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Preface

Uncertainty

Uncertainty is of paramount importance in artificial intelligence, applied science,
and many other areas of human endeavour. Whilst each and every one of us pos-
sesses some intuitive grasp of what uncertainty is, providing a formal definition can
prove elusive. Uncertainty can be understood as a lack of information about an issue
of interest for a certain agent (e.g., a human decision maker or a machine), a condi-
tion of limited knowledge in which it is impossible to exactly describe the state of
the world or its future evolution.

According to Dennis Lindley [1175]:
“ There are some things that you know to be true, and others that you know to be

false; yet, despite this extensive knowledge that you have, there remain many things
whose truth or falsity is not known to you. We say that you are uncertain about them.
You are uncertain, to varying degrees, about everything in the future; much of the
past is hidden from you; and there is a lot of the present about which you do not
have full information. Uncertainty is everywhere and you cannot escape from it ”.

What is sometimes less clear to scientists themselves is the existence of a hiatus
between two fundamentally distinct forms of uncertainty. The first level consists
of somewhat ‘predictable’ variations, which are typically encoded as probability
distributions. For instance, if a person plays a fair roulette wheel they will not, by
any means, know the outcome in advance, but they will nevertheless be able to
predict the frequency with which each outcome manifests itself (1/36), at least in
the long run. The second level is about ‘unpredictable’ variations, which reflect a
more fundamental uncertainty about the laws themselves which govern the outcome.
Continuing with our example, suppose that the player is presented with ten different
doors, which lead to rooms each containing a roulette wheel modelled by a different
probability distribution. They will then be uncertain about the very game they are
supposed to play. How will this affect their betting behaviour, for instance?

Lack of knowledge of the second kind is often called Knightian uncertainty
[1007, 831], from the Chicago economist Frank Knight. He would famously distin-
guish ‘risk’ from ‘uncertainty’:

“Uncertainty must be taken in a sense radically distinct from the familiar notion
of risk, from which it has never been properly separated . . . The essential fact is that
‘risk’ means in some cases a quantity susceptible of measurement, while at other
times it is something distinctly not of this character; and there are far-reaching and
crucial differences in the bearings of the phenomena depending on which of the two
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is really present and operating . . . It will appear that a measurable uncertainty, or
‘risk’ proper, as we shall use the term, is so far different from an unmeasurable one
that it is not in effect an uncertainty at all.”
In Knight’s terms, ‘risk’ is what people normally call probability or chance, while
the term ‘uncertainty’ is reserved for second-order uncertainty. The latter has a mea-
surable consequence on human behaviour: people are demonstrably averse to unpre-
dictable variations (as highlighted by Ellsberg’s paradox [569]).

This difference between predictable and unpredictable variation is one of the
fundamental issues in the philosophy of probability, and is sometimes referred to
as the distinction between common cause and special cause [1739]. Different inter-
pretations of probability treat these two aspects of uncertainty in different ways, as
debated by economists such as John Maynard Keynes [961] and G. L. S. Shackle.

Probability

Measure-theoretical probability, due to the Russian mathematician Andrey Kol-
mogorov [1030], is the mainstream mathematical theory of (first-order) uncertainty.
In Kolmogorov’s mathematical approach probability is simply an application of
measure theory, and uncertainty is modelled using additive measures.

A number of authors, however, have argued that measure-theoretical probability
theory is not quite up to the task when it comes to encoding second-order uncer-
tainty. In particular, as we discuss in the Introduction, additive probability measures
cannot properly model missing data or data that comes in the form of sets. Probabil-
ity theory’s frequentist interpretation is utterly incapable of modelling ‘pure’ data
(without ‘designing’ the experiment which generates it). In a way, it cannot even
properly model continuous data (owing to the fact that, under measure-theoretical
probability, every point of a continuous domain has zero probability), and has to
resort to the ‘tail event’ contraption to assess its own hypotheses. Scarce data can
only be effectively modelled asymptotically.

Bayesian reasoning is also plagued by many serious limitations: (i) it just cannot
model ignorance (absence of data); (ii) it cannot model pure data (without artificially
introducing a prior, even when there is no justification for doing so); (iii) it cannot
model ‘uncertain’ data, i.e., information not in the form of propositions of the kind
‘A is true’; and (iv) again, it is able to model scarce data only asymptotically, thanks
to the Bernstein–von Mises theorem [1841].

Beyond probability

Similar considerations have led a number of scientists to recognise the need for a
coherent mathematical theory of uncertainty able to properly tackle all these issues.
Both alternatives to and extensions of classical probability theory have been pro-
posed, starting from de Finetti’s pioneering work on subjective probability [403].
Formalisms include possibility-fuzzy set theory [2084, 533], probability intervals
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[784], credal sets [1141, 1086], monotone capacities [1911], random sets [1344] and
imprecise probability theory [1874]. New original foundations of subjective prob-
ability in behavioural terms [1877] or by means of game theory [1615] have been
put forward. The following table presents a sketchy timeline of the various existing
approaches to the mathematics of uncertainty.

Imprecise-probabilistic theories: a timeline

Approach Proposer(s) Seminal paper Year
Interval probabilities John Maynard

Keynes
A treatise on probability 1921

Subjective probabil-
ity

Bruno de Finetti Sul significato soggettivo della proba-
bilità

1931

Theory of previsions Bruno de Finetti La prévision: ses lois logiques, ses
sources subjectives

1937

Theory of capacities Gustave Choquet Theory of capacities 1953
Fuzzy theory Lotfi Zadeh, Dieter

Klaua
Fuzzy sets 1965

Theory of evidence Arthur Dempster,
Glenn Shafer

Upper and lower probabilities induced
by a multivalued mapping; A mathe-
matical theory of evidence

1967,
1976

Fuzzy measures Michio Sugeno Theory of fuzzy integrals and its appli-
cations

1974

Credal sets Isaac Levi The enterprise of knowledge 1980
Possibility theory Didier Dubois,

Henri Prade
Théorie des possibilités 1985

Imprecise probability Peter Walley Statistical reasoning with imprecise
probabilities

1991

Game-theoretical
probability

Glenn Shafer,
Vladimir Vovk

Probability and finance: It’s only a
game!

2001

Sometimes collectively referred to as imprecise probabilities (as most of them
comprise classical probabilities as a special case), these theories in fact form, as we
will see in more detail in Chapter 6, an entire hierarchy of encapsulated formalisms.

Belief functions

One of the most popular formalisms for a mathematics of uncertainty, the theory of
evidence [1583] was introduced in the 1970s by Glenn Shafer as a way of represent-
ing epistemic knowledge, starting from a sequence of seminal papers [415, 417, 418]
by Arthur Dempster [416]. In this formalism, the best representation of chance is a
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belief function rather than a traditional probability distribution. Belief functions as-
sign probability values to sets of outcomes, rather than single events. In this sense,
belief functions are closely related to random sets [1268, 1857, 826]. Important
work on the mathematics of random set theory has been conducted in recent years
by Ilya Molchanov [1302, 1304].

In its original formulation by Dempster and Shafer, the formalism provides a
simple method for merging the evidence carried by a number of distinct sources
(called Dempster’s rule of combination [773]), with no need for any prior distribu-
tions [1949]. The existence of different levels of granularity in knowledge represen-
tation is formalised via the concept of a ‘family of compatible frames’.

The reason for the wide interest the theory of belief functions has attracted over
the years is that it addresses most of the issues probability theory has with the han-
dling of second-order uncertainty. It starts from the assumption that observations
are indeed set-valued and that evidence is, in general, in support of propositions
rather than single outcomes. It can model ignorance by simply assigning mass to
the whole sample space or ‘frame of discernment’. It copes with missing data in
the most natural of ways, and can coherently represent evidence on different but
compatible sample spaces. It does not ‘need’ priors but can make good use of them
whenever there is actual prior knowledge to exploit. As a direct generalisation of
classical probability, the theory’s rationale is relatively easier to grasp. Last but not
least, the formalism does not require us to entirely abandon the notion of an event, as
is the case for Walley’s imprecise probability theory [1874]. In addition, the theory
of evidence exhibits links to most other theories of uncertainty, as it includes fuzzy
and possibility theory as a special case and it relates to the theory of credal sets
and imprecise probability theory (as belief functions can be seen as a special case
of convex sets of probability measures). Belief functions are infinitely-monotone
capacities, and have natural interpretations in the framework of probabilistic logic,
and modal logic in particular.

Since its inception, the formalism has expanded to address issues such as infer-
ence (how to map data to a belief function), conditioning, and the generalisation of
the notion of entropy and of classical results from probability theory to the more
complex case of belief functions. The question of what combination rule is most
appropriate under what circumstances has been hotly debated, together with that of
mitigating the computational complexity of working with sets of hypotheses. Graph-
ical models, machine learning approaches and decision making frameworks based
on belief theory have also been developed.

A number of questions still remain open, for instance on what is the correct
epistemic interpretation of belief functions, whether we should actually manipulate
intervals of belief functions rather than single quantities, and how to formulate an
effective general theory for the case of continuous sample spaces.
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Aim(s) of the book

The principal aim of this book is to introduce to the widest possible audience an
original view of belief calculus and uncertainty theory which I first developed during
my doctoral term in Padua. In this geometric approach to uncertainty, uncertainty
measures can be seen as points of a suitably complex geometric space, and there
manipulated (e.g. combined, conditioned and so on).

The idea first sprang to my mind just after I had been introduced to non-additive
probabilities. Where did such objects live, I wondered, when compared to classical,
additive probabilities defined on the same sample space? How is their greater com-
plexity reflected in the geometry of their space? Is the latter an expression of the
greater degree of freedom these more complex objects can provide?

