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Abstract

Five to six percent of young people have movement impairment (MI) associated with

reduced exercise tolerance and physical activity levels which persist into adulthood. To bet-

ter understand the exercise experience in MI, we determined the physiological and percep-

tual responses during and following a bout of exercise performed at different intensities

typically experienced during sport in youth with MI. Thirty-eight adolescents (11–18 years)

categorised on the Bruininks-Oseretsky Test of Motor Proficiency-2 Short-Form performed

a peak oxygen uptake bike test ( _VO2peak) test at visit 1 (V1). At visits 2 (V2) and 3 (V3), partic-

ipants were randomly assigned to both low-intensity (LI) 30min exercise at 50% peak power

output (PPO50%) and high-intensity (HI) 30s cycling at PPO100%, interspersed with 30s rest,

for 30min protocol (matched for total work). Heart rate (HR) and rating of perceived exertion

(RPE) for legs, breathing and overall was measured before, during and at 1, 3 and 7-min

post-exercise (P1, P3, P7). There was a significant difference in _VO2peak between groups

(MI:31.5±9.2 vs. NMI:40.0±9.5ml�kg-1�min-1, p<0.05). PPO was significantly lower in MI

group (MI:157±61 vs. NMI:216±57 W)(p<0.05). HRavg during HI-cycling was reduced in MI

(140±18 vs. 157±14bpm, p<0.05), but not LI (133±18 vs. 143±17bpm, p>0.05). Both groups

experienced similar RPE for breathing and overall (MI:7.0±3.0 vs. NMI:6.0±2.0, p>0.05) at

both intensities, but reported higher legs RPE towards the end (p<0.01). Significant differ-

ences were found in HRrecovery at P1 post-HI (MI:128±25.9 vs. NMI:154±20.2, p<0.05) but

not for legs RPE. Perceived fatigue appears to limit exercise in youth with MI in both high

and low-intensity exercise types. Our findings suggest interventions reducing perceived

fatigue during exercise may improve exercise tolerance and positively impact on engage-

ment in physical activities.
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Introduction

Motor coordination deficits and inefficient movement patterns are notable contributors to the

reduced exercise capacity exhibited in individuals with movement impairment (MI). Nearly

2.6 million people in the UK [1] and an estimated 6% worldwide [2] present with movement

difficulties including developmental coordination disorder (DCD) and neurodevelopmental/

neurological conditions (i.e., cerebral palsy). Children and adolescents with MI often display

insufficient physical activity (PA) levels [3–6] compared to typically developing (TD) peers

and correspondingly engage at lower intensities when participating in sports and play [7].

According to the World Health Organization (WHO), individuals between 5–17 years old

should accumulate at least 60 min of moderate-to-vigorous physical activity (MVPA) daily

and incorporate vigorous-intensity PA three days per week [8], in order to confer positive

health effects [9]. Consequently, decreased levels of PA have implications for many aspects of

children’s physical and cognitive development [10] and general health and well-being [3].

Adolescents with MI have also demonstrated higher rates of obesity compared to TD, and as a

result may lead to an increased risk for developing metabolic syndrome [11, 12]. Of added

concern is that such motor impairments and poor coordination contribute to a vicious cycle of

reduced enjoyment, tolerance and participation [13, 14], which is known to persist throughout

adolescence into adulthood [15]. However, understanding why these young people fail to meet

recommended PA levels remains a complex phenomenon influenced by a multitude of factors

[16–18].

Major factors associated with reduced PA participation in MI have been reported to relate

to exercise-induced symptoms of muscle fatigue, poor physical tolerance and lower energy lev-

els [14, 17]. This is further evidenced in the literature whereby young people with motor coor-

dination difficulties and MI commonly exhibit lower fitness (including aerobic power, muscle

strength, endurance, anaerobic power) [19, 20]. One explanation may be that children with MI

experience earlier symptoms of fatigue compared to motorically proficient peers [17]. Chil-

dren and adolescents with higher levels of MI have also demonstrated an inability to exercise

hard enough to tax the cardiovascular system despite their ability to push themselves and stress

their muscles to work anaerobically during exercise [13]. Moreover, it has been suggested that

hypoactivity presented in youth with MI, is associated with lower self-perception and poor

self-adequacy [14] and may be a significant determinant in predicting engagement in PA dur-

ing adolescence [5].

