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Abstract
This survey targets intention and trajectory pre-
diction in Autonomous Vehicles (AV), as AV
companies compete to create dedicated prediction
pipelines to avoid collisions. The survey starts with
a formal definition of the prediction problem and
highlights its challenges, to then critically compare
the models proposed in the last 2-3 years in terms
of how they overcome these challenges. Further, it
lists the latest methodological and technical trends
in the field and comments on the efficacy of dif-
ferent machine learning blocks in modelling vari-
ous aspects of the prediction problem. It also sum-
marises the popular datasets and metrics used to
evaluate prediction models, before concluding with
the possible research gaps and future directions.

1 Introduction
Prediction is about forecasting future events before they
occur, which is beneficial for human-machine interaction
systems, including surgical and industrial robots and au-
tonomous vehicles (AVs). This survey will focus on pre-
diction in autonomous vehicles. In this domain, prediction
refers to the ability of the AV to forecast either the intention
of other road users (e.g., they will turn left, right), including
other cars, pedestrians and cyclists, or their future trajectory
(when using video as input, their location in the image or map
plane over a horizon of N future video frames). The accurate
prediction of the intention and/or the trajectory of other road
users can enable the ‘planning’ module of the autonomous
(ego) vehicle or assistive system to avoid paths potentially
leading to accidents and propose safe and reliable courses of
action. Furthermore, it can foster social intelligence, as the
first step towards understanding the thinking of other road
users. For all these reasons, many companies have recently
started to create a dedicated pipeline for AV prediction.

Multiple approaches have been suggested to tackle the pre-
diction problem, including both physics-based models and
machine learning-based models. The former depends on dy-
namic equations that govern the vehicle’s motion to create
an evolution model that predicts the final point and time of
the current motion [Brännström et al., 2010]. Such models
do not capture contextual information of the scene; therefore,

they cannot capture the high-level intentions of road users,
and their ability to model the uncertainty of future trajectories
is limited [Lin et al., 2000]. Machine learning approaches, on
the other hand, can distil high-level understanding from driv-
ing scenes by learning from data. They have arguably proven
more successful in handling the above challenges in terms of
accuracy and generalisation [Rasouli et al., 2019], as they can
model both temporal dynamics and the social features of road
users and produce suitably multi-modal predictions [Yuan et
al., 2021].

Machine Learning (ML)-based prediction methods have
explored different approaches to the problem. Some focus on
predicting LiDAR point clouds in the future frames [Weng et
al., 2020], while others predict occupancy maps [Hoermann
et al., 2018]. This survey will focus on ML-based methods
outputting visual predictions for road agents using input cam-
era frames, either from an ego-vehicle perspective or from a
bird’s eye viewpoint (BEV).

Isolated surveys do exist on both the general prediction
problem [Rasouli, 2020] and prediction in AVs [Mozaffari
et al., 2020]. The latter classifies prediction models based on
input, method used and output, doing a good job highlighting
the pros and cons of each class. However, neither papers sys-
tematically compares the contributions of the models’ con-
stituents blocks in tackling different aspects of the prediction
problem. Also, existing surveys only list datasets without a
detailed comparison between their attributes, failing to indi-
cate which dataset to use to tackle a particular problem.

To the best of the authors’ knowledge, this is the first sur-
vey to provide such an in-depth analysis of prediction models
and datasets. Its main contributions are: (1) a formulation
of a generic AV prediction pipeline; (2) a critical review of
the ability of the various models’ building blocks to model
the social, temporal and generative dimensions of the predic-
tion task, as a guide for researchers to select the correct ML
technique for their problem; (3) a comparison of the relevant
datasets in terms of size, input modalities, target agent and
problem; (4) a summary of the latest methodological trends
and a reasoned analysis of future research directions.

The survey is structured as follows. Section 2 introduces
the prediction pipeline and formalises the prediction prob-
lem for both intention and trajectory. Section 3 highlights
the main challenges of the prediction task, while Section 4
compares the most popular prediction datasets and lists the

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
Survey Track

5630



associated performance metrics. State-of-the-art (SOTA) pre-
diction approaches are recalled in Tables in Section 5. Based
on that, Section 6 focuses on the current research trends and
comments on the efficacy of different ML techniques. Re-
search gaps and future directions are discussed in Section 7.