For the reasons mentioned above, my attention was first drawn to belief func-
tions and their combination rule which, from the point of view of an engineer, ap-
peared to provide a possible principled solution to the sensor fusion problems one
encounters in computer vision when making predictions or decisions based on mul-
tiple measurements or ‘features’. Using the intuition gathered in the simplest case
study of a binary domain, I then proceeded to describe the geometry of belief func-
tions and their combination in fully general terms and to extend, in part, this geo-
metric analysis to other classes of uncertainty measures.

This programme of work is still far from reaching its conclusion – nevertheless,
I thought that the idea of consolidating my twenty-year work on the geometry of
uncertainty in a monograph had some merit, especially in order to disseminate the
notion and encourage a new generation of scientists to develop it further. This is the
purpose of the core of the book, Parts II, III and IV.

In the years that it took for this project to materialise, I realised that the
manuscript could serve the wider purpose of illustrating the rationale for moving
away from probability theory to non-experts and interested practitioners, of which
there are many. Incidentally, this forced me to reconsider from the very foundations
the reasons for modelling uncertainty in a non-standard way. These reasons, as un-
derstood by myself, can be found in the Introduction, which is an extended version
of the tutorial I gave on the topic at IJCAI 2016, the International Joint Conference
on Artificial Intelligence, and the talk I was invited to give at Harvard University in
the same year.

The apparent lack of a comprehensive treatise on belief calculus in its current,
modern form (and, from a wider perspective, of uncertainty theory) motivated me to
make use of this book to provide what turned out to be probably the most complete
summary (to the best of my knowledge) of the theory of belief functions. The entire
first part of the book is devoted to this purpose. Part I is not quite a ‘manual’ on
belief calculus, with easy recipes the interested practitioner can just follow, but does
strive to make a serious effort in that direction. Furthermore, the first part of the book
concludes with what I believe to be the most complete compendium of the various
approaches to uncertainty theory, with a specific focus on how do they relate to
the theory of evidence. All major formalisms are described in quite some detail,
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but an effort was really made to cover, albeit briefly, all published approaches to a
mathematics of uncertainty and variations thereof.

Finally, the last chapter of the book advances a tentative research agenda for the
future of the field, inspired by my own reflections and ideas on this. As will become
clearer in the remainder of this work, my intuition brings me to favour a random-set
view of uncertainty theory, driven by an analysis of the actual issues with data that
expose the limitations of probability theory. As a result, the research problems I pro-
pose tend to point in this direction. Importantly, I strongly believe that, to break the
near-monopoly of probability theory in science, uncertainty theory needs to measure
itself with the really challenging issues of our time (climate change, robust artificial
intelligence), compete with mainstream approaches and demonstrate its superior ex-
pressive power on their own grounds.

Last but not least, the book provides, again to the best of my knowledge, the
largest existing bibliography on belief and uncertainty theory.

Structure and topics

Accordingly, as explained, this book is divided into five Parts.
Part I, ‘Theories of uncertainty’, is a rather extensive recapitulation of the cur-

rent state of the art in the mathematics of uncertainty, with a focus on belief theory.
The Introduction provided in Chapter 1 motivates in more detail the need to go
beyond classical probability in order to model realistic, second-order uncertainty,
introduces the most significant approaches to the mathematics of uncertainty and
presents the main principles of the theory of belief functions. Chapter 2 provides a
succinct summary of the basic notions of the theory of belief functions as formu-
lated by Shafer. Chapter 3 digs deeper by recalling the multiple semantics of belief
functions, discussing the genesis of the approach and the subsequent debate, and
illustrating the various original frameworks proposed by a number of authors which
use belief theory as a basis, while developing it further in original ways. Chapter
4 can be thought of as a manual for the working scientist keen on applying belief
theory. It illustrates in detail all the elements of the evidential reasoning chain, delv-
ing into all its aspects, including inference, conditioning and combination, efficient
computation, decision making and continuous formulations. Notable advances in
the mathematics of belief functions are also briefly described. Chapter 5 surveys the
existing array of classification, clustering, regression and estimation tools based on
belief function theory. Finally, Chapter 6 is designed to provide the reader with a
bigger picture of the whole field of uncertainty theory, by reviewing all major for-
malisms (the most significant of which are arguably Walley’s imprecise probability,
the theory of capacities and fuzzy/possibility theory), with special attention paid to
their relationship with belief and random set theory.

Part II, ‘The geometry of uncertainty’, is the core of this book, as it introduces
the author’s own geometric approach to uncertainty theory, starting with the ge-
ometry of belief functions. First, Chapter 7 studies the geometry of the space of
belief functions, or belief space, both in terms of a simplex (a higher-dimensional
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triangle) and in terms of its recursive bundle structure. Chapter 8 extends the analy-
sis to Dempster’s rule of combination, introducing the notion of a conditional sub-
space and outlining a simple geometric construction for Dempster’s sum. Chapter 9
delves into the combinatorial properties of plausibility and commonality functions,
as equivalent representations of the evidence carried by a belief function. It shows
that the corresponding spaces also behave like simplices, which are congruent to the
belief space. The remaining Chapter 10 starts extending the applicability of the geo-
metric approach to other uncertainty measures, focusing in particular on possibility
measures (consonant belief functions) and the related notion of a consistent belief
function.

Part III, ‘Geometric interplays’, is concerned with the interplay of uncertainty
measures of different kinds, and the geometry of their relationship. Chapters 11
and 12 study the problem of transforming a belief function into a classical proba-
bility measure. In particular, Chapter 11 introduces the affine family of probability
transformations, those which commute with affine combination in the belief space.
Chapter 12 focuses instead on the epistemic family of transforms, namely ‘rela-
tive belief’ and ‘relative plausibility’, studies their dual properties with respect to
Dempster’s sum, and describes their geometry on both the probability simplex and
the belief space. Chapter 13 extends the analysis to the consonant approximation
problem, the problem of finding the possibility measure which best approximates a
given belief function. In particular, approximations induced by classical Minkowski
norms are derived, and compared with classical outer consonant approximations.
Chapter 14 concludes Part III by describing Minkowski consistent approximations
of belief functions in both the mass and the belief space representations.

Part IV, ‘Geometric reasoning’, examines the application of the geometric ap-
proach to the various elements of the reasoning chain illustrated in Chapter 4. Chap-
ter 15 tackles the conditioning problem from a geometric point of view. Conditional
belief functions are defined as those which minimise an appropriate distance be-
tween the original belief function and the ‘conditioning simplex’ associated with
the conditioning event. Analytical expressions are derived for both the belief and
the mass space representations, in the case of classical Minkowski distances. Chap-
ter 16 provides a semantics for the main probability transforms in terms of credal
sets, i.e., convex sets of probabilities. Based on this interpretation, decision-making
apparatuses similar to Smets’s transferable belief model are outlined.

Part V, ‘The future of uncertainty’, consisting of Chapter 17, concludes the book
by outlining an agenda for the future of the discipline. A comprehensive statistical
theory of random sets is proposed as the natural destination of this evolving field.
A number of open challenges in the current formulation of belief theory are high-
lighted, and a research programme for the completion of our geometric approach to
uncertainty is proposed. Finally, very high-impact applications in fields such as cli-
mate change, rare event estimation, machine learning and statistical learning theory
are singled out as potential triggers of a much larger diffusion of these techniques
and of uncertainty theory in general.
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1
Introduction

1.1 Mathematical probability

The mainstream mathematical theory of uncertainty is measure-theoretical proba-
bility, and is mainly due to the Russian mathematician Andrey Kolmogorov [1030].
As most readers will know, in Kolmogorov’s mathematical approach1 probability is
simply an application of measure theory [783], the theory of assigning numbers to
sets. In particular, Kolmogorov’s probability measures are additive measures, i.e.,
the real value assigned to a set of outcomes is the sum of the values assigned to its
constituent elements. The collection Ω of possible outcomes (of a random experi-
ment or of a decision problem) is called the sample space, or universe of discourse.
Any (measurable) subset A of the universe Ω is called an event, and is assigned a
real number between 0 and 1.

Formally [1030], let Ω be the sample space, and let 2Ω represent its power set
2Ω

.
= {A ⊂ Ω}. The power set is also sometimes denoted by P(Θ).

Definition 1. A collection F of subsets of the sample space, F ⊂ 2Ω , is called a
σ-algebra or σ-field if it satisfies the following three properties:

– F is non-empty: there is at least one A ⊂ Ω in F;
– F is closed under complementation: if A is in F , then so is its complement,
A = {ω ∈ Ω,ω 6∈ A} ∈ F;

– F is closed under countable union: if A1, A2, A3, · · · are in F , then so is A =
A1 ∪A2 ∪A3 ∪ · · · ,

1A recent study of the origins of Kolmogorov’s work has been done by Shafer and Vovk:
http://www.probabilityandfinance.com/articles/04.pdf.
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where ∪ denotes the usual set-theoretical union.

Any subset of Ω which belongs to such a σ-algebra is said to be measurable.
From the above properties, it follows that any σ-algebraF is closed under countable
intersection as well by De Morgan’s laws: A ∪B = A ∩B, A ∩B = A ∪B.

Definition 2. A probability measure over a σ-algebra F ⊂ 2Ω , associated with a
sample space Ω, is a function P : F → [0, 1] such that:

– P (∅) = 0;
– P (Ω) = 1;
– if A ∩B = ∅, A,B ∈ F then P (A ∪B) = P (A) + P (B) (additivity).

A simple example of a probability measure associated with a spinning wheel is
shown in Fig. 1.1.

1

2

3

{}
{1}

{2} {3}

{1,2}

{2,3}

{1,3}

{1,2,3}

0 ¼ ½ ¾ 1

P

F

Ω = {1,2,3}

Fig. 1.1: A spinning wheel is a physical mechanism whose outcomes
are associated with a (discrete) probability measure (adapted from origi-
nal work by Ziggystar, https://commons.wikimedia.org/wiki/File:
Probability-measure.svg).

