2
√
λ
J0(

√
λr)Y1(

√
λ)

)

+

172∑

k=1

wk G0(r, θ; ρk, ϑk) [V (ρk, ϑk)τ(ρk, ϑk) − V (r, θ)τ(r, θ)] ,

which can be reduced to a system of linear equations for the values of the function
τ at the integration points (ρi, ϑi), i = 1, 2, . . . , 172:

τ0(ρi, ϑi) = τ(ρi, ϑi) + V (ρi, ϑi)τ(ρi, ϑi)

(
1

λ
+

π

2
√
λ
J0(

√
λρi)Y1(

√
λ)

)

−
172∑

k=1, k 6=i

wk G0(ρi, ϑi; ρk, ϑk) [V (ρk, ϑk)τ(ρk, ϑk) − V (ρi, ϑi)τ(ρi, ϑi)] .

The above system can be solved using LU decomposition or any other appropriate
numerical technique [31]. To find the values of the function τ at any point of
coordinates (r, θ) we cannot employ the usual Nyström continuation since our
integral kernel G0V in equation (44) becomes very large if the point (r, θ) is close
to a quadrature point (ρk, ϑk). In order to overcome this problem, we use a modified
Nyström continuation

τ(r, θ) = τ0(r, θ) − V (r, θ)τ(ρl, ϑl)

(
1

λ
+

π

2
√
λ
J0(

√
λr)Y1(

√
λ)

)

+
172∑

k=1

wk G0(r, θ; ρk, ϑk) [V (ρk, ϑk)τ(ρk, ϑk) − V (r, θ)τ(ρl, ϑl)] ,

where (ρl, ϑl) is the closest quadrature point to (r, θ).

8. Numerical examples

In the following numerical examples we present reconstruction results for data
with 1% random errors and λ = 1. A noise level of 1% is reasonable in many
circumstances but in some medical applications greater accuracy can be achieved
[33]. In order to avoid any damping effects in the determination of V using equation
(12) the value of λ cannot be large. Numerical experiments showed that a value
of λ = 1 is an appropriate choice. Since the reconstruction is achieved extremely
rapidly for any value of the resolution parameter γ, there is no benefit in using an
adaptive resolution. Therefore we are able to use the same resolution γ = 0.1 for
all reconstruction points. The optimal choice for the regularization parameter, γ,
as given by the L-curve criterion, is approximately 0.1. This is in agreement with
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the theoretical minimum spatial resolution achievable using our integral equation
approach which was derived in [34].

Example 8.1 As a first example we attempt to reconstruct a conductivity dis-
tribution consisting of an off-centered high conductivity region within a constant
background, see Figure 1(a),

σ1(x, y) = 1 +
1

(x+ 0.7)2 + (y + 0.2)2 + 0.1
.

We present in Figures 1(b), 1(c), 1(d) the reconstructed conductivity for data with
1% random errors and different input currents.
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Figure 1. (a) The conductivity distribution σ1(x, y); The reconstructed conductivity, σreg
1

(x, y), for data

with 1% errors: (b) j(θ) = cos(θ), ‖σreg
1

− σ1‖L2 = 0.62; (c) j(θ) = cos(2θ), ‖σreg
1

− σ1‖L2 = 0.65; (d)

j(θ) = sin(θ), ‖σreg
1

− σ1‖L2 = 0.63.

Example 8.2 In the second example we consider a conductivity distribution con-
sisting of two regions, one of high conductivity and one of low conductivity, see
Figure 2(a),

σ2(x, y) = 6 +
1

(x− 0.6)2 + (y − 0.3)2 + 0.1
− 0.9

(x+ 0.4)2 + (y + 0.5)2 + 0.2
.
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Figure 2. (a) The conductivity distribution σ2(x, y); The reconstructed conductivity, σreg
2

(x, y), for data

with 1% errors: (b) j(θ) = cos(θ), ‖σreg
2

− σ2‖L2 = 1.33; (c) j(θ) = cos(2θ), ‖σreg
2

− σ2‖L2 = 1.39; (d)

j(θ) = sin(θ), ‖σreg
2

− σ2‖L2 = 1.35.

Example 8.3 In the third example we reconstruct a conductivity distribution
consisting of two high conductivity regions, see Figure 3(a),

σ3(x, y) = 1 +
1

(x− 0.7)2 + y2 + 0.1
+

2

(x+ 0.6)2 + y2 + 0.2
.

In our numerical experiments, the location of the significant features was well
determined but the reconstructed conductivities were smoother than the targets.
We also found that the reconstruction algorithm is stable with respect to noise
in the input data for error levels of up to 5%. In Figure 4 we plot the L2-relative
error, erel = ‖σreg

2 −σ2‖L2/‖σ2‖L2 , as a function of noise level ε for the conductivity
distribution considered in Example 8.2 and input current j(θ) = cos(θ).

9. Conclusion

In this paper we have investigated an application of mollifiers to the inverse conduc-
tivity problem. It is based on an assumed knowledge of the boundary values of the
conductivity σ and of the potential Φ and their normal derivatives. We reformulate
the inverse problem as a linear Fredholm integral equation of the first kind, where
the kernel is not given, but can be chosen in a number of ways. The linear problem
is efficiently solved by applying the method of mollifiers. Our algorithm allows us
to choose an optimal regularization, and since we use the free space Green’s func-
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Figure 3. (a) The conductivity distribution σ3(x, y); The reconstructed conductivity, σreg
3

(x, y), for data

with 1%: (b) j(θ) = cos(θ), ‖σreg
3

− σ3‖L2 = 1.48; (c) j(θ) = cos(2θ), ‖σreg
3

− σ3‖L2 = 1.50; (d) j(θ) =

sin(θ), ‖σreg
3

− σ3‖L2 = 1.48.
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Figure 4. The L2-relative error, erel = ‖σreg
2

− σ2‖L2/‖σ2‖L2 , as a function of noise level ε for the
conductivity distribution considered in Example 8.2 and input current j(θ) = cos(θ).

tion the approach is not geometrically constrained and can be applied to any two
or three dimensional simply connected domain. Both the theoretical investigations
and the numerical experiments indicate that the algorithm gives good reconstruc-
tions of smooth conductivity distributions, and that it is quite stable with respect
to noise in the input data.
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