Aerobic moderate PA is a powerful stimulus for improving cognition [21] and is undisput-

edly evidenced to improve fitness, health and wellbeing [8]. Both lower-intensity PA [22] and

moderate-vigorous intensity activity approaches have equally demonstrated favorable health

benefits in TD. However, based on the findings by Morris et al. [13], utilising short duration,

HI exercise may provide a feasible method for targeting aerobic capacity and improving fitness

parameters in MI. There is emerging evidence supporting the notion that HI exercise may

serve as an effective strategy to increase muscle power and improve exercise capacity [16],

allowing untrained individuals to work harder than would otherwise be possible at a steady-

state intensity [16, 23]. Intermittent exercise is hypothesised to be easier for less trained indi-

viduals whilst inducing similar or even superior physiological benefits on oxidative capacity

and endurance performance [18]. Several studies have already highlighted the positive effects

of high-intensity training (HIT) on improving measures of physical fitness and cardiometa-

bolic risk factors [16, 23, 24] in TD children. In comparison to moderate intensity levels the

potential advantages of HIT are the purported time-efficiency of the exercise modality and the

enjoyment associated with this form of training [16, 25]. Despite the renewed popularity and
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interest in HI exercise, there is limited information regarding the potential injury risks and

adverse responses in youth performing higher intensities, specifically in children with MI.

According to the literature, MI may be associated with inefficient movement patterns [4,

14, 26] contributing to poorer physical tolerance and fatigue, which can be defined as an acute

impairment of exercise performance that includes both an increase in perceived effort required

to produce a power output and the eventual inability to maintain power output [27]. Fatigue

has been highlighted as a major factor affecting exercise performance in youth with MI [14,

17]. To date, the limiting factors surrounding exercise capacity in children with MI have been

suggested to be peripherally derived (e.g., local muscle fatigue) [13] and/or due to inefficiencies

in the oxygen transport system (e.g., inadequate cardiac output) [13, 26, 28]. Perceptual factors

are also known to limit exercise [29] as confirmed by pain and discomfort ratings increasing

with RPE when performing both progressive and interval exercise [30] in children and adults.

During activity, RPE represents an integration of information concerning previous experience,

whereby the self-reported changes in effort reflect the physiological and psychological pro-

cesses that under certain conditions induce fatigue [31]. To this regard, the physiological and

perceptual responses during either continuous or intermittent and more specifically with HI

or LI activities have not been described in young people with MI. A better understanding of

the exercise responses in these individuals is an important first step to help us identify how to

support these children to perform at higher intensities and engage in more physical activity.

Aims

The purpose of this study is to describe exercise responses to maximal exercise and explore the

extent of the physiological and perceptual responses during and following an acute cycling

bout of work-matched HI and LI exercise in children and adolescents with MI compared to

no-movement impairment (NMI).

Materials and methods

Procedure

This was a randomised crossover study, utilising two acute exercise exposure conditions and

approved by the University Research Ethics Committee (UREC Registration No. 130773). Par-

ticipants were recruited from local schools and a local Clinical Exercise and Rehabilitation

Unit (CLEAR) in Oxfordshire, UK. Individuals attending the CLEAR unit include children

with MI, DCD and neurological disabilities who participate in weekly gym sessions. Families

indicating that they were interested in taking part were sent separate child and parent informa-

tion sheets and gave their written consent prior to participating in the study. Participants

attended the Movement Science Laboratory for testing on three separate occasions, with

approximately seven days between each visit. Participants were asked to refrain from eating,

performing exercise or drinking caffeine in the 2 h period before attending the sessions. All

participants were fully familiarised with the testing protocol prior to data collection.

Participants

Forty-three adolescents aged 11–18 years with no known neurological condition were

recruited. For the inclusion criteria, participants were required to be able to walk with or with-

out support for at least five meters and be able to safely take part and follow a two-step instruc-

tion during testing procedures. Participants with any known contraindications to exercise

participation (i.e., muscular degenerative conditions, congenital heart disease, uncontrolled

exercise-induced asthma, chronic obstructive pulmonary disorder, uncontrolled epilepsy/on
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medication for�12 weeks) were ineligible to take part. Furthermore, participants presenting

with attentional, learning and/or mental health conditions as indicated by their parents and on

the information sheets were excluded from this study due to potential confounders when

examining perceptual responses.

Measures

Baseline measures. Baseline measures including level of movement impairment (BOT-2

SF) and _VO2peak were used to classify individuals in the MI and NMI groups and to ascertain

PPO for assignment of intensity levels (HI and LI). Assessment of movement economy or

muscular efficiency ( _VO2/W), cardiac efficiency (O2 pulse), HRpeak and RER were also mea-

sured from the _VO2peak test to establish baseline fitness parameters.

Bruininks-Oseretsky Test of Motor Proficiency 2 Short Form (BOT-2 SF). During the

first visit, the BOT-2 SF, a standardised test of motor proficiency was used to categorise level of

movement impairment [32]. Four motor area composites were included in the BOT-2 SF

encompassing; fine motor control, manual coordination, body coordination and strength and

agility. Thirteen items were individually administered as described in the test manual [32].