A sample space Ω together with a σ-algebra F of its subsets and a probability
measure P on F forms a probability space, namely the triplet (Ω,F , P ). Based on
the notion of a probability space, one can define that of a random variable. A random
variable is a quantity whose value is subject to random variations, i.e., to ‘chance’
(although, as we know, what chance is is itself subject to debate). Mathematically,
it is a function X from a sample space Ω (endowed with a probability space) to a
measurable spaceE (usually the real line R)2. Figure 1.4 (left) illustrates the random
variable associated with a die.

2However, the notion of a random variable can be generalised to include mappings from
a sample space to a more structured domain, such as an algebraic structure. These functions
are called random elements [643].

https://commons.wikimedia.org/wiki/File:Probability-measure.svg
https://commons.wikimedia.org/wiki/File:Probability-measure.svg


1.2 Interpretations of probability 3

To be a random variable, a function X : Ω → R must be measurable: each
measurable set inE must have a pre-imageX−1(E) which belongs to the σ-algebra
F , and therefore can be assigned a probability value. In this way, a random variable
becomes a means to assign probability values to sets of real numbers.

1.2 Interpretations of probability

1.2.1 Does probability exist at all?

When one thinks of classical examples of probability distributions (e.g. a spinning
wheel, a roulette wheel or a rolling die), the suspicion that ‘probability’ is simply a
fig leaf for our ignorance and lack of understanding of nature phenomena arises.

Assuming a view of the physical world that follows the laws of classical Newto-
nian mechanics, it is theoretically conceivable that perfect knowledge of the initial
conditions of say, a roulette wheel, and of the impulse applied to it by the croupier
would allow the player to know exactly what number would come out. In other
words, with sufficient information, any phenomenon would be predictable in a com-
pletely deterministic way. This is a position supported by Einstein himself, as he was
famously quoted as saying that ‘God does not play dice with the universe’. In Doc
Smith’s Lensman series [1736], the ancient race of the Arisians have such mental
powers that they compete with each other over foreseeing events far away in the
future to the tiniest detail.

A first objection to this argument is that ‘infinite accuracy’ is an abstraction, and
any actual measurements are bound to be affected by a degree of imprecision. As
soon as initial states are not precisely known, the nonlinear nature of most phenom-
ena inexcapably generates a chaotic behaviour that effectively prevents any accurate
prediction of future events. More profoundly, the principles of quantum mechanics
seem to suggest that probability is not just a figment of our mathematical imagina-
tion, or a representation of our ignorance: the workings of the physical world seem
to be inherently probabilistic [119]. However, the question arises of why the finest
structure of the physical world should be described by additive measures, rather
than more general ones (or capacities: see Chapter 6).

Finally, as soon as we introduce the human element into the picture, any hope of
being able to predict the future deterministically disappears. One may say that this
is just another manifestation of our inability to understanding the internal workings
of a system as complex as a human mind. Fair enough. Nevertheless, we still need
to be able to make useful predictions about human behaviour, and ‘probability’ in a
wide sense, is a useful means to that end.

1.2.2 Competing interpretations

Even assuming that (some form of mathematical) probability is inherent in the phys-
ical world, people cannot agree on what it is. Quoting Savage [45]:
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“It is unanimously agreed that statistics depends somehow on probability. But,
as to what probability is and how it is connected with statistics, there has seldom
been such complete disagreement and breakdown of communication since the Tower
of Babel. Doubtless, much of the disagreement is merely terminological and would
disappear under sufficiently sharp analysis”.

As a result, probability has multiple competing interpretations: (1) as an objective
description of frequencies of events (meaning ‘things that happen’) at a certain per-
sistent rate, or ‘relative frequency’ – this is the so-called frequentist interpretation,
mainly due to Fisher and Pearson; (2) as a degree of belief in events (interpreted as
statements/propositions on the state of the world), regardless of any random process
– the Bayesian or evidential interpretation, first proposed by de Finetti and Savage;
and (3) as the propensity of an agent to act (or gamble or decide) if the event happens
– an approach called behavioural probability [1874].

Note that neither the frequentist nor the Bayesian approach is in contradiction
with the classical mathematical definition of probability due to Kolmogorov: as we
will see in this book, however, other approaches to the mathematics of uncertainty
do require us to introduce different classes of mathematical objects.

1.2.3 Frequentist probability

In the frequentist interpretation, the (aleatory) probability of an event is its relative
frequency in time. When one is tossing a fair coin, for instance, frequentists say
that the probability of getting a head is 1/2, not because there are two equally likely
outcomes (due to the structure of the object being tossed), but because repeated se-
ries of large numbers of trials (a random experiment) demonstrate that the empirical
frequency converges to the limit 1/2 as the number of trials goes to infinity.

Clearly, it is impossible to actually complete the infinite series of repetitions
which constitutes a random experiment. Guidelines on the design of ‘practical’ ran-
dom experiments are nevertheless provided, via either statistical hypothesis testing
or confidence interval analysis.

Statistical hypothesis testing A statistical hypothesis is a conjecture on the state
of the world which is testable on the basis of observing a phenomenon modelled by
a set of random variables.

In hypothesis testing, a dataset obtained by sampling is compared with data gen-
erated by an idealised model. A hypothesis about the statistical relationship between
the two sets of data is proposed, and compared with an idealised ‘null’ hypothesis
which rejects any relationship between the two datasets. The comparison is con-
sidered statistically significant if the relationship between the datasets would be an
unlikely realisation of the null hypothesis according to a threshold probability, called
the significance level. Statistical hypothesis testing is thus a form of confirmatory
data analysis.

The steps to be followed in hypothesis testing are:3

3
https://en.wikipedia.org/wiki/Statistical_hypothesis_testing.

https://en.wikipedia.org/wiki/Statistical_hypothesis_testing
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1. State the null hypothesis H0 and the alternative hypothesis H1.
2. State the statistical assumptions being made about the sample, e.g. assumptions

about the statistical independence or the distributions of the observations.
3. State the relevant test statistic T (i.e., a quantity derived from the sample).
4. Derive from the assumptions the distribution of the test statistic under the null

hypothesis.
5. Set a significance level (α), i.e., a probability threshold below which the null

hypothesis is rejected.
6. Compute from the observations the observed value tobs of the test statistic T .
7. Calculate the p-value, the probability (under the null hypothesis) of sampling a

test statistic ‘at least as extreme’ as the observed value.
8. Reject the null hypothesis, in favour of the alternative one, if and only if the

p-value is less than the significance level threshold.

In hypothesis testing, false positives (i.e., rejecting a valid hypothesis) are called
‘type I’ errors; false negatives (not rejecting a false hypothesis) are called ‘type II’
errors. Note that if the p-value is above α, the result of the test is inconclusive: the
evidence is insufficient to support a conclusion.

Set of possible results

Pr
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ty

Observed
data point

More likely observations
 

Very unlikely
observations

P-value

Very unlikely
observations

Fig. 1.2: Notion of p-value (adapted from https://upload.wikimedia.
org/wikipedia/commons/3/3a/P-value_in_statistical_
significance_testing.svg).

P-values The notion of a p-value is crucial in hypothesis testing. It is the proba-
bility, under the assumption of hypothesis H , of obtaining a result equal to or more
extreme than what was actually observed, namely P (X ≥ x|H), where x is the
observed value (see Fig. 1.2).

The reason for not simply considering P (X = x|H) when assessing the null hy-
pothesis is that, for any continuous random variable, such a conditional probability
is equal to zero. As a result we need to consider, depending on the situation, a right-

https://upload.wikimedia.org/wikipedia/commons/3/3a/P-value_in_statistical_significance_testing.svg
https://upload.wikimedia.org/wikipedia/commons/3/3a/P-value_in_statistical_significance_testing.svg
https://upload.wikimedia.org/wikipedia/commons/3/3a/P-value_in_statistical_significance_testing.svg
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tail event p = P(X ≥ x|H), a left-tail event p = P(X ≤ x|H), or a double-tailed
event: the ‘smaller’ of {X ≤ x} and {X ≥ x}.

Note that the p-value is not the probability that the null hypothesis is true or the
probability that the alternative hypothesis is false: frequentist statistics does not and
cannot (by design) attach probabilities to hypotheses.

Maximum likelihood estimation A popular tool for estimating the parameters of
a probability distribution which best fits a given set of observations is maximum
likelihood estimation (MLE). The term likelihood was coined by Ronald Fisher in
1922 [620]. He argued against the use of ‘inverse’ (Bayesian) probability as a basis
for statistical inferences, proposing instead inferences based on likelihood functions.

Indeed, MLE is based on the likelihood principle: all of the evidence in a sample
relevant to model parameters is contained in the likelihood function. Some widely
used statistical methods, for example many significance tests, are not consistent with
the likelihood principle. The validity of such an assumption is still debated.

Definition 3. Given a parametric model {f(.|θ), θ ∈ Θ}, a family of conditional
probability distributions of the data given a (vector) parameter θ, the maximum
likelihood estimate of θ is defined as

θ̂MLE ⊆
{

arg max
θ∈Θ

L(θ ; x1, . . . , xn)

}
,

where the likelihood of the parameter given the observed data x1, . . . , xn is

L(θ ; x1, . . . , xn) = f(x1, x2, . . . , xn | θ).

Maximum likelihood estimators have no optimal properties for finite samples:
they do have, however, good asymptotic properties:

– consistency: the sequence of MLEs converges in probability, for a sufficiently
large number of observations, to the (actual) value being estimated;

– asymptotic normality: as the sample size increases, the distribution of the MLE
tends to a Gaussian distribution with mean equal to the true parameter (under a
number of conditions4);

– efficiency: MLE achieves the Cramer–Rao lower bound [1841] when the sample
size tends to infinity, i.e., no consistent estimator has a lower asymptotic mean
squared error than MLE.