2 Problem Formulation
Hereafter, the vehicle on which the sensors are mounted is
called the ego-vehicle, while all the other road agents (in-
cluding vehicles, pedestrians, cyclists and traffic lights) are
termed target agents, as the prediction model aims to antici-
pate their future behaviour.

The input to the task is, given a current time instant, a
sequence of features X = {Xa

t }t=1:Tobs;a=1:A related to A
target agents extracted over the previous Tobs time instants.
These features might include the target agent’s location (ei-
ther local, in image plane, or global, from a BEV), velocity,
heading angle, or pose, as well as context information I in
the form of RGB images, LiDAR point clouds, HD maps,
semantic segmentation maps, etc. capturing road structure,
traffic conditions or other environmental factors.

The problem is to calculate one or both of the following.

1. Intention. A set of K possible future intentions for the
A agents in the next Tpred (future) frames, each with an
associated probability. In most cases this is considered a
classification problem, since intention is assumed to be
annotated, either as a mind state or as a future action.

2. Trajectory. A set of K possible future locations for
the A agents in the next Tpred future frames, formally
S = {Sa

k}k=1:K,a=1:A where each Sa
k contains a trajec-

tory s = {st}t=1:Tpred
, and a scalar confidence c which

captures the probability of this trajectory. Trajectory co-
ordinates are measured either in the image plane or in
the map plan (BEV).

To address this problem, a typical prediction pipeline will
encode the input related to the agents in the scene, to then
model their temporal and social dimensions before decoding
their uni-modal or multi-modal intention or trajectory. Figure
1 shows the workflow of a typical AV prediction stack.
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Figure 1. Prediction stack components and flow.

3 Challenges
Prediction in the AV domain is a complex problem due to the
following characteristics of the driving environment.

1. Dynamic: Both the ego-vehicle (observer) and the tar-
get agents are moving. Therefore, the future trajectory
of the target agent depends on its motion as well as the
ego-vehicle’s motion. Furthermore, in a dynamic envi-
ronment the captured data is available sequentially, re-
quiring that the model makes predictions in an online,
rather than batch, fashion.

2. Multi-agent: Being multi-agent environments, roads
host agents characterised by different goals and features.
In particular, pedestrians possess more diverse and un-
predictable trajectories than cars, which generally oper-
ate within a finite number of predefined lanes in manners
restricted by road rules and geometry. Furthermore, the
actions of one agent may influence the actions of other
agents and vice versa in a social interaction process.

3. Stochastic: There is inherent uncertainty about a user’s
future intention or trajectory and the multimodality of
agents’ behaviours, as one past trajectory can have mul-
tiple possible future trajectories.

4. Partially observable: The surrounding environment
and target agents are only partially observable by the
ego vehicle due to occlusions etc; that is, the location,
speed, heading angle, latent beliefs of other agents are
not accessible/known by the ego-vehicle at all times.

5. Real-time requirement: In such a critical environment
in which agents are moving at relatively high speeds,
prediction algorithms need to perform in real-time, al-
lowing time for the ego vehicle to react. This, in turn,
increases the computational burden on the on-board PC.

In the light of the challenges mentioned above, an ideal
prediction algorithm must model the social and temporal fea-
tures of the ego vehicle and its surrounding road users (in-
cluding cars and pedestrians) in an online processing fash-
ion. Furthermore, it must generate multiple future trajecto-
ries (each with an associated probability), while running in
real-time and assuming partial observability.

4 Training and Evaluation
Prediction approaches are tested on various standard datasets,
and their performance evaluated using suitable metrics.

4.1 Datasets
While older datasets were limited in terms of environments
and agent categories, modern benchmarks have significantly
boosted progress in the AV prediction field.

For example, NGSIM-180 [Coifman and Li, 2017] and
the highD Dataset [Krajewski et al., 2018] used drones and
surveillance cameras to capture cars on highways, featuring
a single type of agent with a limited set of possible actions
(move left/right and keep straight). On the other hand, ETH
[Pellegrini et al., 2009] contemplated trajectory prediction for
off-road pedestrians only. PIE [Rasouli et al., 2019], and its
predecessor JAAD [Kotseruba et al., 2016] also targeted the
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trajectories of pedestrians only. Unlike ETH, they used an
ego-vehicle camera to capture the scenes, and added an in-
tention label for crossing or not crossing, allowing the dataset
to be used for intention and trajectory prediction. All such
datasets would capture the scene using camera sensor only.