Raw scores for each task were converted to a point score under each subtest and summed

across to obtain a total standard score. The total standard scores were compared to normative

scores and age equivalents to determine the individual’s percentile rank and to describe overall

motor skill proficiency level. Based on the BOT-2 SF manual [32], individuals scoring below

the 17th percentile cut-off were considered to have lower motor skill proficiency [32] and cate-

gorised as MI and individuals scoring >17th percentile were indicated as having no-movement

impairment (NMI).

Exercise testing

Height (m) (Holtain stadiometer), weight (kg) (Seca scales), body mass index (BMI) (kg/m2)

and sexual maturation [33] were recorded prior to the exercise test at V1. For the purposes of

testing individuals with a wide range of movement abilities, measurement of peak oxygen

uptake ( _VO2peak) was performed with an incremental step test on a cycle ergometer (Lode

Excalibur Sport, Groningen, The Netherlands). The protocol consisted of 1 min stages after an

initial 2 min of unloaded cycling. Workload was progressed by 15–20 Watt (W) from unloaded

cycling each minute based on the height of the participant [34]. The test was terminated when

the participant reached volitional exhaustion or was unable to maintain a cadence of 60 revolu-

tions per minute (rpm) despite verbal encouragement. Oxygen uptake ( _VO2), carbon dioxide

produced ( _VCO2) and volume of expired air per minute ( _VE) were measured breath-by-breath

using an online gas analyser (Cortex Metalyser 3B, Cortex, Leipzig, Germany). Before each

testing session, the gas analysers were calibrated according to manufacturer guidelines. The

gas sample line was calibrated using gases of a known concentration and flow volume was cali-

brated using a 3 L syringe (Hans Rudolph). All participants wore a fitted face-mask covering

the nose and mouth connected to a low resistance volume transducer (Triple V, Hoechberg,

Germany). Additionally, heart rate (HR) was recorded continuously throughout the testing

using short-range telemetry (Polar S810, Finland). Oxygen uptake ( _VO2) was recorded as the

highest 30 s average of each stage, while _VO2peak was recorded as the highest 30 s average before

the termination of the test. The criteria for obtaining a _VO2peak was considered when two of

the three following criteria was achieved: 1) HR >180 beats/min [35], 2) Respiratory exchange
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ratio (RER)>-1.06 [36], and/or 3) subjective signs of exhaustion [37]. The PPO was deter-

mined as the highest workload (W) attained at _VO2peak for the completed stage.

The RER was calculated from the ratio of _VO2 to _VCO2 at each workload level throughout

the exercise test. For the measurement of muscular efficiency or the relationship between the

amount of oxygen utilised for a given work rate, the linear slope of the relationship between

_VO2 and W ( _VO2/W) was derived. Oxygen pulse (O2), a non-invasive indicator of cardiac effi-

ciency, was also calculated by dividing _VO2peak by HRpeak ( _VO2peak/HRpeak) and expressed as

mL/beat. Rating of perceived exertion (RPE) was measured at the end of each stage using the

Cart and Load Scale (CALER), which has previously been used to assess children’s perception

of effort during exercise [38].

Exercise interventions

Participants were asked to complete two experimental conditions in a randomised crossover

design for the exercise intervention including: a HI-cycling bout and a LI-bout of cycling

(Fig 1).

The exercise was performed on a cycle ergometer (Lode Excalibur Sport, Groningen, The

Netherlands) with the bike seat height adjusted to the participants’ comfort and recorded for

subsequent sessions. Participants performed the exercise at the same time of day for each

Fig 1. Diagram of the three-visit study protocol. BOT-2 SF, Bruininks-Oseretsky Test of Motor Proficiency Short Form 2; HI, High-

intensity; LI, Low-intensity; PPO, peak power output; P1, post-1 min; P3, post-3 min; P7, post-7 min _VO2max, Peak oxygen uptake.

https://doi.org/10.1371/journal.pone.0195944.g001
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session under standard temperature conditions in the laboratory (~20–22 ˚C). For the HI ses-

sion, participants were asked to perform a 30 min bout of cycling consisting of pedaling for 30

s-on, then no pedaling for 30 s-off at 100% PPO (PPO100%) as determined from PPO during

the maximal incremental bike test. In contrast, for the LI session participants were asked to

cycle continuously for 30 min at PPO50%. Throughout the session, both HR (Polar S810, Fin-

land) and RPE (CALER scale) was monitored and recorded at 5 min intervals. Participants

were asked to rate their RPE for legs, breathing and overall using the CALER scale every 5 min

throughout the 30 min session. Following each session, participants were informally asked to

indicate enjoyment level.