1.2.4 Propensity

The propensity theory of probability [1415], in opposition, thinks of probability as a
physical propensity or tendency of a physical system to deliver a certain outcome. In
a way, propensity is an attempt to explain why the relative frequencies of a random
experiment turn out to be what they are. The law of large numbers is interpreted

4
http://sites.stat.psu.edu/˜dhunter/asymp/fall2003/lectures/pages76to79.pdf.

http://sites.stat.psu.edu/~dhunter/asymp/fall2003/lectures/pages76to79.pdf
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as evidence of the existence of invariant single-run probabilities (as opposed to the
relative frequencies of the frequentist interpretation), which do emerge in quantum
mechanics, for instance, and to which relative frequencies tend at infinity.

What propensity exactly means remains an open issue. Popper, for instance, has
proposed a theory of propensity, which is, however, plagued by the use of relative
frequencies in its own definition [1439].

1.2.5 Subjective and Bayesian probability

In epistemic or subjective probability, probabilities are degrees of belief assigned
to events by an individual assessing the state of the world, whereas in frequentist
inference a hypothesis is typically tested without being assigned a probability.

The most popular theory of subjective probability is perhaps the Bayesian frame-
work [419], due to the English clergyman Thomas Bayes (1702–1761). There,
all degrees of belief are encoded by additive mathematical probabilities (in Kol-
mogorov’s sense). It is a special case of evidential probability, in which some prior
probability is updated to a posterior probability in the light of new evidence (data).
In the Bayesian framework, Bayes’ rule is used sequentially to compute a posterior
distribution when more data become available, namely whenever we learn that a
certain proposition A is true:

P (B|A) =
P (B ∩A)

P (A)
. (1.1)

Considered as an operator, Bayes’ rule is inextricably related to the notion of con-
ditional probability P (B|A) [1143].

Bayes proved a special case of what is now called Bayes’ theorem (1.1) in a
paper entitled ‘An essay towards solving a problem in the doctrine of chances’.
Pierre-Simon Laplace (1749–1827) later introduced a general version of the theo-
rem. Jeffreys’ ‘Theory of Probability’ [894] (1939) played an important role in the
revival of the Bayesian view of probability, followed by publications by Abraham
Wald [1870] (1950) and Leonard J. Savage [1537] (1954).

The statistician Bruno de Finetti produced a justification for the Bayesian frame-
work based on the notion of a Dutch book [404]. A Dutch book is made when a
clever gambler places a set of bets that guarantee a profit, no matter what the out-
come of the bets themselves. If a bookmaker follows the rules of Bayesian calculus,
de Finetti argued, a Dutch book cannot be made. It follows that subjective beliefs
must follow the laws of (Kolmogorov’s) probability if they are to be coherent.

However, Dutch book arguments leave open the possibility that non-Bayesian
updating rules could avoid Dutch books – one of the purposes of this book is in-
deed to show that this is the case. Justification by axiomatisation has been tried, but
with no great success. Moreover, evidence casts doubt on the assumption that hu-
mans maintain coherent beliefs or behave rationally at all. Daniel Kahneman5 won
a Nobel Prize for supporting the exact opposite thesis, in collaboration with Amos

5
https://en.wikipedia.org/wiki/Daniel_Kahneman.

https://en.wikipedia.org/wiki/Daniel_Kahneman
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Tversky. People consistently pursue courses of action which are bound to damage
them, as they do not understand the full consequences of their actions.

For all its faults (as we will discuss later), the Bayesian framework is rather
intuitive and easy to use, and capable of providing a number of ‘off-the-shelf’ tools
to make inferences or compute estimates from time series.

Bayesian inference In Bayesian inference, the prior distribution is the distribution
of the parameter(s) before any data are observed, i.e. p(θ|α), a function of a vector
of hyperparameters α. The likelihood is the distribution of the observed data X =
{x1, · · · , xn} conditional on its parameters, i.e., p(X|θ). The distribution of the
observed data marginalised over the parameter(s) is termed the marginal likelihood
or evidence, namely

p(X|α) =

∫
θ

p(X|θ)p(θ|α) dθ.

The posterior distribution is then the distribution of the parameter(s) after taking
into account the observed data, as determined by Bayes’ rule (1.1):

p(θ|X, α) =
p(X|θ)p(θ|α)

p(X|α)
∝ p(X|θ)p(θ|α). (1.2)

The posterior predictive distribution is the distribution of a new data point x′,
marginalised over the posterior:

p(x′|X, α) =

∫
θ

p(x′|θ)p(θ|X, α) dθ,

amounting to a distribution over possible new data values. The prior predictive dis-
tribution, instead, is the distribution of a new data point marginalised over the prior:

p(x′|α) =

∫
θ

p(x′|θ)p(θ|α) dθ.

By comparison, prediction in frequentist statistics often involves finding an opti-
mum point estimate of the parameter(s) (e.g., by maximum likelihood), not account-
ing for any uncertainty in the value of the parameter. In opposition, (1.2) provides
as output an entire probability distribution over the parameter space.

Maximum a posteriori estimation Maximum a posteriori (MAP) estimation es-
timates a single value θ for the parameter as the mode of the posterior distribution
(1.2):

θ̂MAP(x)
.
= arg max

θ

p(x|θ) p(θ)∫
ϑ

p(x|ϑ) p(ϑ) dϑ

= arg max
θ

p(x|θ) p(θ).

MAP estimation is not very representative of Bayesian methods, as the latter are
characterised by the use of distributions over parameters to draw inferences.
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1.2.6 Bayesian versus frequentist inference

Summarising, in frequentist inference unknown parameters are often, but not al-
ways, treated as having fixed but unknown values that are not capable of being
treated as random variates. Bayesian inference, instead, allows probabilities to be
associated with unknown parameters. The frequentist approach does not depend on
a subjective prior that may vary from one investigator to another. However, Bayesian
inference (e.g. Bayes’ rule) can be used by frequentists.6

Lindley’s paradox is a counter-intuitive situation which occurs when the Bayesian
and frequentist approaches to a hypothesis-testing problem give different results for
certain choices of the prior distribution.

More specifically, Lindley’s paradox7 occurs when:

– the result x is ‘significant’ by a frequentist test of H0, indicating sufficient evi-
dence to reject H0 say, at the 5% level, while at the same time

– the posterior probability of H0 given x is high, indicating strong evidence that
H0 is in better agreement with x than H1.

This can happen when H0 is very specific and H1 less so, and the prior distribution
does not strongly favour one or the other.

It is not really a paradox, but merely a consequence of the fact that the two
approaches answer fundamentally different questions. The outcome of Bayesian in-
ference is typically a probability distribution on the parameters, given the results
of the experiment. The result of frequentist inference is either a ‘true or false’ (bi-
nary) conclusion from a significance test, or a conclusion in the form that a given
confidence interval, derived from the sample, covers the true value.

Glenn Shafer commented on the topic in [1590].

1.3 Beyond probability

A long series of students have argued that a number of serious issues arise whenever
uncertainty is handled via Kolmogorov’s measure-theoretical probability theory. On
top of that, one can argue that something is wrong with both mainstream approaches
to probability interpretation. Before we move on to introduce the mathematics of
belief functions and other alternative theories of uncertainty, we think it best to
briefly summarise our own take on these issues here.

1.3.1 Something is wrong with probability

Flaws of the frequentistic setting The setting of frequentist hypothesis testing
is rather arguable. First of all, its scope is quite narrow: rejecting or not rejecting

6See for instance www.stat.ufl.edu/˜casella/Talks/BayesRefresher.pdf.
7See onlinelibrary.wiley.com/doi/10.1002/0470011815.b2a15076/pdf.

www.stat.ufl.edu/~casella/Talks/BayesRefresher.pdf
onlinelibrary.wiley.com/doi/10.1002/0470011815.b2a15076/pdf
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a hypothesis (although confidence intervals can also be provided). The criterion
according to which this decision is made is arbitrary: who decides what an ‘extreme’
realisation is? In other words, who decides what is the right choice of the value of α?
What is the deal with ‘magical’ numbers such as 0.05 and 0.01? In fact, the whole
‘tail event’ idea derives from the fact that, under measure theory, the conditional
probability (p-value) of a point outcome is zero – clearly, the framework seems to be
trying to patch up what is instead a fundamental problem with the way probability is
mathematically defined. Last but not least, hypothesis testing cannot cope with pure
data, without making additional assumptions about the process (experiment) which
generates them.

The issues with Bayesian reasoning Bayesian reasoning is also flawed in a num-
ber of ways. It is extremely bad at representing ignorance: Jeffreys’ uninformative
priors [895] (e.g., in finite settings, uniform probability distributions over the set of
outcomes), the common way of handling ignorance in a Bayesian setting, lead to dif-
ferent results for different reparameterisations of the universe of discourse. Bayes’
rule assumes the new evidence comes in the form of certainty, ‘A is true’: in the
real world, this is not often the case. As pointed out by Klir, a precise probabilistic
model defined only on some class of events determines only interval probabilities
for events outside that class (as we will discuss in Section 3.1.3).

Finally, model selection is troublesome in Bayesian statistics: whilst one is
forced by the mathematical formalism to pick a prior distribution, there is no clear-
cut criterion for how to actually do that.

In the author’s view, this is the result of a fundamental confusion between the
original Bayesian description of a person’s subjective system of beliefs and the way
it is updated, and the ‘objectivist’ view of Bayesian reasoning as a rigorous proce-
dure for updating probabilities when presented with new information.