KITTI [Geiger et al., 2012] was one of the first multi-
modality datasets to provide, in addition to camera frames,
LiDAR pointclouds for the input scenes. This, in turn, gave
rise to the recent interest in detecting objects using 3D bound-
ing boxes [Chen et al., 2017]. Furthermore, KITTI provides
annotations for both cars and pedestrians.

The deeper the AI model, the more images it needs to gen-
eralise efficiently. Recent datasets such as Lyft [Houston et
al., 2020], Waymo [Ettinger et al., 2021], nuScenes [Caesar
et al., 2020] and Argoverse [Wilson et al., 2021] have brought
about a significant increase in terms of number of annotated
frames, paving the road for the training of deep models. In
addition to camera and LiDAR, these datasets provide High
Definition (HD) maps that capture the topology of the road
[Seif and Hu, 2016]. Adding HD maps has made possible
to investigate global navigation abilities, enabling in turn the
training of models upon a longer prediction horizon. Further-
more, unlike previous datasets, the datasets listed above con-
template more classes, recorded ego-vehicle odometry data,
a variety of different cities, various weather and lighting con-
ditions (including rain and night), and labels for other agents
including traffic lights and road rules. Nevertheless, they still
lack intention prediction-related labels.

LOKI [Girase et al., 2021] has addressed this problem by
providing action labels that can be harnessed by intention pre-
diction models. Furthermore, the creators considered addi-
tional attributes that may influence the prediction model (e.g.
age and weather). E.g., the probability of a pedestrian cross-
ing the street not on a zebra crossing differs if the pedestrian
is a teenager or an elderly. Finally, LOKI has an average of
21.6 agents per frame, useful for multi-agent prediction.

In summary, modern datasets helped addressing most of
the prediction challenges by providing a huge amount of di-
verse, multi-agent, multi-modal data which can be used to
train models able to predict the behaviour of different types of
interacting agents in different weather conditions. Moreover,
they provide annotations useful for high-level understanding
of the driving scene including location, action, events. Com-
monly used datasets are outlined in Table 1.

4.2 Evaluation Metrics
Intention prediction. As a classification task, it is evalu-
ated using traditional classification metrics including accu-
racy, i.e. the percentage of correctly classified samples over
the total number of samples. Since it deals only with true pos-
itives, accuracy does not quite reflect the true performance in
case of class-imbalance. The model will learn to focus on
the more populated class in order to output many true posi-
tives, while generating a large number of false predictions for
the other classes. Therefore, it is recommended to use other
complimentary metrics including precision and recall, which
consider the false positives and the false negatives, respec-
tively. Precision and recall can also be utilised to calculate
other metrics such as the F1 score, mean Average Precision

(mAP) and the Area Under the Curve (AUC) [Rasouli, 2020].

Trajectory prediction. It is considered a regression prob-
lem in which the output is either a sequence of bounding
boxes around the object of interest or its x - y locations. The
Average Displacement Error (ADE) is widely used to evalu-
ate the output. It is the mean l2 distance between all the loca-
tions forming the predicted trajectory and the corresponding
ground truth. Another common metric is the Final Displace-
ment Error (FDE), which performs the same calculation but
only for the final predicted location in the trajectory and its
ground truth at the prediction horizon Tpred.

Models which use probabilistic generative methods to gen-
erate multi-modal prediction employ additional metrics. Best
of N calculates ADE and FDE for the best N samples out
of all the generated trajectories. When N equals 1, only the
generated trajectory closest to the ground truth is chosen: this
method is called minADE and minFDE, respectively. Other
generative model-related measures are the different versions
of Negative Log Likelihood (NLL), comparing the distribu-
tion of the generated trajectories against the ground truth.

5 Overview of the Recent Literature
Behaviour prediction can be either implicit, in the form of
future trajectories, or explicit in terms of predicting future ac-
tions or events. An agent’s intentions can be affected by: a)
the agent’s own belief or will (challenging to model, since
it is usually not observed); b) its social interactions, which
can be modelled using different approaches like social pool-
ing, Graph Neural Networks, Attention, etc.; c) environmen-
tal constraints, such as the road layout, which can be encoded
by High Definition (HD) maps; d) contextual information, in
the form of RGB frames, LiDAR point clouds, optical flow,
segmentation maps, etc.