Cardiovascular and perceptual outcome measures. Outcomes measures of interest

include cardiovascular (HR) and perceptual (RPE) responses following both HI- and LI-

cycling bouts. Additional measures of interest include heart rate average (HRavg) and HR

recovery (HRrecovery) at post-1, 3 and 7 min exercise (P1, P3, P7). When considering relative

HR, this was represented as percentage change (%Δ) from HRpeak, which was expressed as per-

centage of the maximal heart rate (HRmax) throughout the study (i.e., %HRmax). The %HRmax

has been used extensively as prescription means of exercise intensity and exemplifies a close

relationship with oxygen uptake [39]. Comparisons between groups (MI vs. NMI), between

conditions (HI vs. LI) and across time points (average during 30 min bout and post-exercise

P1, P3, P7) were made to assess the impact of exercise intensities on outcome measures as well

as the interactions between group and time.

Sample size

Based on statistical power calculations using G�Power 3.1.9.2 (Heinrich Heine University Düs-

seldorf, Germany), a sample size of 45 participants total is required for a power of 0.95, an

alpha (α) of 0.05 and an effect size (Cohen’s d) of 0.50 to detect differences between the group

means.

Randomisation

Participants were randomised using an excel program which generated a random allocation to

either the HI- or LI-bout first. The researchers informed the participant which exercise inten-

sity they would perform for the second session (V2) and then cross-over to the other intensity

bout for the third and final session (V3).

Data analysis

All data are presented as mean ± SD. Statistical analyses were performed in SPSS for Windows

v21 (SPSS Inc., Chicago, IL, USA). Normality of the data was checked by Shapiro Wilk tests.

Homogeneity of variances was confirmed by Mauchley’s test of sphericity and a Greenhouse-

Geisser correction was applied to the degrees of freedom if the sphericity assumption was vio-

lated. Baseline exercise measurements ( _VO2peak, HRmax, RER, RPE, PPO/W) were analysed

using student’s t-test. A Pearson correlation coefficient (r) was used to examine the linear rela-

tionship between BOT-2 SF scores and baseline _VO2peak. Within-session exercise measure-

ments (HR, RPE) were analysed using a linear mixed model (LMM) [40] for repeated

measures over time by group to analyze the impact of the different exercise intensities (HI vs.

LI) on outcome measures at baseline, during and post-exercise with fixed effects of group (MI

vs. NMI), time (HI and LI session) and the interactions between group and time. This method

prevented listwise deletion due to missing data [41]. A scatter plot of the predicted values on

the x-axis and the residuals on the y-axis were plotted to visually check for linearity whereby
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no obvious pattern should be displayed and outliers were identified. Furthermore, a Shapiro-

Wilk test was performed to determine normality of residuals. Since only two repeats were

assessed, an unstructured covariance structure was utilised.

Results

A total of 43 adolescents volunteered to participate in this study (Fig 2), with results presented

for 38 (11–18 years) as five of the participants were unable to complete all visits required for

the study.

The participants were classified into two levels of movement impairment according to the

BOT-2SF: those with MI (n = 17; 15 males, 2 females) and those who were normally coordi-

nated, with NMI (n = 21; 18 males, 3 females). Baseline characteristics of participants are pre-

sented in Table 1.

Baseline measures

Seventeen of the participants considered to be MI scored below the BOT-2 SF 17th percentile

(below average) and 21 were classified as having NMI (BOT-2 SF >17th percentile). Table 1

illustrates the participant characteristics from the motor proficiency assessment. There was a

significant difference in the BOT-2 SF standard score between MI (36.0±2.0) and NMI

(44.0±12.0) [95% CI: -14.18, -1.61; p<0.001]. Moreover, there was a significant relationship

between BOT-2 SF score and _VO2peak (r = 0.62, p<0.05) in both groups and a significant differ-

ence in _VO2peak between groups (MI: 31.5±9.2 vs. NMI: 40.0±9.5 ml�kg-1�min-1) [t(36) = -2.28,

p<0.01, 95% CI: -1.08, -0.29]. The PPO (W) was significantly lower in the MI group (MI:

157.0±61.0 vs. NMI: 216.0±57.0 W) [t(33) = -3.05, p<0.01, 95% CI: -101.1, -20.12] and for the

LI workload (MI: 85.0±38.0 and NMI: 121.0±29.0 W) [t(31) = -2.38, p<0.05, 95% CI: -51.4,

-3.99]. With regard to assessment of movement economy, the MI group demonstrated greater

inefficiencies during the maximal exercise test ( _VO2/PO) (MI: 13.3±3.0; NMI: 11.2±2.0 mL/

W) [t(21) = 2.12, p<0.05, 95% CI: -2.85, 2.18] (Table 2). However, HRmax was similar between

groups (MI: 170.0±25.0 and NMI: 180.0±17.0 bpm) [t(35) = -1.31, p>0.05, 95% CI: -24.7,

5.48] and there were no significant differences in O2 pulse (MI: 19.0±0.03; NMI: 20.0±0.05

mL/beat) [t(36) = -0.34, p>0.05, 95% CI: -1.79, 1.30] (Table 2). Correspondingly, there was no

difference in the perception of effort throughout the exercise test and at exercise termination.