1.3.2 Pure data: Beware of the prior

Indeed, Bayesian reasoning requires modelling the data and a prior. Human beings
do have ‘priors’, which is just a word for denoting what they have learned (or think
they have learned) about the world during their existence. In particular, they have
well-sedimented beliefs about the likelihood of various (if not all) events. There
is no need to ‘pick’ a prior, for prior (accumulated) knowledge is indeed there.
As soon as we idealise this mechanism to, say, allow a machine to reason in this
way, we find ourselves forced to ‘pick’ a prior for an entity (an algorithm) which
does not have any past experience, and has not sedimented any beliefs as a result.
Nevertheless, Bayesians content themselves by claiming that all will be fine in the
end, as, asymptotically, the choice of the prior does not matter, as proven by the
Bernstein–von Mises theorem [1841].

1.3.3 Pure data: Designing the universe?

The frequentist approach, on its side, is inherently unable to describe pure data
without having to make additional assumptions about the data-generating process.
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Unfortunately, in nature one cannot ‘design’ the process which produces the data:
data simply come our way. In the frequentist terminology, in most applications we
cannot set the ‘stopping rules’ (think of driverless cars, for instance). Once again,
the frequentist setting brings to the mind the image of a nineteenth-century scientist
‘analysing’ (from the Greek elements ana and lysis, breaking up) a specific aspect
of the world within the cosy confines of their own laboratory.

Even more strikingly, it is well known that the same data can lead to opposite
conclusions when analysed in a frequentist way. The reason is that different random
experiments can lead to the same data, whereas the parametric model employed (the
family of probability distributions f(.|θ) which is assumed to produce the data) is
linked to a specific experiment.8

Apparently, however, frequentists are just fine with this [2131].

1.3.4 No data: Modelling ignorance

The modelling of ignorance (absence of data) is a major weakness of Bayesian rea-
soning. The typical solution is to pick a so-called ‘uninformative’ prior distribution,
in particular Jeffreys’ prior, the Gramian of the Fisher information matrix I [895]:

p (θ) ∝
√

det I (θ), I(θ)
.
= E

[(
∂

∂θ
log f(X|θ)

)2 ∣∣∣∣θ
]
. (1.3)

Unfortunately, Jeffreys’ priors can be improper (unnormalised). Most importantly,
they violate the strong version of the likelihood principle: when using Jeffreys’ prior,
inferences about a parameter θ depend not just on the probability of the observed
data as a function of θ, but also on the universe Ω of all possible experimental
outcomes. The reason is that the Fisher information matrix I(θ) is computed from
an expectation (see (1.3)) over the chosen universe of discourse.

This flaw was pointed out by Glenn Shafer in his landmark book [1583], where
he noted how the Bayesian formalism cannot handle multiple hypothesis spaces
(‘families of compatible frames’, in Shafer’s terminology: see Section 2.5.2) in a
consistent way.

In Bayesian statistics, to be fair, one can prove that the asymptotic distribution
of the posterior mode depends only on the Fisher information and not on the prior
– the so-called Bernstein–von Mises theorem. The only issue is that the amount of
information supplied must be large enough. The result is also subject to the caveat
[644] that the Bernstein–von Mises theorem does not hold almost surely if the ran-
dom variable considered has a countably infinite probability space.
As A. W. F. Edwards put it [564]:

“It is sometimes said, in defence of the Bayesian concept, that the choice of
prior distribution is unimportant in practice, because it hardly influences the pos-
terior distribution at all when there are moderate amounts of data. The less said

8
http://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability-\

and-statistics-spring-2014/readings/MIT18_05S14_Reading20.pdf

http://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability- \ and-statistics-spring-2014/readings/MIT18_05S14_Reading20.pdf
http://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability- \ and-statistics-spring-2014/readings/MIT18_05S14_Reading20.pdf
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about this ‘defence’ the better.”

In actual fact, ‘uninformative’ priors can be dangerous, i.e., they may bias the rea-
soning process so badly that it can recover only asymptotically.9

As we will see in this book, instead, reasoning with belief functions does not
require any prior. Belief functions encoding the available evidence are simply com-
bined as they are, whereas ignorance is naturally represented by the ‘vacuous’ belief
function, which assigns a mass equal to 1 to the whole hypothesis space.

1.3.5 Set-valued observations: The cloaked die

A die (Fig. 1.3) provides a simple example of a (discrete) random variable. Its prob-
ability space is defined on the sample space Ω = {face1, face 2, . . . , face 6}, whose
elements are mapped to the real numbers 1, 2, · · · , 6, respectively (no need to con-
sider measurability here).

face 1

face 2
face 3

face 4

face 5

face 6

1 2 3 4 5

X

6

Ω

Fig. 1.3: The random variable X associated with a die.

Now, imagine that faces 1 and 2 are cloaked, and we roll the die. How do we
model this new experiment, mathematically? Actually, the probability space has not
changed (as the physical die has not been altered, its faces still have the same prob-
abilities). What has changes is the mapping: since we cannot observe the outcome
when a cloaked face is shown (we assume that only the top face is observable),
both face 1 and face 2 (as elements of Ω) are mapped to the set of possible val-
ues {1, 2} on the real line R (Fig. 1.4). Mathematically, this is called a random set
[1268, 950, 1344, 1304], i.e., a set-valued random variable.

A more realistic scenario is that in which we roll, say, four dice in such a way
that for some the top face is occluded, but some of the side faces are still visible,
providing information about the outcome. For instance, I might be able to see the
top face of the Red die as , the Green die as and the Purple die as but, say,
not the outcome of the Blue die. Still, if I happen to observe the side faces and
of Blue, I can deduce that the outcome of Blue is in the set {2, 4, 5, 6}.

9
http://andrewgelman.com/2013/11/21/hidden-dangers-noninformative-priors/.

http://andrewgelman.com/2013/11/21/hidden-dangers-noninformative-priors/
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face 1

face 2
face 3

face 4

face 5

face 6

1 2 3 4 5

X

6

Ω

Fig. 1.4: The random set (set-valued random variable) associated with the cloaked
die in which faces 1 and 2 are not visible.

This is just an example of a very common situation called missing data: for part
of the sample that I need to observe in order to make my inference, the data are partly
or totally missing. Missing data appear (or disappear?) everywhere in science and
engineering. In computer vision, for instance, this phenomenon is typically called
‘occlusion’ and is one of the main nuisance factors in estimation.

The bottom line is, whenever data are missing, observations are inherently set-
valued. Mathematically, we are sampling not a (scalar) random variable but a set-
valued random variable – a random set. My outcomes are sets? My probability dis-
tribution has to be defined on sets.

In opposition, traditional statistical approaches deal with missing data either by
deletion (discarding any case that has a missing value, which may introduce bias or
affect the representativeness of the results); by single imputation (replacing a miss-
ing value with another one, e.g. from a randomly selected similar record in the same
dataset, with the mean of that variable for all other cases, or by using a stochastic
regression model); or multiple imputation (averaging the outcomes across multi-
ple imputed datasets using, for instance, stochastic regression). Multiple imputation
involves drawing values of the parameters from a posterior distribution, therefore
simulating both the process generating the data and the uncertainty associated with
the parameters of the probability distribution of the data.

When using random sets, there is no need for imputation or deletion whatsoever.
All observations are set-valued: some of them just happen to be pointwise. Indeed,
when part of the data used to estimate a probability distribution is missing, it has
been shown that what we obtain instead is a convex set of probabilities or credal set
[1141] (see Section 3.1.4), of the type associated with a belief function [401].

1.3.6 Propositional data

Just as measurements are naturally set-valued, in various scenarios evidence is di-
rectly supportive of propositions. Consider the following classical example [1607].

Suppose there is a murder, and three people are on trial for it: Peter, John and
Mary. Our hypothesis space is therefore Θ = {Peter, John,Mary}. There is a wit-
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ness: he testifies that the person he saw was a man. This amounts to supporting the
proposition A = {Peter, John} ⊂ Θ. However, should we take this testimony at
face value? In fact, the witness was tested and the machine reported an 80% chance
that he was drunk when he reported the crime. As a result, we should partly support
the (vacuous) hypothesis that any one among Peter, John and Mary could be the
murderer. It seems sensible to assign 80% chance to propositionA, and 20% chance
to proposition Θ (compare Chapter 2, Fig. 2.1).

This example tells us that, even when the evidence (our data) supports whole
propositions, Kolmogorov’s additive probability theory forces us to specify sup-
port for individual outcomes. This is unreasonable – an artificial constraint due to
a mathematical model that is not general enough. In the example, we have no ele-
ments to assign this 80% probability to either Peter or John, nor information on how
to distribute it among them. The cause is the additivity constraint that probability
measures are subject to.

Kolmogorov’s probability measures, however, are not the only or the most gen-
eral type of measure available for sets. Under a minimal requirement of mono-
toniticy, any measure can potentially be suitable for describing probabilities of
events: the resulting mathematical objects are called capacities (see Fig. 1.5). We
will study capacities in more detail in Chapter 6. For the moment, it suffices to note
that random sets are capacities, those for which the numbers assigned to events are
given by a probability distribution. Considered as capacities (and random sets in
particular), belief functions therefore naturally allow us to assign mass directly to
propositions.

0

1
μ

μ(A)

A
BΘ

μ(B)

Fig. 1.5: A capacity µ is a mapping from 2Θ to [0, 1], such that if A ⊂ B, then
µ(A) ≤ µ(B).

1.3.7 Scarce data: Beware the size of the sample

The current debate on the likelihood of biological life in the universe is an extreme
example of inference from very scarce data. How likely is it for a planet to give birth
to life forms? Modern analysis of planetary habitability is largely an extrapolation
of conditions on Earth and the characteristics of the Solar System: a weak form of
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the old anthropic principle, so to speak. What people seem to do is model perfectly
the (presumed) causes of the emergence of life on Earth: the planet needs to circle a
G-class star, in the right galactic neighbourhood, it needs to be in a certain habitable
zone around a star, have a large moon to deflect hazardous impact events, . . . The
question arises: how much can one learn from a single example? More, how much
can one be sure about what they have learned from very few examples?