On the other hand trajectory prediction is inherently more
challenging - unlike intention (which is typically considered
as a classification (discrete) problem), trajectory prediction is
a regression (continuous) problem. Table 2 outlines state-of-
the-art models targeting intention prediction (first three rows),
trajectory prediction (remainder of the table), and prediction
of both intention and trajectory (last three rows). The table
analyses the type of input modalities, along with their encod-
ing techniques. It then compares different methods used to
model the social, temporal, and generative dimensions of the
prediction problem. It also contrasts various loss functions,
optimisation methods, and datasets used to train the models,
before listing their output type and measured metrics.

The different classes of techniques used by the methods
listed in the above tables are discussed and compared next to
highlight the emerging trends in AV prediction.

6 Take-home Messages
6.1 Ego-Motion and Dynamics
In order to tackle the aforementioned (Section 3) challenge
that accompanies a dynamic environment, methods have in-
cluded a dedicated processing unit to model the ego-vehicle
motion [Kotseruba et al., 2021; Neumann and Vedaldi, 2021;
Rasouli et al., 2021; Salzmann et al., 2020] to generate more
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accurate trajectories. In opposition, some methods model the
target agents’ motion, using either deep networks or dynam-
ical models. [Cai et al., 2020; Neumann and Vedaldi, 2021;
Salzmann et al., 2020] use dynamic equations at different lev-
els of their algorithms to constrain the generated trajectory,
making sure that they are dynamically feasible. In a related
effort, researchers have leveraged additional quantities com-
puted from the inputs directly provided by the dataset, such
as pose, optic flow, semantic maps and heat maps.

6.2 Ego-Camera vs Bird’s Eye View
In terms of the view in which predictions are formulated,
methods can be categorised into two classes. In BEV meth-
ods the algorithm processes data coming from a top, map-
like view [Salzmann et al., 2020; Varadarajan et al., 2021].
In ego-camera prediction, the algorithm perceives the world
from the ego-vehicle perspective [Neumann and Vedaldi,
2021; Bhattacharyya et al., 2021]. The latter is generally
more challenging than the former due to a number of reasons.

Firstly, perceiving the world from a BEV allows for a wider
field of view and more informative predictions. By con-
trast, ego-camera views have a shorter visual range that lim-
its the prediction horizon, because the car cannot plan fur-
ther than it sees. Also, ego-cameras are occluded more com-
monly than BEVs. Thus, BEV methods suffer less from the
‘partial-observability’ challenge than those based on an ego-
camera. Secondly, unless LiDAR data is available, monoc-
ular vision makes it difficult for the algorithm to infer target
agents’ depth - which is an important clue in predicting their
behaviour. Finally, as mentioned above, the ego-camera is
moving - which requires processing both target agent’s mo-
tion and the ego-vehicle motion, unlike the static BEV.

Despite inherent challenges in processing an ego-camera
view, it remains more practical than BEV. Cars rarely have ac-
cess to a camera showing BEVs of the road and target agents’
locations. The conclusion is that a prediction system should
be capable of viewing the world from the ego-vehicle’s per-
spective. It may be advantageous to include LiDAR and / or
stereoscopic camera data to perceive the world in 3D.

Another important related point is that, whenever the tar-
get agent’s location has to be included for prediction, it is de-
sirable to employ bounding box locations rather than purely
centre points, as the former coordinates implicitly capture the
changes in relative distance between ego-vehicle and pedes-
trians as well as the camera ego-motion [Rasouli et al., 2019;
Rasouli et al., 2021]. In other words, bounding boxes become
larger as the agent approaches the ego-vehicle, providing an
additional (albeit rudimentary) estimation of depth.