All participants reported an RPE rating of 9 or 10 at the end of the test despite the MI group

demonstrating significantly lower PPO at the end of the incremental bike test as shown below

in Table 2. Overall, each participant exhibited a RERmax greater than 1.06 at the end of the test,

however, there was a significant difference between the groups for the RERmax value (MI:

1.20±0.20 and NMI: 1.34±0.10) [t(21) = -2.61, p = 0.008, 95% CI: -2.06, 0.88].

Cardiovascular and perceptual responses

Mean workload during the LI-cycling bout was 85.0±38.0 W in the MI group and 121.0±29.0

W in the NMI group (p<0.05). There was a significant difference between groups [F(1,36.1) =

7.1, p = 0.012] and an effect of intensity for HRavg as demonstrated by the LMM [F(1,33.3) =

37.0, p<0.001]. Overall, HRavg during HI-cycling, which took into account an average of each

cycle (i.e., 30s on and 30s off) throughout the 30 min duration, was lower in MI compared to

NMI (140.0±18.0 and 157.0±14.0 bpm, p<0.05) [t(34) = -3.28, p = 0.002], but not during LI-

cycling (133.0±18.0 and 143.0±17.0 bpm, p>0.05) [t(33) = -1.64, p>0.05]. This denotes that

there is a significant difference with regard to how the level of intensity affects the two groups

with the MI group experiencing less HRavg variability irrespective of intensity. When
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Fig 2. Flow diagram of participant recruitment and adherence throughout study. MI, movement impairment; NMI, no-movement

impairment.

https://doi.org/10.1371/journal.pone.0195944.g002
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considering relative HR represented as percentage change (%Δ) from HRmax (% HRmax), sig-

nificant differences were only demonstrated during an average of the 30 min cycling bout for

HI (MI: 82.0±9.5 vs. NMI: 87.0±7.1%) [t(36) = -3.21, p = 0.003] (Fig 3(a) and 3(b)). In contrast,

the MI group did not demonstrate a great deal of change from HI during the LI bout (MI:

78.0±19.3 vs. NMI: 79.0±23.4%) [t(36) = -0.27, p>0.05]. To further validate the findings, a

paired samples t-test showed no significant difference in HRavg, however, relative change was

significantly different in NMI [t(20) = 2.73, p = 0.013].

In the recovery phase, HR at post-1 min (P1) was significantly different for group following

HI (MI: 128.0±24.2 vs. NMI: 145.0±22.3 bpm) and LI (MI: 121.0±23.0 vs. NMI: 131.0±23.4

bpm) [F(1,35.2) = 4.91, p<0.05]. No significant differences in HR for group were observed at

Table 1. Baseline participant characteristics (mean ± SD).

N = 38 MI (n = 17) NMI (n = 21) �P-value

Age (years) 14.5 ± 2.0 15.5 ± 2.0 -

Height (m) 1.70 ± 8.6 1.74 ± 10.6 -

Weight (kg) 63.3 ± 15.6 66.4 ± 16.3 -

BMI (kg/m2) 22.0 ± 0.0 22.0 ± 0.0 -

Tanner 5.0 ± 0.0 5.0 ± 0.0 -

BOT-2SF Raw Score 61.0 ± 6.0� 71.0 ± 18.0 p < 0.05

BOT-2SF Standard Score 36.0 ± 2.0� 44.0 ± 12.0 p < 0.05

BMI, body mass index; BOT-2 SF, Bruininks-Oseretsky Test of Motor Proficiency Short-Form 2; kg, kilogram; m,

metre; Tanner, Tanner Scale of Sexual Maturity.

�p� 0.05 vs. NMI at baseline.

https://doi.org/10.1371/journal.pone.0195944.t001

Table 2. Baseline exercise intensity descriptors (mean ± SD).