Another example is provided by the field of machine learning, the subfield of
computer science which is about designing algorithms that can learn from what they
observe. The main issue there is that machine learning models are typically trained
on ridiculously small amount of data, compared with the wealth of information truly
contained in the real world. Action recognition tools, for instance, are trained (and
tested) on benchmark datasets that contain, at best, a few tens of thousands of videos
– compare that with the billions of videos one can access on YouTube. How can we
make sure that they learn the right lesson? Should they not aim to work with sets of
models rather than precise models?

As we will see in Chapter 17, random set theory can provide more robust foun-
dations for machine learning ‘in the wild’.10 Statistical learning theory [1849, 1851,
1850] derives generalisation bounds on the error committed by trained models on
new test data by assuming that the training and test distributions are the same. In op-
position, assuming that both distributions, while distinct, belong to a given random
set allows us to compute bounds which are more robust to real-world situations –
this concept is illustrated in Fig. 1.6.

Training
distribution

Test
distribution

Training
samples Test

samples

Probability
simplex

Random set

Fig. 1.6: A random-set generalisation of statistical learning theory, as proposed in
Chapter 17.

Constraints on ‘true’ distributions From a statistical point of view, one can object
that, even assuming that the natural description of the variability of phenomena is
a probability distribution, under the law of large numbers probability distributions

10
http://lcfi.ac.uk/news-events/events/reliable-machine-learning-wild/.

http://lcfi.ac.uk/news-events/events/reliable-machine-learning-wild/
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are the outcome of an infinite process of evidence accumulation, drawn from an
infinite series of samples. In all practical cases, then, the available evidence may
only provide some sort of constraint on the unknown, ‘true’ probability governing
the process [1589]. Klir [988], among others, has indeed argued that ‘imprecision
of probabilities is needed to reflect the amount of information on which they are
based. [This] imprecision should decrease with the amount of [available] statistical
information.’

Unfortunately, those who believe probabilities to be limits of relative frequencies
(the frequentists) never really ‘estimate’ a probability from the data – they merely
assume (‘design’) probability distributions for their p-values, and test their hypothe-
ses on them. In opposition, those who do estimate probability distributions from the
data (the Bayesians) do not think of probabilities as infinite accumulations of evi-
dence but as degrees of belief, and content themselves with being able to model the
likelihood function of the data.

Both frequentists and Bayesians, though, seem to be happy with solving their
problems ‘asymptotically’, thanks to the limit properties of maximum likelihood es-
timation, and the Bernstein–von Mises theorem’s guarantees on the limit behaviour
of posterior distributions. This hardly fits with current artificial intelligence appli-
cations, for instance, in which machines need to make decisions on the spot to the
best of their abilities.

Logistic regression In fact, frequentists do estimate probabilities from scarce data
when performing stochastic regression.

Logistic regression, in particular, allows us, given a sample Y = {Y1, . . . , Yn},
X = {x1, . . . , xn}, where Yi ∈ {0, 1} is a binary outcome at time i and xi is
the corresponding measurement, to learn the parameters of a conditional probability
relation between the two, of the form

P (Y = 1|x) =
1

1 + e−(β0+β1x)
, (1.4)

where β0 and β1 are two scalar parameters. Given a new observation x, (1.4) delivers
the probability of a positive outcome Y = 1. Logistic regression generalises deter-
ministic linear regression, as it is a function of the linear combination β0 +β1x. The
n trials are assumed independent but not equally distributed, for πi = P (Yi = 1|xi)
varies with the index i (i.e., the time instant of collection): see Fig. 1.7.

The parameters β0, β1 of the logistic function (1.4) are estimated by the maxi-
mum likelihood of the sample, where the likelihood is given by

L(β|Y ) =
n∏
i=1

πYii (1− πi)Yi .

Unfortunately, logistic regression appears inadequate when the number of sam-
ples is insufficient or when there are too few positive outcomes (1s) [970]. Also,
inference by logistic regression tends to underestimate the probability of a positive
outcome (see Section 1.3.8).
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Fig. 1.7: Logistic regression and the notion of a ‘rare’ event.

Confidence intervals A major tool by which frequentists deal with the size of the
sample is confidence intervals.

Let X be a sample from a probability P (.|θ, φ) where θ is the parameter to
be estimated and φ a nuisance parameter. A confidence interval for the parameter
θ, with confidence level γ, is an interval [u(X), v(X)] determined by the pair of
random variables u(X) and v(X), with the property

P(u(X) < θ < v(X)|θ, φ) = γ ∀(θ, φ). (1.5)

For instance, suppose we observe the weight of 25 cups of tea, and we assume it
is normally distributed with mean µ. Since the (normalised) sample mean Z is also
normally distributed, we can ask, for instance, what values of the mean are such that
P (−z ≤ Z ≤ z) = 0.95. Since Z = (X − µ)/(σ/

√
n), this yields a (confidence)

interval for µ, namely

P (X − 0.98 ≤ µ ≤ X + 0.98).

Confidence intervals are a form of interval estimate. Their correct interpretation
is about ‘sampling samples’: if we keep extracting new sample sets, 95% (say) of
the time the confidence interval (which will differ for every new sample set) will
cover the true value of the parameter. Alternatively, there is a 95% probability that
the calculated confidence interval from some future experiment will encompass the
true value of the parameter. One cannot claim, instead, that a specific confidence
interval is such that it contains the value of the parameter with 95% probability.

A Bayesian version of confidence intervals also exists, under the name of credi-
ble11 intervals.

1.3.8 Unusual data: Rare events

While the term ‘scarce data’ denotes situations in which data are of insufficient
quantity, rare events [587] denotes cases in which the training data are of insufficient

11
https://www.coursera.org/learn/bayesian/lecture/hWn0t/credible-intervals.

https://www.coursera.org/learn/bayesian/lecture/hWn0t/credible-intervals
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quality, in the sense that they do not properly reflect the underlying distribution. An
equivalent term, coined by Nassim Nicholas Taleb, is ‘black swans’. This refers
to an unpredictable event (also called a ‘tail risk’) which, once it has occurred, is
(wrongly) rationalised in hindsight as being predictable/describable by the existing
risk models. Basically, Knightian uncertainty is presumed not to exist, typically with
extremely serious consequences. Examples include financial crises and plagues, but
also unexpected scientific or societal developments. In the most extreme cases, these
events may have never even occurred: this is the case for the question ‘will your
vote will be decisive in the next presidential election?’ posed by Gelman and King
in [673].

What does consitute a ‘rare’ event? We can say that an event is ‘rare’ when
it covers a region of the hypothesis space which is seldom sampled. Although such
events hardly ever take place when a single system is considered, they become a tan-
gible possibility when very many systems are assembled together (as is the case in
the real world). Given the rarity of samples of extreme behaviours (tsunamis, power
station meltdowns, etc.), scientists are forced to infer probability distributions for
the behaviour of these systems using information captured in ‘normal’ times (e.g.
while a nuclear power plant is working just fine). Using these distributions to extrap-
olate results at the ‘tail’ of the curve via popular statistical procedures (e.g. logistic
regression, Section 1.3.7) may then lead to sharply underestimating the probability
of rare events [970] (see Fig. 1.7 again for an illustration). In response, Harvard’s G.
King [970] proposed corrections to logistic regression based on oversampling rare
events (represented by 1s) with respect to normal events (0s). Other people choose
to drop generative probabilistic models entirely, in favour of discriminative ones
[74]. Once again, the root cause of the problem is that uncertainty affects our very
models of uncertainty.

Possibly the most straightforward way of explictly modelling second-order
(Knightian) uncertainties is to consider sets of probability distributions, objects
which go under the name of credal sets. In Chapter 17 we will show instead how
belief functions allow us to model this model-level uncertainty, specifically in the
case of logistic regression.

1.3.9 Uncertain data

When discussing how different mathematical frameworks cope with scarce or un-
usual data, we have implicitly assumed, so far, that information comes in the form
of certainty: for example, I measure a vector quantity x, so that my conditioning
event is A = {x} and I can apply Bayes’ rule to update my belief about the state
of the world. Indeed this is the way Bayes’ rule is used by Bayesians to reason (in
time) when new evidence becomes available. Frequentists, on the other hand, use it
to condition a parametric distribution on the gathered (certain) measurements and
generate p-values (recall Section 1.2.3).

In many situations this is quite reasonable: in science and engineering, measure-
ments, which are assumed to be accurate, flow in as a form of ‘certain’ (or so it is
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often assumed) evidence. Thus, one can apply Bayes’ rule to condition a paramet-
ric model given a sample of such measurements x1, . . . , xT to construct likelihood
functions (or p-values, if you are a frequentist).

Qualitative data In many real-world problems, though, the information provided
cannot be put in a similar form. For instance, concepts themselves may be not well
defined, for example ‘this object is dark’ or ‘it is somewhat round’: in the literature,
this is referred to as qualitative data. Qualitative data are common in decision mak-
ing, in which expert surveys act as sources of evidence, but can hardly be put into
the form of measurements equal to sharp values.

As we will see in Section 6.5, fuzzy theory [2083, 973, 531] is able to account
for not-well-defined concepts via the notion of graded membership of a set (e.g. by
assigning every element of the sample space a certain degree of membership in any
given set).

Unreliable data Thinking of measurements produced by sensor equipment as ‘cer-
tain’ pieces of information is also an idealisation. Sensors are not perfect but come
with a certain degree of reliability. Unreliable sensors can then generate faulty (out-
lier) measurements: can we still treat these data as ‘certain’? They should rather be
assimilated to false statements issued with apparent confidence.

It then seems to be more sensible to attach a degree of reliability to any measure-
ments, based on the past track record of the data-generating process producing them.
The question is: can we still update our knowledge state using partly reliable data in
the same way as we do with certain propositions, i.e., by conditioning probabilities
via Bayes’ rule?