6.3 Temporal Encoding
Since the driving environment is dynamic with many mov-
ing agents, it is critical to encode the temporal dimension of
the agents to build a better prediction system connecting what
happened in the past to what will happen in the future through
the present. Knowing where an agent is coming from can help
in guessing where it may go next. Most ego-camera-based
models [Fang et al., 2021; Kotseruba et al., 2021] deal with
shorter time horizons, and use 3D-Convolutional Neural Net-
works 3D-CNN models to capture the temporal dimension

of video data. 3D-CNNs stack the 2D video frames along
the third dimension (time), then apply 3D convolutions. This
can capture temporal evolution for short-horizon tasks such
as intention, in which the last few frames before the event
are the most relevant and important. Other works use Hidden
Markov Model (HMM) [Cai et al., 2020]. For longer hori-
zons, however, a more complex structure is arguably required
including Transformers [Yuan et al., 2021] and variants of
Recurrent Neural Networks (RNNs) [Girase et al., 2021]
such as Long Short-term Memory (LSTMs) [Bhattacharyya
et al., 2021; Fang et al., 2021; Kosaraju et al., 2019; Ra-
souli et al., 2021; Salzmann et al., 2020; Weng et al., 2021;
Yuan et al., 2021] and Gated Recurrent Units (GRUs) [Gilles
et al., 2021]. It is noted that Transformer- and RNN-based
models outperformed others in achieving SOTA results.

6.4 Social Encoding
To tackle the ‘multi-agent’ challenge, most top-performing
algorithms use different types of graph neural networks
(GNNs) to encode the social interaction between agents.
[Gilles et al., 2021; Kosaraju et al., 2019] use a fully con-
nected undirected graph in which all agents in the scene
are connected. This method is clearly exponential in the
number of connections. In opposition, [Fang et al., 2021;
Girase et al., 2021; Salzmann et al., 2020; Weng et al., 2021]
use a sparsely connected graph so that only agents that are lo-
cated within a certain distance to each other are connected to-
gether - significantly lowering the number of links. Similarly,
[Kosaraju et al., 2019; Yuan et al., 2021] implement sparse
graphs, assuming that different types of agents have different
perception ranges - and thus making the connections in the
graph directional. The unique feature of [Girase et al., 2021]
is its use of a heterogeneous graph that does not only include
road agents but also significant road elements (e.g. exit, en-
trance) thus modelling the relationship between agents and
environment. As for the optimal number of GNN layers, [Ad-
danki et al., 2021] suggest that the deeper the graph the better
the performance - in stark contrast, [Weng et al., 2021] and
[Liu et al., 2020] claim that the optimal number is just 2.

[Rasouli et al., 2021; Mangalam et al., 2021] use semantic
segmentation to extract the visual features of different classes,
then find the relationship between them using attention. Un-
less panoptic segmentation is used (which distinguishes be-
tween semantic instances), all surrounding agents of the same
class are treated the same whether they are interacting with
the ego-vehicle or not. A less efficient method is social pool-
ing, which was used along with attention in [Pang et al.,
2021]. [Bhattacharyya et al., 2021] model the social dimen-
sion in the latent space of each agent, conditioned on that of
previous agents. The limitation of this method is that it uses
a human-biased ordering to decide on which agent the mod-
elled agent depends, which may be incorrect.

Most approaches encode the temporal and social dimen-
sion separately - either starting with the temporal aspect
to then consider the social one [Gilles et al., 2021; Girase
et al., 2021; Kosaraju et al., 2019; Rasouli et al., 2021;
Weng et al., 2021], or by doing the opposite [Salzmann et
al., 2020]. [Yuan et al., 2021] argues that such systems are
bound to be suboptimal, and proposed a transformer-based
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model that can simultaneously encode both dimensions.

6.5 Goal-Conditioning
Studies in neuroscience [Valentin et al., 2007] and computer
vision [Gilles et al., 2021; Mangalam et al., 2021] suggest
that humans are goal-directed agents. Furthermore, while
making decisions, humans follow a series of successive lev-
els of reasoning that eventually create their short or long-term
plans. Based upon this, various algorithms have followed
a strategy that appears to be beneficial to prediction perfor-
mance: breaking down the prediction problem into two sub
problems. The first is termed epistemic, and seeks the goals
of each agent or answers the question ‘where are the agents
going?’ The second is called aleatoric and solves for the tra-
jectory that will carry the agent to the calculated goal, an-
swering the question ‘how is this agent going to reach its
goal?’ Methods may do that explicitly [Girase et al., 2021;
Mangalam et al., 2021; Pang et al., 2021] or implicitly [Gilles
et al., 2021], often conditioning the generated trajectories on
the calculated goals. Those methods have achieved SOTA re-
sults in different driving datasets, reflecting the importance of
goal-conditioning in improving prediction performance.