N = 38 MI (n = 17) NMI (n = 21) �P-value

_VO2peak (L/min) 1.90 ± 0.49� 2.39 ± 0.78 p < 0.05

_VO2peak (mL/kg�min) 31.54 ± 9.2� 36.0 ± 11.0 p < 0.05

HRmax (bpm) 170.0 ± 25.0 180.0 ± 17.0 -

PPO (W) 157.0 ± 60.5� 216.0 ± 57.0 p < 0.05

_VO2/workload (mL/W) 13.3 ± 4.0� 11.2 ± 2.0 p < 0.05

O2 pulse (mL/beat) 19.0 ± 0.03 20.0 ± 0.05 -

RPE overall 9.00 ± 1.0 8.00 ± 1.00 -

RER 1.20 ± 0.20� 1.34 ± 0.10 p < 0.05

HI workload/PO (W) 145.0 ± 65.0� 216.0 ± 69.0 p < 0.05

HI HRavg (bpm) 139.0 ± 18.0� 156.0 ± 13.0 p < 0.05

%Δ HIbaseline 82.0 ± 18.0 87.0 ± 14.0 -

LI workload/PO (W) 80.0 ± 30.0� 108.0 ± 36.0 p < 0.05

LI HRavg (bpm) 134.0 ± 18.0 143.0 ± 16.0 -

%Δ LIbaseline 78.0 ± 18.0 79.0± 16.0 -

Avg, average; bpm, beats per minute; HRmax, heart rate maximum; HI, high intensity; LI, low intensity; L, Litre; mL, milliltre; movement impairment; NMI, no-

movement impairment; O2 pulse, Oxygen pulse; PPO, peak power output; RER, respiratory exchange ratio; RPE, rating of perceived exertion; VO2peak, peak oxygen

uptake; _VO2/PO, muscular efficiency; W, Watt; Wpeak watt max; %Δ HIbaseline, percentage change from baseline at HI (100%); %Δ LIbaseline, percentage change from

baseline LI (100%).

�p� 0.05 vs. NMI at same time point.

https://doi.org/10.1371/journal.pone.0195944.t002
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P3 for either intensity, however, significant differences for intensity were exhibited at P7 fol-

lowing HI (MI: 102.0±17.2 vs. NMI: 106.0±15.4 bpm) and LI (MI: 96.0±15.2 vs. 97.0±16.2

bpm) [F(1,26.4) = 9.80, p = 0.004] and illustrated in Fig 3(c) (HI bout) and Fig 3(d) (LI bout).

Both groups experienced similar RPE for breathing and overall (MI: 7.0±3.0 vs. NMI:

6.0±2.0, p>0.05) throughout the exercise at both intensities (Fig 3(e) and 3(f)). However, sig-

nificant differences were observed in RPE for legs during cycling at both intensities towards

Fig 3. Cardiovascular and perceptual responses for high- and low-intensity bouts. Percent change from baseline heart rate maximum

(HRmax) during cycling bout and post-1, 3 and 7 min (P1, P3, P7) presented for high-intensity visit (HI) (a) and low-intensity visit (LI) (b).

MI group (Hollow bars) and NMI group (filled bars). Figs (c) and (e) illustrate the change in HR and ratings of perceived exertion (RPE) pre,

during and post-HI-cycling (solid line). Measures were recorded every 5 min throughout the cycling and following in recovery at P1, P3and

P7. Figs (d) and (f) represent HR and RPE during the LI-cycling bout (dotted line). Vertical and horizontal error bars represent standard

deviation (SD). �p�0.05 vs. NMI (group); ǂp�0.05 for Intensity; §p�0.05 vs. NMI at same time point (Group x Intensity).

https://doi.org/10.1371/journal.pone.0195944.g003
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the end of the 30 min bout (MI: 8.0±2.0; NMI: 7.0±2.0 HI and MI: 7.0±3.0; NMI: 6.0±2.0 LI)

[F(1,33.0) = 9.2, p<0.01] and for group x intensity [F(1,33.0) = 4.8, p<0.05]. Moreover, there

was a notable difference for RPE in the legs [F(1,28.5) = 7.6, p = 0.01], breathing [F(1,28.9) =

9.2, p<0.01] and overall [F(1,28.7) = 11.8, p<0.01](Fig 3(e)) at P1 HI (MI: 6.0±3.0 legs, 5.0±3.0

breathing, 6.0±3.0 overall vs. NMI: 5.0±2.0 legs, 5.0±2.0 breathing, 5.0±2.0 overall) and indi-

cated at P1 for LI (MI: 5.0±3.0 legs, 4.0±3.0 breathing, 4.0±3.0 overall vs. NMI: 4.0±2.0 legs,

5.0±2.0 breathing, 4.0±3.0 overall) (Fig 3(f)). Interestingly, the MI group appeared to experi-

ence a similar level of RPE for both intensities despite achieving lower workloads (W) to

complete the exercise in comparison to the NMI group. The full set of data is available as sup-

plementary material (S1 Table).

Discussion

Children and adolescents with MI experienced higher perceived fatigue after both high and

low intensity exercise despite having similar or lower physiological HR exercise responses dur-

ing and following cycling. The MI group tolerated the short duration, HI exercise and the con-

tinuous lower-intensity endurance exercise similarly. Therefore, both approaches may serve as

a feasible modality for improving fitness but the long-term benefits and sustainability of differ-

ent exercise intensities still remains to be evaluated. We propose that perceived fatigue is limit-

ing exercise for youth with MI and interventions to reduce perceived fatigue during exercise

may positively impact on exercise engagement in this group.