Likelihood data Last but not least, evidence is often provided directly in the form
of whole probability distributions. For instance, ‘experts’ (e.g. medical doctors) tend
to express themselves directly in terms of chances of an event happening (e.g. ‘di-
agnosis A is most likely given the symptoms, otherwise it is either A or B’, or ‘there
is an 80% chance this is a bacterial infection’). If the doctors were frequentists, pro-
vided with the same data, they would probably apply logistic regression and come
up with the same prediction about the conditional probabilityP (disease|symptoms):
unfortunately, doctors are not statisticians.

In addition, sensors may also provide as output a probability density function
(PDF) on the same sample space: think of two separate Kalman filters, one based
on colour, the other on motion (optical flow), providing a Gaussian predictive PDF
on the location of a target in an image.

Jeffrey’s rule of conditioning Jeffrey’s rule of conditioning [1690, 1227] is a step
forward from certainty and Bayes’ rule towards being able to cope with uncertain
data, in particular when the latter comes in the form of another probability distribu-
tion. According to this rule, an initial probability P ‘stands corrected’ by a second
probability P ′, defined only on a certain number of events.
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Namely, suppose that P is defined on a σ-algebra A, and that there is a new
probability measure P ′ on a subalgebra B of A.
If we require that the updated probability P ′′

1. has the probability values specified by P ′ for events in B, and
2. is such that ∀B ∈ B, X,Y ⊂ B, X,Y ∈ A,

P ′′(X)

P ′′(Y )
=

{
P (X)
P (Y ) if P (Y ) > 0,

0 if P (Y ) = 0,

then the problem has a unique solution, given by

P ′′(A) =
∑
B∈B

P (A|B)P ′(B). (1.6)

Equation (1.6) is sometimes also called the law of total probability, and obvi-
ously generalises Bayesian conditioning (obtained when P ′(B) = 1 for some B).

Beyond Jeffrey’s rule What if the new probability P ′ is defined on the same σ-
algebra A? Jeffrey’s rule cannot be applied. As we have pointed out, however, this
does happen when multiple sensors provide predictive PDFs on the same sample
space.

Belief functions deal with uncertain evidence by moving away from the concept
of conditioning (e.g., via Bayes’ rule) to that of combining pieces of evidence simul-
taneously supporting multiple propositions to various degrees. While conditioning
is an inherently asymmetric operation, in which the current state of the world and
the new evidence are represented by a probability distribution and a single event,
respectively, combination in belief function reasoning is completely symmetric, as
both the current beliefs about the state of the world and the new evidence are repre-
sented by a belief function.

Belief functions are naturally capable of encoding uncertain evidence of the
kinds discussed above (vague concepts, unreliable data, likelihoods), as well as of
representing traditional ‘certain’ events. Qualitative concepts, for instance, are rep-
resented in the formalism by consonant belief functions (Section 2.8), in which the
supported events are nested – unreliable measurements can be naturally portrayed
as ‘discounted’ probabilities (see Section 4.3.6).

1.3.10 Knightian uncertainty

Second-order uncertainty is real, as demonstrated by its effect on human behaviour,
especially when it comes to decision making. A classical example of how Knightian
uncertainty empirically affects human decision making is provided by Ellsberg’s
paradox [565].
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Ellsberg’s paradox A decision problem can be formalised by defining:

– a set Ω of states of the world;
– a set X of consequences;
– a set F of acts, where an act is a function f : Ω → X .

Let < be a preference relation on F , such that f < g means that f is at least as
desirable as g. Given f, h ∈ F and E ⊆ Ω, let fEh denote the act defined by

(fEh)(ω) =

{
f(ω) if ω ∈ E,
h(ω) if ω 6∈ E. (1.7)

Savage’s sure-thing principle [1411] states that ∀E, ∀f, g, h, h′,

fEh < gEh⇒ fEh′ < gEh′.

= 30 = 60+

Fig. 1.8: Ellsberg’s paradox.

Now, suppose you have an urn containing 30 red balls and 60 balls which are
either black or yellow (see Fig. 1.8). Then, consider the following gambles:

– f1: you receive 100 euros if you draw a red (R) ball;
– f2: you receive 100 euros if you draw a black (B) ball;
– f3: you receive 100 euros if you draw a red or a yellow (Y ) ball;
– f4: you receive 100 euros if you draw a black or a yellow ball.

In this example, Ω = {R,B, Y }, fi : Ω → R and X = R (consequences are
measured in terms of monetary returns). The four acts correspond to the mappings
in the following table:

R B Y
f1 100 0 0
f2 0 100 0
f3 100 0 100
f4 0 100 100

Empirically, it is observed that most people strictly prefer f1 to f2, while strictly
preferring f4 to f3. Now, pick E = {R,B}. By the definition (1.7),
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f1{R,B}0 = f1, f2{R,B}0 = f2, f1{R,B}100 = f3, f2{R,B}100 = f4.

Since f1 < f2, i.e., f1{R,B}0 < f2{R,B}0, the sure-thing principle would imply
that f1{R,B}100 < f2{R,B}100, i.e., f3 < f4. This empirical violation of the
sure-thing principle is what constitutes the so-called Ellsberg paradox.

Aversion to ‘uncertainty’ The argument above has been widely studied in eco-
nomics and decision making,12 and has to do with people’s instinctive aversion to
(second-order) uncertainty. They favour f1 over f2 because the former ensures a
guaranteed 1

3 chance of winning, while the latter is associated with a (balanced) in-
terval of chances between 0 and 2

3 . Although the average probability of success is
still 1

3 , the lower bound is 0 – people tend to find that unacceptable.
Investors, for instance, are known to favour ‘certainty’ over ‘uncertainty’. This

was apparent, for instance, from their reaction to the UK referendum on leaving the
European Union:

“In New York, a recent meeting of S&P Investment Advisory Services five-strong
investment committee decided to ignore the portfolio changes that its computer-
driven investment models were advising. Instead, members decided not to make any
big changes ahead of the vote.”13

Does certainty, in this context, mean a certain outcome of an investor’s gamble?
Certainly not. It means that investors are confident that their models can fit the ob-
served patterns of variation. In the presence of Knightian uncertainty, human beings
assume a more cautious, conservative behaviour.

Climate change An emblematic application in which second-order uncertainty is
paramount is climate change modelling. Admittedly, this constitutes an extremely
challenging decision-making problem, where policy makers need to decide whether
to invest billions of dollars/euros/pounds in expensive engineering projects to miti-
gate the effects of climate change, knowing that the outcomes of their decision will
be apparent only in twenty to thirty years’ time.

Rather surprisingly, the mainstream in climate change modelling is not about
explicitly modelling uncertainty at all: the onus is really on developing ever more
complex dynamical models of the environment and validating their predictions. This
is all the more surprising as it is well known that even deterministic (but nonlinear)
models tend to display chaotic behaviour, which induces uncertainty in predictions
of their future state whenever initial conditions are not known with certainty. Cli-
mate change, in particular, requires making predictions very far off in the future:
as dynamical models are obviously much simplified versions of the world, they be-
come more and more inaccurate as time passes.

What are the challenges of modelling statistical uncertainty explicitly, in this
context? First of all, the lack of priors (ouch, Bayesians!) for the climate space,

12
http://www.econ.ucla.edu/workingpapers/wp362.pdf.

13
http://www.wsj.com/articles/global-investors-wake-up-to-brexit-threat\

-1466080015.

http://www.econ.ucla.edu/workingpapers/wp362.pdf
http://www.wsj.com/articles/global-investors-wake-up-to-brexit-threat\-1466080015
http://www.wsj.com/articles/global-investors-wake-up-to-brexit-threat\-1466080015


1.4 Mathematics (plural) of uncertainty 23

whose points are very long vectors whose components are linked by complex depen-
dencies. Data are also relatively scarce, especially as we go back in time: as we just
saw, scarcity is a source of Knightian uncertainty as it puts constraints on our abil-
ity to estimate probability distributions. Finally, hypothesis testing cannot really be
used either (too bad, frequentists!): this is clearly not a designed experiment where
one can make sensible assumptions about the underlying data-generating mecha-
nism.

1.4 Mathematics (plural) of uncertainty

It is fair to summarise the situation by concluding that something is wrong with both
Kolmogorov’s mathematical probability and its most common interpretations.

As discussed in our Preface, this realisation has led many authors to recognise
the need for a mathematical theory of uncertainty capable of overcoming the limi-
tations of classical mathematical probability. While the most significant approaches
have been briefly recalled there, Chapter 6 is devoted to a more in-depth overview
of the various strands of uncertainty theory.

1.4.1 Debate on uncertainty theory

Authors from a variety of disciplines, including, statistics, philosophy, cognitive
science, business and computer science, have fuelled a lively debate [890] on the
nature and relationships of the various approaches to uncertainty quantification, a
debate which to a large extent is still open.

Back in 1982, a seminal paper by psychologists Kahneman and Tversky [943]
proposed, in stark contrast to formal theories of judgement and decision, a formali-
sation of uncertainty which contemplates different variants associated with frequen-
cies, propensities, the strength of arguments or direct experiences of confidence.

Bayesian probability: Detractors and supporters A number of authors have pro-
vided arguments for and against (Bayesian) probability as the method of choice for
representing uncertainty.

Cheeseman, for instance, has argued that probability theory, when used cor-
rectly, is sufficient for the task of reasoning under uncertainty [255] (‘In defense
of probability’), while advocating the interpretation of probability as a measure of
belief rather than a frequency ratio. In opposition, in his ‘The limitation of Bayesian-
ism’ [1893], Wang has pointed out a conceptual and notational confusion between
the explicit and the implicit condition of a probability evaluation, which leads to
seriously underestimating the limitations of Bayesianism. The same author [1892]
had previously argued that psychological evidence shows that probability theory is
not a proper descriptive model of intuitive human judgement, and has limitations
even as a normative model. A new normative model of judgement under uncertainty
was then designed under the assumption that the system’s knowledge and resources
are insufficient with respect to the questions that the system needs to answer.
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In his response to Shafer’s brief note [1590] on Lindley’s paradox (see Sec-
tion 1.2.6), Lindley himself [426] argued that the Bayesian approach comes out of
Shafer’s criticism quite well. Indeed, Lindley’s paradox has been the subject of a
long list of analyses [828, 706, 1828].