6.6 Multimodality
As the road environment is stochastic, one prior trajectory
can unfold different future trajectories. Thus, a practical
prediction system, that addresses ‘stocasticity’ challenge, is
one that models the uncertainty of the problem. Conditional
variational auto-encoders (CVAEs) achieve this by learning
the latent space for the agents, then sampling from them
during inference. [Girase et al., 2021; Weng et al., 2021;
Yuan et al., 2021] model agents independently and use the
variational lower bound of the log-likelihood (ELBO) func-
tion, while [Bhattacharyya et al., 2021] employ a CVAE to
jointly model agents using a β-VAE loss function, arguing
that ELBO suffers from posterior collapse. [Salzmann et al.,
2020] also model agents independently using a CVAE, but
use an infoVAE loss instead. In their ablation studies, how-
ever, none of these authors investigate the effect of using dif-
ferent CVAE loss functions on the final prediction.

[Kosaraju et al., 2019] use a generative adversarial net-
work (GAN)-based method that uses adversarial losses for
multimodal prediction. [Pang et al., 2021], instead, use a la-
tent belief energy-based method that is close to generative
adversarial imitation learning (GAIL) - arguing that GAIL is
preferable to inverse reinforcement learning (which is from
the same family of models). The latter calculates an agent’s
policy through a two loop process (an outer one for the cost
and an inner one for the policy, which is highly computation-
ally expensive) while the former directly optimises a policy
network [Pang et al., 2021]. Interestingly, other authors have
created datasets contemplating multiple future trajectories for
a same observed trajectory [Liang et al., 2020].

An important observation is that, in the current literature,
multimodality is only applied to trajectories, completely ne-
glecting its potential for intention prediction, despite the exis-
tence of ways to model the latent space of a discrete variable.

A final shared trend among prediction systems is the imple-
mentation of attention mechanisms to calculate the weighted

importance of features or input modalities [Fang et al., 2021;
Gilles et al., 2021; Girase et al., 2021; Kosaraju et al., 2019;
Kotseruba et al., 2021; Pang et al., 2021; Rasouli et al., 2021].

7 Research Gaps and Future Directions
Most researchers did not address the ‘real-time’ challenge,
and did not touch on the computational demand of their sys-
tems. For the minority who did, including [Salzmann et al.,
2020], their system was not running in real-time. Therefore, a
promising future direction is to design online prediction sys-
tems.

Several successful multi-modal approaches to trajectory
prediction using different generative losses have been brought
forward. However, the ideal loss function is still to be identi-
fied as none of the existing studies have performed suitable
ablation studies in this sense. Further, all existing multi-
modal systems exclusively deal with trajectory prediction,
leaving as a clear future research direction the creation of sys-
tems for joint multi-modal intent and trajectory prediction.

Current state of the art algorithms struggle to make ac-
curate predictions in the presence of scenes different from
those they were trained upon. This is an inherent limita-
tion of prediction methods that learn from examples. A
promising (yet unexplored) approach to modelling the so-
cial interaction of road users, and directly generalising goal-
directed methods, is theory of mind (ToM) [Singh et al., 2021;
Cuzzolin et al., 2020]. A notion from cognitive psychology,
ToM is the ability to understand and anticipate other agents by
simulating their mental states. Applied to autonomous driv-
ing, ToM could allow an ego vehicle to think from the per-
spective of the target vehicle to produce more accurate pre-
dictions of its future behaviour, especially in rare situations
or cases in which humans change course without visible cues.

Finally, future prediction methods should not be limited by
the availability of annotation. The AV industry is generating
huge amount of visual data, which can only be leveraged by
moving toward self-supervised learning methods.

8 Conclusions
The ability to accurately predict intentions and trajectories
of other road agents can significantly enhance AV capabil-
ities. Recent developments leveraging large, diverse and
multi-modal datasets have significantly boosted research in
this area. SOTA prediction models have harnessed powerful
models such as attention, GNNs, LSTMs and transformers,
although many outstanding challenges remain. Prediction in
autonomous driving provides the key to a higher level of un-
derstanding of road scenes, thereby offering the potential im-
prove the safety of future autonomous driving technology.
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