Throughout the literature, it has been consistently shown that children with movement dif-

ficulties (i.e., pDCD and DCD) are disadvantaged to various degrees on exercise capacity and

muscle strength. Individuals with MI perform less well on fitness parameters [15] of: aerobic

power, muscle strength, endurance, anaerobic power and body composition [13, 19, 26]. Simi-

lar to previous findings examining submaximal and maximal exercise test measures [13, 26], it

was observed that children and adolescents with MI exhibited a lower _VO2peak and PPO com-

pared to their TD peers (MI: 157.0±61.0 vs. NMI: 216.0±57.0 W). As hypothesised, partici-

pants with MI had a reduced exercise capacity, demonstrating a significantly lower _VO2peak in

comparison to NMI (MI: 31.5 vs. NMI: 36.0 ± 11.0 mL/kg�min). Furthermore, the _VO2peak for

the MI group was below the cardiovascular fitness threshold [42] and as such, associated with

an increased risk of obesity, type II diabetes and cardiovascular and metabolic conditions in

adulthood [43].

Parallel to values reported by Faught et al. [26], HRmax or the term HRpeak used in this

study was analogous between groups (MI: 170.0±25.0 and NMI: 180.0±17.0 bpm, p>0.05).

However our findings deviated from the results in Morris et al. [13], who saw a significant

mean HR difference of 12 bpm in children with higher MI (176 bpm) versus NMI (188 bpm).

These differences may be due to the small sample size presented in the current study, which

served as a limitation to the robustness of these findings. In addition, perceived competence to

complete the task could also limit the results of the _VO2max test in children with MI. It is impor-

tant to note that the MI group demonstrated a similar RPE to NMI despite significant differ-

ences in _VO2peak performance and exercise capacity. Thus, the limiting factors to exercise may

be more perceptually related and central in origin [28]. Both groups exceeded an average RER

of 1.06 at the end of the exercise test; however, RER was notably higher in NMI (1.34 in NMI

vs. 1.20 in MI), which was different to the findings in Morris et al. (2013). Substrate utilisation

and fat oxidation levels during the maximal exercise test were within the range previously

reported in healthy children and adolescents [44]. Although the MI group demonstrated a sig-

nificantly lower PPO there was no difference in the perception of effort (RPE) reported
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throughout and at test termination similar to Morris et al., [13]. All participants reported a

RPE rating of 9 or 10 at the end of the exercise test.

Corroborating earlier studies [13, 26], participants with MI exhibited a reduced movement

economy during the incremental bike test as illustrated by their _VO2/PO relationship (MI:

13.3 ± 4.0 vs. NMI: 11.2 ± 2.0 mL/W) (Table 2). According to Wasserman et al. [45], _VO2

kinetics normally rise at a rate of approximately 8.5–11 mL/min�W and are independent of

sex, age, body mass or height in youth. Therefore, poorer coordination and inefficient move-

ment patterns may contribute to the reduced exercise capacity in MI. Similar to the observa-

tions in this study, Faught et al., [26] recognised that children with pDCD were disadvantaged

from the beginning of the incremental exercise protocol at low workloads (i.e., <40 W) and

worked at a greater percentage of their _VO2 compared to healthy controls throughout the test.

As such, even at very low exercise intensities, children with poor motor proficiency/coordina-

tion may need to utilise more energy to carry out basic movements associated with maintain-

ing proper posture and posture on the cycle ergometer [26]. This further suggests that youth

with MI produce inefficient movements and may exercise at a higher metabolic rate to sustain

the same level of workload relative to children without. Furthermore, we suspect the MI group

would require more oxygen to exercise because they do not work their cardiovascular system

sufficiently as represented by the similar O2 pulse (MI: 19.0 ± 0.03 vs. 20.0 ± 0.05 mL/beat) but

significantly different PPO attained.

To our knowledge, this is the first study to investigate the impact of varying exercise intensi-

ties and the responses during the recovery phase, particularly following HI exercise, in adoles-

cents with MI. As previously alluded in Morris et al. (2013), the evidence of children with MI

to push themselves maximally warrants the potential applications of performing HI exercise

on improving measures of health, muscle function and movement coordination. The results in

this study revealed that the NMI group was able to tax the cardiovascular system sufficiently

during the HI session as indicated by the 12% difference for HRavg between the HI (157.0±14.0

bpm) and LI (143.0±17.0 bpm) cycling bouts. Conversely, the MI group did not appear to

demonstrate considerable difference in HR measures between HI (140.0±18.0 bpm) and LI