More recently (2006), Forster [635] has considered from a philosophical per-
spective what he called the likelihood theory of evidence [87], which claims that all
the information relevant to the bearing of data on hypotheses is contained in the like-
lihoods, showing that there exist counter-examples in which one can tell which of
two hypotheses is true from the full data, but not from the likelihoods alone. These
examples suggest that some forms of scientific reasoning, such as the consilience
of inductions [1619], cannot be represented within the Bayesian and likelihoodist
philosophies of science.

Relations between uncertainty calculi A number of papers have presented at-
tempts to understand the relationships between apparently different uncertainty rep-
resentations. In an interesting 1986 essay, for instance, Horvitz [841] explored the
logical relationship between a small number of intuitive properties for belief mea-
sures and the axioms of probability theory, and discussed its relevance to research
on reasoning under uncertainty.

In [822], Henkind analysed four of (what were then) the more prominent uncer-
tainty calculi: Dempster–Shafer theory, fuzzy set theory, and the early expert sys-
tems MYCIN [200, 778] and EMYCIN. His conclusion was that there does not seem
to be one calculus that is the best for all situations. Other investigators, including
Zimmerman, have supported an application-oriented view of modelling uncertainty,
according to which the choice of the appropriate modelling method is context depen-
dent. In [2132], he suggested an approach to selecting a suitable method to model
uncertainty as a function of the context. Pearl’s 1988 survey of evidential reasoning
under uncertainty [1401] highlighted a number of selected issues and trends, con-
trasting what he called extensional approaches (based on rule-based systems, in the
tradition of classical logic) with intensional frameworks (which focus on ‘states of
the world’), and focusing on the computational aspects of the latter methods and of
belief networks of both the Bayesian and the Dempster–Shafer type.

Dubois and Prade [540] pointed out some difficulties faced by non-classical
probabilistic methods, due to their relative lack of maturity. A comparison between
the mathematical models of expert opinion pooling offered by Bayesian proba-
bilities, belief functions and possibility theory was carried out, proving that the
Bayesian approach suffers from the same numerical stability problems as possi-
bilistic and evidential rules of combination in the presence of strongly conflicting
information. It was also suggested that possibility and evidence theories may of-
fer a more flexible framework for representing and combining subjective uncertain
judgements than the framework of subjective probability alone.

Kyburg [1088] also explored the relations between different uncertainty for-
malisms, advocating that they should all be thought of as special cases of sets of
probability functions defined on an algebra of statements. Thus, interval probabil-
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ities should be construed as maximum and minimum probabilities within a set of
distributions, belief functions should be construed as lower probabilities, etc.

Philippe Smets [1702], on his side, surveyed various forms of imperfect data,
classified into either imprecision, inconsistency or uncertainty. He argued that the
greatest danger in approximate reasoning is the use of inappropriate, unjustified
models, and made a case against adopting a single model and using it in all contexts
(or, worse, using all models in a somewhat random way) [1684]. The reason is
that ignorance, uncertainty and vagueness are really different notions which require
different approaches. He advised that, before using a quantified model, we should:

1. Provide canonical examples justifying the origin of the numbers used.
2. Justify the fundamental axioms of the model and their consequences, via ‘natu-

ral’ requirements.
3. Study the consequence of the derived models in practical contexts to check their

validity and appropriateness.

A common error, he insisted, consists in accepting a model because it ‘worked’
nicely in the past, as empirical results can only falsify a model, not prove that it is
correct.

Approximate reasoning Several papers have dealt with the issue of uncertainty in
the context of artificial intelligence, expert systems or, as it is sometimes referred
to, approximate reasoning.

In a 1987 work, Shafer [1597] discussed the challenges arising from the inter-
action of artificial intelligence and probability, identifying in particular the issue
of building systems that can design probability arguments. Thompson [1816], after
acknowledging that there was no general consensus on how best to attack eviden-
tial reasoning, proposed a general paradigm robust enough to be of practical use,
and used it to formulate classical Bayes, convex Bayes, Dempster–Shafer, Kyburg
and possibility approaches in a parallel fashion in order to identify key assumptions,
similarities and differences. Ruspini [1512] argued in 1991 that approximate reason-
ing methods are sound techniques that describe the properties of a set of conceivable
states of a real-world system, using a common framework based on the logical no-
tion of ‘possible worlds’. In his 1993 book, Krause [1067] supported the view that
an eclectic approach is required to represent and reason under the many facets of
uncertainty. Rather than the technical aspects, that book focuses on the foundations
and intuitions behind the various schools. Chapter 4 of it, ‘Epistemic probability:
The Dempster–Shafer theory of evidence’, is devoted entirely to belief theory.

The recent debate A more recent publication by Castelfranchi et al. [235], has
focused on the central role of ‘expectations’ in mental life and in purposive action,
reducing them in terms of more elementary ingredients, such as beliefs and goals.
There, the authors allow the possibility that beliefs in a proposition and its negation
do not add up to one, as in the belief function framework.

Gelman [672] has pointed out the difficulties with both robust Bayes and be-
lief function approaches, using a simple example involving a coin flip and a box-
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ing/wrestling match. His conclusions are that robust Bayes approaches allow ig-
norance to spread too broadly, whereas belief functions inappropriately collapse to
simple Bayesian models.

Keppens [956] has argued that the use of subjective probabilities in evidential
reasoning (in particular for crime investigation) is inevitable for several reasons,
including lack of data, non-specificity of phenomena and fuzziness of concepts in
this domain. His paper argues that different approaches to subjective probability are
really concerned with different aspects of vagueness.

1.4.2 Belief, evidence and probability

As recalled in the Preface, this book mostly focuses on the theory of belief functions,
one of the most widely adopted formalisms for a mathematics of uncertainty, its
geometric interpretation and its links with other uncertainty theories.

Belief functions as random sets The notion of a belief function originally derives
from a series of seminal publications [415, 417, 418] by Arthur Dempster on upper
and lower probabilities induced by multivalued mappings. Given a probability dis-
tribution p on a certain sample space, and a one-to-many map from such a sample
space to another domain, p induces a probability distribution (a mass assignment)
on the power set of the latter [415], i.e., a random set [1268, 1344]. A very simple
example of such a mapping was given in the cloaked die example (Figure 1.4).

The term belief function was coined by Glenn Shafer [1583], who proposed to
adopt these mathematical objects to represent evidence in the framework of sub-
jective probability, and gave an axiomatic definition of them as non-additive (in-
deed, superadditive) probability measures. As mentioned when recalling Jeffrey’s
rule (Section 1.3.9), in belief theory conditioning (with respect to an event) is re-
placed by combination (of pieces of evidence, represented by belief functions).

As a result, as we will see in more detail in Part I, the theory of belief functions
addresses all the issues with the handling of uncertainty we discussed in this Intro-
duction. It does not assume an infinite amount of evidence to model imprecision, but
uses all the available partial evidence, coping with missing data in the most natural
of ways. It properly represents ignorance by assigning mass to the whole sample
space or ‘frame of discernment’, and can coherently represent evidence on different
but compatible domains. Furthermore, as a straightforward generalisation of proba-
bility theory, its rationale is rather neat and does not require us to entirely abandon
the notion of an event (as opposed to Walley’s imprecise probability theory [1874]),
although it can be extended to assign basic probabilities to real-valued functions
[153, 1078] rather than events. Finally, it contains as special cases both fuzzy set
theory and possibility theory.

Belief theory as evidential probability Shafer called his 1976 proposal [1583] ‘A
mathematical theory of evidence’, whereas the mathematical objects it deals with
are termed ‘belief functions’. Where do these names come from, and what interpre-
tation of probability (in its wider sense) do they entail?
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In fact, belief theory is a theory of epistemic probability: it is about probabilities
as a mathematical representation of knowledge (never mind whether it is a human’s
knowledge or a machine’s). Belief is often defined as a state of mind in which a
person thinks something to be the case, with or without there being empirical evi-
dence in support. Knowledge is a rather more controversial notion, for it is regarded
by some as the part of belief that is true, while others consider it as that part of
belief which is justified to be true. Epistemology is the branch of philosophy con-
cerned with the theory of knowledge. Epistemic probability (Fig. 1.9) is the study
of probability as a representation of knowledge.

Evidence

Truth

Knowledge

Probabilistic
knowledge Belief

Fig. 1.9: Belief function theory is an instance of evidential, epistemic probability.

The theory of evidence is also, as the name itself suggests, a theory of eviden-
tial probability: one in which the probabilities representing one’s knowledge are
induced (‘elicited’) by the evidence at hand. In probabilistic logic [586, 205], state-
ments such as ‘hypothesis H is probably true’ are interpreted to mean that the em-
pirical evidence E supports hypothesis H to a high degree – this degree of support
is called the epistemic probability of H given E. As a matter of fact, Pearl and oth-
ers [1405, 1682, 137] have supported a view of belief functions as probabilities on
the logical causes of a certain proposition (the so-called probability of provability
interpretation), closely related to modal logic [800].

The rationale for belief function theory can thus be summarised as follows: there
exists evidence in the form of probabilities, which supports degrees of belief on the
matter at hand. The space where the (probabilistic) evidence lives is different from
the hypothesis space (where belief measures are defined). The two spaces are linked
by a one-to-many map, yielding a mathematical object known as a random set [415].
In Chapter 2 we will recall the basic elements of the theory of evidence and the
related mathematical definitions.