(133.0±18.0 bpm) cycling with only a 4% difference in percentage change from HRmax between

intensities. These findings potentially suggest a smaller ventilatory threshold (VT), or point

during exercise at which ventilation starts to increase at a faster rate than _VO2, in adolescents

with MI compared to NMI. For most individuals, this threshold lies at exercise intensities

between 50% and 75% of _VO2max and is dependent on the person’s level of fitness [46]. Exercise

intensity for both HI and LI workload was set relatively to each child and considering the high

peak RER observed in the MI group and lower actual intensity performed, it is likely that chil-

dren with MI are exercising at a lower intensity relative to their VT. A limitation of this study

however, was that the exercise intensities for the HI and LI cycling bouts were not determined

from the VT and instead, calculated as a percentage of PPO (PP50% and PP100%). Although dif-

ficult to interpret in a minority of children, the VT is considered a useful method to determine

aerobic fitness in children [46] and future studies should examine VT and _VO2max changes fol-

lowing different types of training [16].

In the last decade, findings have highlighted the relationship between lower motor compe-

tence and fitness performance [13, 14]; noting the influence of self-efficacy and perceived

adequacy [17]. The findings in this study showed that the MI group did not experience any dif-

ferences in perceived fatigue and leg muscle fatigue compared to NMI peers following either

HI-or LI-exercise. These observations are similar to studies reporting that children experience

less fatigue during short-burst activities and often request to repeat high-intensity exercises

after their completion determined to improve their previous performance [31]. However,
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during higher intensity exercise, the MI group reported higher levels of perceived fatigue in

legs and breathing even though they performed at a lower overall exercise intensity (but still

the same relatively) and achieved high RER values at _VO2peak. Therefore, as opposed to the

findings observed in Morris et al. [13], the factors limiting exercise performance and perceived

fatigue in MI may be more central in origin rather than metabolic or peripheral. This suggests

that the lower-intensity aerobic exercise will be better tolerated in the MI group in comparison

to HI. Noteworthy, all participants completed each session without any adverse events and

interestingly, both MI and NMI groups anecdotally preferred the HI cycling bout to the LI

bout. With this in mind, exposure to different exercise intensities may build up more self-con-

fidence and self-efficacy to participate in PA [4].

Strengths of this study include objective measurement of physiological and perceptual vari-

ables during and following different exercise intensities, and the examination of recovery

markers in MI and NMI adolescents. Ongoing growth and maturation can confound exercise

interventions unless controlled adequately with well-matched controlled groups. In this acute

study, only a small sample of participants (n = 38) were measured and therefore, caution must

be taken when interpreting the robustness of the outcomes. There were no statistical differ-

ences found between MI and NMI groups on level of maturation or age and thus, no further

analyses were undertaken to delineate potential sex differences at this time. Moreover, the

wide age range of the participants and the unequal distribution of boys and girls pose limita-

tions on interpreting the findings. Maturation and puberty may raise significant implications

for the results and according to Tolfrey and Smallcombe (2017), may be an important factor

on training effect in HIT studies. However, the authors acknowledge it is difficult to identify

an independent sex effect that is not due to baseline differences in peak _VO2 or maturation

[25]. New research has drawn a correlation between significant sex differences in the underly-

ing pathways connecting pDCD to internalising problems, indicating more mediating path-

ways through PA, BMI and global self-worth in girls, compared to boys [47]. Future research

should expand on these findings and include larger sample sizes, taking into account sex, mat-

uration and age in relation to physiological and perceptual exercise responses.

Conclusion

The findings from this study highlight the physiological, perceptual and recovery responses to

different exercise intensities in children and adolescents with and without MI. The exposure to

both a HI intermittent bout and a continuous LI cycling bout demonstrated a lower exercise

capacity in children with MI and a higher perception of physiological symptoms while per-

forming at a lower intensity generally. Furthermore, the results from the incremental exercise

test alongside measures of muscle strength and fatigue before and after exercise suggest that

central factors could be the limiting factor to exercise tolerance in this group. Interestingly, dif-

ferences for group and intensity were observed in the recovery period, yet the pattern of recov-

ery was similar between MI and NMI, which may be crucial for devising suitable exercises and

activity intensities. Although the number of participants in this sample was relatively small, the

results from each acute session contribute to future interventions and exercise prescriptions

targeting aerobic and anaerobic fitness, strength and power and general participation in physi-

cal activities. Overall, all participants successfully completed the high and moderately-low

intensity cycling bouts however, more research investigating the implementation of HI and LI

exercise during longer-term interventions is required to further elucidate the sustainability

and tolerance of this type of activity. Whether short durations of high-intensity intermittent

exercise can feasibly improve health and fitness levels and adherence to longer-term PA

engagement in youth with MI still remains to be explored.
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